Boosting Quantum Classifier Efficiency through Data Re-Uploading and Dual
Cost Functions

Supplementary Documentation

Authors: Sara Aminpour!?, Mike Banad', Sarah Sharif!-+

Author Affiliations:

'School of Electrical and Computer Engineering, University of Oklahoma,
Norman, OK 73019, USA

2Center for Quantum and Technology, University of Oklahoma, Norman, OK
73019 USA

*Corresponding author: Sarah Sharif (email: s.sh@ou.edu)

Table of contents

e Supplementary Note 1. Range of training samples and number of layers

e Supplementary Note 2. Evaluating LCP and non-LCP approaches for fidelity cost function in fixed
and random datasets for 1-qubit classifier for four different minimization methods

e Supplementary Note 3: Evaluating LCP and non-LCP approaches for trace distance cost function in
fixed and random datasets for 1-qubit classifier

o Supplementary Note 4: performance comparison of 5-layer single-qubit quantum classifiers using
fidelity and trace distance cost functions across various classification tasks and dataset types

e Supplementary Note 5: Evaluating LCP and non-LCP approaches for fidelity in fixed and random
datasets for 2-qubit and 2-qubit entangled classifiers

e Supplementary Note 6: Method

e Supplementary Note 7: Optimization Methods

e Supplementary Note 8: Comparing our developed code with original reference

Supplementary Note 1: Range of training samples and number of layers

Figure S1.1 illustrates the performance of a quantum classifier utilizing a fidelity cost function within a five-layer
framework for circular pattern classification in a fixed dataset, employing the L-BFGS-B optimization method. The
analysis encompasses training data up to 250 samples to benchmark our algorithm against the findings from the reference
!. The diagram depicts training accuracy with a blue dashed line and test accuracy with a solid blue line, underscoring
the algorithm's efficacy. A red dot highlights a notable benchmark from the reference, showing an 89% accuracy with
200 training samples, demonstrating parity with this published result. The inset provides a visual representation of the
classification process. Notably, test accuracy begins at approximately 70%, rising impressively to 96% for a slightly
expanded dataset of 210 samples. Remarkably, with as few as 60 training samples, the model achieves a test accuracy of
91.8%, and the discrepancy between training and test accuracy diminishes with the inclusion of 90 samples. This
observation underscores the efficiency of our approach, highlighting its capability to reach high accuracy levels without
necessitating extensive training data.

Figure S1.2 showcases a systematic
evaluation of a circular pattern classification
model across a spectrum of architectural depths,

Fidelity Fixed Dataset

L-BFGS-B

)) 100 o»o---o---o.__',0---1_‘ —
ranging from 1 to 5 layers. The graphical " oy <4l
analysis reveals that models with a solitary layer
lag in performance compared to those with 5 *
increased layer counts, marking a clear trend: as § 70
the number of layers escalates, so does the "
model's classification accuracy. Specifically, a - -1t !
single-layer setup achieves a peak accuracy of ~@- TrainAcc —€— TestAce @ Reference TestAcc
61.9%, whereas a more complex five-layer T 50 100 150 200 s

of Training Samples
configuration significantly elevates this metric
to 88.8%, even when limited to only 35 training Figure S1.1 Train and test accuracy of fidelity for the 5-layer
samples. This observation underscores a critical model of circle classification and fixed dataset for L-BFGS-B
minimization method. The inset graph shows the visualization of

insight—enhancing the model's depth ; ; i
a nonlinear classification reported on'.

systematically ~ improves its predictive
capabilities, a phenomenon consistent with the

advantages afforded by the data reuploading Fidelity Random Dataset
strategy integral to our approach. Given this L-BFGS-B

marked improvement in model efficacy with . —® llayer ~® 2layers ~-®- Slayers @ dlayers —8— Slayers
layer augmentation, the paper prioritizes an in- o0

depth investigation and discourse on the five-
layer model's architecture, focusing on its
ability to optimize classification accuracy with

Test Accuracy
2

efficient utilization of training data.

Supplementary Note 2: Evaluating 0 0 20 3 @ P

of Training Samples

non-linear and linear classification
Figure S1.2. Evaluate the test accuracy of fidelity for circle

approaches for fidelity cost function oo y o1 I
. classification and random dataset for L-BFGS-B minimization
in fixed and random datasets for 1- 404 ranging from 1 to 5 layers.

qubit classifier for four different

minimization methods

Figure 2 illustrates a comparison of four distinct optimization techniques, namely L-BFGS-B, COBYLA, Nelder-Mead,
and SLSQP, applied to the task of classifying the circle pattern. The comparison evaluates both training and test
accuracies using a fixed dataset of 4000 test samples and 5 layers. Initially, all algorithms demonstrate a perfect training
accuracy of 100% with just a single sample, a result that aligns with expectations. However, as we increase the sample
size, a divergence in performance becomes evident for these four minimization methods. The L- BFGS-B method
maintains a training accuracy close to 90%, showcasing its robustness against overfitting. In contrast, COBYLA, Nelder-
Mead, and SLSQP show significant variability and a decline in training accuracy, indicating a susceptibility to overfitting.
Interestingly, the peak accuracy for COBYLA, Nelder-Mead, and SLSQP is achieved with merely 50 samples, beyond
which overfitting becomes a significant issue. This observation suggests that, unlike L-BFGS-B, which requires a
minimum of 100 samples to achieve an accuracy of 92%, the other three methods can attain over 95% accuracy with
only 50 samples. L-BFGS-B does not reach this high accuracy level at 100 samples, and its performance slightly declines
with an increase in training samples after 150 training samples. This analysis highlights the critical importance of
carefully selecting the number of training samples based on the minimization method used. The right choice can
effectively prevent overfitting, thereby enhancing classification accuracy. This insight is crucial for optimizing machine
learning models and ensuring their generalizability and efficiency in practical applications.

Figure 3 delves into the accuracy of these four distinct minimization methods —L-BFGS-B, COBYLA, Nelder-
Mead, and SLSQP— when applied to a fidelity cost function and a random dataset for circle classification. This
analysis underscores a consistent trend across all methods: an initial increase in test accuracy corresponding to the rise
in the number of training samples, yet fails to surpass a peak accuracy of 90%. This trend highlights the inherent
challenges faced by these minimization methods when dealing with random datasets. In the L-BFGS-B method as
depicted in figure 3(a), showcases a notable performance, achieving its highest test accuracy of 88.8% with 35 training
samples. This point also marks the narrowest gap of 5% between training and test accuracy, indicating a relatively
high level of model efficiency and generalization at this sample size. However, as the analysis progresses, it becomes
apparent that increasing the number of training samples beyond this optimal point does not translate to improved
performance. The gap between the train and test accuracy remains notably constant at around 10% even as the sample
size is increased to 70 training samples. Transitioning to the COBYLA method, as depicted in figure 3(b), a different
performance pattern emerges. Contrary to L-BFGS-B, COBYLA achieves its best test accuracy at 84.8% with a higher
training sample equal to 70. This method experiences fluctuations, yet it is noteworthy that the gap between training
and test accuracies exhibits a decreasing trend, suggesting a gradual improvement in model generalization compared
to the initial stability seen with L-BFGS-B. Figure 3(c) focuses on the Nelder-Mead method, highlighting a decrease
in the gap between training and test accuracies as the number of training samples increases, culminating in a maximum
accuracy of 86.9% with 60 training samples. Figure 3(d) examines the SLSQP method, which shows an increase in
test accuracy up to 50 training samples before demonstrating a decline in both training and test accuracies. This shows
the SLSQP method is more prone to overfitting. The SLSQP method reaches a maximum accuracy of 86.7% when
applied to a dataset of 50 samples. These results, as detailed in figure 6, provide vital insights into the performance of
various minimization methods when working with a fidelity cost function and a random dataset. The diverse outcomes
emphasize the importance of choosing an optimal number of training samples to prevent overfitting and enhance
accuracy. This underlines the delicate balance needed to fully leverage these computational methods in practical
scenarios.

Figure 4 illustrates a comparison of four different optimization techniques applied to the task of classifying line
patterns, using fidelity-based cost function and the fixed dataset. The subplot (a) focuses on the performance of the L-
BFGS-B method. Here, the training accuracy starts at a perfect 100% and impressively remains above 97% even as the
number of training samples increases. Conversely, the test accuracy initiates at a relatively lower rate of 62.2% with just
a single sample yet it progressively improves, reaching approximately 95% accuracy with 75 training samples and slightly
declines for larger training samples. An initial notable gap between the training and test accuracy is evident, but this gap
diminishes significantly as the dataset expands with more training data, indicating an improvement in the model's ability
to generalize from the training to the unseen test data. The subplot (b) depicts the results obtained using the COBYLA
algorithm, which exhibits a performance pattern similar to that of the L-BFGS-B method, consistently achieving 100%
accuracy on the training data. The accuracy on the test set starts at 66.9% and steadily improves as more training samples
are added, ultimately reaching 95% when 125 samples are used for training. The disparity between training and test set
accuracies mirrors the pattern observed with the L-BFGS-B method, consistently manifesting across all training dataset
sizes. The Nelder-Mead approach, shown in figure 4(c), achieves a notable test accuracy of 97.7% with 125 training
samples. The inset provides a graphical visualization of line classification using this minimization method at this specific
point, illustrating that the line classification performance is exceptionally well. The visualization clearly demonstrates
the method's effectiveness in accurately separating the data points into distinct classes, highlighting the Nelder-Mead
method's precision and robustness in handling line classification tasks with a substantial number of training samples.
Furthermore, the training and test accuracy curves show a notably smaller gap, converging to the same value with training
sets of 100 and 125 samples. The final subplot (d) evaluates the performance of the SLSQP method, which closely aligns
with the results from the COBYLA method. The test set accuracy exhibits a progressive increase, rising from 62.7% to
96.6%. The disparity between the training and test accuracies is similar to that observed with the COBYLA method. In
summary, all four optimization techniques demonstrate a reduction in overfitting as the training dataset size increases,
ultimately achieving a test accuracy of at least 95% when training with 125 samples for this line classification task.

Figure 5 showcases an analysis of the classification accuracy obtained using the same minimization methods across
random datasets. Consistently, a rise in the number of training samples correlates with an increase in test accuracy across
all methods evaluated. Notably, with just 50 training samples, all methods surpass the 90% accuracy threshold.
Specifically, in figure 5(a), the L-BFGS-B method reaches the peak accuracy of 92.8% with 50 training samples. It was
observed that as the number of samples increased, the disparity between train and test accuracies for the L-BFGS-B
method began to narrow, although this gap persisted in being slightly wider than that observed in the other methods.
Figure 5(b) demonstrates that the COBYLA method, with the same number of samples, attains a superior accuracy of
93.5%. This suggests that COBYLA not only reaches high classification accuracy with a minimal dataset but also
demonstrates better generalization compared to L-BFGS-B, as reflected by the narrower gap between its training and test
accuracies. Figure 5(c) examines the Nelder-Mead method, showing its peak accuracy of 93% with 40 training samples,
after which its accuracy slightly declines. Interestingly, the smallest disparity between training and test accuracies—only
1.8%—occurs in 50 training samples. Despite slightly lower accuracy at this point, this smallest gap signifies that the
Nelder-Mead method achieves a remarkable balance between learning from the training data and generalizing to unseen
data, highlighting its efficiency and potential for precise model tuning. Figure 5(d) illustrates that the SLSQP method
achieves an impressive peak test accuracy of 96.4% for line classification using a random dataset, attained with 45
training samples. At this juncture, the discrepancy between training and test accuracies is notably small, indicating a high
level of model precision and generalization. Like the Nelder-Mead method, the SLSQP method exhibits a nonmonotonic
increment in test accuracy as a function of training samples, as indicated by the irregular slope of test accuracy. This
fluctuation suggests that for these methods, adding more training samples does not straightforwardly translate to higher
test accuracies, highlighting the complexity of optimizing model performance across different minimization techniques.

A comparison of figures 2 and 4 reveals that the accuracy curves for line classification are more stable and consistent
across all optimization techniques when compared to those for circle classification. The accuracy values for classifying
circle patterns display greater variability and fluctuations than those observed in the line classification task. The
observed differences in performance between circle and line classification could stem from several technical factors:
(1) Line classification likely represents a more straightforward pattern that aligns better with the linear decision
boundaries most classifiers are adept at identifying. In contrast, circle classification involves recognizing more
complex, non-LCP, which can challenge the classifiers’ ability to generalize from the training data without overfitting
or underfitting. (2) The algorithms applied for circle classification might be more prone to getting trapped in local
minima due to the more intricate decision boundaries required to accurately classify circular patterns. This can hinder
the optimization process, leading to increased fluctuations in classification accuracy as the model struggles to find the
global optimum. (3) The differences in performance may also reflect the inherent adaptability of the algorithms to the
specific types of classification tasks with the geometric properties. A comparative analysis of Figures 6 and 8 indicates
that the specific characteristics of the classification problem significantly affect the potential to attain higher accuracy
with fewer samples. The fluctuations in the line classification pattern are less pronounced than those in the circle
classification pattern. This observation underscores the importance of selecting appropriate optimization methods
based on the complexity of the classification problem.

Supplementary Note 3: Evaluating non-linear and linear classification approaches for trace

distance cost function in fixed and random datasets for 1-qubit classifier

Figure 6 showcases the effectiveness of the trace distance cost function in classifying circular patterns within a fixed
dataset. In subplot (a), the L-BFGS-B minimization method achieves its highest test accuracy at 79.2% with a dataset
comprising 100 training samples. Subplot (b) examines the performance of the COBYLA method, which displays greater
variability in training accuracy than L-BFGS-B but ultimately achieves a higher peak test accuracy of 84.6%, also with
100 training samples. Notably, COBYLA demonstrates enhanced generalization capabilities relative to other methods,
as indicated by the narrower margin between its training and testing accuracies. This performance suggests that, when
applied alongside the trace distance cost function, the COBYLA method is particularly adept at optimizing parameters
for improved generalization to unseen testing data. An accompanying visualization within the inset illustrates the
classification of circular patterns at this accuracy peak. In subplot (c), the analysis shifts to the performance of the Nelder-
Mead method, which records its optimal test accuracy at 72.6% utilizing 60 training samples. This method exhibits signs

of overfitting, a condition where the model learns the training data too closely and fails to generalize well to new, unseen
data. Despite a narrowing gap between training and testing accuracies as the number of training samples grows, a
concurrent decline in training accuracy is observed, which adversely affects the overall test accuracy. This pattern
suggests a limitation in the Nelder-Mead method's capacity to effectively handle the trace distance cost function, likely
due to its inherent characteristics such as reliance on simplex-based optimization, which might struggle with the
complexity of the trace distance landscape. Consequently, this method appears less suited for tasks requiring robust
generalization from the trace distance cost function, particularly in scenarios demanding accurate classification of
complex patterns with a limited dataset. In subplot (d), the focus turns to the SLSQP method which attains its peak test
accuracy at 83.6% with a dataset of 100 training samples. The disparity between training and testing accuracy contracts
by increasing the training samples, indicating an improvement in the model's ability to generalize from the training to the
testing dataset. However, even at the point of 100 training samples, the gap between training and testing accuracies, while
reduced, remains significant. This persistent gap suggests that while the SLSQP method is effective at learning and
generalizing from the given data, there is still a margin for optimization to further bridge the difference in accuracies.
Each optimization technique successfully minimizes the cost function and attains perfect accuracy on the training set
using a comparatively small number of samples. However, their performance varies considerably when it comes to
generalizing to the test set. This highlights the crucial role played by the choice of optimization algorithm in determining
the overall effectiveness of the model. In conclusion, when considering the fixed dataset and the trace distance cost
function, the COBYLA method demonstrates superior performance in optimizing the parameters to generalize effectively
to unseen test data. Compared to the other techniques evaluated, it necessitates fewer training samples to achieve
satisfactory accuracy on the test set.

