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S1 Greedy method in the regime MS � 2N

The parameters MU and MS can be optimized through minimizing the statistical error with grid

search 1, 2 or using the perform importance sampling with partial information on the quantum state

3. Both approaches require prior knowledge or simulation of the target state. Here, we devise

a greedy method for sampling the unitary operation U that reduces the statistical error without

prior knowledge of the target state. The statistical error as a function of MU converges faster

than uniformly sampling the unitary operation when the number of shots MS � 2N , where N

is the number of qubits. Therefore, the greedy method is particularly useful for 5- and 7-qubit

experiments. In this section, we demonstrate the comparison between the greedy method and

random method for 5-qubit GHZ state.

When performing the fidelity estimation using randomized measurement, there are two ma-

jor source of errors, the shot noise error and the the error from the incomplete tomography.

The shot noise error can be suppressed when the number of shots MS � 2N . In this section,

we propose the greedy method for sampling the random unitary in order to mitigate the error

from the incomplete tomography. Instead of uniformly sampling the random unitary from a set

of unitary operators U , we generate a sequence of unitary operators while maximizing the dis-

tance between each random unitary. Specifically, we define the distance between two unitary
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Figure S1: Comparison of error scaling for the fidelity of the GHZ states generated from UMD 1

vs IBM 1 with greedy or random sampling method for MU .

operators as d(ua, ub) = maxρ ||uaρu†a − ubρu
†
b)||1. And we generate the MU unitary opera-

tors {ui}, where 1 ≤ i ≤ MU sequentially. For i = 1, we sample a unitary operator ran-

domly from V . For i > 1, we search for a unitary operator ui that minimizes the cost function

C(ui;u1, . . . , ui−1) = −
∑i−1

j=1 d(ui, uj). In order to minimize the cost function efficiently, we

randomly generate Nsample distinct unitary operators ui,x, where 1 ≤ x ≤ Nsample and we define

ui = minui,x C(ui,x;u1, . . . , ui−1). In practice, we find that Nsample = 200 is enough to find the

minimum for N = 7 and V = Cl(2)⊗N , where Cl(2) is the single qubit Clifford group. The

greedy method is summarized in Algorithm 1.
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Algorithm 1 Greedy method for sampling random unitary
Input : Number of random unitary MU , a set of unitary operator S

Output : MU random unitary operations for randomized measurement {ui}, where 1 ≤ i ≤MU .

1 : Sample u1 randomly from S.

2 : for i = 2 to MU do

3 : Find a unitary ui ∈ S to minimize the cost function C(ui;u1, . . . , ui−1).

4 : end for

5 : return {ui}

We compare the two different methods of sampling the random unitary U : the randomized

sampling and the greedy method. Using these two methods, we evaluate the fidelity between the

state prepared on the UMD 1 system and that prepared on the IBM 1 system, by sampling subset

of various size MU from the full state tomography measurements. Fig. S1 shows the error of the

fidelity estimation between UMD 1 and IBM 1 as function of MU for MS = 2000. We see that

the greedy method outperforms the random method in this regime.

S2 Full state tomography vs. randomized measurement for 5-qubit GHZ state

Here, we compare the cross-platform fidelity obtained from full-state tomography and that from

the randomized measurement on the 5-qubit GHZ state prepared on different platforms. We per-

form the full-state-tomography on a platform by measuring all the 243 independent 5-qubit Pauli

operators. To do so, we first independently generate the 5-qubit GHZ state circuits on each plat-
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form. Then we append different single-qubit rotations to the circuit to create the 243 different

circuits. Each of the circuits gives the projective measurement result of one of the 243 independent

5-qubit Pauli operators. We set MS = 2000 for all the platforms. For the randomized measure-

ment, because a random Pauli basis measurement is equivalent to a randomize measurement with

single qubit Clifford gate 2, we directly sample from the 243 Pauli basis measurements used for

the full state tomography.

Figure S2: Fidelity error, |Fe − F|, for 6 randomly selected 5-qubit GHZ state cross-platform

fidelities implemented on different platforms vs. number of randomized measurements MU . The

number of measurement is MS = 2000 for all cases.

