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S1: Core structure used in this study 

Below, the core structure of the all-hydrogen substituted chlorophyll is given in xyz-format. Comments 

given at the side (i.e. ! x1) are relevant for the ArchOnML package. 
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C 2.234005 -0.357089 -0.315353 

C -1.349956 -1.465035 -0.250820 

C -1.997212 -2.721898 -0.311001 

C -3.432475 -2.505858 -0.427705 

C -3.642984 -0.943202 -0.378785 

C -1.009123 -3.695588 -0.265646 !X3 

C 0.226336 -2.955004 -0.177569 

N -0.033190 -1.589971 -0.170385 

C 1.525058 -3.461812 -0.126212 

C 2.711368 -2.722234 -0.081215 

C 4.046428 -3.275111 -0.019263 !X2 

C 4.911257 -2.204794 0.000658 !X1 

C 4.090433 -1.018416 -0.056902 

N 2.781756 -1.349407 -0.102713 

C 4.582791 0.312590 -0.067226 

C 3.854923 1.480119 -0.129933 

C 4.409427 2.834223 -0.137054 !X6 

C 3.345891 3.695628 -0.210968 !X5 

C 2.144590 2.866634 -0.232626 

N 2.480369 1.560415 -0.182628 

C 0.832243 3.363234 -0.297188 

C -0.358889 2.647309 -0.326015 

N -0.491129 1.307700 -0.286080 

C -1.822403 0.950376 -0.343289 

C -2.703133 2.174195 -0.508125 

C -1.709760 3.343299 -0.372634 !X4 

Mg 1.202054 -0.006661 -0.189726 

H -1.851991 4.394341 -1.469398 !Y4 

C -3.918742 2.255200 0.419834 

C -3.605422 2.097020 1.906295 

C -4.807309 1.672525 2.708410 

O -5.676548 0.935403 2.315711 

H 3.354039 5.185768 -0.301558 !Y5 

H 5.841000 3.131376 -0.101509 !Y6 

H 4.387777 -4.733148 0.061594 !Y2 

H -1.175873 -5.177883 -0.311561 !Y3 

O -4.328972 -3.309711 -0.533100 

C -4.452885 -0.455022 -1.579909 

O -3.926413 0.011834 -2.553671 

O -5.782341 -0.529983 -1.523350 

C -6.499148 -1.057085 -0.408281 

O -4.803838 2.167784 3.949336 

H 6.405496 -2.219602 0.068885 !Y1 

H 5.666915 0.417194 -0.015978 

H 0.733408 4.448033 -0.321626 

H 1.626487 -4.548932 -0.127331 
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H -5.583138 1.805889 4.403665 

H -3.176030 3.002191 2.355978 

H -4.422827 3.220559 0.249299 

H -4.207390 -0.741871 0.545717 

H -7.552826 -1.059457 -0.712413 

H -6.177466 -2.082907 -0.191203 

H -6.383258 -0.414093 0.476854 

H -1.850652 3.841875 0.602892 

H -3.087311 2.141354 -1.541419 

H -4.656259 1.494165 0.137686 

H -2.860455 1.294262 2.050497 

  



4 
 

S2: Training settings of ArchOnML 

For determining the hyperparameters of the Kernel Ridge Regression (KRR) models, a grid-based scan 

is performed in a 5-fold cross-validation. To define the scanned grid regions, four parameters called 

MinMod, MaxMod, Lambda_Bot and Lambda_Top have to be given by the user. The first two 

determine how ArchOnML’s dynamic grid set-up procedure modifies the 𝜎 region, and the latter two 

give the lowest and highest values of the 𝜆 grid in exponential (10𝑁) fashion. These parameters are 

currently determined on a trial-and-error basis for each trained property, using sparse grid resolutions 

at first, and then increasing grid resolution for the actual scan. For all models, the final resolution was 

chosen to be 32 × 32 grid-points. Below, the settings for all properties will be listed. 

