Appendix A: Full Derivation Framework of the Two Constants

This appendix provides the complete derivation of the two scaling constants in the MEST--SF theory, expanding upon the simplified chain in Section 2.

1. From Tensor Conservation to Dimensionless Form

We start from the generalized conservation law:

 $\nabla^{\mu} T \{\mu\nu\}=0$

with $T_{\mu\nu}=T^{(b)}_{\mu\nu}+S_{\mu\nu}[\phi]$ including baryonic and structural contributions. Under spherical symmetry, this reduces to a radial balance equation for the structural potential $\Phi(r)$: $(1/r^2) d/dr (r^2 \Phi'(r)) = 4\pi G \rho_{eff}[\phi(r)]$.

Introducing the structure function $F(\xi)$ and defining $\xi=\alpha r/r0$, $\kappa=\alpha r0$, the reduced equation becomes $E[F(\xi);\kappa]=0$, which shows that only κ enters as a free parameter.

2. Regularity and Matching

• Central regularity: as $r\to 0$, $\Phi(r)$ and g(r) remain finite. • Asymptotic matching: as $r\to \infty$, solutions must join smoothly to the background. • Consequence: these conditions reduce the family $\{F(\cdot;\kappa)\}$ to a single constant value $\kappa \bigstar$.

3. Observable Equivalents of the Constant

For different astrophysical systems, $\kappa \star$ manifests in distinct but equivalent forms: • Galaxy rotation curves: $g(r) = (V \infty^2 / r0) * F(\kappa \xi)/\xi$. • Gravitational lensing: $\alpha \blacksquare (R) = (2/R) \int 0^R \kappa L(R') R' dR'$. • CMB cold/hot spots and voids: $\Delta T/T \propto \int \partial \eta \Phi[F(\xi)] d\blacksquare$.

4. Statistical Cross-Validation

• Regression of log α vs. log r0 \rightarrow slope -1 (b=1). • Consistency of $\kappa i=\alpha i$ r0,i across galaxies, lenses, and CMB systems. • Equivalence of $\kappa \star$ and A0 when inferred independently.

5. Summary

The complete derivation establishes:

b=1, $\kappa = \alpha r 0 = \kappa \neq = const$, gt=A0=const.

These constants are mutually verified across all astrophysical systems.