Figure 7 illustrates how the accuracy on both the training and test sets evolves as the number of training samples
grows, specifically for the task of classifying circular patterns using the trace distance cost function, evaluated on a
randomly generated dataset. Similar to all scenarios analyzed so far, a common pattern emerges where test accuracy
begins at a relatively low level for all minimization methods but demonstrates a consistent increase as more training
data is provided. This trend highlights the methods' capacity to effectively learn distinguishing features, thereby
enhancing their ability to generalize to unseen data. Specifically, in subplot (a), the L-BFGS-B method illustrates
impressive learning efficiency, with test accuracy exceeding 70% after incorporating just 40 training samples and
achieving its highest test accuracy of 77.8% with 45 training samples. In subplot (b), the COBYLA method's
performance is slightly lower compared to L-BFGS-B, plateauing at a test accuracy of 72.8% with 45 training samples.
This performance indicates that while COBYLA may be susceptible to some degree of overfitting, it nonetheless
achieves a reasonable level of generalization. Subplot (¢) explores the Nelder-Mead method, which reaches its peak
test accuracy of 75.1% with 50 training samples. Subplot (d) utilizes the SLSQP method, which shows fluctuations in
its training accuracy remaining above 80%. The test accuracy for SLSQP was enhanced significantly, reaching 74.6%
with 50 samples. This fluctuation and eventual rise in test accuracy underscores the method's potential for optimizing
classification tasks, despite the initial variability. In sum, the L-BFGS-B method stands out for achieving the highest
test accuracy among the methods evaluated, requiring only 45 training samples to reach this optimum on a random
dataset. Summarily, employing the trace distance cost function across these various minimization strategies yields test
accuracy ranging from 65% to 78% on the random dataset, illustrating the function's effectiveness and the distinct
performance capabilities of each minimization method.

Figure 8 offers a comparative analysis of the accuracy achieved by four different optimization methods when applied
to a trace distance cost function for line pattern classification using a fixed dataset. Subplot (a) highlights the L-BFGS-B
method, showcasing its high level of stability in training accuracy. The test accuracy shows a steady increase, reaching
91.8% with 100 training samples. While there is a substantial gap between the accuracies of the training and test sets at
the outset, this difference gradually narrows as more training samples are introduced. This highlights the L-BFGS-B
method's capacity to adapt and learn more complex patterns effectively, demonstrating robustness and in leveraging
larger datasets for improved generalization. The subplot (b) illustrates the results obtained using the COBYLA method.
In contrast to the L-BFGS-B approach, the accuracy of the training set shows greater fluctuations, even experiencing a
drop to 56.9% at one instance before rebounding. The test accuracy follows a similar pattern to that seen in L-BFGS-B,

beginning at 49.8% and increasing to 87.4%. Once the training set size reaches 80 samples, both the training and test
accuracies seem to reach a plateau, slightly below the 90% mark. In subplot (c), the Nelder-Mead method starts with a
modest test accuracy of 55.3%, which significantly improves to 87% with the addition of 60 training samples
demonstrating a similar trend as the L-BFGS-B method. Initially, a pronounced gap exists between training and test
accuracies, which persists until the dataset is expanded to include 80 training samples. Beyond this point, the sign of
overfitting emerges, as demonstrated by a decline in training accuracy while test accuracy plateaus. For 100 training
samples, the test accuracy interestingly becomes 2% higher than the training accuracy, indicating a unique inversion
where the model performs slightly better on unseen data than on the training set itself, a rare occurrence that may suggest
the model has reached a point of optimization where it generalizes exceptionally well to new data. The subplot (d) of
figure 11 presents the results of the SLSQP method. Notably, this technique achieves the highest accuracy on the test set,
reaching 93.3% using just 40 training examples. The SLSQP method appears to be the most appropriate choice for trace
distance classification tasks, as it exhibits a smaller discrepancy between its performance on the training and test datasets.
The inset provides a visual representation of the SLSQP's performance at this specific point. To summarize, all
optimization methods demonstrate an upward trajectory in test accuracy as the size of the training dataset increases,
suggesting enhanced generalization capabilities of the model. Among the four techniques evaluated, the SLSQP method
seems to strike the most favorable balance between its performance on the training and test sets.

Figure 9 presents a comparison of different optimization techniques when applied to the task of classifying line pattern
using a randomly generated dataset and a cost function based on trace distance. In subplot (a), we examine the
performance of the L-BFGS-B method, which attains its peak test accuracy of 86.3% with 55 training samples. Before
reaching this point, the method's test accuracy demonstrated considerable variability, oscillating between 70% and 80%
as the number of training samples ranged from 20 to 50. However, a notable improvement occurs when the dataset is
expanded to 55 training samples, at which the test accuracy leaps to 86.3%, effectively surpassing the earlier fluctuation
band. This pivotal moment also marks the occurrence of the smallest gap between training and test accuracies,
showcasing a significant enhancement in the model's ability to generalize from the training dataset to unseen data, thereby
achieving an optimal balance at this specific training sample size. Subplot (b) delves into the efficacy of the COBYLA
optimization method, which achieves its highest test accuracy of 86.8% with a relatively smaller dataset of 35 training
samples. Beyond this optimal threshold, signs of overfitting become apparent, as both training and test accuracies start
to decline. This pattern suggests that while the COBYLA method is highly effective up to a certain point, adding more
training samples beyond this number paradoxically hampers the model's performance. The decline in accuracy indicates
that the model begins to memorize the training data rather than learning to generalize, leading to a decrease in its ability
to accurately predict outcomes on unseen data. This observation underscores the importance of identifying the ideal
number of training samples to maximize the effectiveness of the COBYLA method without crossing into the territory of
overfitting. In subplot (c), the focus is on the Nelder-Mead optimization method, which shows some fluctuations in
performance before reaching its maximum test accuracy. It successfully achieves a test accuracy of 88.1% with 40
training samples. However, akin to the pattern observed with the COBYLA method, the Nelder-Mead method also sees
a decline in both training and test accuracies when additional training samples are added beyond this optimal number.
This decline serves as a clear indication of the onset of overfitting, suggesting that while the Nelder-Mead method can
efficiently utilize a certain number of training samples to improve its predictive accuracy, exceeding this number leads
to a reduction in model performance. In subplot (d), a more continuous and stable increase in test accuracy is observed
with each increase in the number of training samples. This trend results in the highest test accuracy being recorded at
88.3% with 55 training samples. Unlike the previous methods discussed, this subplot suggests a method that maintains
its efficiency and ability to generalize well without showing immediate signs of overfitting up to this point. The gradual
and consistent improvement in test accuracy highlights the method's effective learning curve and suggests an optimal
balance between learning from the training data and applying this knowledge to unseen data.

Supplementary Note 4: performance comparison of 5-Layer single-qubit quantum classifiers
using fidelity and trace distance cost functions across various classification tasks and dataset

types

Figure S4.1 offers a comparative analysis of the highest accuracies achieved for two distinct classification patterns —
linear (line) and non-linear (circle) — across the four distinct minimization methods when applied to both random and
fixed datasets within the context of a fidelity cost function. The analysis reveals a notable trend: in circle classification
tasks, the fixed dataset consistently yields higher accuracies than their random counterparts for all tested minimization
methods. This suggests that the inherent geometric complexities of non-LCP may align more closely with the simpler
structure of fixed datasets, thereby facilitating more accurate classification. Similarly, for line classification, the fixed
dataset leads to enhanced accuracies with the L-BFGS-B and SLSQP methods, indicating these methods' effectiveness
in leveraging structured data to accurately discern linear
relationships. However, the random dataset achieves better W LBFGSB mes COBYLA EEE NeldeMcd EEE SLSOP
accuracy when classified using the Nelder-Mead method. 100+

This could suggest that the Nelder-Mead method, known for
its simplicity and direct search approach, might be 807
particularly adept at navigating the stochastic nature of 0l
random datasets to identify linear patterns. Across all
algorithms, the task of classifying non-LCP, especially 401
within random datasets, emerges as inherently challenging.
This complexity likely stems from the algorithms' varying 201
abilities to parse and learn from the unpredictable variance N

found in random datasets, as well as the added difficulty of Cirele/Fix - Cirele/Random Line/Fix Line/Randorn

Classification Pattern/Data Set
accurately modeling non-linear relationships. The findings

Accuracy

underscore the critical importance of selecting the Figure S4.1. Evaluating of Fidelity cost function

appropriate minimization method based on the dataset's — oq¢ accuracy of 5-layer model across 50 samples for
nature and the classification task's geometric complexity to LCP and non-LCP problems for random and fixed
optimize classification accuracy. datasets in four minimization methods.

Figure S4.2 provides the performance comparison of two
distinct classification patterns—line and circle—across four different minimization methods when applied to both
random and fixed datasets, this time employing the trace distance cost function. A pivotal observation emerges when
comparing the performance of circle classification with a
fixed dataset (circle/fixed) against the fidelity cost function EEN L BFGSB mEm COBYLA EEE NeldooMead | WEE SLSOP
results presented in figure S4.1. It is evident that the 100
accuracies achieved using the trace distance cost function are

notably lower across all minimization methods compared to .
those obtained with the fidelity cost function. This 601
discrepancy highlights the inherent challenges and
differences in how each cost function interacts with the 401
underlying data and the classification task at hand. The trace ol
distance cost function, known for quantifying the)
distinguishability between quantum states, may present a 1

0
.. . . Circle/Fix Circle/Random Line/Fix Line/Random
more complex landscape for optimization, particularly when Classification Pattern/Data Set

applied to classical data patterns such as lines and circles.

Accuracy

This complexity could lead to lower classification accuracy Figure S4.2. Evaluating of trace distance test
as the minimization methods struggle to navigate the nuances accuracy of 5-layer model across 50 samples for
of the trace distance landscape effectively. Such an LCP and non-LCP problems for random and fixed
observation underscores the importance of cost function datasets in four minimization methods.

selection in machine learning tasks, emphasizing that the

choice of cost function can significantly impact the model's ability to learn and generalize from the data. The comparative
analysis in figure S4.2 serves as a testament to the nuanced interplay between cost functions, dataset types (fixed vs.
random), and the geometric nature of the classification patterns, offering valuable insights into optimizing classification
accuracy through strategic method and cost function selection.

In addition, the fixed dataset achieves superior accuracy specifically when employing the COBYLA minimization
method, indicating a unique synergy between COBYLA's optimization strategy and the structured nature of fixed datasets
for LCP. Conversely, for the random dataset, there's a notable trend where it consistently outperforms the fixed dataset
across all other minimization methods, suggesting that the stochastic characteristics of random datasets may be better
suited to the optimization landscapes these methods navigate, particularly for LCP. In circle classification tasks, the
random dataset not only demonstrates improved accuracy over the fixed dataset for all minimization methods but also
reinforces the observation that random datasets generally offer a more favorable context for the trace distance cost
function across both classification patterns. This enhancement in accuracy with random datasets could be attributed to
the trace distance cost function's sensitivity to the variances within the dataset, allowing for more effective differentiation
and classification of non-LCP like circles when the data is less predictable.

Supplementary Note 5: Evaluating non-linear and linear classification approaches for
fidelity in fixed and random datasets for 2-qubit and 2-qubit entangled classifiers

Focusing on figure 10(a), we observe the performance of a single-qubit system applied to a LCP pattern. The system
demonstrates a steep initial learning curve, with accuracy rapidly increasing from 51.6% to 92% after just 75 training
samples. This sharp rise highlights the single-qubit system's ability to efficiently learn and generalize from a relatively
small dataset. The notable jump in accuracy suggests that a properly trained single-qubit classifier can capture the
essential features of the LCP task with high precision. After reaching 92% accuracy at 75 training samples, the system
stabilizes, maintaining a test accuracy consistently in the range of 92% to 97.7% as the training sample size increases
to 125. The minimal fluctuation in accuracy indicates a robust performance, with the single-qubit system effectively
avoiding overfitting even as the training data expands. The stable test accuracy underscores the system's reliability
and suitability for LCP tasks where computational simplicity and consistent performance are crucial. In terms of
computational cost, as shown in figure 1(d), the single-qubit system exhibits a gentle increase in computational time,
reaching 62.15 seconds for 250 training samples. This computational efficiency, coupled with the system's stable
accuracy, makes the single-qubit classifier an appealing option for linear problems, particularly in scenarios where
computational resources are limited but high accuracy is still required.

In figure 10(b), the performance of the 2-qubit classifier in a LCP task shows a more gradual improvement in accuracy
compared to the single-qubit system. The initial accuracy is relatively high, starting at 73.2% with just one training
sample, which suggests that the additional qubit provides a more robust representation of the problem space even with
minimal training. As the number of training samples increases to 75, the accuracy rises steadily, reaching 94.1%. This
gradual improvement, as opposed to the sharp jump seen in the single-qubit system, highlights the ability of the 2-
qubit classifier to build on its already strong initial performance with increasing training data. Beyond 50 training
samples, the 2-qubit classifier continues to demonstrate incremental gains, eventually peaking at around 95.7% test
accuracy with 175 training samples. Notably, the test accuracy fluctuates between 92% and 96% throughout this range,
suggesting that while the system performs consistently well, there are slight variations in how the test data is classified
as more training samples are introduced. These fluctuations could indicate that the system is sensitive to the nature of
the training data or potentially approaching the limits of its capacity for linear classification. From a computational
perspective, shown in Figure 1(e), the 2-qubit classifier exhibits a significant increase in computational time as the
number of training samples grows. By the time the training sample size reaches 250, the computational time extends
to around 260 seconds. This is a sharp contrast to the single-qubit system, illustrating the tradeoff between the
enhanced accuracy and robustness offered by the 2-qubit classifier and the increased computational demands. For LCP
tasks, this suggests that while the 2-qubit classifier provides higher initial accuracy and steady performance
improvements, it comes at the cost of a much higher computational burden, making it potentially less suitable for
scenarios where time or resources are constrained.

Examining figure 10(c), the performance of the 2-qubit entangled classifier in a LCP task reveals a distinctive pattern
when compared to non-entangled systems. The initial accuracy is relatively low, starting at 51.3% with just one
training sample. This suggests that the entanglement introduces complexities that make the system less effective in
identifying patterns from very limited data. However, as the number of training samples increases to 75, the system
exhibits a steep improvement in accuracy, reaching 93.3%. This rapid climb indicates that while the entangled system
may struggle with very small datasets, it quickly capitalizes on additional training samples to enhance its classification
performance. As the training samples continue to increase beyond 75, the 2-qubit entangled classifier shows notable
fluctuations in accuracy, ranging between 88% and 97.5%. These fluctuations, which are more pronounced than those
seen in the single-qubit or non-entangled 2-qubit classifier, suggest that entanglement introduces both benefits and
challenges. On one hand, the system achieves the highest peak accuracy (97.5%) among all three systems,
demonstrating its potential for superior performance. On the other hand, the variability in test accuracy highlights the
sensitivity of the entangled system to the training data, possibly indicating overfitting or instability when processing
larger datasets. In terms of computational cost, as shown in figure 10(f), the 2-qubit entangled classifier mirrors the
trend seen in the non-entangled 2-qubit classifier, with computational time increasing significantly as the number of
training samples rises. At 250 training samples, the computational time reaches 260 seconds, similar to the non-
entangled classifier. Despite this computational burden, the 2-qubit entangled classifier offers a potential advantage in
terms of peak accuracy, making it a compelling choice for applications where achieving the highest possible accuracy
is paramount, even if it comes with the tradeoff of greater computational complexity and variability in performance.

