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Study	system	and	sampling	

The	study	was	conducted	in	the	natural	populations	of	Plantago	lanceolata	in	the	Åland	Island,	SW	of	

Finland.	Plantago	lanceolata	is	a	globally	occurring	perennial	herbaceous	plant1.	It	is	an	obligate	out-

crosser	with	wind-dispersed	pollen,	and	it	is	also	capable	of	clonal	reproduction	via	side	rosettes	1.	In	

the	Åland	Islands,	P.	lanceolata		typically	grows	on	dry	meadows,	forming	a	highly	fragmented	network	

of	approximately	4000	populations	spanning	an	area	of	approximately	50	km	by	70	km2.	The	size	and	

location	 of	 the	 populations	 have	 been	 monitored	 annually	 since	 early	 1990’s	 as	 a	 part	 of	 the	

metapopulation	 studies	 of	 the	 Glanville	 fritillary	 butterfly	 Melitaea	 cinxia2.	 Due	 to	 the	 clonal	

reproduction	 and	 a	 seed	 bank,	 P.	 lanceolata	 populations	 rarely	 go	 extinct,	 and	 thus	 the	 spatial	

configuration	of	these	populations	is	relatively	stable3.		

We	used	a	stratification	process	to	select	20	focal	populations	from	the	database	of	the	approximately	

4000	natural	populations	of	P.	lanceolata	for	this	study.	First,	we	divided	the	populations	into	small	and	

large	ones	based	on	the	lower	and	upper	quartiles	of	the	population	sizes	(recorded	as	the	area	covered	

by	the	plant	in	square	meters	at	each	locality	during	annual	surveys2).	Second,	based	on	the	lower	and	

upper	quartiles	of	population	connectivity	measures	(Table	1),	we	divided	the	populations	to	the	ones	

with	 low	 connectivity	 and	 the	others	with	high	 connectivity.	 Population	 connectivity	 is	 assumed	 to	

provide	a	powerful	proxy	for	migration	rates	between	populations3.	After	overlaying	these	populations	

onto	the	map	of	Åland,	we	randomly	selected	four	populations	with	high	or	low	size	or	connectivity,	

respectively,	from	five	different	areas	of	Åland.	

We	sampled	the	selected	20	populations	in	early	June	2017	for	their	virus	communities.	We	collected	

leaf	samples	from	20	randomly	selected	plants	in	each	population,	resulting	in	altogether	400	samples	

for	small	RNA	sequencing.	Each	leaf	sample	consisted	of	three	youngest	leaves	from	the	centre	of	the	

rosette,	 which	 were	 placed	 in	 5	 ml	 cryotubes	 and	 immediately	 frozen	 in	 liquid	 nitrogen,	 and	

subsequently	stored	in	–80°C.		



 
 
Processing	the	RNA	samples	and	detecting	virus	communities	

For	 identifying	 the	 viruses,	 RNA	 was	 extracted	 from	 the	 samples	 using	 phenol-chloroform-

isoamylalcohol	extraction,	following	a	modified	protocol	of	Chang	et	al.4.	RNA	yield	and	quality	were	

measured	using	Nanodrop	(Thermo	Fisher	Scientific	Inc.,	Waltham,	MA,	USA).	The	small	RNA	(sRNA)	

sequencing-based	 virus	detection	was	done	based	on	Cuellar	et	 al.5.	 sRNA	 (18-30	nucleotides)	was	

sequenced	using	Illumina	HiSeq	(Illumina	Inc.,	San	Diego,	CA,	USA)].	The	RNA	samples	were	sequenced	

by	a	third-party	company	(FASTERIS	https://www.fasteris.com/dna/)	with	insert	size	of	18	to	30	bases	

with	an	average	library	yield	of	950	Mb.	After	quality	check	and	adaptor	removal,	the	obtained	reads	

were	 de	 novo	 assembled	 to	 contigs	 and	 blastn	 and	 blastx	 searches	 were	 run	 against	 RVDBv10.2		

database6	using	the	VirusDetect	pipeline7	on	all	 the	samples	separately.	 In	BLAST	searches	we	used	