• Δ𝐸(𝑄1): MinMod = 0.00001, MaxMod = 100, Lambda_Bot = -6, Lambda_Top = 1 

• 𝑓(𝑄1): MinMod = 0.01, MaxMod = 50, Lambda_Bot = -4, Lambda_Top = 1 

• Δ𝐸(𝑄2): MinMod = 0.001, MaxMod = 50, Lambda_Bot = -6, Lambda_Top = 1 

• 𝑓(𝑄2): MinMod = 1, MaxMod = 100, Lambda_Bot = -6, Lambda_Top = -1 

• Δ𝐸(𝐵1): MinMod = 1, MaxMod = 100, Lambda_Bot = -7, Lambda_Top = -3 

• 𝑓(𝐵1): MinMod = 0.001, MaxMod = 20, Lambda_Bot = -5, Lambda_Top = 1 

• Δ𝐸(𝐵2): MinMod = 0.1, MaxMod = 100, Lambda_Bot = -5, Lambda_Top = -1 

• 𝑓(𝐵2): MinMod = 0.01, MaxMod = 20, Lambda_Bot = -5, Lambda_Top = 1 

• 𝐸(𝑇1): MinMod = 0.00001, MaxMod = 100, Lambda_Bot = -6, Lambda_Top = 1 

Q1 was always assigned to be the S1/Qy state, and Q2 to be S2/Qx. The assignment of the B states was 

more involved, see sec. S6 below. 
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S3: Learning curves for all models 

On the following pages, the learning curves for all nine trained properties will be presented. As 

described in the main text, five individual learning curves were generated for each property to check 

the robustness of each model. Robustness means that for a different random training-testing-split, the 

overall performance does not change. Note that splitting off the test data was performed before 

stratification during training. This way, a completely random set of unknown molecules is used for 

checking performances, which reflects a more realistic situation. 

The five individual curves will show both training and testing results for the coefficient of determination 

𝑟² as well as the mean absolute error (MAE) at different amounts of training data during cross-

validation. After these, the mean curves for 𝑟² are given, displaying both the best and worst individual 

results at each percentage – as well as the mean of all five curves for the training and testing, 

respectively. 
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S3a: Learning curves for Δ𝐸(𝑄1) 
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S3b: Learning curves for 𝑓(𝑄1) 
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S3c: Learning curves for Δ𝐸(𝑄2) 
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S3d: Learning curves for 𝑓(𝑄2) 
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S3e: Learning curves for Δ𝐸(𝐵1) 
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S3f: Learning curves for 𝑓(𝐵1) 

 

  



17 
 

 

 

  



18 
 

S3g: Learning curves for Δ𝐸(𝐵2) 
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S3h: Learning curves for 𝑓(𝐵2) 
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S3i: Learning curves for 𝐸(𝑇1) 
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S4: Distribution of training data 

Below the distributions of training data for all properties of interest are shown. Each time, pairs of the 

oscillator strength and respective excitation energy are plotted. For the triplet excitation energy, the x-

axis shows the respective Δ𝐸(𝑄1) excitation energies, instead. Note that the red contour lines in all 

plots show the kernel density estimation for the scattered data, containing 10, 20, 50 and 95% of the 

data. 
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S5: Distribution of prediction data 

Below the distributions of prediction data for all properties of interest are shown. Each time, pairs of 

the oscillator strength and respective excitation energy are plotted. For the triplet excitation energy, 

the x-axis shows the respective Δ𝐸(𝑄1) excitation energies, instead.  
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S6: ML procedure, descriptors and ML model applied in this study 

 

Figure S1: Overview on the full ML procedure, with the individual steps/calculations involved. 

Model and descriptors 

The predictions provided by ArchOnML are based on Kernel Ridge Regression (KRR) model. A KRR 

model generates a predicted values Epred for an unknown probe molecule M’ by utilizing the expression 

𝐸𝑝𝑟𝑒𝑑(𝑀′, 𝑴) = ∑ 𝛼𝑖𝑓(𝑀′, 𝑀𝑖)

𝑖

 

Here, 𝛼𝑖 are the individual weights when determining the similarity (or kernel) function 𝑓 between the 

probe molecule and all molecules that the model was trained on contained in the reference space 𝑴. 

Weights 𝛼𝑖 are obtained through minimizing the expression 

min 𝛼 ∑(𝐸𝑝𝑟𝑒𝑑(𝑀′, 𝑴) − 𝐸𝑙𝑎𝑏𝑒𝑙)
2

𝑖

+ 𝜆 ∑ 𝛼𝑖
2

𝑖

 

where Elabel are the (TD)-DFT values to be trained against, and 𝜆 is the regularization hyperparameter. 

