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Supplementary Sections
Supplementary Section 1. Architecture of denoising network of GenLCS in ACG step
In the Atomic Coordinate Generation (ACG) step of GenLCS, we employ an equivariant graph neural network (GNN) as the denoising network. Especially, we extend the framework established by Tensor Field Networks (TFN)1 that maintain invariant to translations and equivariant to rotations. The network is trained to predict noise in the basis atom coordinates as a function of the diffusion timestep t and the structural components generated during the SCG step. These components include the space group , noised basis atom coordinates , basis atom elements , corresponding multiplicities  and lattice parameters . 
The timestep  is embedded using a sinusoidal positional encoding and transformed into a node feature . The ,  and  are also embedded as a categorical feature and encoded as ,  and . The full atomic structure, consisting of coordinates , element embeddings , space group embeddings , and multiplicity embeddings  is reconstructed by applying the space group symmetry operations to the basis atom coordinates, followed by selecting a representative subset of atoms using the farthest point sampling algorithm.
The message passing in the network is conducted over two complementary graphs: one constructed from the basis atoms and the other from the full atomic structure. In the basis atom graph, nodes represent basis atoms and edges encode absolute positional relationships using fractional coordinates. Importantly, periodic boundary conditions (PBC) are not applied, and all coordinates are anchored to the fixed reference point (0,0,0), making the absolute Wyckoff positions meaningful. Consequently, both translational invariance and rotational equivariance are intentionally broken in this graph, enabling the model to learn the global spatial arrangement of atoms relative to the reference point. In contrast, the full atom graph is constructed using Cartesian coordinates with periodic boundary conditions applied. There is no anchoring to a global reference point, and thus this graph preserves both translation invariance and rotation equivariance, consistent with conventional physical symmetries in crystal structures. Here, the model captures local geometric relationships between neighboring atoms, which are crucial for modeling favorable interatomic interactions. During the early stages of denoising, when atom positions are widely scattered from the reference point, the model relies more heavily on the basis atom graph to recover global structure. In the later stages, as atoms approach their correct positions, the model increasingly leverages the full atom graph to refine local arrangements and establish physically plausible connections. This dual-graph design allows the model to learn both global and local atomic configurations for generating symmetry-aware, physically realistic crystal structures.
As illustrated in Fig. S1a, node features from both the basis atom graph and full atom graph including timestep embeddings , element embeddings , space group embeddings  and multiplicity embeddings  are processed through a sequence of modules: MultiGatedBlock, TPMixingBlock, IrrepHalfSelector, and a readout layer to get predicted noise . 
The MultiGatedBlock (Fig. S1b) applies independent linear projections to each input feature type, then fuses them by concatenation, followed by layer normalization and a subsequent linear transformation to get concatenated node feature . This module allows flexible integration of heterogeneous node features. 
The TPMixingBlock (Fig. S1c) performs equivariant message passing based on tensor product convolutions. It operates separately on the basis and full graphs using node features (, ), spherical harmonics (), )) and radial embeddings (), )). After applying tensor products and aggregating messages, the outputs are passed through the IrrepHalfProjection and then fused to obtain updated node features (, ).
The IrrepHalfProjection (Fig. S1d) processes each irreducible representation (irrep) channel such as scalar (0e), vector (1o), and tensor (2e) types by splitting the tensor into two halves along the hidden dimension . The first half, acting as a learned weight, is elementwise multiplied by the second half, which serves as the value. The resulting tensor replaces the original first half, allowing the network to adaptively modulate the feature representation based on the timestep. The IrrepHalfSelector splits each irrep channel along the  and output only first half.[image: ] Figure S1. Architectures of denoising network in ACG step. a, Overall process for predicting the noise . , ,  and  represent timestep embeddings, element embeddings, space group embeddings and multiplicity embeddings of basis atom graph or full atom graph, respectively. TPMixingBlock is applied N times. b, Architecture of MultiGatedBlock.  denotes concatenated node features,  denotes elementwise multiplication,  denotes concatenation. c, Architecture of TPMixingBlock. ) and ) denotes spherical harmonics, ) and ) denotes radial embeddings, each computed separately for the basis and full atom graphs. d, Architecture of IrrepHalfProjection.  denotes the number of hidden dimension. The output  replaces the first half of the tensor after elementwise multiplication. The hatched area indicates the multiplied output. 
 