default	similarity	25%	and	1e-5.	 	All	BLAST	hits	were	manually	checked	to	avoid	false	positives.	We	

then	 assigned	 the	 VirusDetect	 hits	 to	 Operational	 Taxonomic	 Units	 (OTUs)	 by	 assigning	 all	 hits	

belonging	to	the	same	family	to	the	same	OTU.		The	virus	OTUs	were	classified	as	plant	infecting	viruses,	

mycoviruses,	or	as	other	viruses	according	to	their	host	range8.	A	presence-absence	table	per	sample	

and	per	 virus	OTU	was	 created	based	on	 the	output	 results	 of	 the	VirusDetect	pipeline,	 henceforth	

referred	to	as	the	virus	community	matrix.	

EXPLANATORY	VARIABLES	

Host-related	variables	

During	 sampling,	 we	 tagged	 the	 plants,	 recorded	 their	 locations	 with	 GPS	 (the	 centroid	 of	 all	 the	

sampled	 host	 populations	 was	 60°11'57.3"N,	 19°58'47.0"E),	 and	 recorded	 the	 size	 of	 the	 plants	

(number	of	leaves	and	flowers,	and	the	length	and	width	of	the	longest	leaf	on	each	plant,	Table	1)	to	

understand	how	plant	size	affects	the	occurrence	of	viruses.	To	understand	how	herbivory	of	the	plant	

individual	is	linked	with	the	occurrence	of	viruses,	we	also	recorded	signs	of	herbivore	damage	(suck-	

and	 bitemarks,	 holes,	 moth	 pupa,	 leaf	 miner	 or	 thrip	 damage	 and	 spittle	 bug	 eggs,	 all	 recorded	

separately	as	0/1,	see	Table	1).		



 
 
Habitat-related	variables	

As	 these	viruses	are	not	expected	 to	be	specialists	of	P.	 lanceolata9,	we	wanted	 to	 test	whether	 the	

diversity	of	the	local	plant	communities	affects	virus	community	structure.	Hence,	we	collected	data	on	

the	vascular	plant	communities	in	each	of	the	study	populations	between	the	19th	and	30th	of	June	2017.	

We	established	between	three	and	six	one-square-meter	vegetation	survey	rectangles	across	each	focal	

population,	depending	on	its	area.	For	each	square,	we	counted	the	number	of	vascular	plant	species.	

We	used	the	vegetation	data	to	calculate	the	Shannon	diversity	index10	for	each	population	(Table	1).		

Theory	suggests	pathogen	emergence	to	 increase	at	 the	 interface	of	wild	and	cultivated	areas11	and	

previous	studies	have	reported	higher	virus	diversities	near	cultivated	areas12,13.	The	proportion	of	

agricultural	 area	 surrounding	 each	 study	 population	was	 calculated	 from	 Corine	 Land	 Cover	 (CLC,	

version	2020_20u1)	with	QGIS14	by	creating	a	one-kilometre	buffer	zone	around	each	study	population	

following	 the	 patch	 borders	 and	 calculating	 the	 proportion	 of	 20	 m	 ×	 20	 m	 pixels	 falling	 under	

agricultural	land	use	category	within	this	buffer	zone	(Table	1).	To	quantify	the	effect	of	host	population	

size	on	 the	occurrence	of	 viruses,	we	also	 estimated	 the	 coverage	of	P.	 lanceolata	 foliage	 in	 square	

meters	in	each	population.	Furthermore,	to	quantify	the	connectivity	of	a	host	population	with	respect	

to	 other	 populations,	we	 calculated	 the	 Euclidian	 distances	 between	 populations,	 calibrated	 by	 the	

species	dispersal	capacity	to	measure	the	connectivity	between	host	plant	populations3.	

As	many	pathogens	are	known	to	be	very	sensitive	to	the	surrounding	climatic	conditions15,	we	assume	

that	the	preceding	weather	conditions	affect	the	virus	community.	The	weather	observations	for	the	

host	populations	were	obtained	from	the	Finnish	Meteorological	Institut16.	We	calculated	the	number	

of	 severe	 winter	 days	 during	 the	 winter	 before	 the	 sampling	 season	 (i.e.	 number	 of	 days	 when	

temperature	was	 <	 0°C	 and	with	 snow	depth	was	 <	 5	 cm	 in	winter	 2016-2017)	 and	 the	 sum	over	

temperatures	of	the	effective	summer	days	during	previous	summer	(2016)	(Table	1).		