In comparing the classifier, we observe clear tradeoffs between simplicity, stability, and computational complexity.
The single-qubit classifier is the most stable and computationally efficient but may not reach the same peak accuracies
as the more complex systems. The 2-qubit classifier offers higher initial accuracy and consistent improvement but
requires significantly more computational resources. Finally, the 2-qubit entangled system, while achieving the highest
peak accuracy, also introduces greater instability and computational demands, making it best suited for scenarios
where peak performance is the priority, and computational cost is less of a concern. Ultimately, the choice of system
depends on the specific requirements of the classification task, such as whether stability, computational efficiency, or
peak accuracy is the primary objective.

Figure 11 presents a comprehensive analysis of two quantum classifiers - a 2-qubit classifier and a 2-qubit entangled
classifier for non-LCP. The results are displayed across six subplots, labeled (a) through (f), which provide insights
into the performance and characteristics of these classifiers under various conditions. Subplots (a) and (b) show the
train and test accuracies as a function of the number of training samples for the 2-qubit and the 2-qubit entangled
classifiers, respectively. In both cases, we observe that the accuracies generally improve as the number of training
samples increases. However, the 2-qubit classifier (a) shows higher initial test accuracy, 73.5%, and a more stable
performance across different sample sizes. The 2-qubit entangled classifier (b) starts with lower test accuracy, 47.6%
but shows significant improvement as the sample size increases. Both classifiers seem to converge in terms of train
and test accuracy around 175 training samples, which explains why this number was chosen for subsequent analyses.
Subplots (c¢) and (d) illustrate how the number of layers in the quantum circuit affects the accuracies of the classifiers
for a specific number of training samples. For the 2-qubit classifier (c), we see a general upward trend in both train
and test accuracies as the number of layers increases, with some fluctuations. The 2-qubit entangled classifier (d)
shows a more pronounced improvement with increasing layers, especially in the early stages. Both classifiers appear
to reach a plateau in performance after about 12-15 layers, suggesting that further increases in circuit depth may not
yield significant improvements. Subplots (e) and (f) depict the computational time required as the number of layers
increases for the 2-qubit and the 2-qubit entangled classifiers, respectively. Both show a clear exponential growth in
computational time as the number of layers increases. This trend is consistent across both classifiers, indicating that
the computational cost scales similarly regardless of whether entanglement is used. Comparing the classifiers overall,
we can see that the 2-qubit classifier generally achieves higher accuracies with fewer training samples and maintains
more consistent performance across different numbers of layers. The 2-qubit entangled classifier, while starting with
lower accuracy, shows more dramatic improvements as both the number of training samples and layers increase. This

suggests that entanglement might provide additional expressive power to the classifier, allowing it to capture more
complex patterns in the data as the circuit depth increases. However, this potential advantage comes at the cost of
increased sensitivity to the number of training samples and layers, as evidenced by the more volatile accuracy curves
in subplots (b) and (d). The computational time plots (e) and (f) remind us that increasing the number of layers quickly
becomes computationally expensive for both classifiers, which is an important consideration in practical applications.
In conclusion, these results provide valuable insights into the trade-offs between accuracy, circuit complexity, and
computational cost for quantum classifiers, highlighting the potential benefits and challenges of using entanglement
in quantum machine learning tasks.

Figure 12 presents a comparative analysis of four optimization algorithms (COBYLA, L-BFGS-B, NELDER MEAD,
and SLSQP) applied to a LCP using a quantum circuit with 2 qubits. The experiment uses a random dataset with 250
training samples and employs a fidelity cost function to measure the performance. The figure includes subplots
depicting accuracy and computational time for both 2-qubit and 2-qubit entangled classifiers. In terms of accuracy,
both training and test accuracies are generally high across all algorithms. However, there are subtle differences
between the algorithms. As shown in figure 12(a), for the 2-qubit entangled classifier, the average test accuracy is
approximately 2% higher than the 2-qubit non-entangled classifier. In terms of individual performance, the L-BFGS-
B minimization method consistently achieves the highest test accuracy, reaching 96.3% for non-entangled and 97%
for entangled classifiers. The overall variation in test accuracy between the highest and lowest performing algorithms
is 2.3%. For 2-qubit non-entangled classifier, COBYLA exhibits the lowest test accuracy at 94%, while for 2-qubit
entangled classifier, NELDER MEAD achieves the lowest test accuracy of 95.3%. Computational time analysis
reveals interesting patterns across both classifiers. In figure 12(c) the 2-qubit classifier, computational time varies
widely from 9 to 90 minutes. COBYLA stands out as the fastest method, completing the task in just 9 minutes, while
L-BFGS-B and NELDER MEAD are the most time-consuming at 90 and 89 minutes respectively. SLSQP occupies
a middle ground, requiring 45 minutes. In figure 12(d) the 2-qubit entangled classifier generally shows improved
computational efficiency. While COBYLA maintains its swift performance at 9 minutes, other methods see reduced
execution times. Most notably, L-BFGS-B improves from 90 to 71 minutes, a significant reduction, while
NELDER_MEAD and SLSQP methods remain at 87 and 44 minutes respectively. In conclusion, this analysis reveals
that the 2-qubit entangled classifier generally outperforms the 2-qubit non-entangled classifier in both accuracy and
computational efficiency. The L-BFGS-B method consistently provides the highest accuracy, albeit at a higher
computational cost. COBYLA emerges as a well-balanced option, offering good accuracy with minimal computational
time, particularly in the 2-qubit entangled classifier. These findings underscore the significant impact of minimization
method selection on both accuracy and computational time in quantum machine learning tasks. Furthermore, the 2-
qubit entangled classifier's closer alignment of train and test accuracies suggests enhanced generalization capabilities,
a crucial factor in practical machine learning applications.

Figure 13 shows a comprehensive comparison of different optimization methods for non-LCP using both 2-qubit
and 2-qubit entangled classifiers for a specific random dataset. This analysis encompasses four optimization
techniques: COBYLA, L-BFGS-B, NELDER _MEAD, and SLSQP, evaluating their performance based on accuracy
and computational time for 250 number of training samples. In the accuracy graphs (a) and (b), we observe distinct
performance patterns between the 2-qubit and 2-qubit entangled classifiers. For the 2-qubit classifier, L-BFGS-B
demonstrates the highest accuracy, with both train and test accuracies exceeding 90%. COBYLA shows the lowest
performance, with a test accuracy of 76.7% and train accuracy 81.4%. NELDER MEAD and SLSQP exhibit
intermediate performance, with test accuracies in the 82-87% range. The 2-qubit entangled classifier, depicted in graph
(b), shows overall improved accuracy across all methods. L-BFGS-B maintains its superior performance, while
COBYLA shows significant improvement, reaching accuracies to 85.4%. Notably, the gap between train and test
accuracies is generally smaller in the 2-qubit entangled classifier, suggesting better generalization. The computational
time graphs (c) and (d) reveal interesting efficiency patterns. In the 2-qubit classifier, COBYLA is the fastest method,
requiring only 9 minutes. L-BFGS-B, despite its high accuracy, is the most time-consuming at 130 minutes.
NELDER MEAD takes 89 minutes, while SLSQP requires 45 minutes. The 2-qubit entangled classifier (graph d)

shows generally reduced computational times. COBYLA remains the fastest, maintaining its 9-minute runtime. L-
BFGS-B shows the most dramatic improvement, reducing its time to 81 minutes. Interestingly, NELDER MEAD in
the 2-qubit entangled classifier takes slightly longer than L-BFGS-B, at 88 minutes. SLSQP maintains a consistent
performance of about 42 minutes in both systems. These results highlight the trade-offs between accuracy and
computational efficiency in quantum machine learning tasks. The 2-qubit entangled classifier demonstrates superior
performance in both accuracy and computational time across all methods. L-BFGS-B consistently provides the highest
accuracy but at a higher computational cost, especially in the 2-qubit classifier. COBYLA emerges as a balanced
option, offering good accuracy with minimal computational time, particularly in the entangled system. This analysis
underscores the importance of choosing appropriate optimization methods and leveraging entanglement to enhance
the performance of quantum classification tasks.

Supplementary Note 6: Method

Quantum computing manipulates quantum systems to enhance information processing, leveraging superposition to
simultaneously operate on multiple states for faster and more complex computation. At its core is the qubit, represented
in a two-dimensional Hilbert space, with operations governed by quantum gates. These gates, essential for altering
quantum states, must be unitary to ensure the conservation of probability, a fundamental principle of quantum dynamics?.

The framework of a quantum circuit unfolds in three key phases: encoding classical data into quantum format,
manipulating the quantum state using quantum gates, and measuring the quantum state post-transformation. This process
transitions from preparing an initial quantum state, through strategic alterations via quantum gates affecting computation
outcomes, to a final probabilistic measurement—distinguishing quantum computing's potential and challenges from
deterministic classical computing.

Achieving optimal performance in quantum computing requires a nuanced understanding of these phases, including
the initial state preparation, the strategic selection and application of quantum gates, and the final measurement process.
Each component must be meticulously optimized to perform specific tasks, such as classification, highlighting the
intricate interplay between quantum mechanics and computational logic in the design and execution of quantum
algorithms.

A. RE-UPLOADING CLASSICAL INFORMATION AND PROCESSING

The integration of classical information into quantum computing represents a groundbreaking approach to data
processing and analysis. This process begins with the strategic encoding of data into the initial wave function’s
coefficients within a quantum circuit’. In simpler terms, data is initially uploaded through the manipulation of qubits via
rotational operations on a computational basis. This foundational step sets the stage for executing sophisticated quantum
algorithms, including those designed for classification tasks.

The most successful programming paradigm in machine learning is predicated on artificial neural networks, which
represent a highly abstracted and simplified model inspired by the human brain *. An artificial neural network comprises
interconnected units or nodes known as artificial neurons, often arranged in layers 3. These networks are characterized
by their diverse architectures and the ability to learn from data through the adjustment of a vast network of parameters
during the training phase. Among the various types of neural networks, feed-forward neural networks exemplify the
process of sequential data processing, where input data is transformed layer by layer, simulating a form of data re-
uploading at each neuron. This mechanism of data re-uploading and processing in ANNs provides a parallel to the
innovative approach of constructing a universal quantum classifier using a single qubit. The essence of this quantum
computing strategy lies in the repeated introduction of classical data at different stages of computation, analogous to the
data processing in a single hidden layer neural network. This process can be visualized diagrammatically, as shown in
figure 14 in the main paper. the neural network architecture is depicted, where data points are fed into individual
processing units, analogous to neurons within the hidden layer. These neurons collectively process these input data,
culminating in the activation of a final neuron responsible for constructing the output for subsequent analysis. Similarly,
in the quantum domain, the single-qubit classifier incorporates data points into each stage of the computation through
unitary rotations. These rotations are not isolated; rather, each one builds upon the transformations applied by its
predecessors, effectively integrating the input data multiple times throughout the computation. The culmination of this
process is a quantum state that encapsulates the computational outcome.

To construct a universal quantum classifier with only a single qubit, a complex integration of data input and
computational processing within a single quantum circuit is crucial. We achieve this objective through the deployment
of parametrized quantum circuits (PQCs). In these circuits, certain rotational angles are meticulously adjusted based on

classical parameters, which are refined through an optimization process aimed at minimizing a specifically defined cost
function.

The cost function plays a pivotal role in the operational efficacy of the quantum classifier. It quantitatively assesses
the circuit's performance in segregating data points into distinct categories, which are represented as separate regions on
the Bloch sphere. Each of these regions corresponds to a different class, and the classifier's goal is to assign data points
to the correct class based on their features.

B. Dataset Generation Methodology
In this section, we provide a detailed and standardized description of how both fixed and random datasets were
constructed and evaluated throughout the study.

e Sampling Distribution and Dimensionality:
All data points were sampled independently and uniformly from the interval [—1,1]?, corresponding to the two-
dimensional input space used in all classification problems. The sampling was performed using np.random.rand(2) and
scaled via the transformation x — 2x — 1 to ensure full coverage of the [—1,1] range along both axes.

e C(Class Balance and Geometric Design:
We carefully selected geometric parameters to maintain balanced class distributions. In the circle classification task (non-
LCP), we used a radius of 7 = v/ (2/m) such that the area inside and outside the circle is equal, yielding a 50/50 class
distribution. For the linear classification task (LCP), we defined the decision boundary as x1=x2, which symmetrically
divides the domain [—1,1]? and likewise ensures class balance by design.

¢ Reproducibility and Standardization:
To ensure consistency across experiments, we fixed the random seed at 30 for all fixed dataset runs. The training set sizes
varied from 1 to 200 samples depending on model complexity, while each test set consisted of 4000 uniformly sampled
points. For randomized datasets, we deliberately omitted the use of a fixed seed, ensuring that each of the 20 iterations
generated a new sample set from the same distribution. This approach allowed us to test the classifier’s generalization
ability and robustness under different data realizations. Accuracy and runtime were averaged across these 20 independent
runs to obtain statistically meaningful results.

e Dataset Types and Parameters:
We focused on two primary classification tasks: (1) a line, representing linear separability (LCP), and (2) a circle,
representing a basic non-linear separability case (non-LCP). These were chosen as fundamental and interpretable decision
boundaries to evaluate the baseline performance of the quantum classifiers. All geometric parameters, such as the radius
for non-LCP and the slope/intercept for LCP, were held fixed across all trials to ensure consistency and enable fair
comparison across circuit designs and optimization methods.

C. Applying Cost Functions

In the realm of quantum computing, a quantum circuit is distinguished by its processing angles ¢, and associated weights
w, leading to the generation of a final state |1,u>. The measurement outcomes from this state are used to compute a
classification error metric, defined as y2. The goal is to minimize this error metric by adjusting the circuit’s classical
parameters, a process that can be effectively managed through various supervised machine learning techniques.

At the heart of using quantum measurement for classification tasks lies the approach of optimally aligning observed
outputs with specific target classes. This alignment is primarily facilitated by the principle of maximizing orthogonality
between the output states, ensuring clear distinction®. In the context of binary (dichotomous) classification, this means
categorizing each observation into one of two predefined classes—referred to here as class A and class B. The decision
criterion involves comparing the probabilities of observing the quantum state P(0) for outcome 0 and P(1) for outcome
1. If P(0) >P(1), the observation is assigned to class A; otherwise, it falls under class B. To enhance this binary
classification scheme, one can introduce a bias (4), adjusting the threshold for classification such that observation is
deemed part of class A if P(0) is greater than A, and class B if it falls below. The value of 2 is chosen to maximize
classification accuracy on a training dataset. The effectiveness of this approach is then confirmed through evaluation on
a separate validation dataset.