Supplementary Section 2. Farthest point sampling (FPS) algorithm
The Farthest Point Sampling (FPS) algorithm, initially proposed by Eldar et al., is widely adopted in point cloud processing for selecting spatially dispersed points2,3. In our study, FPS algorithm is applied to preserve number of atoms in the unit cell throughout noising/denoising steps and detailed process is as follows (Fig. S2). Starting from selecting a random point, the algorithm computes the Euclidean distance between each remaining point and the selected point. In our method, these distances are evaluated using the minimum image convention to account for periodic boundary conditions. The distances are stored in a distance array and the point that has the maximum distance from the selected point is chosen as the newly selected point. Then, distances between each remaining point and newly selected point are calculated and for each remaining point, distance array is updated to store the shortest distance to any selected point so far. This process is repeated until the desired number of points is sampled.[image: ]
Figure S2. Example of selecting three farthest points among six using the FPS algorithm. a, A point S1 is randomly selected (red circle), and its distances (dotted lines) to the remaining five points (blue circle) are computed using the minimum image convention. b, The point S2, which has the maximum distance (solid line) is selected. c, Distances from the newly selected point S2 to remaining points are computed (black dotted lines). d, The third point S3 is chosen as the one with the largest distance (green solid line) among the shortest distance (green dotted lines) from each remaining point to S1 and S2.

 



Supplementary Section 3. Conditional generation of SCG step
For conditional generation in the SCG step, we adopt the approach used in the original VQ-diffusion model. In particular, we adopt the discrete classifier-free guidance strategy used in VQ-diffusion for conditional image generation4. Given conditional information  and generated token , the objective is to optimize , where  is the guidance scale controlling the strength of the constraint. As described in the original VQ-diffusion paper, this formulation can be derived using Bayes’ theorem as follows:


In this study, we found that setting  provides an optimal trade-off between constraint enforcement and sample diversity. A larger  enforces the condition more strictly, but tends to reduce diversity. To enable the model to estimate the unconditional logits , we train it with 20% of the conditional inputs replaced by empty (null) conditions.
Figure S3 compares the energy above hull (Ehull) (eV/atom) distributions between unconditional generation and conditional generation under the constraints formation energy (Eform) < 0 eV/atom and Ehull < 0.1 eV/atom. The proportion of structures satisfying these criteria increases from 7.6% in the unconditional case to 10.3% under conditional generation.[image: ]
Figure S3. Distribution of energy above hull (Ehull) for unconditional and conditional generation. Solid lines indicate kernel density estimates (KDE). The median Ehull is 0.30 eV/atom for unconditional generation and 0.28 eV/atom for conditional generation.



Supplementary Figures[image: ] Figure S4. Variation of symmetry (Sym.) and unique & novel (U.N.) ratios with increasing number of generated structures in GenLCS, MatterGen, and CrystaLLM. a, Symmetry ratios remain high in GenLCS (95.8%) and CrystaLLM (91.5%), but are significantly low in MatterGen (7.5%). b, U.N. ratios are consistently maintained in GenLCS (decreasing slightly from 90.3% at 10k to 88.9% at 100k) and MatterGen (88.4% to 88.7%), whereas CrystaLLM shows a significant decline (from 58.7% at 10k to 30.2%) as the number of generated structures increases.




[image: ]
Figure S5. Formation energy differences (∆E) for three benchmark structures generated by GenLCS (red) and MatterGen (blue). ∆E values are computed after structural optimization using a machine learning potential, followed by DFT single-point energy calculations. Red filled circles in the GenLCS results indicate structures with ∆E < 1 meV/atom that also match the reference structures. After structural relaxation, the number of matched structures in GenLCS increases from 6 to 10 for Yb3Al5O12, from 8 to 16 for Na4MgAl(PO4)3, and from 21 to 28 for Na4Ti2(SiO4)3, out of 50 generated samples.