The kernel function used in our specific model is of a gaussian type, 

𝑓(𝑀′, 𝑀𝑖) = 𝑒
− ∑ (𝑑𝑔(𝑀𝑖,𝑀𝑗)

2
(2𝜎𝑔

2)⁄ )𝑔  

where 𝑑𝑔 is an abstract distance between two molecules 𝑀𝑖 and 𝑀𝑗 with respect to the 𝑔-th descriptor. 

Further, 𝜎𝑔 constitues a set of gaussian width hyperparameters that are assigned to each individual 

descriptor. All hyperparameters are optimized through a two-dimensional grid-based 5-fold cross 

validation procedure. The two dimensions scanned during cross validation concern the parameter 𝜆 

directly, and a scaling factor 𝜎̃ that is applied to initial guess values for 𝜎𝑔 simultaneously. For more 

details on the procedure, please refer to the documentation of the program code. Finally, note that for 

each desired property, an individual model was trained using the desired property itself as the 

argument of stratification.  

The following list of keywords defines which descriptors are used to train the KRR models. Note that in 

ArchOnML, requesting a certain descriptor keyword may produce several separate descriptor values 

belonging to this type, rather than one value per keyword. This is because some types make use of a 

user-given variable called MOWin - a global variable that determines how many semiempirical orbitals 

will be considered for these descriptor types. For more details, please refer to the documentation of 

ArchOnML.With the current settings, a total of 50 descriptors are generated. 

Finally, since the used ML model is of KRR type, predictions are formulated by comparing unknown 

probe molecules to a set of reference molecules. Here, the similarity between molecules is then 

determined in terms of so-called abstract distances, which are either obtained from just forming the 
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absolute difference of two scalar descriptor values, or by calculation of the Euclidean norm, in case a 

Coulomb matrix(-like) object is used compare molecules. The original formulation of the latter process 

can be found in Rupp, M. et al., Phys. Rev. Lett. 108, 058301 (2012). More details on how the similarity 

between molecules is determined in ArchOnML can be found in the documentation 

(https://github.com/archonml/archonml). 

SEmpNEI This descriptor type uses the individual molecule’s number of electrons 𝑁El, as is. 

SEmpOccs This descriptor type reads the semi-empirical orbital energies for the occupied orbitals 

𝐸(HOMO−𝑁), with 𝑁 going up to the specified MOWin. 

SEmpVirs This descriptor type is the unoccupied (or virtual) space counterpart of SEmpOccs. It 

thus considers the energies of 𝐸(LUMO + 𝑀), with 𝑀 going up to MOWin. 

SEmpEigCoul This descriptor type generates the eigenvalues of a Coulomb matrix, as originally 

described in Rupp, M. et al., Phys. Rev. Lett. 108, 058301 (2012), as 

𝐶𝑀𝐼𝐽 = {

0.5𝑍𝐼
2.4 𝑓𝑜𝑟 𝐼 = 𝐽

𝑍𝐼𝑍𝐽

|𝑅𝐼−𝑅𝐽|
 𝑓𝑜𝑟 𝐼 ≠ 𝐽

 

Here, matrix elements refer to the 𝐼-th and 𝐽-th atoms, where 𝑍𝐼 and 𝑅𝐼 refer to the atomic number 

and  position in cartesian space of atom 𝐼, respectively. The abstract distance between two molecules 

for this descriptor (and all other Coulomb matrix-like descriptors) is calculated as the aforementioned 

Euclidean norm between the eigenvalues of two different molecules 𝑀𝑖 and 𝑀𝑗 according to 

𝑑𝐸𝑖𝑔𝐶𝑜𝑢𝑙(𝑀𝑖, 𝑀𝑗) = √∑ |𝜖𝐼
𝑖 − 𝜖𝐼

𝑗
|
2

𝐼 , 

where 𝜖𝐼 is the 𝐼-th eigenvalue of the specific molecule Mi or Mj, sorted in descending order. Note, that 

in case there is a difference in the number of atoms between Mi and Mj, the shorter array is 

supplemented by zeros. 

SEmpOccEigCoul This descriptor type makes use of a Coulomb matrix-like object, in which the 

atomic charges of the original Coulomb matrix in the mixing terms are additionally multiplied with the 

amount of Mulliken charge 𝑞𝐼 at each atom 𝐼. 

