Supplementary Information : Cross-Platform Comparison
of Arbitrary Quantum Computations

S1 Greedy method in the regime Mg > 2V

The parameters M and Mg can be optimized through minimizing the statistical error with grid
search 2 or using the perform importance sampling with partial information on the quantum state
3. Both approaches require prior knowledge or simulation of the target state. Here, we devise
a greedy method for sampling the unitary operation U that reduces the statistical error without
prior knowledge of the target state. The statistical error as a function of My converges faster
than uniformly sampling the unitary operation when the number of shots Mg > 2V, where N
is the number of qubits. Therefore, the greedy method is particularly useful for 5- and 7-qubit

experiments. In this section, we demonstrate the comparison between the greedy method and

random method for 5-qubit GHZ state.

When performing the fidelity estimation using randomized measurement, there are two ma-
jor source of errors, the shot noise error and the the error from the incomplete tomography.
The shot noise error can be suppressed when the number of shots Mg > 2V, In this section,
we propose the greedy method for sampling the random unitary in order to mitigate the error
from the incomplete tomography. Instead of uniformly sampling the random unitary from a set
of unitary operators U/, we generate a sequence of unitary operators while maximizing the dis-

tance between each random unitary. Specifically, we define the distance between two unitary
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Figure S1: Comparison of error scaling for the fidelity of the GHZ states generated from UMD _1

vs IBM_1 with greedy or random sampling method for M.

operators as d(uq, up) = max, ||ugpul — uppul)||;. And we generate the My unitary opera-
tors {u;}, where 1 < i < My sequentially. For ¢ = 1, we sample a unitary operator ran-
domly from V. For ¢« > 1, we search for a unitary operator u; that minimizes the cost function
Clugug,y ... uimq) = — Z;;ll d(ui,uj). In order to minimize the cost function efficiently, we
randomly generate Ngample distinct unitary operators u; ,, where 1 < 2 < Ngmpie and we define
u; = miny, , C'(Ujg; U1, ..., u;—1). In practice, we find that Nyample = 200 is enough to find the
minimum for N = 7 and V = CI(2)®", where CI(2) is the single qubit Clifford group. The

greedy method i1s summarized in Algorithm 1.



Algorithm 1 Greedy method for sampling random unitary
Input : Number of random unitary My, a set of unitary operator .S

Output : My random unitary operations for randomized measurement {u; }, where 1 < i < Mj;.
1 : Sample u; randomly from S.
2 : for i = 2 to M do
3: Find a unitary u; € S to minimize the cost function C'(u;; u1, ..., u;_1).
4 : end for

5: return {u;}

We compare the two different methods of sampling the random unitary U: the randomized
sampling and the greedy method. Using these two methods, we evaluate the fidelity between the
state prepared on the UMD_1 system and that prepared on the IBM_1 system, by sampling subset
of various size My from the full state tomography measurements. Fig. S1 shows the error of the
fidelity estimation between UMD_1 and IBM_1 as function of M, for Mg = 2000. We see that

the greedy method outperforms the random method in this regime.

S2 Full state tomography vs. randomized measurement for 5-qubit GHZ state

Here, we compare the cross-platform fidelity obtained from full-state tomography and that from
the randomized measurement on the 5-qubit GHZ state prepared on different platforms. We per-
form the full-state-tomography on a platform by measuring all the 243 independent 5-qubit Pauli

operators. To do so, we first independently generate the 5-qubit GHZ state circuits on each plat-



form. Then we append different single-qubit rotations to the circuit to create the 243 different
circuits. Each of the circuits gives the projective measurement result of one of the 243 independent
5-qubit Pauli operators. We set Mg = 2000 for all the platforms. For the randomized measure-
ment, because a random Pauli basis measurement is equivalent to a randomize measurement with
single qubit Clifford gate 2, we directly sample from the 243 Pauli basis measurements used for

the full state tomography.
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Figure S2: Fidelity error, |F, — F|, for 6 randomly selected 5-qubit GHZ state cross-platform
fidelities implemented on different platforms vs. number of randomized measurements M;;. The

number of measurement is Mg = 2000 for all cases.