Viewed through a geometric lens, the single-qubit classifier operates within a 2-dimensional Hilbert space —the Bloch
sphere—where data encoding and classification decisions are delineated through specific rotational parameters. Any
operation L({) is a rotation on the Bloch sphere surface. From this viewpoint, any point can be classified using just one
unitary operation. Consequently, we can transfer any point to another point on the Bloch sphere by precisely selecting
the rotation angles. However, when dealing with multiple data points, a single rotation may not suffice due to differing
optimal rotation requirements. The solution lies in introducing additional layers into the quantum circuit, enabling distinct

rotation and fostering a richer feature map. Within this enhanced feature space, data points can be effectively segregated
into their respective classes based on their positioning within the Bloch sphere's regions, thereby enabling a sophisticated
and adaptable approach to quantum classification.

1) FIDELITY COST FUNCTION

The goal is to align the quantum states (|1//(@.w,%) >) as closely as possible to a designated target state on the Bloch
sphere, as outlined in !. This alignment can be quantitatively assessed by measuring the angular distance between the
labeled state and the data state, using the metric of relative fidelity ’. The primary objective focuses on maximizing the
average fidelity between the quantum states produced by the circuit and the label states corresponding to their respective
classes. To facilitate this, a cost function is introduced and mathematically formulated as Equation 1:

M
208 &) = ol B.a 2)2
)(f(ﬁ',a)) —;1(1—|<wsluf(9,a),xy)>|) (M)
where |1/~)S) is the correct label state of the u data point, which will correspond to one of the classes.

2) TRACE DISTANCE COST FUNCTION

In quantum information theory, quantifying the dissimilarity between two quantum states is a fundamental problem.
Various distance measures have been proposed, each with its unique properties and applications. One such measure is
the trace distance, which captures the distinguishability between two quantum states ’. Perez-Salinas et al. have analyzed
the fidelity cost function with data re-uploading !. However, the authors do not consider the case of the trace distance
cost function, which is what we focus on in this section. We will explore the definition and properties of the trace distance,
particularly in the context of single-qubit systems, and discuss its potential as a cost function for quantum classifiers.
Despite the different mathematical formulations of trace distance and fidelity, these two measures share many similar
properties and are widely used in the quantum computing and quantum information community. However, depending on
the specific application, one measure may be more convenient or easier to work with than the other. This versatility and
widespread adoption of both trace distance and fidelity in the field motivates our decision to discuss and compare these
two important distance measures in the context of quantum classifiers. The trace distance between quantum states p and
o can be defined as,

1
D(p,0) Egtr‘p—alz (2)

The trace distance between two single-qubit states, represented by their respective Bloch vectors 7 and ¥, is equal to
one-half of the Euclidean distance between these vectors on the Bloch sphere.

|7~ 5]
D(p,0) =—. 3)
2
This relation provides a geometric interpretation of the trace distance for single-qubit systems, linking it to the intuitive
notion of distance in three-dimensional space.

D. From Universality of the Single-Qubit Classifier to the Expansion into Multi-Qubit Quantum Classification

A key challenge in Quantum Machine Learning (QML) involves creating quantum circuits that efficiently handle
complex tasks like classification without excessive use of quantum resources. The Universal Approximation Theorem
(UAT) 8 is crucial for tackling this issue, demonstrating that a single-layer neural network with an appropriate activation
function can approximate any continuous function to a desired accuracy, assuming enough hidden neurons are available.
This UAT finds a compelling parallel in the quantum computing domain, particularly when considering the dynamics of
quantum circuits. Here, the classical activation function is analogously performed by a unitary rotation acting upon a
qubit. Specifically, a single-qubit quantum classifier, enhanced by the technique of data re-uploading, emerges as a
universal approximator for any conceivable classification function. This universality hinges on the frequency of data re-
uploading throughout the circuit’s span !, underscoring that even a solitary qubit is capable of encoding and processing
multifaceted high-dimensional data. This is achieved through the execution of multiple rotations, each characterized by
distinct angles and weights. The culmination of these processes is a final quantum state, which is then analyzed against
a predefined target state correlating to each class. Optimization of the circuit's parameters is pursued through the
minimization of a cost function, which is indicative of the fidelity or trace distance between the comparative states.

By establishing the UAT within the context of quantum classifiers, a robust theoretical foundation is laid, alongside
practical guidelines for the design and implementation of quantum circuits adept at sophisticated and non-LCP tasks with
minimal quantum resource expenditure. This breakthrough not only forges a theoretical link between quantum circuits
and neural networks but also paves the way for innovative approaches in QML. Through this lens, quantum circuits are
envisioned not merely as computational tools but as entities with the potential to parallel, and possibly surpass, the
capabilities of their classical neural network counterparts, inspiring a new wave of methodologies in the realm of QML.

To enhance the performance of the single-qubit classifier, it is proposed to extend it to a multi-qubit system.
Adding more qubits, especially with entanglement, can improve the classifier's effectiveness, similar to how adding layers
enhances neural networks. Entanglement may provide a quantum advantage in classification, though the analogy between
multi-qubit classifiers and neural networks with entanglement is not fully understood and requires further exploration.
Perez et al. propose a measurement strategy for multi-qubit classifiers, which extends the single-qubit approach. These
strategies utilize a fidelity-based cost function.

E. Variational Circuit Architecture and Parameterization
To fully specify the architecture of the quantum classifier and support reproducibility, we detail here the structure of the
variational circuits used in this study. The models are built using a data re-uploading framework, in which classical input
data is embedded into the quantum circuit by modifying gate parameters via a linear transformation. Each circuit is
composed of multiple layers; each layer includes data-dependent single-qubit gates followed by optional entanglement
gates between qubits.
The primary quantum gates used are U (¢) gates, which are universal single-qubit rotation gates parameterized by three
angles ¢ = (6, ¢, 4). These gates are used for both trainable processing and data encoding. When entanglement is
introduced, Controlled-Z (CZ) gates are applied between qubit pairs.
The parameter set for each circuit is divided into two categories:

e 0, the base rotation angles, organized as a tensor of shape (qubits, layers, 3),

e, the data encoding weights, shaped as (qubits, layers, data dimension).
The total number of trainable parameters scales with both the number of qubits and the number of re-uploading layers.
For example, the single-qubit configuration contains 3xlayers trainable parameters. The two-qubit configuration without
entanglement uses two parallel U(¢) gates per layer (one on each qubit), resulting in 6xlayers parameters. When
entanglement is included, the same number of U(¢) gates are used, along with (layers—1) Controlled-Z gates placed
between adjacent qubit layers.
The data encoding follows the transformation 6,040 = 0 + @ @ x, where x is the input feature vector. This allows
the same circuit structure to dynamically adapt to different input data points while preserving trainable components.
Class label encoding differs based on the cost function used. For fidelity-based classification, labels are represented as
computational basis states such as |0) or |1). For trace-distance-based classification, target class states are defined using
Bloch sphere coordinates.

Supplementary Note 7: Optimization Methods

In practice, deploying a parameterized quantum classifier involves a process of minimizing within the parameter space
that delineates the circuit's configuration. The process is often termed a hybrid algorithm, denoting the symbiotic
relationship and advantages derived from combining quantum logic and classical logic. In particular, the ensemble of
angles (¢,) and weights (w) defines a parameter space that requires systematic exploration to achieve the minimization
of y2.

The occurrence of local minima is unavoidable e. The arrangement of rotation gates results in an intricate multiplication

of independent trigonometric functions, suggesting that our problem is characterized by a widespread distribution of
minima.
The primary challenge boils down to minimizing a function that is defined by a vast array of parameters. In the case of a
single-qubit classifier, the total number of parameters can be expressed as, where represents the problem's dimension
(that is, the dimension of), and signifies the number of layers. Among these parameters, three are rotational angles, while
the rest pertain to the weight [1]. To identify the most effective solution, we evaluate the performance of four distinct
minimization techniques: the L-BFGS-B method, the COBYLA method, the Nelder-Mead method, and the Sequential
Least Squares Programming (SLSQP) method.

The key challenge in optimizing a single-qubit classifier involves minimizing a function across a complex parameter
space, calculated as (3+ d) N, where "d" is the problem's dimension and "N" is the number of layers. Also, in addition,

we need to consider rotational angles and the weight (w) corresponding to the dimension I. To discover the optimal
solution, we delve into the efficiency of four diverse minimization strategies: the L-BFGS-B, COBYLA, Nelder-Mead,
and Sequential Least Squares Programming (SLSQP) methods.

A. L-BFGS-B METHOD

The L-BFGS-B technique, part of the quasi-Newton optimization methods, refines the Broyden—Fletcher—Goldfarb—
Shanno (BFGS) approach by efficiently using limited computer memory '°. Its design excels in handling optimization
tasks involving numerous variables, offering a linear memory usage advantage, making it highly effective for large-scale
problems !,

The L-BFGS-B method is widely recognized as a cornerstone technique across various advanced applications in the
field of graphics '2!3. It specializes in minimizing a scalar function of one or several variables by initiating with a
preliminary estimate of the optimum value. Through iterative refinement, it progressively improves upon this initial
estimate to approach an optimal solution. The method employs function derivatives to determine the direction of steepest
descent and approximates the Hessian matrix (second-order derivatives) using limited memory. The parameter update
rule is given by'*:

Or+1 = Ok — arHi 'V f (61)
where 8, is the current parameter vector, Vf(8,) is the gradient, H; ! is an approximation of the inverse Hessian, and
ay 1s a step size typically determined by line search. This method is particularly efficient in handling large-scale problems
due to its low memory usage and fast matrix-vector multiplications.

B. CONSTRAINED OPTIMIZATION BY LINEAR APPROXIMATION METHOD
COBYLA (Constrained Optimization BY Linear Approximation) is an optimization algorithm designed to minimize a
scalar objective function that depends on one or more variables, subject to constraints !>!6. One of the key features of
COBYLA is that it does not require the calculation of derivatives, such as gradients or Hessians, of the objective function
or constraints. This makes COBYLA particularly useful in situations where the derivatives are unknown, unreliable, or
computationally expensive to obtain '°. Instead of requiring gradients or Hessians, COBYLA constructs linear
approximations of both the objective function and constraints within a trust region framework. At each iteration, it solves
a subproblem defined by: min—8 [f(J 6) subject to ¢;(8) = 0 and approximates the objective function locally as:
f(O+40) =~ f(0)+Vf(O) 46
although V£ (0) is never explicitly calculated—its effect is estimated using linear interpolation.
COBYLA has been effectively utilized in quantum computing, especially as a classical optimization routine within
Variational Hybrid Quantum-Classical Algorithms (VHQCAs) 7. These algorithms employ a parameterized quantum
circuit, or ansatz, which is refined through a dynamic interchange between a classical computer and a quantum device.
The classical computer adjusts the ansatz's parameters to minimize a cost function, which the quantum device efficiently
evaluates. Through iterative updates based on the cost function outcomes, the VHQCA aims to discover the most
effective ansatz configuration for specific problems. The derivative-free characteristic of COBYLA makes it particularly
advantageous for this setting, where the cost functions often lack easily computable or analytically defined derivatives.

C. NELDER-MEAD METHOD
The Nelder-Mead algorithm, introduced by John Nelder and Roger Mead in 1965, is a widely used direct search method
for unconstrained optimization problems '8, The algorithm operates by maintaining a simplex of n+1 points in an n-
dimensional space, iteratively moving the simplex toward the optimal solution through a series of transformations,
including reflection, expansion, contraction, and shrinkage . These operations are defined as follows:

e Reflection:

67‘ 6_+a(9__9h)

e Expansion:

6,=0+y(0,—0)

e Contraction:
6, =0+p(0,—0)
e Shrinkage:
0;=06,+0(0;—0))
Here, 0 is the centroid of the best n points, 8, is the worst-performing point, and a,y, p, and ¢ are user-defined
coefficients controlling the behavior of each transformation. This method is especially effective in low-dimensional, non-

convex optimization landscapes and is widely used when the objective function is noisy, non-differentiable, or
discontinuous.

Recent studies have focused on enhancing the Nelder-Mead algorithm to improve its efficiency and adaptability. Gao
and Han “proposed an implementation of the Nelder-Mead algorithm with adaptive parameters, which can automatically
adjust the parameter values based on the optimization progress. This adaptive approach has been shown to improve the
algorithm's convergence speed and solution quality '°.

Its capacity to address problems in which derivative information is not readily accessible renders it a favorable option
for numerous applications in QML. However, it is essential to conduct comprehensive evaluations to scrutinize the
method's accuracy, efficiency, and sensitivity to the initial guess for each unique application 22!,

D. SEQUANTIAL LEAST SQUARES PROGRAMMING METHOD
The Sequential Least Squares Programming (SLSQP) method is an optimization technique that minimizes functions
while adhering to specific constraints 22, It is based on Sequential Quadratic Programming (SQP), which simplifies the
optimization problem into a series of smaller, more manageable quadratic subproblems. In each subproblem, a quadratic
approximation of the objective function and constraints is constructed using a second-order parabolic curve to model the
function’s behavior near a specific point. SLSQP updates this approximation using the quasi-Newton method.
Specifically, the subproblem it solves takes the form:
min+A8 [1/2 AO T B_k AO + Vf(6_k) T A9)

subject to:

c;(8;) + Vc;(8,)T46 = 0 (inequality constraints)

h;(6y) + Vh;(6;,)" A6 = 0 (equality constraints)
where By, is an approximation to the Hessian of the Lagrangian, and Vf, Vc;, and Vh; are gradients of the objective and
constraint functions.

Additionally, SLSQP applies a least-squares method to solve these quadratic subproblems, striving to minimize the
total squared deviations between the approximation and actual function values. This method can handle both equality
and inequality constraints, including variable bounds, by integrating a penalty function that imposes additional costs for
any constraint or bound violations. SLSQP ensures efficient convergence by terminating the optimization process upon
meeting a predefined convergence criterion, typically related to changes in the objective function value or the gradient
vector's norm. This safeguard prevents indefinite computations, ensuring timely solutions.

Local minima are common challenges in both neural networks and quantum classifiers due to their complex
mathematical structures—neural networks with compounded nonlinear functions and quantum circuits with prevalent
trigonometric functions. This complexity increases the likelihood of encountering local minima during optimization.
Moreover, with smaller training sets, the choice of optimization method is crucial. For instance, the Nelder-Mead method
is noted for its robustness, particularly its lower susceptibility to local minima.

It is also critical to recognize that minimization methods are sensitive to noise, which can significantly impact their
effectiveness, especially in practical quantum computing applications 7.

Supp

lementary Note 8: Comparing the developed code for this research with original reference.

