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S1: Core structure used in this study

Below, the core structure of the all-hydrogen substituted chlorophyll is given in xyz-format. Comments
given at the side (i.e. ! x1) are relevant for the ArchOnML package.
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S2: Training settings of ArchOnML

For determining the hyperparameters of the Kernel Ridge Regression (KRR) models, a grid-based scan
is performed in a 5-fold cross-validation. To define the scanned grid regions, four parameters called
MinMod, MaxMod, Lambda Bot and Lambda Top have to be given by the user. The first two
determine how ArchOnML’s dynamic grid set-up procedure modifies the o region, and the latter two
give the lowest and highest values of the A grid in exponential (10¥) fashion. These parameters are
currently determined on a trial-and-error basis for each trained property, using sparse grid resolutions
at first, and then increasing grid resolution for the actual scan. For all models, the final resolution was
chosen to be 32 x 32 grid-points. Below, the settings for all properties will be listed.

e AE(Q{):MinMod = 0.00001, MaxMod = 100, Lambda Bot = -6, Lambda Top = 1
e f(Qi):MinMod = 0.01, MaxMod = 50, Lambda Bot = -4, Lambda Top = 1

e AE(Q;):MinMod = 0.001, MaxMod = 50, Lambda Bot = -6, Lambda Top = 1

e f(Q;):MinMod = 1, MaxMod = 100, Lambda Bot = -6, Lambda Top = -1

e AE(B{):MinMod = 1, MaxMod = 100, Lambda Bot = -7, Lambda Top = -3

e f(By):MinMod = 0.001, MaxMod = 20, Lambda Bot = -5, Lambda Top = 1

e AE(B;):MinMod = 0.1, MaxMod = 100, Lambda Bot = -5, Lambda Top = -1

e f(By):MinMod = 0.01, MaxMod = 20, Lambda Bot = -5, Lambda Top = 1

e E(Ty):MinMod = 0.00001, MaxMod = 100, Lambda Bot = -6, Lambda Top = 1

Qu was always assigned to be the S;/Q, state, and Q. to be S;/Q«. The assignment of the B states was
more involved, see sec. S6 below.



S3: Learning curves for all models

On the following pages, the learning curves for all nine trained properties will be presented. As
described in the main text, five individual learning curves were generated for each property to check
the robustness of each model. Robustness means that for a different random training-testing-split, the
overall performance does not change. Note that splitting off the test data was performed before
stratification during training. This way, a completely random set of unknown molecules is used for
checking performances, which reflects a more realistic situation.

The five individual curves will show both training and testing results for the coefficient of determination
r? as well as the mean absolute error (MAE) at different amounts of training data during cross-
validation. After these, the mean curves for 12 are given, displaying both the best and worst individual
results at each percentage — as well as the mean of all five curves for the training and testing,
respectively.



S3a: Learning curves for AE(Q,)
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S3b: Learning curves for f(Q;)
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S3c: Learning curves for AE(Q,)
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S3d: Learning curves for f(Q5)
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S3e: Learning curves for AE(B;)
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S3f: Learning curves for f(B;)
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S3g: Learning curves for AE(B,)
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S3h: Learning curves for f(B;)
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Curve 4
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S3i: Learning curves for E(T;)
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S4: Distribution of training data

Below the distributions of training data for all properties of interest are shown. Each time, pairs of the
oscillator strength and respective excitation energy are plotted. For the triplet excitation energy, the x-
axis shows the respective AE(Q,) excitation energies, instead. Note that the red contour lines in all
plots show the kernel density estimation for the scattered data, containing 10, 20, 50 and 95% of the
data.
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S5: Distribution of prediction data

Below the distributions of prediction data for all properties of interest are shown. Each time, pairs of
the oscillator strength and respective excitation energy are plotted. For the triplet excitation energy,
the x-axis shows the respective AE (Q,) excitation energies, instead.
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S6: ML procedure, descriptors and ML model applied in this study

Training Data Generation Model Training Predictions
- Initial Guess Structures - Parsing (S)QC outputs* - Generation of remaining
- SQC Optimization —p | - Training/Testing split —p| guess structures
- QC Optimization - k-fold stratified cross- - SQC optimization
- QC Label Calculation validation - Parsing SQC outputs
(here TD-DFT) - model testing - Running ML Predictions*
(*required once) (*required once per model)

Figure S1: Overview on the full ML procedure, with the individual steps/calculations involved.