We calculate the cross-platform fidelity between as function of the number of randomized
measurements M. The fidelity error | F. — F| is defined as the difference between the fidelity esti-

mated by the randomized measurement /. and the fidelity calculated through full state tomography



F. The averaged error | F, — F| and the standard deviation are calculated through bootstrap resam-
pling method *. The result (Fig. S2) shows that with only a fraction of the full state tomography

measurements, one can estimate the cross-platform fidelity accurately.

S3 SWAP overhead for quantum volume circuit

Two-qubit gates on non-nearest-neighbor pairs are not directly available on superconducting quan-
tum computers. To realize such non-nearest-neighbor two-qubit gates effectively, extra SWAP
gates are necessary. Each SWAP gate consists of three CNOT gates, which cause non-trivial degra-

dation to the overall fidelity of a circuit.

Optimizing the qubit routing can effectively decrease the number of involved non-nearest-
neighbor two-qubit gates in evaluating the quantum volume circuits. But as the number of layers
d increases, the number of non-nearest-neighbor two-qubit gates needed increases. In fig. S3 we
show the mean value of two-qubit gates needed to implement quantum volume circuits of d layers

on different platforms. As shown in the figure, the extra overhead grows linearly with d.

S4 Quantum systems

In this section we detail the quantum systems used in this study.

IBM Quantum Experience

We use IBM Quantum Experience service to access several of their superconducting quantum
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Figure S3: (a) Connectivity graph of IBM_2, IBM_3, and trapped ion (UMD _1 as an example) (b)
Average number of two-qubit (entangling) gates needed to implement quantum volume circuits
of layer d, on different quantum computers. The trapped ion quantum computers have the same

all-to-all connectivity.

computers. > The ones used are ibmg_belem (IBM_1), ibmq_casablanca (IBM_2), ibmg_melbourne
(IBM_3), ibmg_quito IBM_4), and ibmq_rome (IBM_5). All the IBM systems use superconducting
transmon qubits. The native gate sets are made of arbitrary single qubit rotations and nearest-
neighbor two-qubit CNOT gates according to the connectivity graph. The error of single-qubit
gates in IBM systems ranges from 3.32 x 10™* to 5.03 x 1072, and the two-qubit errors range
from 7.47 x 1073 to 1.07 x 10~!. Detailed specifications of each quantum device including qubit-
connectivity diagram can be found on (https://quantum-computing.ibm.com/). On this platform,

the synthesis and circuit optimization are implemented using the QISKit open-source software ©.

TI_EURIQA (UMD_1)

Error-corrected Universal Reconfigurable Ion-trap Quantum Archetype (EURIQA) is a trapped-



ion quantum computer currently located at the University of Maryland. This quantum computer
supports up to thirteen qubits in a single chain of fifteen trapped '"'Yb™ ions in a microfabri-
cated chip trap 7. The system achieves native single-qubit gate fidelities of 99.96% and two-qubit
XX gate fidelities of 98.5-99.3%3. On this platform, we compile the circuits to its native gate
set through KAK decomposition. We optimize the qubit assignment through exhaustive search
to minimize the anticipated noise of entangling gates. No SPAM correction was applied in post-

processing.

TI_.UMD (UMD_2)

The second trapped-ion quantum computer system at Maryland is part of the TIQC (Trapped
Ion Quantum Computation) team. This quantum computer supports up to nine qubits made of a
single chain of 1”1 Yb™ ions trapped in a linear Paul trap with blade electrodes °. Typical single- and
two-qubit gate fidelities are 99.5(2)% and 98 —99%, respectively. On this platform, we compile the
quantum volume to its native gate set through KAK decomposition. We apply SPAM correction to

mitigate the detection noise assuming that the preparation noise is negligible.

IonQ (IonQ_1 and IonQ_2)

The commercial trapped-ion quantum systems used by IonQ contain eleven fully connected
qubits in a single chain of "' Yb™ ions trapped in a linear Paul trap with surface electrodes °. The
single-qubit fidelities are 99.7% for both systems at the time of measurement, while two-qubit

fidelities are 95 — 96% and 96 — 97% for TonQ_1 and IonQ_2 respectively. On this platform, we



apply the technique describe in Ref. ' to optimize the circuit. Quantum volume circuits were
decomposed in terms of partially entangling MS gates. No SPAM correction was applied in post-

processing.
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