	

	



 
 
Spatial	variables	

To	 account	 for	 spatial	 structure	 in	 the	 data,	we	 included	 spatial	 variables	 implemented	 as	Moran’s	

eigenvector	maps	(MEMs).	MEMs	describe	the	spatial	structure	of	data	as	a	correlation	among	nearby	

locations	in	space,	and	they	can	readily	be	used	as	spatial	predictors17.	We	calculated	MEMs	based	on	

the	GPS	coordinates	of	the	sampled	host	plants,	with	the	assumption	of	positive	autocorrelation.	We	

estimated	the	significance	of	individual	eigenvectors	with	a	permutation	test	for	the	Moran’s	I	statistic,	

which	describes	the	level	of	autocorrelation	in	the	data.	We	included	all	the	eigenvectors	with	Moran’s	

I	>0.7,	as	well	as	the	last	significant	one,	thus	representing	both	coarse	and	fine	scale	signal	of	significant	

spatial	autocorrelation.	We	used	the	R	environment18	and	packages	‘spdep’19	and	‘adespatial’20.	

	
STATISTICAL	METHODS	

Descriptive	analyses	

To	 address	 our	 research	 question	 Q1,	 we	 began	with	 descriptive	 analyses	 of	 the	 virus	 species	 co-

occurrence	structure.	We	looked	into	the	nestedness	of	 the	data	set	visually	by	organising	the	virus	

community	 matrix	 based	 on	 overlap	 in	 virus	 presences	 among	 plants	 and	 decreasing	 fill21.	 We	

calculated	the	C-scores22	for	the	virus	community,	at	the	level	of	individual	host	plants,	as	well	as	at	the	

host	plant	population-level	(Figure	2).	The	metacommunity	of	viruses	is	considered	nested	when	the	

virus	community	in	plants	that	host	a	few	viruses	represent	a	subset	of	the	virus	community	in	plants	

that	host	more	viruses.	We	also	described	the	structure	of	the	virus	communities	visually	within	host	

populations	as	well	as	within	individual	plants	for	two	most	contrasting	host	populations	in	terms	of	

their	 virus	 diversity	 and	nestedness.	We	used	 the	 full	 dataset	 of	 25	 viruses	 (See	Results)	 for	 these	

descriptive	illustrations.	To	further	characterize	the	co-occurrence	structure	of	the	virus	communities,	

we	calculated	the	numbers	of	unique	pairwise	virus	co-occurrence	combinations	in	host	plants,	as	well	

as	the	unique	pairs	of	virus	species	that	never	co-occur.		



 
 
To	address	our	research	question	Q1	regarding	the	relevant	scales	of	virus	diversity	and	co-occurrence,	

we	 looked	 into	 the	relationship	between	the	cumulative	species	richness	and	species	co-occurrence	

patterns	with	respect	to	increasing	area	sampled	by	calculating	the	mean	species–area–curve	and	mean	

species–coexistence–curves.	 The	 classic	 species–area–curve	 describes	 how	 the	 species	 richness	

accumulates	 with	 increasing	 area.	 We	 calculated	 	 a	 Type	 I	 curve23,	 with	 a	 nested	 structure,	 with	

stepwise	accumulation	of	species.	The	coexistence–area	relationship	describes	the	rate	at	which	the	

number	of	coexisting	species	grows	with	increasing	area,	and	reflects	the	scale-dependent	operation	of	

the	mechanisms	that	contribute	to	coexistence24.		Both	curves	were	constructed	by	randomly	selecting	

a	 starting	 point,	 i.e.	 a	 sampled	 host	 plant,	 and	 increasing	 the	 spatial	 scale	 and	 sample	 by	 always	

including	the	next	closest	plant	to	the	species	richness	or	co-occurrence	calculation.	We	repeated	this	

100	times,	every	time	with	a	different	random	starting	point,	and	from	these	we	calculated	the	mean	

curves.	We	also	calculated	the	maximum	amount	of	co-occurring	pairs	based	on	the	number	of	species	

observed	thus	far,	leading	to	a	faster	rise.		