Model and descriptors

The predictions provided by ArchOnML are based on Kernel Ridge Regression (KRR) model. A KRR
model generates a predicted values EP™ for an unknown probe molecule M’ by utilizing the expression

EPTeAQM’, M) = ) ayf (M', M)

4

Here, a; are the individual weights when determining the similarity (or kernel) function f between the
probe molecule and all molecules that the model was trained on contained in the reference space M.
Weights «a; are obtained through minimizing the expression

min aZ(EWd (M', M) — Elabel)? 4 Az a?

i i
where E2¢ gre the (TD)-DFT values to be trained against, and A is the regularization hyperparameter.

The kernel function used in our specific model is of a gaussian type,
2 2
FM, M) = o~ ol (M) /(205))

where dg; is an abstract distance between two molecules M; and M; with respect to the g-th descriptor.
Further, o, constitues a set of gaussian width hyperparameters that are assigned to each individual
descriptor. All hyperparameters are optimized through a two-dimensional grid-based 5-fold cross
validation procedure. The two dimensions scanned during cross validation concern the parameter A
directly, and a scaling factor & that is applied to initial guess values for g, simultaneously. For more
details on the procedure, please refer to the documentation of the program code. Finally, note that for
each desired property, an individual model was trained using the desired property itself as the
argument of stratification.

The following list of keywords defines which descriptors are used to train the KRR models. Note that in
ArchOnML, requesting a certain descriptor keyword may produce several separate descriptor values
belonging to this type, rather than one value per keyword. This is because some types make use of a
user-given variable called MOWin - a global variable that determines how many semiempirical orbitals
will be considered for these descriptor types. For more details, please refer to the documentation of
ArchOnML.With the current settings, a total of 50 descriptors are generated.

Finally, since the used ML model is of KRR type, predictions are formulated by comparing unknown
probe molecules to a set of reference molecules. Here, the similarity between molecules is then
determined in terms of so-called abstract distances, which are either obtained from just forming the
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absolute difference of two scalar descriptor values, or by calculation of the Euclidean norm, in case a
Coulomb matrix(-like) object is used compare molecules. The original formulation of the latter process
can be found in Rupp, M. et al., Phys. Rev. Lett. 108, 058301 (2012). More details on how the similarity
between molecules is determined in ArchOnML can be found in the documentation
(https://github.com/archonml/archonml).

SEmpNEI This descriptor type uses the individual molecule’s number of electrons Ng, as is.

SEmpOccs This descriptor type reads the semi-empirical orbital energies for the occupied orbitals
E(HOMO-N), with N going up to the specified MOWin.

SEmpVirs This descriptor type is the unoccupied (or virtual) space counterpart of SEmpOccs. It
thus considers the energies of E(LUMO + M), with M going up to MOWin.

SEmpEigCoul This descriptor type generates the eigenvalues of a Coulomb matrix, as originally
described in Rupp, M. et al., Phys. Rev. Lett. 108, 058301 (2012), as

0.5Z%* forl =]
CMIJ = A4

Wforl i]
=4y

Here, matrix elements refer to the I-th and J-th atoms, where Z; and R; refer to the atomic number
and position in cartesian space of atom I, respectively. The abstract distance between two molecules
for this descriptor (and all other Coulomb matrix-like descriptors) is calculated as the aforementioned
Euclidean norm between the eigenvalues of two different molecules M; and M; according to
i_ _J)?
dEigCoul(Mi'Mj) = leel - 61| ,
where ¢; is the I-th eigenvalue of the specific molecule M; or M, sorted in descending order. Note, that

in case there is a difference in the number of atoms between M; and M;, the shorter array is
supplemented by zeros.

SEmpOccEigCoul This descriptor type makes use of a Coulomb matrix-like object, in which the
atomic charges of the original Coulomb matrix in the mixing terms are additionally multiplied with the
amount of Mulliken charge q; at each atom I.

SEmpOccPCMEigCoul This descriptor constructs a Coulomb matrix-like object that additionally
considers the so-called p-orbital character of an occupied orbital HOMO-N at each specific atom I (or
J, likewise). Here, p-orbital character p;(N) is quantified abstractly as the sum of coefficients of atomic
orbitals’ p-character at each specific atom for the specific molecular orbital HOMO-N, thus becoming
an orbital shape descriptor.

pi(N) =p1x(N) + p;,,(N) + p;,,(N)

Here, pix gives the sum of all atomic orbital coefficients at atom I of p, character, and N stands for the
HOMO-N orbital. The other cartesian components are summed up and added. Ultimately, the Coulomb
matrix-like object is then defined as

0.51Z;p, (N)|** for I =]
ey vy = { (Zp (D (120, (M)
R — Ry

forl #]
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Note that this descriptor is affected by MOWin, thus considering occupied orbitals HOMO-N up to N =
MOWin. When constructing the abstract distances, only identical orbital indices are compared,
applying the same sorted Euclidean norm formalism introduced earlier.