SEmpOccPCMEigCoul This descriptor constructs a Coulomb matrix-like object that additionally 

considers the so-called 𝑝-orbital character of an occupied orbital HOMO-𝑁 at each specific atom 𝐼 (or 

𝐽, likewise). Here, 𝑝-orbital character 𝑝𝐼(𝑁) is quantified abstractly as the sum of coefficients of atomic 

orbitals’ 𝑝-character at each specific atom for the specific molecular orbital HOMO-𝑁, thus becoming 

an orbital shape descriptor. 

𝑝𝐼(𝑁) = 𝑝𝐼,𝑥(𝑁) + 𝑝𝐼,𝑦(𝑁) + 𝑝𝐼,𝑧(𝑁) 

Here, 𝑝𝐼,𝑥 gives the sum of all atomic orbital coefficients at atom 𝐼 of 𝑝𝑥 character, and 𝑁 stands for the 

HOMO-𝑁 orbital. The other cartesian components are summed up and added. Ultimately, the Coulomb 

matrix-like object is then defined as 

𝐶𝑀𝐼𝐽
𝑝−𝑐ℎ𝑎𝑟

(𝑁) = {

0.5|𝑍𝐼𝑝𝐼(𝑁)|2.4 𝑓𝑜𝑟 𝐼 = 𝐽

(|𝑍𝐼𝑝𝐼(𝑁)|)(|𝑍𝐽𝑝𝐽(𝑁)|)

|𝑅𝐼 − 𝑅𝐽|
 𝑓𝑜𝑟 𝐼 ≠ 𝐽
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Note that this descriptor is affected by MOWin, thus considering occupied orbitals HOMO-𝑁 up to 𝑁 = 

MOWin. When constructing the abstract distances, only identical orbital indices are compared, 

applying the same sorted Euclidean norm formalism introduced earlier. 

SEmpVirPCMEigCoul This descriptor is the analogue of SEmpOccPCMEigCoul, that considers 

unoccupied orbitals instead. It also considers multiple orbitals using MOWin. 

SEmpHOLUPDiff This descriptor keyword requests construction of Coulomb matrix-like objects 

that consider local electron density differences of 𝑝-orbital type between only the HOMO and LUMO. 

Here, “𝑝-orbital character density difference at atom 𝐼 with respect to HOMO and LUMO” 𝐷𝐼 is 

calculated as the difference of squared, local 𝑝-orbital characters according to 

𝐷𝐼(𝑀 = 0, 𝑁 = 0) = 𝑝𝐼(𝑀 = 0)2 − 𝑝𝐼(𝑁 = 0)2 

The Coulomb matrix-like object is then defined as 

𝐶𝑀𝐼𝐽
𝑝−𝑑𝑖𝑓𝑓

= {

0.5|𝑍𝐼𝐷𝐼(𝑀 = 0, 𝑁 = 0)|2.4 𝑓𝑜𝑟 𝐼 = 𝐽

(|𝑍𝐼𝐷𝐼(𝑀 = 0, 𝑁 = 0)|)(|𝑍𝐽𝐷𝐽(𝑀 = 0, 𝑁 = 0)|)

|𝑅𝐼 − 𝑅𝐽|
 𝑓𝑜𝑟 𝐼 ≠ 𝐽

 

SEmpOrbEnDiffs This descriptor compares semiempirical orbital energy differences in eV 

between occupied orbital HOMO-𝑁 and virtual orbital LUMO+𝑀. 

𝐸𝐷𝑖𝑓𝑓(𝑀, 𝑁) = 𝐸(𝐿𝑈𝑀𝑂 + 𝑀) − 𝐸(𝐻𝑂𝑀𝑂 − 𝑁) 

When calculating the abstract distance for a pair of molecules 𝑀𝑖 and 𝑀𝑗, it will only compare same-

index-pairs. In other words, it will only compare the energy differences of a certain HOMO-N to 

LUMO+M transition in both molecules – but never use different orbital indices. 