1|# coding=utf-8 +-
I e B e e e L = I B B e et
3|#Quantum classifier 2 |#Quantum classifier
4 |#Sara Aminpour, Mike Banad, Sarah Sharif <> 3|#Adridn Pérez-Salinas, Alba Cervera-Lierta, Elies Gil, J. Ignacio Latorre
5| #September 25th 2024 4 |#Code by APS
5|#Code-checks by ACL
6 |#June 3rd 2019
6 = 7
<> 8
7|#School of Electrical and Computer Engineering/ Center for Quantum and Technology, University of Oklahoma, Norman, OK 9|#Universitat de Barcelona / Barcelona Supercomputing Center/Institut de Ciencies del Cosmos
73019 USA,
10
O | e e e e e R R e e = | e e e e e
9 | #IMPORTANT NOTE: <>| 12
10 [#The code on the left was developed by Sara Aminpour, while the code on the right serves as the reference implementation
by Adridn Pérez-Salinas.
11|#The code on the left has been restructured to handle random data. So some certain sections has been deleted from the
reference code.
12 |#Additionally, our code on the left developed to analyze trace distance cost function and linear classification problem 13|#This file is a file taking many different functions from other files and mixing them all together
13|#as well as necessary modification to apply COBYLA, L-BFGS-B, NELDER-MEAD, and SLSQP minimization methods.
LA | A A
15|# so that the usage is automatized = | 14|# so that the usage is automatized
16 | import datetime <>| 15
17| from data gen import data generator = | 16|from data gen import data generator
18| from problem gen import problem generator, representatives, representatives tr <>| 17|from problem gen import problem generator, representatives
19| from fidelity minimization import fidelity minimization = | 18|from fidelity minimization import fidelity minimization
20| from trace minimization import trace minimization -
21| from weighted fidelity minimization import weighted fidelity minimization = | 19|from weighted fidelity minimization import weighted fidelity minimization
22| from test data import Accuracy test, tester 20| from test data import Accuracy test, tester
23| from save data import write summary, read summary, name folder, samples paint, samples paint worldmap, laea x, laea y 21| from save data import write summary, read summary, name folder, samples paint, samples paint worldmap,
laea x, laea y
24| from save data import write epochs file, write epoch, close epochs file, create folder, write epochs error rate 22| from save data import write epochs file, write epoch, close epochs file, create folder,
write epochs error rate
25| import numpy as np 23 |import numpy as np
26| import matplotlib.pyplot as plt 24| import matplotlib.pyplot as plt
27| from circuitery import code coords, circuit 25| from circuitery import code coords, circuit
28| from matplotlib.cm import get cmap 26| from matplotlib.cm import get cmap
29| from matplotlib.colors import Normalize 27 | from matplotlib.colors import Normalize
30 28
31|def minimizer(chi, problem, qubits, entanglement, layers, method, name, 29 |def minimizer(chi, problem, qubits, entanglement, layers, method, name,
32 epochs=3000, batch size=20, eta=0.1): <>| 30 seed = 30, epochs=3000, batch size=20, eta=0.1):
33
34 e 31 e
35 This function creates data and minimizes whichever problem (from the selected ones) 32 This function creates data and minimizes whichever problem (from the selected ones)
36 INPUT: 33 INPUT:
37 -chi: cost function, to choose between 'fidelity chi' or 'weighted fidelity chi' 34 -chi: cost function, to choose between 'fidelity chi' or 'weighted fidelity chi'
38 -problem: name of the problem, to choose among 35 -problem: name of the problem, to choose among
39 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares',6 'wavy 36 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere',
lines'] 'squares', 'wavy lines']
40 -qubits: number of qubits, must be an integer 37 -qubits: number of qubits, must be an integer
41 -entanglement: whether there is entanglement or not in the Ansatze, just 'y'/'n' 38 -entanglement: whether there is entanglement or not in the Ansatze, just 'y'/'n'
42 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account 39 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in
account
43 -method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize] 40 -method: minimization method, to choose among ['SGD', another valid for function
scipy.optimize.minimize]
44 -name: a name we want for our our files to be save with 41 -name: a name we want for our our files to be save with
45 -seed: seed of numpy.random, needed for replicating results 42 -seed: seed of numpy.random, needed for replicating results
46 -epochs: number of epochs for a 'SGD' method. If there is another method, this input has got no importance 43 -epochs: number of epochs for a 'SGD' method. If there is another method, this input has got
no importance
47 -batch size: size of the batches for stochastic gradient descent, only for 'SGD' method 44 -batch size: size of the batches for stochastic gradient descent, only for 'SGD' method
48 -eta: learning rate, only for 'SGD' method 45 -eta: learning rate, only for 'SGD' method
49 OUTPUT: 46 OUTPUT:
50 This function has got no outputs, but several files are saved in an appropiate folder. The files are 47 This function has got no outputs, but several files are saved in an appropiate folder. The
files are
51 -summary.txt: Saves useful information for the problem 48 -summary.txt: Saves useful information for the problem
52 -theta.txt: saves the theta parameters as a flat array 49 -theta.txt: saves the theta parameters as a flat array
53 -alpha.txt: saves the alpha parameters as a flat array 50 -alpha.txt: saves the alpha parameters as a flat array
54 -weight.txt: saves the weights as a flat array if they exist 51 -weight.txt: saves the weights as a flat array if they exist
55 nmonn 52 non
56 53 np.random.seed(seed)
57 data, drawing = data generator(problem) 54 data, drawing = data generator(problem)
58 if problem == 'sphere': 55 if problem == 'sphere':
59 train data = data[:500] 56 train data = data[:500]
60 test data = data[500:] 57 test data = data[500:]
61 elif problem == 'hypersphere': 58 elif problem == 'hypersphere':
62 train_data = data[:1000] 59 train_data = data[:1000]
63 test data = data[1000:] 60 test data = data[1000:]
64 else: 61 else:
65 train data = data[:250] 62 train data = data[:200]
66 test data = data[250:] 63 test data = data[200:]
67
68 if chi == 'fidelity chi':
69 Accuracy tr=0
70 Accuracy te=0
71 i=1
72 while i<21:
73 qubits lab = qubits
74 theta, alpha, reprs = problem generator(problem,qubits, layers, chi,
75 qubits lab=qubits lab)
76
77 theta, alpha, f = fidelity minimization(theta, alpha, train data, reprs,
78 entanglement, method,
79 batch size, eta, epochs)
80
81 acc train = tester(theta, alpha, train data, reprs, entanglement, chi)
82 Accuracy tr+=acc train
83
84 acc test = tester(theta, alpha, test data, reprs, entanglement, chi)
85 Accuracy te+=acc test
86 =| 64
87 text file nn = open('acc.txt', mode='a+"') <>
88 text file nn.write(str(i) + problem +' '+ chi +' '+ str(qubits) +'Qubits ' + str(layers) +'Layers ' +
entanglement +' '+ method +' '+'acc train'+' = '+ str(acc train))
89 text file nn.write('\n"')
90 text file nn.write(str(i) + problem +' '+ chi +' '+ str(qubits) +'Qubits ' + str(layers) +'Layers ' +
entanglement +' '+ method +' '+'acc test'+' = '+ str(acc test))
91 text file nn.write('\n")
92 text file nn.write(' ")
93 text file nn.write('\n"')
94 text file nn.close()
95
96 i+=1
97 print(i-1)
98 atr=Accuracy tr/(i-1)
99 ate=Accuracy te/(i-1)
100
101
102 text file nn = open('AverageAcc.txt', mode='a+"')
103 text file nn.write(problem +' '+ chi +' '+ str(qubits) +'Qubits ' + str(layers) +'Layers ' + entanglement
+' '+ method +' '+'Ave acc train'+' = '+ str(atr))
104 text file nn.write('\n"')
105 text file nn.write(problem +' '+ chi +' '+ str(qubits) +'Qubits ' + str(layers) +'Layers ' + entanglement
+' '+ method +' '+ 'Ave acc test'+' = '+ str(ate))
106 text file nn.write('\n"')
107 text file nn.write(' ")
108 text file nn.write('\n')
109 text file nn.close()
110
111 write summary(chi, problem, qubits, entanglement, layers, method, name,
112 theta, alpha, 0, f, atr, ate, epochs=epochs)
113 elif chi == 'trace chi': 65 if chi == 'fidelity chi':
114
115 Accuracy tr=0
116 Accuracy te=0
117 i=1
118 while i<21:
119 qubits lab = qubits 66 qubits lab = qubits
120 theta, alpha, reprs = problem generator(problem,qubits, layers, chi, 67 theta, alpha, reprs = problem generator(problem,qubits, layers, chi,
121 qubits lab=qubits lab) 68 qubits lab=qubits lab)
122 theta, alpha, f = trace minimization(theta, alpha, train data, reprs, 69 theta, alpha, f = fidelity minimization(theta, alpha, train data, reprs,
123 entanglement, method, 70 entanglement, method,
124 batch size, eta, epochs) 71 batch size, eta, epochs)
125
126
127 acc_train = tester(theta, alpha, train data, reprs, entanglement, chi) 72 acc_train = tester(theta, alpha, train data, reprs, entanglement, chi)
128 Accuracy tr+=acc train
129
130 acc_test = tester(theta, alpha, test data, reprs, entanglement, chi) 73 acc_test = tester(theta, alpha, test data, reprs, entanglement, chi)
131 Accuracy_ te+=acc_test
132
133 text file nn = open('acc.txt', mode='a+"')
134 text file nn.write(str(i) + problem +' '+ chi +' '+ str(qubits) +'Qubits ' + str(layers) +'Layers ' +
entanglement +' '+ method +' '+'acc train'+' = '+ str(acc train))
135 text file nn.write('\n")
136 text file nn.write(str(i) + problem +' '+ chi +' '+ str(qubits) +'Qubits ' + str(layers) +'Layers ' +
entanglement +' '+ method +' '+'acc test'+' = '+ str(acc test))
137 text file nn.write('\n"')
138 text file nn.write(" ")
139 text file nn.write('\n"')
140 text file nn.close()
141
142
143 i+=1
144 print(i-1)
145 atr=Accuracy tr/(i-1)
146 ate=Accuracy te/(i-1)
147
148
149 text file nn = open('AverageAcc.txt', mode='a+"')
150 text file nn.write(problem +' '+ chi +' '+ str(qubits) +'Qubits ' + str(layers) +'Layers ' + entanglement
+' '+ method +' '+'Ave acc train'+' = '+ str(atr))
151 text file nn.write('\n"')
152 text file nn.write(problem +' '+ chi +' '+ str(qubits) +'Qubits ' + str(layers) +'Layers ' + entanglement
+' '+ method +' '+'Ave acc test'+' = '+ str(ate))
153 text file nn.write('\n"')
154 text file nn.write(' ")
155 text file nn.write('\n"')
156 text file nn.close()
157
158
159 write summary(chi, problem, qubits, entanglement, layers, method, name, 74 write summary(chi, problem, qubits, entanglement, layers, method, name,
160 theta, alpha, 0, f, atr, ate, epochs=epochs) 75 theta, alpha, 0, f, acc train, acc test, seed, epochs=epochs)
1ol elif chi == 'weighted fidelity chi': 76 elif chi == 'weighted fidelity chi':
162
163
164 Accuracy tr=0
165 Accuracy te=0
166 i=1
167 while i<21:
168 qubits lab =1 77 qubits lab =1
169 theta, alpha, weight, reprs = problem generator(problem,qubits, layers, chi, 78 theta, alpha, weight, reprs = problem generator(problem,qubits, layers, chi,
170 qubits lab=qubits lab) 79 qubits lab=qubits lab)
171 theta, alpha, weight, f = weighted fidelity minimization(theta, alpha, weight, train data, reprs, 80 theta, alpha, weight, f = weighted fidelity minimization(theta, alpha, weight, train data,
reprs,
172 entanglement, method) 81 entanglement, method)
173
174
175
176 acc_train = tester(theta, alpha, train data, reprs, entanglement, chi, weights=weight) 82 acc_train = tester(theta, alpha, train data, reprs, entanglement, chi, weights=weight)
177 Accuracy tr+=acc_train
178
179 acc_test = tester(theta, alpha, test data, reprs, entanglement, chi, weights=weight) 83 acc test = tester(theta, alpha, test data, reprs, entanglement, chi, weights=weight)
180 Accuracy te+=acc_ test
181
182 text file nn = open(‘'acc.txt', mode='a+")
183 text file nn.write(str(i) + problem +' '+ chi +' '+ str(qubits) +'Qubits ' + str(layers) +'Layers ' +
entanglement +' '+ method +' '+'acc train'+' = '+ str(acc train))
184 text file nn.write('\n"')
185 text file nn.write(str(i) + problem +' '+ chi +' '+ str(qubits) +'Qubits ' + str(layers) +'Layers ' +
entanglement +' '+ method +' '+'acc test'+' = '+ str(acc test))
186 text file nn.write('\n")
187 text file nn.write(' ")
188 text file nn.write('\n"')
189 text file nn.close()
190
191
192 i+=1
193 print(i-1)
194 atr=Accuracy tr/(i-1)
195 ate=Accuracy te/(i-1)
196
197
198 text file nn = open('AverageAcc.txt', mode='a+"')
199 text file nn.write(problem +' '+ chi +' '+ str(qubits) +'Qubits ' + str(layers) +'Layers ' + entanglement
+' '+ method +' '+'Ave acc train'+' = '+ str(atr))
200 text file nn.write('\n")
201 text file nn.write(problem +' '+ chi +' '+ str(qubits) +'Qubits ' + str(layers) +'Layers ' + entanglement
+' '+ method +' '+'Ave acc test'+' = '+ str(ate))
202 text file nn.write('\n"')
203 text file nn.write(" ")
204 text file nn.write('\n"')
205 text file nn.close()
206
207 write summary(chi, problem, qubits, entanglement, layers, method, name, 84 write summary(chi, problem, qubits, entanglement, layers, method, name,
208 theta, alpha, weight, f, acc train, acc test, epochs=epochs) 85 theta, alpha, weight, f, acc train, acc test, seed, epochs=epochs)
209 =] 86
210 <>| 87
211
212
213 |def painter(chi, problem, qubits, entanglement, layers, method, name, = | 88|def painter(chi, problem, qubits, entanglement, layers, method, name,
214 standard test = True, samples = 4000, bw = False, err = False): <>| 89 seed = 30, standard test = True, samples = 4000, bw = False, err = False):
215 a=datetime.datetime.now()
216 e =| 90 e
217 This function takes written text files and paint the results of the problem 91 This function takes written text files and paint the results of the problem
218 INPUT: 92 INPUT:
219 -chi: cost function, to choose between 'fidelity chi' or 'weighted fidelity chi' 93 -chi: cost function, to choose between 'fidelity chi' or 'weighted fidelity chi'
220 -problem: name of the problem, to choose among 94 -problem: name of the problem, to choose among
221 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex',6 'crown',6 'sphere', 'squares', 'wavy lines'] 95 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown',6 'sphere',
‘squares', 'wavy lines']
222 -qubits: number of qubits, must be an integer 96 -qubits: number of qubits, must be an integer
223 -entanglement: whether there is entanglement or not in the Ansatze, just 'y'/'n' 97 -entanglement: whether there is entanglement or not in the Ansatze, just 'y'/'n'
224 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account 98 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in
account
225 -method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize] 99 -method: minimization method, to choose among ['SGD', another valid for function
scipy.optimize.minimize]
226 -name: a name we want for our our files to be save with 100 -name: a name we want for our our files to be save with
227 -seed: seed of numpy.random, needed for replicating results 101 -seed: seed of numpy.random, needed for replicating results
228 -standard test: Whether we want to paint the set test used for checking when minimizing. If True, seed and 102 -standard test: Whether we want to paint the set test used for checking when minimizing. If
samples are not taken in account True, seed and samples are not taken in account
229 -samples: number of samples of the test set 103 -samples: number of samples of the test set
230 -bw: painting in black and white 104 -bw: painting in black and white
231 OUTPUT: 105 OUTPUT:
232 This function has got no outputs, but a file containing the representation of the test set is created 106 This function has got no outputs, but a file containing the representation of the test set is
created
233 e 107 e
234 <>[108 np.random.seed(seed)
235 =109
236 if chi == 'fidelity chi': 110 if chi == 'fidelity chi':
237 qubits lab = qubits 111 qubits lab = qubits
238 +-
239 elif chi == 'trace chi':
240 qubits lab = qubits
241
242 elif chi == 'weighted fidelity chi': = [112 elif chi == 'weighted fidelity chi':
243 qubits lab =1 113 qubits lab =1
244 114
245 if standard test == True: 115 if standard test == True:
246 data, drawing = data generator(problem) 116 data, drawing = data generator(problem)
247 if problem == 'sphere': 117 if problem == 'sphere':
248 test data = data[500:] 118 test data = data[500:]
249 elif problem == 'hypersphere': 119 elif problem == 'hypersphere':
250 test data = data[1l000:] 120 test data = data[1000:]
251 else: 121 else:
252 test data = data[250:] <>|122 test data = data[200:]
253 =123
254 elif standard test == False: 124 elif standard test == False:
255 test data, drawing = data generator(problem, samples = samples) 125 test data, drawing = data generator(problem, samples = samples)
256 126
257 if problem in ['circle',6'line', '2 lines', 'wavy circle', 'sphere', 'non convex', 'crown', 'hypersphere']: <>|127 if problem in ['circle', 'wavy circle', 'sphere', 'non convex', 'crown', 'hypersphere'l]:
258 classes = 2 = |128 classes = 2
259 if problem in ['tricrown']: 129 if problem in ['tricrown']:
260 classes = 3 130 classes = 3
261 if problem in ['6squares']: +-
262 classes = 6
263 elif problem in ['3 circles', 'wavy lines', 'squares']: =131 elif problem in ['3 circles', 'wavy lines', 'squares']:
264 classes = 4 132 classes = 4
265 133
266 #reprs = representatives(classes, qubits lab) <>|134 reprs = representatives(classes, qubits lab)
267 =135
268 params = read summary(chi, problem, qubits, entanglement, layers, method, name) 136 params = read summary(chi, problem, qubits, entanglement, layers, method, name)
269 137
270 if chi == 'fidelity chi': 138 if chi == 'fidelity chi':
271 reprs = representatives(classes, qubits lab) +-
272 theta, alpha = params = |139 theta, alpha = params