SEmpVirPCMEigCoul This descriptor is the analogue of SEmpOccPCMEigCoul, that considers
unoccupied orbitals instead. It also considers multiple orbitals using MOWin.

SEmpHOLUPDiff This descriptor keyword requests construction of Coulomb matrix-like objects
that consider local electron density differences of p-orbital type between only the HOMO and LUMO.
Here, “p-orbital character density difference at atom I with respect to HOMO and LUMO” D is
calculated as the difference of squared, local p-orbital characters according to

D;(M=0,N=0)=p(M = 0)2 —p(N = 0)2
The Coulomb matrix-like object is then defined as

0.5|Z,D;(M = 0,N = 0)|>* forl =]
cmy M =3 (12,D,(M = 0,N = 01)(|Z,D;(M = 0,N = 0)])
[Ri = Ry|

forl +]

SEmpOrbEnDiffs This descriptor compares semiempirical orbital energy differences in eV
between occupied orbital HOMO-N and virtual orbital LUMO+M.

Epir(M,N) = E(LUMO + M) — E(HOMO — N)

When calculating the abstract distance for a pair of molecules M; and M;, it will only compare same-
index-pairs. In other words, it will only compare the energy differences of a certain HOMO-N to
LUMO+M transition in both molecules — but never use different orbital indices.

SEmpTransPCMEigCoul This descriptor type abstractly expresses a transition moment
between orbitals HOMO-N and LUMO+M by multiplying local p-characters of the two orbitals at atoms
I and forming a Coulomb matrix-like object out of it. This so-called local transition contribution T;(M,
N) at atom | for orbitals HOMO-N and LUMO+M is then defined as

T;(M,N) = p;(M) = p;(N)
and the corresponding matrix expression is constructed as
0.5(1Z,T;(M, N)|)*>* for I =]

cMl;(M,N) =4 (1Z,T,(M, D (|Z,T,(M, N)|)
R —R)|

forl #]

Again only same-index pairs for N and M are considered in the Euclidean norm.

SEmpOccVirPTransSum This descriptor keyword requests the summation of all atomic
contributions of the above-defined p-character transition densities at each atom I between orbital
pairs HOMO-N and LUMO+M in scalar form according to

TS(M,N) = ¥,IT;(M, N)|?.

The abstract distance between molecules for this sum of local transitions is obtained as the simple
absolute difference of the scalar values.
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S7: Criterion for B band state selection in the ML scheme

For the evaluation of the Soret band, the two excited states with the highest oscillator strengths were
selected, after exclusion of the S; (= Q) and S, (= Q) state transitions. To avoid selecting an unrealistic
state that has a high f, but also a transition energy outside of the B band, an additional selection
criterion was based on the cumulative oscillator strength: the sum of all considered states’ f was
tracked, and once this sum exceeded a value of 4, no further states were considered. This ensured a
focused analysis on the most intense transitions contributing to the Soret band, while maintaining a
consistent basis for comparison.
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S8: Comparison of ML data to conventional QC: TD-DFT (gas phase and acetone)
Q band shifts

Table S1: Vertical excitation energies (in eV) and oscillator strengths of the first electronic transition (So—>S1) for various Q red-
shifted Chls, from different theoretical models. For the artificial Chls, difference to Chl f is given in parentheses.

Model Chl f Chl df Chl f+
AEy_g, [/ eV Pred. (vac.) 2.068 2.047 (-0.021) 2.045 (-0.023)
TD-DFT (vac.) 2.250 2.239 (-0.011) 2.241 (-0.009)
TD-DFT (acetone) | 2.136 2.158 (+0.022) 2.196 (+0.060)
fo—s1 Pred. (vac.) 0.31 0.32 (+0.01) 0.36 (+0.05)
TD-DFT (vac.) 0.42 0.41 (-0.01) 0.47 (+0.05)
TD-DFT (acetone) | 0.63 0.63 (+0.00) 0.63 (+0.00)

The gas phase TD-DFT calculations shown in Table S1 agree well with the KRR predictions. However,
calculations in acetone imply a sensitivity regarding the first excited state, especially for AEy_g. Instead
of shifting slightly down in energy, TD-DFT computes the new variants as shifted up compared to Chl f.
Comparing the vacuum and acetone values shows that TD-DFT predicts Chl f to be more affected by
the presence of the solvent than the suggested Chl variants (about 120 meV shift compared to 80 or
50 meV for the new variants). The actual shift can thus be considered to be dependent on the present
environment.

