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Supplementary Figure 1. Forest plot of FDR-significant pre-diagnostic ALS markers across the two follow-up times
Legend. This forest plot shows the results of the FDR-significant ALS biomarkers from Cox proportional hazard regression analyses across follow-up times of 5-20 and 5-30 years 
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Supplementary Figure 2. Comparisons of hazard ratios for top EPIC4PD biomarkers across different analysis models
Legend. This figure compares the hazard ratio (HR) estimates between different Cox proportional hazard regression models in the EPIC4ALS case-cohort, i.e., A. the basic (stratified for age [in 5-year categories], sex, and center) vs the fully adjusted model (stratified for age, sex, and center and adjusted for education level, BMI, smoking, physical activity, menopausal status, and menopausal hormone replacement therapy) and B. the basic model after capping outliers at 5 standard deviations from the log mean protein level vs excluding these values as outliers. FDR-significant pre-diagnostic proteins are marked in blue, suggestive pre-diagnostic proteins validating in the prevalent datasets are labeled in black. 
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Supplementary Figure 3. Heatmap of pairwise correlations among top EPIC4ALS biomarker aptamer levels
Legend. This figure shows Pearson’s correlation coefficients between aptamer levels of all top EPIC4ALS proteins, based on normalized, log10- and z-transformed data from all participants followed by outlier capping. The heatmap displays the strength and direction of the correlations (r, see scale) with positive correlations shown in red, negative correlations in blue. The areas of circles show the absolute value of corresponding correlation coefficients.
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Supplementary Figure 3. Hazard ratios based on 10-year sliding windows
Legend. This figure shows hazard ratio (HR) estimates for all FDR-significant ALS biomarkers (A) and FDR-significant clocks (B) across the full, i.e., 0-30 year follow-up period, calculated based on 10-year windows in 1-year steps. Note that for the time-dependent analyses, we extended the dataset to the 5 years closest to ALS-related death to assess effects in the clinical phase; hence the total number included 4,737 EPIC participants (including 193 ALS cases). The lower plot’s rectangles represent the HR estimates of the respective windows scaled by the number of ALS cases. The 95% confidence intervals are represented by the grey lines.
A. Top pre-diagnostic top biomarkers 
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B. Top organ-specific clocks 
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Supplementary Figure 5. Association of pre-diagnostic biomarkers in prevalent ALS
Legend. Comparison of at least nominally significant pre-diagnostic ALS biomarkers with their associations in prevalent ALS within the ‘Global Neurodegenerative Proteomics Cohort’ (GNPC) and the Miami case-control dataset; Color-coding refers to risk (red) or protective (blue) effects in GNPC and the Miami dataset.
[image: ][image: ]












Supplementary Figure 6. Tissue-specific gene expression heatmap of top EPIC4ALS biomarkers 
Legend. This figure displays gene expression levels of the top EPIC4ALS biomarkers across 50 different human tissues, as quantified by bulk RNA sequencing (RNA-seq). Expression data were obtained from the Human Protein Atlas (see Methods). For visualization, expression values are scaled per gene (mean = 0), which enables comparison of relative expression across tissues for each gene individually but does not allow for comparisons between genes.
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Supplementary Figure 7. Heatmap of tissue protein levels of top EPIC4ALS biomarkers 
Legend. This figure displays protein levels of the top EPIC4ALS biomarkers across different tissues, as determined by immunohistochemistry and protein microarrays. For clarity, only tissues in which at least two of the top biomarkers were detected are shown. Protein expression data were obtained from the Human Protein Atlas (see Methods). 
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Supplementary Text. Output of Proteome interpreter on list of summary statistics of Cox regression analyses in EPIC4ALS 
Text A represents the first of three (highly similar) ‘Proteome interpreter’ outputs based on the input list of Cox proportional hazard regression results (5-20 year follow-up) of all SomaScan 7K proteins submitted with effect direction and p value. Text B presents potential therapeutic interventions inferred from the proteomic EPIC4ALS signature by the Proteome interpreter. Note that these unaltered outputs showcase the potential of applying large language models in the interpretation of omics data, but have not been further curated manually and may contain false inferences. 