Markov	Random	Field	networks	

In	order	to	address	our	study	questions	Q2-Q4	regarding	the	relative	effects	of	host,	habitat	quality	and	

weather	 characteristics	 and	 spatial	 structure	 of	 the	 host	 populations,	 and	 the	 direct	 and	 indirect	

associations	between	the	viruses,	we	fitted	both	Unconditional	(MRF)	and	Conditional	Markov	Random	

Field	models	(CRF)	to	the	virus	community	data25.	Markov	Random	Fields	(MRFs)	are	graphical	models,	

which	can	represent	complex	distributions	as	network	graphs.	These	networks	consist	of	nodes	and	

edges,	corresponding	to	the	observed	variables	within	the	data,	and	to	the	probabilistic	 interactions	

between	variables	that	need	to	be	estimated.		

The	edge	associations	are	undirected,	meaning	that	the	effect	of	one	node	on	another	is	reciprocal.	If	

there	is	no	edge	between	two	nodes	in	the	estimated	graph,	these	nodes	are	conditionally	independent	

from	one	another,	whereas	if	there	is	an	edge,	these	nodes	are	conditionally	dependent,	after	accounting	

for	the	other	node	effects	in	the	graph	model26.	Here,	the	edge	associations	of	the	network	describe	the	



 
 
direct	pairwise	associations	between	viruses	in	host	plants.	Conditional	Random	Fields	allow	for	these	

dependencies	among	nodes	to	be	further	conditional	on	other	covariates25,26.	Hence,	the	values	for	the	

edge	 associations	 can	 change	 in	 the	 presence	 of	 these	 covariates,	 and	 the	 resulting	 graph	 model	

illustrates	the	pairwise	associations	between	viruses	in	host	plants,	conditional	not	only	on	the	rest	of	

the	virus	community,	but	also	on	the	covariates	included	in	the	model	(Table	1).	

The	applied	Markov	Random	Field	modelling	framework	is	described	in	detail	by	Clark	et	al.25.	Briefly,	

we	modelled	the	log-odds	of	detecting	virus	i	given	covariate	x	and	occurrence	of	virus	j	with	

log $
𝑃&𝑦! = 1*𝑦\! , 𝑥-

1 − 𝑃&𝑦! = 1*𝑦\! , 𝑥-
/ = 	𝛼!# + 𝛽!$𝑥 + 4&𝛼!%# + 𝛽!%$𝑥-	𝑦%

%:%'!

	,	

where	𝑦! 	is	the	vector	of	presences	and	absences	of	virus	i;	𝑦\! 	denotes	the	presences	and	absences	of	

all	 other	 viruses	 except	 i;	𝛼!#	 is	 the	 virus-level	 intercept;	 and	𝛽!$ 	 is	 the	 effect	 of	 covariate	𝑥	 on	 the	

occurrence	probability	of	virus	i.	Parameters	𝛼!%#	and	𝛽!%$ 	represent	the	associations	between	species,	

conditional	 on	 the	 occurrences	 of	 all	 the	 non-focal	 viruses	 (other	 than	 the	 focal	 virus	 i).	 Their	

interpretation	is	easiest	explained	by	setting	one	parameter	to	zero:	If,	for	example,		𝛼!%# = 0	but	𝛽!%$ ≠

0,	the	occurrence	probabilities	of	virus	i	and	j	are	conditionally	independent,	after	accounting	for	the	

effect	of	the	covariate	𝑥,	represented	by	𝛽!%$ ,	and	the	occurrences	of	other	viruses.	If	on	the	other	hand	

𝛼!%# ≠ 0	but	𝛽!%$ = 0,	the	occurrence	probabilities	of	virus	i	are	conditionally	dependent	on	species	j,	but	

this	 association	does	not	 vary	with	 covariate	𝑥.	Hence,	 if	 both	𝛼!%# ≠ 0	 and	𝛽!%$ ≠ 0,	 the	 occurrence	

probabilities	of	virus	i	and	j	are	conditionally	dependent,	after	accounting	for	the	effect	of	the	covariate	

𝑥,	represented	by	𝛽!%$ ,	and	the	occurrences	of	species	j.		