B band shifts
Table S2: Vertical excitation energies (in eV) and oscillator strengths of the selected B band electronic transition (So—>Sx) for

various B red-shifted Chls, from different theoretical models. For the artificial Chls, difference to Chl b is given in parentheses.
Values in italics correspond to X = 3, as here, the selected X was different; only applies to TD-DFT in gas phase.

Model Chlb DVChl b Chl bb Chl bd

AEy_gx | Pred. (vac.) 3.378 3.218 (-0.160) 3.222 (-0.156) 3.288 (-0.090)
/ eV TD-DFT (vac.) 3.846 3.592 (-0.254) 3.583 (-0.263) 3.663 (-0.183)
3.695 | /(-0.103) /(-0.112) 3.548 (-0.147)
TD-DFT (acetone) | 3.446 3.315(-0.131) 3.278 (-0.168) 3.364 (-0.082)

fo—sx | Pred. (vac.) 1.04 1.23 (+0.19) 1.09 (+0.05) 1.07 (+0.03)

TD-DFT (vac.) 1.54 1.40 (-0.14) 1.49 (-0.05) 1.34 (-0.20)

0.86 / (+0.54) / (+0.63) 0.85 (-0.01)

TD-DFT (acetone) | 1.75 1.99 (+0.24) 1.73 (-0.02) 1.88 (+0.13)

As noted above, the state identification issue mentioned above and in the main article affects the
interpretation of the B band states in Table S2. TD-DFT generally predicts two or more states with
significant (more than 0.5) oscillator strengths, and both the predictions and acetone models agree
that usually the lowest B band state (Ss) is a bright/the brightest state, respectively. The values in italics
indicate those cases for which S; was not the one with highest f, which only applies to TD-DFT in
vacuum. When neglecting the vacuum TD-DFT calculations and their more difficult state assignment,
we can see that the ML predictions nicely agree with the TD-DFT/acetone calculations, both for
energies and oscillator strengths.
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S8, continued

Triplet-shifted Chl variants

Table S3: Vertical energy differences between the So, S; and T; states (in eV) for various Chls with AE_s, close to that of Chl a,
but with shifted triplet energies, from different theoretical models. For the artificial Chls, difference to Chl a is given in

parentheses.
Model Chla 3Ac-Chl+ DVChI bf
AE,_s1/ eV Pred. (vac.) 2.144 2.151 (-0.007) 2.153 (+0.009)
TD-DFT (vac.) 2.358 2.350 (-0.008) 2.305 (-0.053)
TD-DFT (acetone) | 2.316 2.320 (+0.004) 2.258 (-0.058)
AEy_r1/ eV Pred. (vac.) 1.358 1.298 (-0.060) 1.499 (+0.141)
TD-DFT (vac.) 1.389 1.308 (-0.081) 1.501 (+0.112)
TD-DFT (acetone) | 1.395 1.334 (-0.061) 1.493 (+0.098)

The TD-DFT results of Table S3 agree well with the predictions for the 3Ac-Chl+ case (for both vacuum
and acetone), showing minute changes for AE,_s; compared to Chla, and a small shift to lower
AEy_r4. For DVChI bf, TD-DFT AE,_s, values are slightly lower than predicted, resulting in a downshift
where the KRR would predict a rise in energy. AE_g, still remains close (less 0.06 eV different) to the
Chl a excitation, which we consider close enough to possibly maintain original Chl a photophysics.
Consequently, AE,_r; of DVChl bf is also computed by TD-DFT to be lower in energy than the ML
predictions. We assign this issue of vinyl-containing Chls to be generally red shifted to the vinyl group
conformations, as discussed in the main article. Qualitatively, however, TD-DFT calculations agree with
the KRR, also quantitatively in the case of 3Ac-Chl+. The solvent is found to be not relevant for the
quality of the B band results.
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S9: Comparison of ML data to conventional QC: DFT/MRCI