[image: ]
Figure S6. Several examples of metastable structures generated by GenLCS. Reference structures of a, Na4MgAl(PO4)3 and b, Yb3Al5O12 benchmark materials are shown on the left. Corresponding metastable structures with formation energy differences (∆E) below 0.1 eV/atom are shown on the right. The generated structures exhibit distinct deviations from the reference geometries, demonstrating GenLCS’s ability to explore structurally diverse metastable configurations.

[image: ]
Figure S7. Example of a highly complex symmetric structure generated by GenLCS: Ca3Al2O6 [space group Pa-3, Nₐₜₒₘₛ = 264]. a, Full atomic structure of the reference Ca3Al2O6 after applying symmetry operations to the basis atom positions (top), and b, corresponding basis atom configuration (bottom). Although the generated basis atom configuration differs from that of the reference, the resulting full atomic structures are identical, demonstrating that the model can successfully construct stable atomic interactions within a highly intricate and previously unseen structural configuration.
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Figure S8. Phase diagrams of 22 screened ternary LCS generated by GenLCS with energy above hull (Ehull) below 1 meV/atom. All generated structures are novel formulas absent from existing materials databases and are indicated by red stars. Existing stable structures (Ehull = 0 eV/atom) are shown as blue filled circles, while known metastable structures (0 < Ehull < 0.1 eV/atom) are shown as gray filled circles.

Supplementary Table 
Table S1. Detailed information on 22 screened ternary LCS generated by GenLCS.
	No.
	Structure
	formula
	Natoms
	Space group (No.)
	Eform (eV/atom)

	1
	[image: ]
	Cd2Rh2sO7
	88
	Fd-3m (227)
	-1.21

	2
	[image: ]
	Dy2Ir2O7
	88
	Fd-3m (227)
	-2.51

	3
	[image: ]
	Ca2Ir2O7
	88
	Fd-3m (227)
	-2.06

	4
	[image: ]
	Sc2Pd2O7
	88
	Fd-3m (227)
	-2.29

	5
	[image: ]
	LaMo4O13
	72
	Pca21
(29)
	-2.34

	6
	[image: ]
	Eu4Re6O19
	58
	I23
(197)
	-2.51

	7
	[image: ]
	Cu(NsO3)3
	52
	Pca21
(29)
	-0.74

	8
	[image: ]
	La6Nd3Hg2
	44
	Ibam
(72)
	-0.25

	9
	[image: ]
	Sb(HO)5
	44
	P21/c
(14)
	-1.43

	10
	[image: ]
	Sm3Sb4Pt3
	40
	I-43d
(220)
	-1.09

	11
	[image: ]
	Sm3Sb4Pd3
	40
	I-43d (220)
	-1.02

	12
	[image: ]
	Ag2Mo4O13
	38
	P-1
(2)
	-1.72

	13
	[image: ]
	DySnF7
	36
	P21/c 
(14)
	-3.48

	14
	[image: ]
	NdSnF7
	36
	P21/c
(14)
	-3.45

	15
	[image: ]
	FeHCl6
	32
	P21/c
(14)
	-0.90

	16
	[image: ]
	Y2TeO5
	32
	P212121
(19)
	-3.11

	17
	[image: ]
	Cs2PrBr5
	32
	Pnma
(62)
	-2.23

	18
	[image: ]
	Cs2WSe4
	28
	Pnma
(62)
	-1.13

	19
	[image: ]
	Tb2(CO3)3
	28
	P63/m
(176)
	-2.65

	20
	[image: ]
	Ca(BrO4)2
	22
	P21
(4)
	-0.97

	21
	[image: ]
	TeP2O7
	20
	P21
(4)
	-2.25

	22
	[image: ]
	PrAsO3
	20
	P21/c
(14)
	-2.78
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