For	fitting	the	MRF	and	CRF	models,	we	used	data	on	all	viruses	with	at	 least	10	occurrences	in	the	

entire	virus	community	matrix	(i.e.	minimum	prevalence	of	2.5%	of	sampling	units).	For	understanding	

how	different	characteristics	of	the	environment	and	the	host	affect	the	virus	community,	we	included	

several	explanatory	variables	in	the	model	(Table	1),	describing:	1)	The	level	of	spatial	autocorrelation	

of	 the	 host	 populations	 (implemented	 as	 Moran’s	 eigenvectors)	 2)	 habitat-related	 characteristics,	



 
 
namely	 the	quality	of	 the	habitat	of	 the	host	plants	(the	connectedness	(S)	of	 the	 focal	P.	 lanceolata	

population		to	other	populations,	agricultural	land	use	(percentage	of	the	surrounding	landscape)	and	

the	Shannon	diversity	of	the	local	plant	community,	which	have	been	demonstrated	to	influence	virus	

occurrences	 in	 this	 system27,	 and	 as	 the	 weather	 conditions	 of	 local	 populations	 (severity	 of	 the	

previous	winter	and	temperature	sum	over	the	effective	summer	days	during	previous	summer);	as	

well	as	4)	host-related	characteristics	of	the	focal	host	plant	individual	(host	population	size,	host	plant	

individual	size		and	signs	of	herbivory).	See	Table	1	for	full	details.	

Altogether	our	dataset	used	for	modelling	consisted	of	16	virus	species	and	16	explanatory	variables	

(Table	1),	resulting	in	272	coefficients	in	each	regression.	To	avoid	overfitting,	regularisation	has	been	

implemented	in	the	method	through	least	absolute	shrinkage	and	selection	operator	(LASSO),	forcing	

some	regression	coefficients	to	zero,	and	thus	performing	variable	selection	and	reducing	the	risk	of	

overfitting	25.	Regularisation	is	influenced	by	the	scale	of	the	covariates,	and	hence	we	scaled	all	our	

continuous	 variables	 to	 mean	 zero	 and	 standard	 deviation	 one.	 The	 CRF	 model	 is	 estimated	 with	

separate	logistic	regressions.	To	achieve	an	undirected	network	and	symmetry	within	the	coefficients	

of	conditional	dependence	(so	that	𝛼!%# = 𝛼%!#	and	𝛽!%$ = 𝛽%!$)	we	take	the	mean	of	the	corresponding	

estimates,	which	is	the	default	setting	of	the	applied	algorithm25.		

We	fitted	six	model	variants	in	total:	1)	an	Unconditional	Markov	Random	Field	model	(referred	to	as	

‘MRF’),	with	only	virus	occurrences	included,	2)	a	Conditional	Markov	Random	Field	model	(CRF)	with	

only	habitat-	and	host-related	(collectively	referred	as	‘environmental’,	see	Table	1)	variables	included	

as	 additional	 constrains	 (‘CRFenv’),	 3)	 a	 CRF	 model	 with	 only	 host-related	 variables	 included	 as	

additional	constraints	(‘CRFhost’),	4)	a	CRF	model	with	only	spatial	variables	and	variables	related	to	

habitat	(quality	and	weather)	included	as	additional	constraints	(‘CRFhabitat’),	5)	a	CRF	model	with	

only	spatial	variables	included	as	additional	constrains	(‘CRFspat’),	6)	a	Conditional	Markov	Random	

Field	model	with	both	all	environmental	as	well	as	spatial	variables	included	as	additional	constrains	

(‘CRFfull’).	We	will	refer	to	the	variants	(2-6)	collectively	as	‘CRF	models’	or	‘CRFs’.		



 
 
We	 evaluated	 the	 model	 fit	 by	 calculating	 the	 Area	 Under	 Curve	 values28	 using	 the	 full	 data	 set.	