DFT/MRCI calculations for systems of the investigated size are challenging, since even high-end
computers struggle with memory problems in several cases; unfortunately, we were thus unable to
obtain any AE,_r, values from DFT/MRCI with the available computing resources. For the other cases,
fortunately, we found that gas phase vs. acetone results only differ by less than 0.01 eV, thus not
warranting a separate “gas phase vs. acetone” discussion (cf. TD-DFT results), which simplifies the
discussion greatly. We also restrict the discussion to the energies, as we were unable to obtain the f
values consistently due to the computer memory issues mentioned above. Qualitatively we find that
DFT/MRCI values agree with the predicted values, though the shifts resulting from DFT/MRCI are
guantitatively closer to the TD-DFT results than to the predicted ones. The range of the differences
between methods is however below 0.05 eV (Q band) or 0.1 eV (B band). This means that our
predictions hold, showing a possible slight red shift for the predicted Q-shifted variants, although this
could be dependent on the environment, as indicated by TD-DFT. For the B band, we are confident that
the suggested Chl variants should be B band red shifted by about 0.15 eV compared to Chl b.

Table S4: Vertical DFT/MRCI excitation energy differences (in eV) to Chl f or Chl b for several predicted Chl variants, compared
to ML-predicted and TD-DFT values (averaged from Table S1 and Table S2 gas phase/acetone calculations).

Method AAE,_g,(Target-Chlf) / eV | AAE,_g3(Target-Chl b) / eV

Chl df Chl f+ DVChl b Chl bb Chl bd
Pred. (vac.) -0.02 -0.02 -0.16 -0.16 -0.09
TD-DFT (avg.) | +0.01 +0.05 0.12 -0.14 -0.165
DFT/MRCI -0.03 -0.02 -0.06 -0.12 -0.17
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$10: Example QC inputs during the ML scheme

Input for PM6 pre-optimization (command line only)

#T OPT PM6 symmetry=none geom(nodistance,noangle,nodihedral)
symmetry=none

#I0p(2/9=1111, 2/11=2, 4/33=0) Guess (Always)

Input for DFT optimization (singlet and triplet) (command line only)

#T CAM-B3LYP/6-31G* OPT symmetry=none
geom (nodistance,noangle, nodihedral)

#iop(6/7=2, 4/33=0, 2/9=1111, 2/11=2) 5D 7F

Input for TD-DFT calculations (command line only)

#p CAM-B3LYP/6-31G* td(nstates=12, root=1) Symmetry=None GFINPUT
GFPRINT iop(6/7=3,9/40=5) 5D 7F
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S11: Predicted values in Figures 3 and 5 of the main article

Table S5: Predicted excitation energies (E) and oscillator strengths (f) values of the explicitly considered Chl variants in the
main article, for the excited states given in the first row. Energies include the shift for better comparison to the experimental
maxima/values (Q states: -0.278 eV, B states: -0.615 eV, triplets: -0.019 eV).

Qy Qx Bx By Tl
E/eV f E/eV f E/eVv f E/eV f E/eV
Chla 2.144 0.255 2.522 0.037 3.466 0.881 3.724 0.698 1.357
Chl b 2.250 0.171 2.581 0.022 3.378 1.044 3.550 0.740 1.561

80H-Chl | 2.149 |0.238 |2517 |0.029 |3.461 | 0.882 3.695 | 0.753 1.377

Chld 2.087 | 0.239 | 2447 |0.033 |3.410 | 0.945 3.689 | 0.718 1.287

Chl f 2.068 | 0.315 2.475 0.049 3.440 | 0.642 3.730 | 0.696 1.309

3Ac-Chl 2.144 | 0.230 | 2.498 | 0.028 | 3.447 | 0.969 3.706 | 0.670 | 1.359

DVChl a 2.157 0.230 2.536 0.026 3.424 1.063 3.694 | 0.790 1.381

DVChl b 2.237 0.148 2.588 -0.004 | 3.218 1.234 3.419 0.619 1.536

Chl df 2.047 |0.324 |2326 |0.080 |3.390 | 0.553 3.689 | 0.519 1.220

Chl f+ 2.046 | 0359 |2.338 |0.105 |3.359 |0.361 3.658 | 0.572 1.230

Chl bb 2.312 | 0.082 2.637 | 0.028 | 3.222 1.093 3.292 | 0.601 1.679

Chl bd 2.186 | 0.175 2488 | 0.018 | 3.288 1.073 3.510 | 0.716 1.457

3Ac-Chl+ | 2.151 | 0.290 |2.413 |0.096 |3.396 |0.528 |3.679 | 0.641 1.298

DVChl bf | 2.153 |0.214 |2.501 |0.011 | 3.187 1.058 | 3.407 | 0.618 1.499
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