__________________________________________________________________________________________
A. “Up-regulated in disease (relative to healthy)
• Contractile apparatus & cytoskeletal remodeling (KLHL41, PDLIM3, MYL6B, MYL3, MYBPC1, MYOM2, CAPN3) : Coordinated rise in sarcomeric and muscle-specific protease components points to active myofibril turnover and structural re-organization often seen in hypertrophy, fibrosis or muscular degeneration.  
• Metabolic reprogramming & energy buffering (CKB, CA3, PNLIP, AMY2A, ACYP2, CLPP) : Elevated enzymes controlling pH, phospho-creatine shuttling, lipid / starch hydrolysis and mitochondrial protein quality indicate a shift toward high-throughput energy production and catabolism to meet increased energetic demand in the diseased state.  
• Oxidative / nitrosative stress defence (THAP4, HSPB6, CST3, CLPP) : Induction of chaperones and peroxynitrite-scavengers suggests heightened reactive oxygen- and nitrogen-species pressure.  
• Membrane transport & excitability (SLC26A7, SCN3B, ARL5B, EHD3, DCTN2) : Higher levels of ion exchangers, sodium-channel β-subunit and vesicle-trafficking factors imply altered ion homeostasis and endomembrane dynamics that can influence contractility and signaling.  
• Growth-factor / immune signaling modulators (TGFBR3, DUPD1, SECTM1, PCDHGA10) : Up-regulation of TGF-β co-receptor, dual-specificity phosphatase, immune ligand and protocadherin indicates activation of pro-remodeling, anti-inflammatory or cell-adhesion pathways frequently associated with chronic tissue injury.
Down-regulated in disease (higher in healthy)
• Lipid uptake & innate-immune recognition (CD36, CD209) : Loss of these multifunctional scavenger/lectin receptors may weaken fatty-acid import and pathogen sensing, potentially compromising metabolic flexibility and immune surveillance in disease.  
• ER stress / proteostasis regulators (ATF6, ATF5) : Reduced UPR transcription factors points to impaired ability to resolve protein-folding stress, a known driver of chronic pathology.  
• Extracellular-matrix maintenance (MFAP5, WFDC10B) : Decline in microfibril-associated and WAP-domain proteins hints at weakening of ECM structure and tissue elasticity.  
• Neuropeptide & pigment metabolism (THOP1, DCT) : Lower peptide-cleaving and melanin-pathway enzymes may reflect broader down-tuning of specialized metabolic functions.
Concise summary
The diseased cells up-regulate a concerted set of muscle contractile proteins, metabolic enzymes and stress-response factors while simultaneously down-regulating key lipid-uptake receptors, ER quality-control transcription factors and ECM components. This pattern is consistent with a tissue undergoing structural remodeling and energetic reprogramming under oxidative stress, but with compromised proteostasis and innate-immune capacity. Together, these shifts suggest that the disease state drives a trade-off: resources are redirected toward maintaining contractile function and survival at the expense of effective protein folding, extracellular integrity and immune/metabolic homeostasis—processes whose failure could exacerbate disease progression.”
__________________________________________________________________________________________


__________________________________________________________________________________________
B. “Potential therapeutic avenues inferred from the proteomic signature

1. Limit oxidative- and nitrosative-stress injury  
   • Rationale – THAP4, HSPB6, CLPP and CA3 are all stress‐induced; their rise signals ROS/RNS overload.  
   • Options –  
     – Mitochondria-targeted antioxidants (MitoQ, MitoTEMPO, SS-31) to quench mitochondrial ROS that activate CLPP and THAP4.  
     – Broad cysteine-replenishing agents (N-acetyl-cysteine, taurine) to restore glutathione and dampen peroxynitrite formation sensed by THAP4.  
     – SOD mimetics or CoQ10 to complement CA3-mediated pH/CO₂ buffering and reduce carbonyl stress.
2. Stabilise sarcomeres and curb excessive calpain activity  
   • Rationale – Coordinated induction of KLHL41, MYBPC1, MYOM2, MYL3/6B and strong CAPN3 up-regulation indicates active myofibril turnover; unchecked CAPN3 accelerates fibre break-down.  
   • Options –  
     – Next-generation calpain inhibitors (BDA-410, SNJ-1945, leupeptin derivatives) or repurposed MDL-28170 to restrain CAPN3.  
