## **Supporting Information**

## Hammering Ag<sub>2</sub>Se thermoelectric materials into complex conformal shape with maintained Harman zT

Jun Peng<sup>1, a, \*</sup>, Jianxu Shi<sup>2, 1, a</sup>, Yusen Ma<sup>1</sup>, Yikun Liu<sup>1</sup>, Zaifei Cui<sup>2</sup>, Yifeng Zheng<sup>3</sup>, G.

- 5 Jeffrey Snyder<sup>4, \*</sup>
  - <sup>1</sup> School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
  - <sup>2</sup> School of Automation, Xi'an University of Posts and Telecommunications, Xi'an Shaanxi, 710121, China
- 10 <sup>3</sup> School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
  - <sup>4</sup> Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
  - \* Corresponding author. E-mail address: jeff.snyder@northwestern.edu
  - <sup>a</sup> These authors contributed equally to this work.

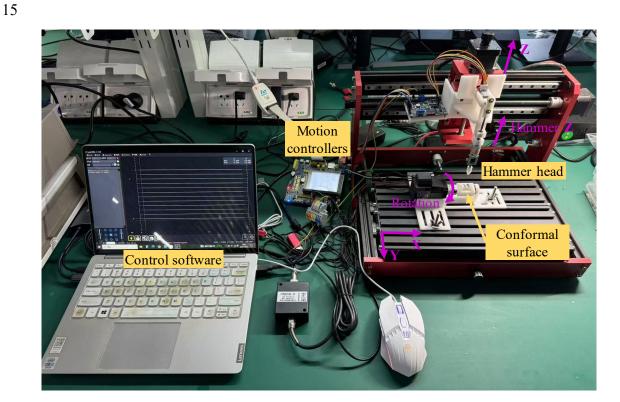



Fig. S1. Home-made hammering equipment.



Fig. S2. Home-made Harman *zT* platform.

20

$$S_t = S_g + \left(S_{gb} - S_g\right) \frac{\Delta T_{gb}}{\Delta T_t} \tag{S1}$$

Here,  $S_t$  is total Seebeck coefficient of the Ag<sub>2</sub>Se sample,  $S_g$  is Seebeck coefficient of the Ag<sub>2</sub>Se single crystal.  $S_{gb}$  is Seebeck coefficient of the Ag<sub>2</sub>Se grain boundary phase.

$$S_{gb} = S_g + \left(S_t - S_g\right) \frac{k_g}{k_g - k_t} \tag{S2}$$

Here,  $S_g$  and  $k_g$  are Seebeck coefficient and thermal conductivity of Ag<sub>2</sub>Se single crystal, which are measured and its values are based on references. Corresponding  $S_t$  and  $k_t$  are those of Ag<sub>2</sub>Se polycrystalline.

$$\frac{\Delta T_{gb}}{\Delta T_t} = \frac{1}{\frac{d}{k_g \rho_{Kanitza}} + 1}$$
 (S3)

30

35

$$\rho_{Kapitza} = d\left(\frac{1}{k_t} - \frac{1}{k_g}\right)$$
 (S4)

Here, d is average grain size.

$$\sigma_t = \frac{\sigma_g}{1 + \frac{\rho_{el-gb}\sigma_g}{d}} \tag{S5}$$

Here,  $\rho_{el-gb}$  is electrical interface resistivity of Ag<sub>2</sub>Se grain boundary phase.  $\rho_{el-gb}$  is calculated by the following formula,

$$\frac{1}{\rho_{Kapitza}} = L \frac{1}{\rho_{el-gb}} T + \frac{1}{\rho_{Lattice-gb}}$$
 (S6)

Here,  $\rho_{Lattice-gb}$  is the thermal resistivity contribution from lattice at the grain boundary,  $\rho_{Lattice-gb}$  parameter is used as a fitting parameter in our calculation.

$$k_t = \frac{k_g}{1 + \frac{\rho_{Kapitza}k_g}{d}} \tag{S7}$$

The power factor PF and thermoelectric figure of merit (zT) of the hammered Ag<sub>2</sub>Se samples with different grain sizes are calculated based on the above calculated Seebeck coefficient, electrical conductivity, and thermal conductivity.

$$PF = S_t^2 \sigma_t \tag{S8}$$

$$zT = \frac{S_t^2 \sigma_t}{k_t} T \tag{S9}$$

Here, T is the absolute temperature, in our study, only room temperature is considered.

Table S1. Calculated parameters for Ag<sub>2</sub>Se single crystal parallel to (201) plane.

| Parameters | Value                    | Reference |
|------------|--------------------------|-----------|
| $S_g$      | -147 μV/K                | [1]       |
| $k_g$      | 1.31 W/mK                | [1]       |
| $\sigma_g$ | 1.01*10 <sup>5</sup> S/m | [1]       |

Table S2. Calculated parameters for Ag<sub>21</sub>Se single crystal perpendicular to (201) plane.

| Parameters       | Value                    | Reference |
|------------------|--------------------------|-----------|
| ${\mathcal S}_g$ | -122 μV/K                | [1]       |
| $k_g$            | 1.03 W/mK                | [1]       |
| $\sigma_g$       | 1.51*10 <sup>5</sup> S/m | [1]       |

Table S3. Calculated parameters for Ag<sub>2</sub>Se polycrystalline.

| Parameters | Value     | Reference |
|------------|-----------|-----------|
| $S_t$      | -170 μV/K | [2]       |
| $k_t$      | 0.92 W/mK | [2]       |

Table S4. Fitting parameter  $\rho_{Lattice-gb}$  values.

| Ag <sub>2</sub> Se parallel to (201) | Ag <sub>2</sub> Se vertical to (201) | average of single crystal       |
|--------------------------------------|--------------------------------------|---------------------------------|
| plane                                | plane                                | Ag <sub>2</sub> Se parallel and |
|                                      |                                      | vertical to (201) plane         |
| 1.5*10 <sup>-6.5</sup>               | 1.4*10 <sup>-7</sup>                 | 1.5*10 <sup>-8</sup>            |
| 1.5*10 <sup>-6</sup>                 | 1.4*10-8                             | 1.5*10-6                        |
| 1.5*10 <sup>-4</sup>                 | 1.4*10-6                             | 1.5*10 <sup>-7</sup>            |

## Molecular dynamics (MD) simulation

The computational domain for MD simulations had x/y/z dimensions of 10 nm, 10 nm, and 100 nm, respectively. Both the hot and cold ends are geometrically 1 nm\*1 nm\*1 nm.

## Reference

- [1] Lin S, Guo L, Wang X, et al. Revealing the promising near-room-temperature thermoelectric performance in Ag<sub>2</sub>Se single crystals[J]. Journal of Materiomics, 2023, 9(4): 754-761.
  - [2] Kleinhanns T, Milillo F, Calcabrini M, et al. A Route to High Thermoelectric Performance: Solution Based Control of Microstructure and Composition in Ag<sub>2</sub>Se[J]. Advanced Energy Materials, 2024, 14(22): 2400408.