273 sol test, acc test = Accuracy test(theta, alpha, test data, reprs, entanglement, chi) 140 sol test, acc test = Accuracy test(theta, alpha, test data, reprs, entanglement, chi)
274 +-
275 = |141
276 if chi == 'trace chi': +-
277 reprs = representatives tr(classes, qubits lab)
278 theta, alpha = params
279 sol test, acc test = Accuracy test(theta, alpha, test data, reprs, entanglement, chi)
280
281 if chi == 'weighted fidelity chi': = [142 if chi == 'weighted fidelity chi':
282 reprs = representatives(classes, qubits lab) -
283 theta, alpha, weight = params = |143 theta, alpha, weight = params
284 sol test, acc test = Accuracy test(theta, alpha, test data, reprs, 144 sol test, acc test = Accuracy test(theta, alpha, test data, reprs,
285 entanglement, chi, weights = weight) 145 entanglement, chi, weights = weight)
286 146
287 foldname = name folder(chi, problem, qubits, entanglement, layers, method) 147 foldname = name folder(chi, problem, qubits, entanglement, layers, method)
288 samples paint(problem, drawing, sol test, foldname, name, bw) 148 samples paint(problem, drawing, sol test, foldname, name, bw)
289 +-
290
291 = |149
292 b=datetime.datetime.now() <>
293 c=b-a
294 text file nn = open('time.txt', mode='a+')
295 text file nn.write(problem +' '+ chi +' '+ str(layers) +'Layers' +' '+ 'painter' +' = '+ str(c))
296 text file nn.write('\n"')
297 text file nn.close()
208('""
299 |def paint world(chi, problem, qubits, entanglement, layers, method, name, 150 |def paint world(chi, problem, qubits, entanglement, layers, method, name,
300 seed = 30, standard test = True, samples = 4000, bw = False, err = False): 151 seed = 30, standard test = True, samples = 4000, bw = False, err = False):
301 np.random.seed(seed) 152 np.random.seed(seed)
302 = |153
303 if chi == 'fidelity chi': <>|154 if chi == 'fidelity chi':
304 qubits lab = qubits 155 qubits lab = qubits
305 if chi == 'trace chi':
306 qubits lab = qubits
307 elif chi == 'weighted fidelity chi': 156 elif chi == 'weighted fidelity chi':
308 qubits lab =1 157 qubits lab =1
309 = |158
310 if standard test == True: <>|159 if standard test == True:
311 data, drawing = data generator(problem) 160 data, drawing = data generator(problem)
312 if problem == 'sphere': 161 if problem == 'sphere':
313 test data = data[500:] 162 test data = data[500:]
314 elif problem == 'hypersphere': 163 elif problem == 'hypersphere':
315 test data = data[1000:] 164 test data = data[1000:]
316 else: 165 else:
317 test data = data[:250] 166 test data = data[200:]
318 = | 167
319 elif standard test == False: <>|168 elif standard test == False:
320 test data, drawing = data generator(problem, samples=samples) 169 test data, drawing = data generator(problem, samples=samples)
321 =170
322 if problem in ['circle', 'line', '2 lines', 'wavy circle', 'sphere', 'non convex', 'crown', 'hypersphere']: <>|171 if problem in ['circle', 'wavy circle', 'sphere', 'non convex', 'crown', 'hypersphere']:
323 classes = 2 172 classes = 2
324 if problem in ['tricrown']: 173 if problem in ['tricrown']:
325 classes = 3 174 classes = 3
326 if problem in ['6squares']:
327 classes = 6
328 elif problem in ['3 circles', 'wavy lines', 'squares']: 175 elif problem in ['3 circles', 'wavy lines', 'squares']:
329 classes = 4 176 classes = 4
330 = |177
331 #reprs = representatives(classes, qubits lab) <>|178 reprs = representatives(classes, qubits lab)
332 =179
333 params = read summary(chi, problem, qubits, entanglement, layers, method, name) <>|180 params = read summary(chi, problem, qubits, entanglement, layers, method, name)
334 = |181
335 if chi == 'fidelity chi': <>|182 if chi == 'fidelity chi':
336 reprs = representatives(classes, qubits lab)
337 theta, alpha = params 183 theta, alpha = params
338 sol test, acc test = Accuracy test(theta, alpha, test data, reprs, entanglement, chi) 184 sol test, acc test = Accuracy test(theta, alpha, test data, reprs, entanglement, chi)
339
340 if chi == 'trace chi':
341 reprs = representatives tr(classes, qubits lab)
342 theta, alpha = params
343 sol test, acc test = Accuracy test(theta, alpha, test data, reprs, entanglement, chi)
344 =185
345 if chi == 'weighted fidelity chi': <>|186 if chi == 'weighted fidelity chi':
346 reprs = representatives(classes, qubits lab)
347 theta, alpha, weight = params 187 theta, alpha, weight = params
348 sol test, acc test = Accuracy test(theta, alpha, test data, reprs, 188 sol test, acc test = Accuracy test(theta, alpha, test data, reprs,
349 entanglement, chi, weights=weight) 189 entanglement, chi, weights=weight)
350 =190
351 foldname = name folder(chi, problem, qubits, entanglement, layers, method) <>|191 foldname = name folder(chi, problem, qubits, entanglement, layers, method)
352 angles = np.zeros((len(sol test), 2)) 192 angles = np.zeros((len(sol test), 2))
353 for i, x in enumerate(sol test[:, :2]): 193 for i, x in enumerate(sol test[:, :2]):
354 theta aux = code coords(theta, alpha, x) 194 theta aux = code coords(theta, alpha, x)
355 C = circuit(theta aux, entanglement) 195 C = circuit(theta aux, entanglement)
356 angles[i, 0] = np.arccos(np.abs(C.psi[0])**2 - np.abs(C.psi[1l])**2) - np.pi/2 196 angles[i, 0] = np.arccos(np.abs(C.psi[0])**2 - np.abs(C.psi[1])**2) - np.pi/2
357 angles[i, 1] = np.angle(C.psi[l] / C.psi[0]) 197 angles[i, 1] = np.angle(C.psi[1l] / C.psi[0])
358 print(angles[i]) 198 print(angles[i])
359 199
360 if bw == False: 200 if bw == False:
361 colors classes = get cmap('plasma') 201 colors classes = get cmap('plasma')
362 norm class = Normalize(vmin=-.5, vmax=np.max(sol test[:, -3]) + .5) 202 norm class = Normalize(vmin=-.5, vmax=np.max(sol test[:, -3]) + .5)
363 = |203
364 colors rightwrong = get cmap('RdYlGn') <>|204 colors rightwrong = get cmap('RdYlGn')
365 norm rightwrong = Normalize(vmin=-.1, vmax=1l.1) 205 norm rightwrong = Normalize(vmin=-.1, vmax=1l.1)
366 = | 206
367 if bw == True: <>|207 if bw == True:
368 colors classes = get cmap('Greys') 208 colors classes = get cmap('Greys')
369 norm class = Normalize(vmin=-.1, vmax=np.max(sol[:, -3]) + .1) 209 norm class = Normalize(vmin=-.1, vmax=np.max(sol[:, -3]) + .1)
370 =210
371 colors rightwrong = get cmap('Greys') <>|(211 colors rightwrong = get cmap('Greys')
372 norm rightwrong = Normalize(vmin=-.1, vmax=1l.1) 212 norm rightwrong = Normalize(vmin=-.1, vmax=1l.1)
373 = |213
374 fig, ax = plt.subplots(nrows=2) <>|214 fig, ax = plt.subplots(nrows=2)
375 ax[0].plot(laea x(np.pi, np.linspace(O, np.pi)), laea y(np.pi, np.linspace(®, np.pi)), color="k") 215 ax[0].plot(laea x(np.pi, np.linspace(0, np.pi)), laea y(np.pi, np.linspace(®, np.pi)), color="k"')
376 ax[0].plot(laea x(-np.pi, np.linspace(O@, -np.pi)), laea y(-np.pi, np.linspace(O, -np.pi)), color='k") 216 ax[0].plot(laea x(-np.pi, np.linspace(@, -np.pi)), laea y(-np.pi, np.linspace(0, -np.pi)),
color="k")
377 ax[1l].plot(laea x(np.pi, np.linspace(®, np.pi)), laea y(np.pi, np.linspace(O, np.pi)), color='k') 217 ax[1l].plot(laea x(np.pi, np.linspace(0, np.pi)), laea y(np.pi, np.linspace(®, np.pi)), color='k")
378 ax[1l].plot(laea x(-np.pi, np.linspace(0, -np.pi)), laea y(-np.pi, np.linspace(®, -np.pi)), color='k") 218 ax[1l].plot(laea x(-np.pi, np.linspace(0, -np.pi)), laea y(-np.pi, np.linspace(0®, -np.pi)),
color="'k")
379 ax[0].scatter(laea x(angles[:, 1], angles[:, 0]), laea y(angles[:, 1], angles[:, 0]), c=sol test[:, -2], 219 ax[0].scatter(laea x(angles[:, 1], angles[:, 0]), laea y(angles[:, 1], angles[:, 0]),
c=sol test[:, -21,
380 cmap=colors classes, s=2, norm=norm class) 220 cmap=colors classes, s=2, norm=norm class)
381 ax[1l].scatter(laea x(angles[:, 1], angles[:, 0]), laea y(angles[:, 1], angles[:, 0]), c=sol test[:,-1]1, cmap = 221 ax[1l].scatter(laea x(angles[:, 1], angles[:, 0]), laea y(angles[:, 1], angles[:, 0O]),
colors rightwrong, s=2, norm=norm rightwrong) c=sol test[:,-1], cmap = colors rightwrong, s=2, norm=norm rightwrong)
382 plt.show() 222 plt.show()
383 """ 223
384 = 224
385|def SGD step by step minimization(problem, qubits, entanglement, layers, name, 225|def SGD step by step minimization(problem, qubits, entanglement, layers, name,
386 epochs = 3000, batch size = 20, eta = .1, err=False): <>|226 seed = 30, epochs = 3000, batch size = 20, eta = .1, err=False):
387 e = | 227 e
388 This function creates data and minimizes whichever problem using a step by step SGD and saving all results from 228 This function creates data and minimizes whichever problem using a step by step SGD and saving all
accuracies for training and test sets results from accuracies for training and test sets
389 INPUT: 229 INPUT:
390 -problem: name of the problem, to choose among 230 -problem: name of the problem, to choose among
391 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex',6 'crown',6 'sphere', 'squares', 'wavy lines'] 231 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown',6 'sphere',
‘squares', 'wavy lines']
392 -qubits: number of qubits, must be an integer 232 -qubits: number of qubits, must be an integer
393 -entanglement: whether there is entanglement or not in the Ansatze, just 'y'/'n' 233 -entanglement: whether there is entanglement or not in the Ansatze, just 'y'/'n'
394 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account 234 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in
account
395 -method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize] 235 -method: minimization method, to choose among ['SGD', another valid for function
scipy.optimize.minimize]
396 -name: a name we want for our our files to be save with 236 -name: a name we want for our our files to be save with
397 -seed: seed of numpy.random, needed for replicating results 237 -seed: seed of numpy.random, needed for replicating results
398 -epochs: number of epochs for a 'SGD' method. If there is another method, this input has got no importance 238 -epochs: number of epochs for a 'SGD' method. If there is another method, this input has got
no importance
399 -batch size: size of the batches for stochastic gradient descent, only for 'SGD' method 239 -batch size: size of the batches for stochastic gradient descent, only for 'SGD' method
400 -eta: learning rate, only for 'SGD' method 240 -eta: learning rate, only for 'SGD' method
401 OUTPUT: 241 OUTPUT:
402 This function has got no outputs, but several files are saved in an appropiate folder. The files are 242 This function has got no outputs, but several files are saved in an appropiate folder. The
files are
403 -summary.txt: Saves useful information for the problem 243 -summary.txt: Saves useful information for the problem
404 -theta.txt: saves the theta parameters as a flat array 244 -theta.txt: saves the theta parameters as a flat array
405 -alpha.txt: saves the alpha parameters as a flat array 245 -alpha.txt: saves the alpha parameters as a flat array
406 -error_rates: accuracies for training and test sets as flat arrays 246 -error_rates: accuracies for training and test sets as flat arrays
407 e 247 e
408 chi = 'fidelity chi' 248 chi = 'fidelity chi'
409 method = 'SGD' 249 method = 'SGD'
410 250
411 <>|251 np.random.seed(seed)
412 data, drawing = data generator(problem, err=err) = | 252 data, drawing = data generator(problem, err=err)
413 if problem == 'sphere': 253 if problem == 'sphere':
414 train_data = data[:500] 254 train_data = data[:500]
415 test data = data[500:] 255 test data = data[500:]
416 elif problem == 'hypersphere': 256 elif problem == 'hypersphere':
417 train data = data[:1000] 257 train data = data[:1000]
418 test data = data[1000:] 258 test data = data[1000:]
419 else: 259 else:
420 train data = data[:250] <>|260 train data = data[:200]
421 test data = data[250:] 261 test data = data[200:]
422 = 262
423 if chi == 'fidelity chi': 263 if chi == 'fidelity chi':
424 qubits lab = qubits +-
425 if chi == 'trace chi':
426 qubits lab = qubits = | 264 qubits lab = qubits
427 elif chi == 'weighted fidelity chi': 265 elif chi == 'weighted fidelity chi':
428 qubits lab =1 266 qubits lab =1
429 267
430 theta, alpha, reprs = problem generator(problem, qubits, layers, chi, 268 theta, alpha, reprs = problem generator(problem, qubits, layers, chi,
431 qubits lab=qubits lab) 269 qubits lab=qubits lab)
432 accs test=[] 270 accs test=[]
433 accs_train=[] 271 accs_train=[]
434 chis=[] 272 chis=[]
435 acc_test sol =0 273 acc_test sol =0
436 acc_train_sol = 0 274 acc_train _sol = 0
437 fid sol = 0 275 fid sol = 0
438 best epoch = 0 276 best epoch = 0
439 theta sol = theta.copy() 277 theta sol = theta.copy()
440 alpha sol = alpha.copy() 278 alpha sol = alpha.copy()
441 279
442 file text = write epochs file(chi, problem, qubits, entanglement, layers, method, name) 280 file text = write epochs file(chi, problem, qubits, entanglement, layers, method, name)
443 for e in range(epochs): 281 for e in range(epochs):
444 theta, alpha, fid = fidelity minimization(theta, alpha, train data, reprs, 282 theta, alpha, fid = fidelity minimization(theta, alpha, train data, reprs,
445 entanglement, method, batch size, eta, 1) 283 entanglement, method, batch size, eta, 1)
446 284
447 acc train = tester(theta, alpha, train data, reprs, entanglement, chi) 285 acc_train = tester(theta, alpha, train data, reprs, entanglement, chi)
448 acc test = tester(theta, alpha, test data, reprs, entanglement, chi) 286 acc test = tester(theta, alpha, test data, reprs, entanglement, chi)
449 accs test.append(acc test) 287 accs _test.append(acc test)
450 accs train.append(acc_train) 288 accs train.append(acc train)
451 chis.append(fid) 289 chis.append(fid)
452 290
453 write epoch(file text, e, theta, alpha, fid, acc train, acc_ test) 291 write epoch(file text, e, theta, alpha, fid, acc train, acc test)
454 292
455 if acc test > acc test sol: 293 if acc test > acc test sol:
456 294
457 acc_test sol = acc_test 295 acc_test sol = acc_test
458 acc_train sol = acc_train 296 acc_train_sol = acc_train
459 fid sol = fid 297 fid sol = fid
460 theta sol = theta 298 theta sol = theta
461 alpha sol = alpha 299 alpha sol = alpha
462 best epoch = e 300 best epoch = e
463 301
464 close epochs file(file text, best epoch) 302 close epochs file(file text, best epoch)
465 write summary(chi, problem, qubits, entanglement, layers, method, name, 303 write summary(chi, problem, qubits, entanglement, layers, method, name,
466 theta sol, alpha sol, None, fid sol, acc train sol, acc test sol, epochs) <>|304 theta sol, alpha sol, None, fid sol, acc train sol, acc test sol, seed, epochs)
467 write epochs error rate(chi, problem, qubits, entanglement, layers, method, name, = [305 write epochs error rate(chi, problem, qubits, entanglement, layers, method, name,
468 accs_train, accs_test) 306 accs_train, accs_test)
469 307
470 |def overlearning paint(chi, problem, qubits, entanglement, layers, method, name): 308 |def overlearning paint(chi, problem, qubits, entanglement, layers, method, name):
471 e 309 e
472 This function takes overlearning functions and paints them 310 This function takes overlearning functions and paints them
473 INPUT: 311 INPUT:
474 -chi: cost function, just 'fidelity chi' 312 -chi: cost function, just 'fidelity chi'
475 -problem: name of the problem, to choose among 313 -problem: name of the problem, to choose among
476 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy lines'] 314 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere',
'squares', 'wavy lines']
477 -qubits: number of qubits, must be an integer 315 -qubits: number of qubits, must be an integer
478 -entanglement: whether there is entanglement or not in the Ansatze, just 'y'/'n' 316 -entanglement: whether there is entanglement or not in the Ansatze, just 'y'/'n'
479 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account 317 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in
account
480 -method: minimization method, 'SGD' 318 -method: minimization method, 'SGD'
481 -name: a name we want for our our files to be save with 319 -name: a name we want for our our files to be save with
482 OUTPUT: 320 OUTPUT:
483 This function has got no outputs, but saves a picture with the information of the overlearning rates 321 This function has got no outputs, but saves a picture with the information of the overlearning
rates
484 e 322 e
485 foldname = name folder(chi, problem, qubits, entanglement, layers, method) 323 foldname = name folder(chi, problem, qubits, entanglement, layers, method)
486 create folder(foldname) 324 create folder(foldname)
487 filename train = foldname + '/' + name + ' train.txt' 325 filename train = foldname + '/' + name + ' train.txt'
488 filename test = foldname + '/' + name + ' test.txt' 326 filename test = foldname + '/' + name + ' test.txt'
489 327
490 train_err_rate = np.loadtxt(filename train) 328 train_err_rate = np.loadtxt(filename train)
491 test err rate = np.loadtxt(filename test) 329 test err rate = np.loadtxt(filename test)
492 fig, ax = plt.subplots() 330 fig, ax = plt.subplots()
493 ax.plot(range(len(train_err_rate)), train err_rate, label = 'Training set') 331 ax.plot(range(len(train_err _rate)), train err _rate, label = 'Training set')
494 ax.plot(range(len(test err rate)), test err rate, label = 'Test set') 332 ax.plot(range(len(test err rate)), test err rate, label = 'Test set')
495 ax.set xlabel('Epochs', fontsize=16) 333 ax.set xlabel('Epochs', fontsize=16)
496 ax.set ylabel('Error rate', fontsize=16) 334 ax.set ylabel('Error rate', fontsize=16)
497 ax.legend() 335 ax.legend()
498 filename = foldname + '/' + name + ' overlearning' 336 filename = foldname + '/' + name + ' overlearning'
499 fig.savefig(filename) 337 fig.savefig(filename)
500 plt.close('all') 338 plt.close('all')
501 339
502 340