We calculate the cross-platform fidelity between as function of the number of randomized

measurementsMU . The fidelity error |Fe−F| is defined as the difference between the fidelity esti-

mated by the randomized measurementFe and the fidelity calculated through full state tomography
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F . The averaged error |Fe−F| and the standard deviation are calculated through bootstrap resam-

pling method 4. The result (Fig. S2) shows that with only a fraction of the full state tomography

measurements, one can estimate the cross-platform fidelity accurately.

S3 SWAP overhead for quantum volume circuit

Two-qubit gates on non-nearest-neighbor pairs are not directly available on superconducting quan-

tum computers. To realize such non-nearest-neighbor two-qubit gates effectively, extra SWAP

gates are necessary. Each SWAP gate consists of three CNOT gates, which cause non-trivial degra-

dation to the overall fidelity of a circuit.

Optimizing the qubit routing can effectively decrease the number of involved non-nearest-

neighbor two-qubit gates in evaluating the quantum volume circuits. But as the number of layers

d increases, the number of non-nearest-neighbor two-qubit gates needed increases. In fig. S3 we

show the mean value of two-qubit gates needed to implement quantum volume circuits of d layers

on different platforms. As shown in the figure, the extra overhead grows linearly with d.

S4 Quantum systems

In this section we detail the quantum systems used in this study.

IBM Quantum Experience

We use IBM Quantum Experience service to access several of their superconducting quantum
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Figure S3: (a) Connectivity graph of IBM 2, IBM 3, and trapped ion (UMD 1 as an example) (b)

Average number of two-qubit (entangling) gates needed to implement quantum volume circuits

of layer d, on different quantum computers. The trapped ion quantum computers have the same

all-to-all connectivity.

computers. 5 The ones used are ibmq belem (IBM 1), ibmq casablanca (IBM 2), ibmq melbourne

(IBM 3), ibmq quito (IBM 4), and ibmq rome (IBM 5). All the IBM systems use superconducting

transmon qubits. The native gate sets are made of arbitrary single qubit rotations and nearest-

neighbor two-qubit CNOT gates according to the connectivity graph. The error of single-qubit

gates in IBM systems ranges from 3.32 × 10−4 to 5.03 × 10−2, and the two-qubit errors range

from 7.47× 10−3 to 1.07× 10−1. Detailed specifications of each quantum device including qubit-

connectivity diagram can be found on (https://quantum-computing.ibm.com/). On this platform,

the synthesis and circuit optimization are implemented using the QISKit open-source software 6.

TI EURIQA (UMD 1)

Error-corrected Universal Reconfigurable Ion-trap Quantum Archetype (EURIQA) is a trapped-
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ion quantum computer currently located at the University of Maryland. This quantum computer

supports up to thirteen qubits in a single chain of fifteen trapped 171Yb+ ions in a microfabri-

cated chip trap 7. The system achieves native single-qubit gate fidelities of 99.96% and two-qubit

XX gate fidelities of 98.5-99.3%8. On this platform, we compile the circuits to its native gate

set through KAK decomposition. We optimize the qubit assignment through exhaustive search

to minimize the anticipated noise of entangling gates. No SPAM correction was applied in post-

processing.

TI UMD (UMD 2)

The second trapped-ion quantum computer system at Maryland is part of the TIQC (Trapped

Ion Quantum Computation) team. This quantum computer supports up to nine qubits made of a

single chain of 171Yb+ ions trapped in a linear Paul trap with blade electrodes 9. Typical single- and

two-qubit gate fidelities are 99.5(2)% and 98−99%, respectively. On this platform, we compile the

quantum volume to its native gate set through KAK decomposition. We apply SPAM correction to

mitigate the detection noise assuming that the preparation noise is negligible.

IonQ (IonQ 1 and IonQ 2)

The commercial trapped-ion quantum systems used by IonQ contain eleven fully connected

qubits in a single chain of 171Yb+ ions trapped in a linear Paul trap with surface electrodes 9. The

single-qubit fidelities are 99.7% for both systems at the time of measurement, while two-qubit

fidelities are 95 − 96% and 96 − 97% for IonQ 1 and IonQ 2 respectively. On this platform, we
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apply the technique describe in Ref. 10 to optimize the circuit. Quantum volume circuits were

decomposed in terms of partially entangling MS gates. No SPAM correction was applied in post-

processing.
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