     – β2-adrenergic agonists (low-dose clenbuterol) or myostatin-antibody therapies (bimagrumab) to promote synthesis of contractile proteins, offsetting catabolism.  
     – AAV-mediated CAPN3 or KLHL41 gene supplementation if underlying mutation is suspected (in line with limb-girdle muscular dystrophy pipelines).
3. Reinforce the unfolded-protein-response and chaperone network  
   • Rationale – Down-regulation of ATF6 and ATF5 together with compensatory up-regulation of HSPB6 and CLPP points to impaired ER/mitochondrial proteostasis.  
   • Options –  
     – Small-molecule ATF6 activators (AA147, compound 147) to restore canonical UPR without triggering PERK-mediated translational arrest.  
     – HSF1 co-inducers (arimoclomol, geranylgeranylacetone) to amplify endogenous HSPB6/HSP70 expression.  
     – ISR modulators (ISRIB) to fine-tune eIF2α signaling, improving protein folding capacity while avoiding chronic ER stress.
4. Mitigate fibrosis and aberrant TGF-β signaling  
   • Rationale – Up-regulation of TGFBR3 together with muscle-repair proteins often presages fibro-adipogenic replacement.  
   • Options –  
     – Losartan, tranilast or pirfenidone to block downstream TGF-β profibrotic cascades, limiting extracellular-matrix deposition.  
     – Anti-TGF-β monoclonal antibodies (fresolimumab) or ligand traps (sotatercept) in settings where systemic inhibition is acceptable.
5. Support energy & lipid handling while restoring fatty-acid receptors  
   • Rationale – Elevated CKB, SLC26A7, PNLIP and decreased CD36 suggest a shift toward creatine cycling and reduced fatty-acid uptake.  
   • Options –  
     – Creatine or phosphocreatine supplementation to exploit CKB-driven phosphagen buffering.  
     – PPAR-γ/δ agonists (rosiglitazone, GW501516) to re-induce CD36 and normalize fatty-acid transport, provided cardiovascular risk is acceptable.  
     – AMPK activators (AICAR, metformin) to improve glucose/fatty-acid oxidation and synergise with DUPD1-AMPK signaling in muscle.
6. Fine-tune electrical activity & membrane trafficking  
   • Rationale – Rise in SCN3B, DCTN2 and EHD3 predicts altered excitability and vesicle recycling; arrhythmogenic potential cannot be excluded.  
   • Options –  
     – Late Na⁺ current blockers (ranolazine) or selective SCN inhibitors if electrophysiological studies show hyperexcitability.  
     – Omega-3 fatty acids or mexiletine for broader membrane-stabilising effects.
Multi-modal intervention strategy  
Because tissue damage here stems from intertwined oxidative stress, proteolysis and proteostasis failure, a combined regimen is most logical: (i) mitochondria-targeted antioxidant + (ii) calpain inhibitor + (iii) UPR/HSP booster, with optional anti-TGF-β agent to prevent fibrosis. Early pre-clinical testing should track: ROS markers (8-OHdG), calpain activity assays, ER-stress readouts (BiP, spliced XBP1), fibrosis indexes (collagen I/III) and functional outputs (contractile force, echocardiography).”


Supplementary Methods
Discovery cohort and study design
This study leveraged data from the EPIC cohort, a multi-center prospective study comprising 519,978 participants (70.5% women, mostly aged 35-70 years at baseline) enrolled between 1991 and 2000 at 23 centres in 10 European countries. Initially designed to investigate the association between dietary factors and cancer risk1,2, the EPIC study has subsequently broadened its focus to include other chronic diseases, including neurodegenerative disorders3. At baseline, data on diet, physical activity, alcohol and tobacco use, medical history, and anthropometric measurements were collected. Citrate plasma samples were obtained from approximately 75% of participants using standardized protocols, aliquoted, and stored in liquid nitrogen (–196°C) at a central biobank at the International Agency for Research on Cancer (IARC) in Lyon, France. Participants have been followed through regular linkage with health registries and/or follow-up questionnaires. The study was approved by the ethics committee of IARC and by institutional review boards at all participating centres; all participants provided written informed consent.