SEmpTransPCMEigCoul  This descriptor type abstractly expresses a transition moment 

between orbitals HOMO-𝑁 and LUMO+𝑀 by multiplying local 𝑝-characters of the two orbitals at atoms 

𝐼 and forming a Coulomb matrix-like object out of it. This so-called local transition contribution 𝑇𝐼(𝑀, 

𝑁) at atom I for orbitals HOMO-𝑁 and LUMO+𝑀 is then defined as 

𝑇𝐼(𝑀, 𝑁) = 𝑝𝐼(𝑀) ∗ 𝑝𝐼(𝑁) 

and the corresponding matrix expression is constructed as 

𝐶𝑀𝐼𝐽
𝑇 (𝑀, 𝑁) = {

0.5(|𝑍𝐼𝑇𝐼(𝑀, 𝑁)|)2.4 𝑓𝑜𝑟 𝐼 = 𝐽

(|𝑍𝐼𝑇𝐼(𝑀, 𝑁)|)(|𝑍𝐽𝑇𝐽(𝑀, 𝑁)|)

|𝑅𝐼 − 𝑅𝐽|
 𝑓𝑜𝑟 𝐼 ≠ 𝐽

 

Again only same-index pairs for 𝑁 and 𝑀 are considered in the Euclidean norm. 

SEmpOccVirPTransSum  This descriptor keyword requests the summation of all atomic 

contributions of the above-defined 𝑝-character transition densities at each atom 𝐼 between orbital 

pairs HOMO−𝑁 and LUMO+𝑀 in scalar form according to 

𝑇𝑆(𝑀, 𝑁) = ∑ |𝑇𝐼(𝑀, 𝑁)|𝐼
2

. 

The abstract distance between molecules for this sum of local transitions is obtained as the simple 

absolute difference of the scalar values.  
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S7: Criterion for B band state selection in the ML scheme 

For the evaluation of the Soret band, the two excited states with the highest oscillator strengths were 

selected, after exclusion of the S1 (= Qy) and S2 (= Qx) state transitions. To avoid selecting an unrealistic 

state that has a high 𝑓, but also a transition energy outside of the B band, an additional selection 

criterion was based on the cumulative oscillator strength: the sum of all considered states’ 𝑓 was 

tracked, and once this sum exceeded a value of 4, no further states were considered. This ensured a 

focused analysis on the most intense transitions contributing to the Soret band, while maintaining a 

consistent basis for comparison. 
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S8: Comparison of ML data to conventional QC: TD-DFT (gas phase and acetone) 

Q band shifts 

Table S1: Vertical excitation energies (in eV) and oscillator strengths of the first electronic transition (S0→S1) for various Q red-
shifted Chls, from different theoretical models. For the artificial Chls, difference to Chl f is given in parentheses. 

 Model Chl f Chl df Chl f+ 

Δ𝐸0−𝑆1 / eV Pred. (vac.) 2.068 2.047 (-0.021) 2.045 (-0.023) 

TD-DFT (vac.) 2.250 2.239 (-0.011) 2.241 (-0.009) 

TD-DFT (acetone) 2.136 2.158 (+0.022) 2.196 (+0.060) 

𝑓0−𝑆1 Pred. (vac.) 0.31 0.32 (+0.01) 0.36 (+0.05) 

TD-DFT (vac.) 0.42 0.41 (-0.01) 0.47 (+0.05) 

TD-DFT (acetone) 0.63 0.63 (±0.00) 0.63 (±0.00) 

 

The gas phase TD-DFT calculations shown in Table S1 agree well with the KRR predictions. However, 

calculations in acetone imply a sensitivity regarding the first excited state, especially for Δ𝐸0−𝑆1. Instead 

of shifting slightly down in energy, TD-DFT computes the new variants as shifted up compared to Chl f. 

Comparing the vacuum and acetone values shows that TD-DFT predicts Chl f to be more affected by 

the presence of the solvent than the suggested Chl variants (about 120 meV shift compared to 80 or 

50 meV for the new variants). The actual shift can thus be considered to be dependent on the present 

environment. 

B band shifts 

Table S2: Vertical excitation energies (in eV) and oscillator strengths of the selected B band electronic transition (S0→SX) for 
various B red-shifted Chls, from different theoretical models. For the artificial Chls, difference to Chl b is given in parentheses. 
Values in italics correspond to X = 3, as here, the selected X was different; only applies to TD-DFT in gas phase. 