Text Compare

1|# coding=utf-8 +-
2 | #HHHAHRHRH AR AR HRH AR AR AR H R A AR AR AR A AR RH AR AR AR R AR = 1 | #HAHAH B AR AR AR H AR AR H R AR AR AR RH R AR HR R R R R
3|#Quantum classifier 2| #Quantum classifier
4|#Sara Aminpour, Mike Banad, Sarah Sharif <> 3|#Adridn Pérez-Salinas, Alba Cervera-Lierta, Elies Gil, J. Ignacio Latorre
5| #September 25th 2024 4| #Code by APS
5|#Code-checks by ACL
6|#June 3rd 2019
6 = 7
7|#School of Electrical and Computer Engineering/ Center for Quantum and Technology, University of Oklahoma, <> 8
Norman, OK 73019 USA,
O | SRS R
9 | #IMPORTANT NOTE:
10 [#The code on the left was developed by Sara Aminpour, while the code on the right serves as the reference
implementation by Adridn Pérez-Salinas.
11|#The code on the left has been restructured to handle random data. So some certain sections has been deleted from
the reference code.
12 |#Additionally, our code on the left developed to analyze trace distance cost function and linear classification 9|#Universitat de Barcelona / Barcelona Supercomputing Center/Institut de Ciencies del Cosmos
problem
13| #as well as necessary modification to apply COBYLA, L-BFGS-B, NELDER-MEAD, and SLSQP minimization methods. 10
14 | #HHHHHHHHHHHHHHH = | 11|
15 12
16 |## This file creates the data points for the different problems to be tackled by the quantum classifier 13| ## This file creates the data points for the different problems to be tackled by the quantum classifier
17 14
18 15
19 16
20 |import numpy as np 17 [import numpy as np
21 18
22 |problems = ['circle', 'line', '3 circles', 'wavy circle', 'hypersphere', 'tricrown', 'non convex', 'crown', <>| 19|problems = ['circle', '3 circles', 'wavy circle', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere',
'sphere', 'squares', 'wavy lines'] 'squares', 'wavy lines']
23 =] 20
24 |def data generator(problem, samples=None): 21|def data generator(problem, samples=None):
25 e 22 e
26 This function generates the data for a problem 23 This function generates the data for a problem
27 INPUT: 24 INPUT:
28 -problem: Name of the problem, one of: 'circle', '3 circles', 'hypersphere', 'tricrown', 'non convex' 25 -problem: Name of the problem, one of: 'circle', '3 circles', 'hypersphere', ‘'tricrown', 'non convex',
‘crown', 'sphere', 'squares', 'wavy lines' ‘crown', 'sphere', 'squares', 'wavy lines'
29 -samples Number of samples for the data 26 -samples Number of samples for the data
30 OUTPUT: 27 OUTPUT:
31 -data: set of training and test data 28 -data: set of training and test data
32 -settings: things needed for drawing 29 -settings: things needed for drawing
33 e 30 e
34 problem = problem.lower() 31 problem = problem.lower()
35 if problem not in problems: 32 if problem not in problems:
36 raise ValueError('problem must be one of {}'.format(problems)) 33 raise ValueError('problem must be one of {}'.format(problems))
37 if samples == None: 34 if samples == None:
38 if problem == 'sphere': 35 if problem == 'sphere':
39 samples = 4500 36 samples = 4500
40 elif problem == 'hypersphere': 37 elif problem == 'hypersphere':
41 samples = 5000 38 samples = 5000
42 else: 39 else:
43 samples = 4250 <>| 40 samples = 4200
44 =| 41
45 if problem == 'circle': 42 if problem == 'circle':
46 data, settings = circle(samples) 43 data, settings = circle(samples)
47 44
48 if problem == '3 circles': 45 if problem == '3 circles"':
49 data, settings = 3 circles(samples) 46 data, settings = 3 circles(samples)
50 47
51 if problem == 'wavy lines': 48 if problem == 'wavy lines':
52 data, settings = wavy lines(samples) 49 data, settings = wavy lines(samples)
53 50
54 if problem == 'squares': 51 if problem == 'squares':
55 data, settings = squares(samples) 52 data, settings = squares(samples)
56 53
57 if problem == 'sphere': 54 if problem == 'sphere':
58 data, settings = sphere(samples) 55 data, settings = sphere(samples)
59 56
60 if problem == 'non convex': 57 if problem == 'non convex':
61 data, settings = non_convex(samples) 58 data, settings = non_convex(samples)
62 59
63 if problem == 'crown': 60 if problem == 'crown':
64 data, settings = crown(samples) 61 data, settings = crown(samples)
65 62
66 if problem == 'tricrown': 63 if problem == 'tricrown':
67 data, settings = tricrown(samples) 64 data, settings = tricrown(samples)
68 65
69 if problem == ‘'hypersphere': 66 if problem == 'hypersphere':
70 data, settings = hypersphere(samples) 67 data, settings = hypersphere(samples)
71| # <>
72 if problem == 'line':
73 data, settings = line(samples)
74 | #
75 68
69
76 return data, settings =| 70 return data, settings
77 71
78|def circle(samples): 72 |def circle(samples):
79 centers = np.array([[0, 0]]) 73 centers = np.array([[0, 0]])
80 radii = np.array([np.sqrt(2/np.pi)]) 74 radii = np.array([np.sqrt(2/np.pi)])
81 data=[] 75 data=[]
82 dim = 2 76 dim = 2
83 for i in range(samples): 77 for i in range(samples):
84 X = 2 * (np.random.rand(dim)) - 1 78 X = 2 *¥ (np.random.rand(dim)) - 1
85 y =0 79 y =0
86 for ¢, r in zip(centers, radii): 80 for ¢, r in zip(centers, radii):
87 if np.linalg.norm(x - c) < r: 81 if np.linalg.norm(x - c) < r:
88 y =1 82 y =1
89 83
90 data.append([x, yl) 84 data.append([x, y])
91 <>| 85
92 return data, (centers, radii) =| 86 return data, (centers, radii)
93 87
94|def 3 circles(samples): 88|def 3 circles(samples):
95 centers = np.array([[-1, 1], [1, O], [-.5, -.511) 89 centers = np.array([[-1, 1], [1, O], [-.5, -.5]11)
96 radii = np.array([1l, np.sqrt(6/np.pi - 1), 1/2]) 90 radii = np.array([1l, np.sqrt(6/np.pi - 1), 1/2])
97 data=[] 91 data=[]
98 dim = 2 92 dim = 2
99 for i in range(samples): 93 for i in range(samples):
100 X = 2 * (np.random.rand(dim)) - 1 94 X = 2 * (np.random.rand(dim)) - 1
101 y =0 95 y =0
102 for j, (c, r) in enumerate(zip(centers, radii)): 96 for j, (c, r) in enumerate(zip(centers, radii)):
103 if np.linalg.norm(x - c) < r: 97 if np.linalg.norm(x - c) < r:
104 y=3+1 98 y=3+1
105 99
106 data.append([x, yl) 100 data.append([x, yl)
107 101
108 102
109 return data, (centers, radii) 103 return data, (centers, radii)
110 104
111 105
112 |def wavy lines(samples, freq = 1): 106 |def wavy lines(samples, freq = 1):
113 def funl(s): 107 def funl(s):
114 return s + np.sin(freq * np.pi * s) 108 return s + np.sin(freq * np.pi * s)
115 109
116 def fun2(s): 110 def fun2(s):
117 return -s + np.sin(freq * np.pi * s) 111 return -s + np.sin(freq * np.pi * s)
118 data=[] 112 data=[]
119 dim=2 113 dim=2
120 for i in range(samples): 114 for i in range(samples):
121 X = 2 * (np.random.rand(dim)) - 1 115 X = 2 * (np.random.rand(dim)) - 1
122 if x[1] < funl(x[0]) and x[1] < fun2(x[0]): y = 0 116 if x[1] < funl(x[0]) and x[1] < fun2(x[0]): y =0
123 if x[1] < funl(x[0]) and x[1] > fun2(x[0]): vy =1 117 if x[1] < funl(x[0]) and x[1] > fun2(x[0]): vy =1
124 if x[1] > funl(x[0]) and x[1] < fun2(x[0]): y = 2 118 if x[1] > funl(x[0]) and x[1] < fun2(x[0]): y = 2
125 if x[1] > funl(x[0]) and x[1] > fun2(x[0]): y = 3 119 if x[1] > funl(x[0]) and x[1] > fun2(x[0]): y = 3
126 data.append([x, yl) 120 data.append([x, yl)
127 121
128 return data, freq 122 return data, freq
129 123
130 |def squares(samples): 124 |def squares(samples):
131 data=[] 125 data=[]
132 dim=2 126 dim=2
133 for i in range(samples): 127 for i in range(samples):
134 X = 2 *¥ (np.random.rand(dim)) - 1 128 X = 2 * (np.random.rand(dim)) - 1
135 if x[0] < 0 and x[1] < 0: y =0 129 if x[0] < 0 and x[1] < 0: y =0
136 if x[0] < 0 and x[1] > 0: y =1 130 if x[0] < 0 and x[1] > 0: y =1
137 if x[0] > 0 and x[1] < 0: y =2 131 if x[0] > 0 and x[1] < 0: y =2
138 if x[0] > 0 and x[1] > 0: y = 3 132 if x[0] > 0 and x[1] > 0: y = 3
139 data.append([x, yl) 133 data.append([x, yl)
140 134
141 return data, None 135 return data, None
142 136
143 | # +-
144 (def line(samples):
145 data=[]
146 dim=2
147 for i in range(samples):
148 X = 2 * np.random.rand(dim) -1
149 #x = np.random.rand(dim)
150 if x[0] < x[1] : y =0
151 if x[0] > x[1] : y =1
152
153 data.append([x, y])
154
155 return data, None
156 | #
157 = |137
158 |def non convex(samples, freq = 1, x val = 2, sin val = 1.5): 138 |def non convex(samples, freq = 1, x val = 2, sin val = 1.5):
159 def fun(s): 139 def fun(s):
160 return -x val * s + sin val * np.sin(freq * np.pi * s) 140 return -x val * s + sin val * np.sin(freq * np.pi * s)
161 141
162 data = [] 142 data = []
163 dim = 2 143 dim = 2
104 for i in range(samples): 144 for i in range(samples):
165 X = 2 * (np.random.rand(dim)) - 1 145 X = 2 * (np.random.rand(dim)) - 1
166 if x[1] < fun(x[0]): y =0 146 if x[1] < fun(x[0]): y =0
167 if x[1] > fun(x[0]): y =1 147 if x[1] > fun(x[0]): y =1
168 data.append([x, yl) 148 data.append([x, yl)
169 149
170 return data, (freq, x val, sin val) 150 return data, (freq, x val, sin val)
171 151
172 |def crown(samples): 152 |def crown(samples):
173 c=1[[0,0],[0,0]] 153 c=1[[0,0],[0,0]]
174 r = [np.sqrt(.8), np.sqrt(.8 - 2/np.pi)l 154 r = [np.sqrt(.8), np.sqrt(.8 - 2/np.pi)l
175 data = [] 155 data = []
176 dim = 2 156 dim = 2
177 for i in range(samples): 157 for i in range(samples):
178 X = 2 * (np.random.rand(dim)) - 1 158 X = 2 * (np.random.rand(dim)) - 1
179 if np.linalg.norm(x - c[0]) < r[0] and np.linalg.norm(x - c[1]) > r[1]: 159 if np.linalg.norm(x - c[0]) < r[0] and np.linalg.norm(x - c[1]) > r[1]:
180 y =1 160 y =1
181 else: 1ol else:
182 y=0 162 y=0
183 data.append([x, yl]) 163 data.append([x, y])
184 164
185 return data, (c, r) 165 return data, (c, r)
186 166
187 167
188 |def tricrown(samples): 168 |def tricrown(samples):
189 centers = [[0,0],[0,0]] 169 centers = [[0,0],[0,0]]
190 radii = [np.sqrt(.8 - 2/np.pi), np.sqrt(.8)] 170 radii = [np.sqrt(.8 - 2/np.pi), np.sqrt(.8)]
191 data = [] 171 data = []
192 dim = 2 172 dim = 2
193 for i in range(samples): 173 for i in range(samples):
194 X = 2 * (np.random.rand(dim)) - 1 174 X = 2 * (np.random.rand(dim)) - 1
195 y=0 175 y=0
196 for j,(r,c) in enumerate(zip(radii, centers)): 176 for j,(r,c) in enumerate(zip(radii, centers)):
197 if np.linalg.norm(x - c) > r: 177 if np.linalg.norm(x - c) > r:
198 y=3+1 178 y=3+1
199 data.append([x, yl]) 179 data.append([x, y])
200 180
201 return data, (centers, radii) 181 return data, (centers, radii)
202 182
203 |def sphere(samples): 183 |def sphere(samples):
204 centers = np.array([[0, 0, 0]]) 184 centers = np.array([[0, 0, 0]])
205 radii = np.array([(3/np.pi)**(1/3)1]) 185 radii = np.array([(3/np.pi)**(1/3)1])
206 data=[] 186 data=[]
207 dim = 3 187 dim = 3
208 for i in range(samples): 188 for i in range(samples):
209 X = 2 * (np.random.rand(dim)) - 1 189 X = 2 * (np.random.rand(dim)) - 1
210 y =0 190 y =0
211 for ¢, r in zip(centers, radii): 191 for ¢, r in zip(centers, radii):
212 if np.linalg.norm(x - c) < r: 192 if np.linalg.norm(x - c) < r:
213 y =1 193 y =1
214 194
215 data.append([x, yl]) 195 data.append([x, y])
216 196
217 return data, (centers, radii) 197 return data, (centers, radii)
218 198
219 |def hypersphere(samples): 199 |def hypersphere(samples):
220 centers = np.array([[0, 0, 0, 0]]) 200 centers = np.array([[0, 0, 0, 0]])
221 radii = np.array([(2/np.pi)**(1/2)]) 201 radii = np.array([(2/np.pi)**(1/2)])
222 data=[] 202 data=[]
223 dim = 4 203 dim = 4
224 for i in range(samples): 204 for i in range(samples):
225 X = 2 * (np.random.rand(dim)) - 1 205 X = 2 * (np.random.rand(dim)) - 1
226 y =0 206 y =0
227 for ¢, r in zip(centers, radii): 207 for ¢, r in zip(centers, radii):
228 if np.linalg.norm(x - c) < r: 208 if np.linalg.norm(x - c) < r:
229 y =1 209 y =1
230 210
231 data.append([x, yl]) 211 data.append([x, y])
232 212
233 return data, (centers, radii) 213 return data, (centers, radii)
234 214
235 215