The EPIC4ALS case-cohort analyzed in this study is embedded within EPIC and aims to prospectively identify molecular biomarkers in ALS3. Cases were ascertained as described previously3. The ascertainment was based on a source population of 222,613 subjects from 12 EPIC centers across five European countries including Spain (Murcia, Navarra, San Sebastian, and Granada), Italy (Florence, Turin, and Varese), Netherlands (Utrecht and Bilthoven), UK (Norfolk/Cambridge and Oxford), and Germany (Heidelberg). Due to the fatal character of the disease and the short usual survival time after diagnosis, incident ALS cases were identified based on the report on mortality records (ICD-10 code “G12.2” reported as immediate, antecedent or underlying cause of death) that were centralized at the EPIC biobank at IARC, as previously described3. For selected centers, the data linkages were updated recently (Heidelberg, Florence, Turin, Norfolk/Cambridge). In order to identify predictive ALS biomarkers and to avoid reverse causation, given the usual survival of 2-4 years after ALS diagnosis4, we applied a washout phase of 5 years between blood draw to age at death resulting in an exclusion of 21 ALS patients and 149 subcohort members for most survival analyses.
Generation and quality control of proteomic data in EPIC4ALS
Protein abundances were quantified in citrate plasma samples using the SomaScan 7K (v4.1) platform (SomaLogic, Inc., Boulder, CO, USA). The SomaScan assay is a high-throughput proteomic technology that employs chemically modified DNA oligonucleotides (aptamers) that specifically bind to target proteins with high affinity and specificity. Following binding, protein concentrations are measured as relative fluorescence units (RFUs) via hybridization to DNA microarrays5. The 7K version quantifies 7,596 aptamers targeting 6,432 unique proteins6. Proteomic profiling was conducted for a total of 17,841 participants selected for various endpoints from the EPIC cohort at SomaLogic (Boulder, CO, USA). All plasma samples were processed in 96-well plates, with 11 dedicated control wells per plate (five pooled calibrator, three quality control [QC], and three buffer replicates) to control for batch consistency, analytical accuracy, precision, and background noise. Additionally, 233 replicates of one EPIC QC sample were included. Readout was performed using Agilent hybridization and scanning technology. To control for potential readout variability, twelve hybridization control aptamers were added during elution. Initial QC conducted by SomaLogic, involved protein RFU normalization through several steps: hybridization normalization, intraplate median normalization, plate scaling and calibration, and adaptive normalization to a population reference. 
We computed intraclass correlation coefficients (ICCs) for each of the 7,596 aptamers based on the 233 EPIC replicate measurements. Aptamers were removed if they were not a protein (n=46) or non-human (n=261). Aptamers were further excluded if both (i) the ICC was below 0.5 and (ii) if the aptamer levels were below the limit of detection (LOD) in more than 90% of the samples (n=4). If the measured value of an aptamer was below the LOD, it was set to LOD/2. The final number of quality-controlled aptamers was 7,285 (targeting 6,381 unique proteins). Samples for which any SomaLogic normalization scale factor was outside 0.4-2.5 (n=247) and those detected as ‘0’ using an approach based on PCA and the local outlier factor statistic (https://privefl.github.io/blog/detecting-outlier-samples-in-pca/) were excluded (n=5 for the method of capping outliers, n=0 for the method excluding outliers; see below). Plate correction was further applied through a residual approach: for each aptamer, the measurement was corrected for plate effect estimated in linear mixed effect models adjusted for center, age, sex, BMI, smoking status, and incidence of multiple cancer types, CVD, T2D, neurodegenerative diseases and death, to preserve possible biological variation due to these factors. Finally, only the samples belonging to the EPIC4ND case-cohort were retained (n=6,543 for both outlier handling methods).
Measurements of each aptamer were log10-transformed and further z-transformed so that their mean was 0 and their standard deviation was 1 in the subcohort. Measurements deviating more than 5 SD from the mean of the normalized log10-transformed data were ‘capped’ i.e., set to the value of 5 SD from the normalized log₁₀-transformed mean. For all statistically significant findings, log₁₀-transformed values were visually inspected (Supplementary Figure 7) to verify the appropriateness of the data transformation and the cutoff for capping outliers. 