 Model Chl b DVChl b Chl bb Chl bd 

Δ𝐸0−𝑆𝑋 
/ eV 

Pred. (vac.) 3.378 3.218 (-0.160) 3.222 (-0.156) 3.288 (-0.090) 

TD-DFT (vac.) 3.846 
3.695 

3.592 (-0.254) 
/ (-0.103) 

3.583 (-0.263) 
/ (-0.112) 

3.663 (-0.183) 
3.548 (-0.147) 

TD-DFT (acetone) 3.446 3.315 (-0.131) 3.278 (-0.168) 3.364 (-0.082) 

𝑓0−𝑆𝑋 Pred. (vac.) 1.04 1.23 (+0.19) 1.09 (+0.05) 1.07 (+0.03) 

TD-DFT (vac.) 1.54 
0.86 

1.40 (-0.14) 
/ (+0.54) 

1.49 (-0.05) 
/ (+0.63) 

1.34 (-0.20) 
0.85 (-0.01) 

TD-DFT (acetone) 1.75 1.99 (+0.24) 1.73 (-0.02) 1.88 (+0.13) 

 

As noted above, the state identification issue mentioned above and in the main article affects the 

interpretation of the B band states in Table S2. TD-DFT generally predicts two or more states with 

significant (more than 0.5) oscillator strengths, and both the predictions and acetone models agree 

that usually the lowest B band state (S3) is a bright/the brightest state, respectively. The values in italics 

indicate those cases for which S3 was not the one with highest 𝑓, which only applies to TD-DFT in 

vacuum. When neglecting the vacuum TD-DFT calculations and their more difficult state assignment, 

we can see that the ML predictions nicely agree with the TD-DFT/acetone calculations, both for 

energies and oscillator strengths. 
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S8, continued 

Triplet-shifted Chl variants 

Table S3: Vertical energy differences between the S0, S1 and T1 states (in eV) for various Chls with 𝛥𝐸0−𝑆1 close to that of Chl a, 
but with shifted triplet energies, from different theoretical models. For the artificial Chls, difference to Chl a is given in 
parentheses. 

 Model Chl a 3Ac-Chl+ DVChl bf 

Δ𝐸0−𝑆1 / eV Pred. (vac.) 2.144 2.151 (-0.007) 2.153 (+0.009) 

TD-DFT (vac.) 2.358 2.350 (-0.008) 2.305 (-0.053) 

TD-DFT (acetone) 2.316 2.320 (+0.004) 2.258 (-0.058) 

Δ𝐸0−𝑇1 / eV Pred. (vac.) 1.358 1.298 (-0.060) 1.499 (+0.141) 

TD-DFT (vac.) 1.389 1.308 (-0.081) 1.501 (+0.112) 

TD-DFT (acetone) 1.395 1.334 (-0.061) 1.493 (+0.098) 

 

The TD-DFT results of Table S3 agree well with the predictions for the 3Ac-Chl+ case (for both vacuum 
and acetone), showing minute changes for Δ𝐸0−𝑆1 compared to Chl a, and a small shift to lower 
Δ𝐸0−𝑇1. For DVChl bf, TD-DFT Δ𝐸0−𝑆1 values are slightly lower than predicted, resulting in a downshift 
where the KRR would predict a rise in energy. Δ𝐸0−𝑆1 still remains close (less 0.06 eV different) to the 
Chl a excitation, which we consider close enough to possibly maintain original Chl a photophysics. 
Consequently, Δ𝐸0−𝑇1 of DVChl bf is also computed by TD-DFT to be lower in energy than the ML 
predictions. We assign this issue of vinyl-containing Chls to be generally red shifted to the vinyl group 
conformations, as discussed in the main article. Qualitatively, however, TD-DFT calculations agree with 
the KRR, also quantitatively in the case of 3Ac-Chl+. The solvent is found to be not relevant for the 
quality of the B band results. 
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S9: Comparison of ML data to conventional QC: DFT/MRCI 