Following	Clark	et	 al.25,	we	used	 cross	 validation	 (with	 four	 folds)	 to	 estimate	model	 generality	 by	

comparing	predicted	and	observed	outcomes	simultaneously	for	all	species.	To	account	for	parameter	

uncertainty	of	 the	 final	model,	we	modelled	100	bootstrapped	 replicates	 for	 the	model.	 If	 the	90%	

confidence	interval	of	bootstrapped	coefficients	did	not	overlap	with	zero,	we	considered	the	variable	

to	 have	 a	 statistically	 significant	 effect.	 To	 test	 whether	 the	 associations	 between	 viruses	 are	

phylogenetically	conservative,	we	compared	the	direct	associations	gained	with	all	our	network	models	

to	 the	phylogenetic	 relationships	 of	 the	 virus	 species,	 constructed	 from	 taxonomy,	 by	 conducting	 a	

Mantel	test	between	the	matrices.		

All	 analyses,	 results	 and	 figures	 were	 produced	 with	 R	 (version	 4.0.218),	 and	 packages	 ‘vegan’29,	

‘MFRcov’25,	‘igraph’30,	along	with	their	dependencies.	An	R	package	called	‘meta17-network’	including	

the	analytical	pipeline,	data,	and	documentation	 for	 full	 reproduction	of	 the	results	can	be	 found	 in	

Github	(aminorberg/meta17network-pkg).	
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Supplementary	Results	
	
	
Table	S1.	Mean	predictive	performance	measures	for	all	the	models.	The	measures	mentioned	in	
the	main	text	re	highlighted	with	bold	font.	
	

Model	
Quantiles	
based	on	

bootstrapping	

Mean	proportion	of	
true	positives	out	of	all	
predicted	positives	

Mean	prop.	of	all	
true	predictions	
out	of	the	whole	

data	

Mean	prop.	of	true	
positives	out	of	all	
real	positives	
(‘sensitivity’)	

Mean	prop.	of	true	
negatives	out	of	all	
real	negatives	
(‘specificity’)	

M
RF
	

2.5%	 0.15	 0.73	 0.33	 0.76	

50%	 0.21	 0.76	 0.47	 0.80	

97.5%	 0.27	 0.80	 0.59	 0.84	

CR
Fe
nv
	 2.5%	 0.65	 0.89	 0.068	 0.99	

50%	 0.85	 0.91	 0.15	 1.00	

97.5%	 0.95	 0.92	 0.25	 1.00	

CR
Fh
ab
ita
t	 2.5%	 0.70	 0.90	 0.11	 0.99	

50%	 0.85	 0.91	 0.20	 1.00	

97.5%	 0.95	 0.93	 0.31	 1.00	

CR
Fh
os
t 	 2.5%	 0.67	 0.90	 0.06	 0.99	

50%	 0.86	 0.91	 0.16	 1.00	

97.5%	 0.96	 0.93	 0.26	 1.00	

CR
Fs
pa
t	 2.5%	 0.71	 0.90	 0.09	 0.99	

50%	 0.87	 0.91	 0.2	 1.00	

97.5%	 0.96	 0.93	 0.31	 1.00	

CR
Ff
ul
l 	 2.5%	 0.72	 0.90	 0.09	 1.00	

50%	 0.88	 0.91	 0.17	 1.00	

97.5%	 0.97	 0.93	 0.25	 1.00	

	
	
	
	
	
	
	
	
	
	
	
	
	
	



 
 

Figure	S1.	All	100	simulated	species-area	and	species-coexistence	curves.	Each	simulation	(line)	
starts	from	a	different	host	plant.	After	that,	one	plant	is	added	to	the	pool	at	a	time,	always	choosing	
the	nearest	one	to	the	previous.	
	
	
	
	



 
 

	
	
Figure	S2.	Moran’s	eigenvectors	describing	the	spatial	structure	of	the	data.	Each	eigenvector	is	
plotted	in	an	individual	panel.	The	horizontal	axes	show	the	X	coordinates,	vertical	axes	show	the	Y	
coordinates	of	the	host	plants.	The	circle	size	indicates	the	MEM	value	of	that	host	plant.		
	



 
 

	
	
Figure	S3.	Moran’s	eigenvectors	describing	the	spatial	structure	of	the	data.	The	horizontal	axes	
show	the	MEM	values.	
	