Cox proportional hazard regression analyses in EPIC4ALS
The final effective EPIC4ALS case-cohort for the Cox proportional hazard regression analyses included 4,567 EPIC4ALS participants including 172 incident ALS cases with 7,285 aptamers (corresponding to 6,381 proteins) for most statistical analyses (i.e., those applying the 5-year washout period). We used Cox proportional hazard regression analyses to examine the association of 7,285 aptamers with ALS-related death (as proxy for ALS incidence) using age as time scale and Prentice weights to take into account the case-cohort setting7. As described above, age at death was used as a proxy for age at diagnosis, applying a wash-out time period of 5 years. Our basic model was stratified (i.e., separate baseline hazard functions estimated) for 5-year age intervals, sex, and center. Cox proportional hazards regression was performed using the full follow-up time period (5-30 years from baseline to death/censoring), as well as for 5-20 years. Proteomic results were defined as significant at an FDR of 0.05. Furthermore, for the top pre-diagnostic biomarkers, we performed sex-specific analyses after stratification for men and women using the 5-20-year follow-up time period. Modification of effect size estimates by sex were tested by interaction analyses as previously described8. 
In sensitivity analyses for the top biomarkers, we tested a ‘full’ adjustment model including the baseline covariates school education (no education/primary school vs higher education), smoking status (dummy-coded as ‘never’, ‘former’, ‘current’), body mass index (BMI; weight/height2 [kg/m2]), physical activity (dummy-coded as ‘inactive’, ‘moderately inactive’, ‘moderately active/active’), postmenopausal status (dummy-coded as premenopausal, postmenopausal, perimenopausal, and surgical postmenopausal status), and use of hormones for menopause (yes/no). This was based on the assumption that outliers may represent strong ALS biomarker signals. Furthermore, we performed sensitivity analyses for the top results by excluding outlier values (>5 SD from the mean) instead of capping them, as we acknowledge that outliers may not only represent strong biological ALS-specific signals but also technical or biological variation unrelated to ALS (e.g., outliers due to blood type or sex or genetic variation not associated with ALS) that may lead to biased results.
[bookmark: _heading=h.w7y5018l1s68]HR estimates for the top results were computed using 10-year sliding windows in one-year steps. For the analyses of the sliding windows close to age at diagnosis, ALS patients and non-cases dying within the first 5 years and thus previously excluded from the main analyses were re-included. 
Comparison to previous studies
We compiled a list of 520 unique candidate biomarkers previously linked to ALS based on findings from studies that employed a range of different methodologies (several proteins were nominated more than once): These included i) 367 proteins involved in the KEGG pathway “amyotrophic lateral sclerosis” (hsa05014), ii) 15 of ~2,700 analyzed blood plasma proteins (8 derived from Olink and 9 from SomaScan studies) recently proposed as potential predictive biomarkers for ALS by a comprehensive MR study10, iii) 31 monogenic ALS genes4, iv) 15 genetic risk loci described in the most recent Caucasian genome-wide association study for ALS11, and v) 127 preselected neurodegenerative disease candidate biomarkers included in the ‘CNS NULISA panel’ (Alamar, Inc.). Proteins from this list available in the EPIC4ALS SomaScan data (n=253) were tested for association in EPIC4ALS. Results were controlled by at a FDR=0.05.
Expression and protein abundance of top biomarkers
Gene expression and protein abundance of top ALS biomarkers across tissues were assessed based on RNA-Seq and immunohistochemisty (IHC) data obtained from the Human Protein Atlas (HPA v24.0, based on Ensembl version 109, accessed May 6th, 2025 at https://www.proteinatlas.org/about/download)12. FDR-significant and suggestive proteins were probed for tissue expression using bulk RNA sequencing (RNA-Seq) data across 50 human tissues available as gene-level ’Consensus RNA data’ (rna_tissue_consensus.tsv.zip). Protein measurements across 45 human tissues were based on IHC using tissue microarrays (normal_ihc_data.tsv.zip). To visualize expression patterns of the top biomarkers, heatmaps were generated using hierarchical clustering, with expression values scaled per gene highlighting tissue-specific variation. 

Supplementary Figure 7. Distribution of aptamer level data for top EPIC4ALS biomarkers
Legend. This figure shows the distribution and outliers of aptamer levels for the top biomarkers in all EPIC4ALS participants after normalization, log₁₀ transformation, and z-transformation. The solid horizontal line represents the mean; dotted lines indicate ±3 and ±5 standard deviations. Each 96-well plate is color-coded to visualize potential batch effects. 
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