DFT/MRCI calculations for systems of the investigated size are challenging, since even high-end 
computers struggle with memory problems in several cases; unfortunately, we were thus unable to 
obtain any Δ𝐸0−𝑇1 values from DFT/MRCI with the available computing resources. For the other cases, 
fortunately, we found that gas phase vs. acetone results only differ by less than 0.01 eV, thus not 
warranting a separate “gas phase vs. acetone” discussion (cf. TD-DFT results), which simplifies the 
discussion greatly. We also restrict the discussion to the energies, as we were unable to obtain the 𝑓 
values consistently due to the computer memory issues mentioned above. Qualitatively we find that 
DFT/MRCI values agree with the predicted values, though the shifts resulting from DFT/MRCI are 
quantitatively closer to the TD-DFT results than to the predicted ones. The range of the differences 
between methods is however below 0.05 eV (Q band) or 0.1 eV (B band). This means that our 
predictions hold, showing a possible slight red shift for the predicted Q-shifted variants, although this 
could be dependent on the environment, as indicated by TD-DFT. For the B band, we are confident that 
the suggested Chl variants should be B band red shifted by about 0.15 eV compared to Chl b. 

Table S4: Vertical DFT/MRCI excitation energy differences (in eV) to Chl f or Chl b for several predicted Chl variants, compared 
to ML-predicted and TD-DFT values (averaged from Table S1 and Table S2 gas phase/acetone calculations). 

Method ΔΔ𝐸0−𝑆1(Target-Chl f) / eV ΔΔ𝐸0−𝑆3(Target-Chl b) / eV 

 Chl df Chl f+ DVChl b Chl bb Chl bd 

Pred. (vac.) -0.02 -0.02 -0.16 -0.16 -0.09 

TD-DFT (avg.) +0.01 +0.05 -0.12 -0.14 -0.165 

DFT/MRCI -0.03 -0.02 -0.06 -0.12 -0.17 
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S10: Example QC inputs during the ML scheme 

Input for PM6 pre-optimization (command line only) 

#T OPT PM6 symmetry=none geom(nodistance,noangle,nodihedral) 

symmetry=none 

#IOp(2/9=1111, 2/11=2, 4/33=0) Guess(Always) 

Input for DFT optimization (singlet and triplet) (command line only) 

#T CAM-B3LYP/6-31G* OPT symmetry=none 

geom(nodistance,noangle,nodihedral) 

#iop(6/7=2, 4/33=0, 2/9=1111, 2/11=2) 5D 7F 

Input for TD-DFT calculations (command line only) 

#p CAM-B3LYP/6-31G* td(nstates=12, root=1) Symmetry=None GFINPUT 

GFPRINT iop(6/7=3,9/40=5) 5D 7F 
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S11: Predicted values in Figures 3 and 5 of the main article 

Table S5: Predicted excitation energies (E) and oscillator strengths (𝑓) values of the explicitly considered Chl variants in the 
main article, for the excited states given in the first row. Energies include the shift for better comparison to the experimental 
maxima/values (Q states: -0.278 eV, B states: -0.615 eV, triplets: -0.019 eV). 

 Qy Qx Bx By T1 

E / eV 𝑓 E / eV 𝑓 E / eV 𝑓 E / eV 𝑓 E / eV 

Chl a 2.144 0.255 2.522 0.037 3.466 0.881 3.724 0.698 1.357 

Chl b 2.250 0.171 2.581 0.022 3.378 1.044 3.550 0.740 1.561 

8OH-Chl 2.149 0.238 2.517 0.029 3.461 0.882 3.695 0.753 1.377 

Chl d 2.087 0.239 2.447 0.033 3.410 0.945 3.689 0.718 1.287 

Chl f 2.068 0.315 2.475 0.049 3.440 0.642 3.730 0.696 1.309 

3Ac-Chl 2.144 0.230 2.498 0.028 3.447 0.969 3.706 0.670 1.359 

DVChl a 2.157 0.230 2.536 0.026 3.424 1.063 3.694 0.790 1.381 

DVChl b 2.237 0.148 2.588 -0.004 3.218 1.234 3.419 0.619 1.536 

Chl df 2.047 0.324 2.326 0.080 3.390 0.553 3.689 0.519 1.220 

Chl f+ 2.046 0.359 2.338 0.105 3.359 0.361 3.658 0.572 1.230 

Chl bb 2.312 0.082 2.637 0.028 3.222 1.093 3.292 0.601 1.679 

Chl bd 2.186 0.175 2.488 0.018 3.288 1.073 3.510 0.716 1.457 

3Ac-Chl+ 2.151 0.290 2.413 0.096 3.396 0.528 3.679 0.641 1.298 

DVChl bf 2.153 0.214 2.501 0.011 3.187 1.058 3.407 0.618 1.499 

 