Text Compare

1[#Quantum classifier <>
2 |#Sara Aminpour, Mike Banad, Sarah Sharif
3 |#September 25th 2024
4
5|#School of Electrical and Computer Engineering/ Center for Quantum and Technology, University of Oklahoma, Norman, OK 73019 USA,
| AR S R A S R S R
7 | #IMPORTANT NOTE:
8 |#The code on the left was developed by Sara Aminpour, while the code on the right serves as the reference implementation by Adridn
Pérez-Salinas.
9|#The code on the left has been restructured to handle random data. So some certain sections has been deleted from the reference code.
10 |#Additionally, our code on the left developed to analyze trace distance cost function and linear classification problem
11|#as well as necessary modification to apply COBYLA, L-BFGS-B, NELDER-MEAD, and SLSQP minimization methods.
12| from big functions import minimizer, painter, SGD step by step minimization, overlearning paint 1| from big functions import minimizer, painter, SGD step by step minimization,
overlearning paint, paint world
13| import datetime 2
14| qubits = 2 #integer, number of qubits 3[qubits = 1 #integer, number of qubits
15| layers = 5 #integer, number of layers (time we reupload data) = | 4|layers = 5 #integer, number of layers (time we reupload data)
16| chi = 'fidelity chi' #Cost function; choose between ['fidelity chi', 'trace chi] <>| 5|chi = 'fidelity chi' #Cost function; choose between ['fidelity chi',
'weighted fidelity chi']
6|problem="wavy lines' #name of the problem, choose among ['circle', 'wavy circle', '3
circles', 'wavy lines', 'sphere', 'non convex', 'crown']
17| entanglement = 'y' #entanglement y/n = | 7|entanglement = 'y' #entanglement y/n
-+| 8|method = 'L-BFGS-B' #minimization methods, scipy methods or 'SGD'
18 |name = 'run' #However you want to name your files =| 9|name = 'run' #However you want to name your files
19 |seed = 30 #random seed 10 | seed = 30 #random seed
20 |#epochs=3000 #number of epochs, only for SGD methods 11| #epochs=3000 #number of epochs, only for SGD methods
21 12
22 <>
23|problem=["'circle', 'line'] #name of the problem, choose among ['circle', 'wavy circle', '3 circles', 'wavy lines', 'sphere', 'non
convex', 'crown']
24| for problem in problem:
25
26 method = ['l-bfgs-b', 'cobyla', 'nelder-mead', 'slsqp'] #minimization methods between ['l-bfgs-b', 'cobyla', 'nelder-mead',
'slsqp']
27 for method in method:
28 a=datetime.datetime.now()
29 #SGD step by step minimization(problem, qubits, entanglement, layers, name) 13|#SGD _step by step minimization(problem, qubits, entanglement, layers, name)
30 minimizer(chi, problem, qubits, entanglement, layers, method, name) 14 |minimizer(chi, problem, qubits, entanglement, layers, method, name, seed = seed)
31 painter(chi, problem, qubits, entanglement, layers, method, name, standard test=True) 15| painter(chi, problem, qubits, entanglement, layers, method, name, standard test=True,
seed=seed)
32 #paint world(chi, problem, qubits, entanglement, layers, method, name, standard test=True) 16 |paint world(chi, problem, qubits, entanglement, layers, method, name,
standard test=True, seed=seed)
33 b=datetime.datetime.now()
34 c=b-a
35
36 text file nn = open('time.txt', mode='a+"')
37 text file nn.write(problem +' '+ chi +' '+ method +' '+ str(qubits) +'Qubits ' + entanglement +' '+ str(layers)
+'Layers ' + method + " " + 'total time'+' = '+ str(c))
38 text file nn.write('\n")
39 text file nn.write(' ")
40 text file nn.write('\n"')
41 text file nn.close()

Text Compare

1|# coding=utf-8 +-
2 | #HHHAHRHRH AR AR HRH AR AR AR H R A AR AR AR A AR RH AR AR AR R AR = U i B L et B e et i
3|#Quantum classifier 2 |#Quantum classifier
4 |#Sara Aminpour, Mike Banad, Sarah Sharif <> 3|#Adrian Pérez-Salinas, Alba Cervera-Lierta, Elies Gil, J. Ignacio Latorre
5| #September 25th 2024 4|#Code by APS
5| #Code-checks by ACL
6 [#June 3rd 2019
6 = 7
7|#School of Electrical and Computer Engineering/ Center for Quantum and Technology, University of Oklahoma, Norman, |<> 8
0K 73019 USA,
O | SRS R
9 | #IMPORTANT NOTE:
10 [#The code on the left was developed by Sara Aminpour, while the code on the right serves as the reference
implementation by Adridn Pérez-Salinas.
11|#The code on the left has been restructured to handle random data. So some certain sections has been deleted from
the reference code.
12 |#Additionally, our code on the left developed to analyze trace distance cost function and linear classification 9|#Universitat de Barcelona / Barcelona Supercomputing Center/Institut de Ciencies del Cosmos
problem
13| #as well as necessary modification to apply COBYLA, L-BFGS-B, NELDER-MEAD, and SLSQP minimization methods. 10
14 | #HHHHHHHHHHHHHHH = | 11|
15 12
16 |## This file creates the problems and their settings 13 |## This file creates the problems and their settings
17 | import numpy as np 14| import numpy as np
18 15
19|def problem generator(problem, qubits, layers, chi, qubits lab=1): 16| def problem generator(problem, qubits, layers, chi, qubits lab=1):
20 e 17 e
21 This function generates everything needed for solving the problem 18 This function generates everything needed for solving the problem
22 INPUT: 19 INPUT:
23 -chi: cost function, to choose between 'fidelity chi' or 'weighted fidelity chi' 20 -chi: cost function, to choose between 'fidelity chi' or 'weighted fidelity chi'
24 -problem: name of the problem, to choose among 21 -problem: name of the problem, to choose among
25 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex',6 'crown',6 'sphere', 'squares',6 'wavy 22 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares',
lines'] 'wavy lines']
26 -qubits: number of qubits, must be an integer 23 -qubits: number of qubits, must be an integer
27 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account 24 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account
28 25
29 26
30 OUTPUT: 27 OUTPUT:
31 -theta: set of parameters needed for the circuit. It is an array with shape (qubits, layers, 3) 28 -theta: set of parameters needed for the circuit. It is an array with shape (qubits, layers, 3)
32 -alpha: set of parameters needed for the circuit. It is an array with shape (qubits, layers, dimension of 29 -alpha: set of parameters needed for the circuit. It is an array with shape (qubits, layers,
data) dimension of data)
33 -weight: set of parameters needed fot the circuit only if chi == 'weighted fidelity chi'. It is an array 30 -weight: set of parameters needed fot the circuit only if chi == 'weighted fidelity chi'. It is an
with shape (classes, qubits) array with shape (classes, qubits)
34 -reprs: variable encoding the label states of the different classes 31 -reprs: variable encoding the label states of the different classes
35 e 32 e
36 chi = chi.lower() 33 chi = chi.lower()
37 if chi in ['fidelity', 'weighted fidelity', 'trace']: chi += ' chi' <>| 34 if chi in ['fidelity', 'weighted fidelity']: chi += ' chi'
38 if chi not in ['fidelity chi', 'weighted fidelity chi', 'trace chi']: 35 if chi not in ['fidelity chi', 'weighted fidelity chi'l]:
39 raise ValueError('Figure of merit is not valid') =| 36 raise ValueError('Figure of merit is not valid')
40 37
41 if chi == 'weighted fidelity chi' and qubits lab != 1: 38 if chi == 'weighted fidelity chi' and qubits lab != 1:
42 qubits lab =1 39 qubits lab =1
43 print('WARNING: number of qubits for the label states has been changed to 1') 40 print('WARNING: number of qubits for the label states has been changed to 1')
44 41
45 problem = problem.lower() 42 problem = problem.lower()
46 if problem == 'circle': 43 if problem == 'circle':
47 theta, alpha, reprs = circle(qubits, layers, qubits lab, chi) 44 theta, alpha, reprs = circle(qubits, layers, qubits lab, chi)
48 elif problem == '3 circles"': 45 elif problem == '3 circles':
49 theta, alpha, reprs = 3 circles(qubits, layers, qubits lab, chi) 46 theta, alpha, reprs = 3 circles(qubits, layers, qubits lab, chi)
50 elif problem == 'wavy lines': 47 elif problem == ‘'wavy lines':
51 theta, alpha, reprs = wavy lines(qubits, layers, qubits lab, chi) 48 theta, alpha, reprs = wavy lines(qubits, layers, qubits lab, chi)
52 elif problem == 'squares': 49 elif problem == 'squares':
53 theta, alpha, reprs = squares(qubits, layers, qubits lab, chi) 50 theta, alpha, reprs = squares(qubits, layers, qubits lab, chi)
54 elif problem == 'sphere': 51 elif problem == 'sphere':
55 theta, alpha, reprs = sphere(qubits, layers, qubits lab, chi) 52 theta, alpha, reprs = sphere(qubits, layers, qubits lab, chi)
56 elif problem == 'non convex': 53 elif problem == 'non convex':
57 theta, alpha, reprs = non convex(qubits, layers, qubits lab, chi) 54 theta, alpha, reprs = non convex(qubits, layers, qubits lab, chi)
58 elif problem == 'crown': 55 elif problem == 'crown':
59 theta, alpha, reprs = crown(qubits, layers, qubits lab, chi) 56 theta, alpha, reprs = crown(qubits, layers, qubits lab, chi)
60 elif problem == 'tricrown': 57 elif problem == 'tricrown':
61 theta, alpha, reprs = tricrown(qubits, layers, qubits lab, chi) 58 theta, alpha, reprs = tricrown(qubits, layers, qubits lab, chi)
62 elif problem == 'hypersphere': 59 elif problem == 'hypersphere':
63 theta, alpha, reprs = hypersphere(qubits, layers, qubits lab, chi) 60 theta, alpha, reprs = hypersphere(qubits, layers, qubits lab, chi)
64 | # <>| 61
65 elif problem == 'line':
66 theta, alpha, reprs = line(qubits, layers, qubits lab, chi)
67 | #
68 else: =| 62 else:
69 raise ValueError('Problem is not valid') 63 raise ValueError('Problem is not valid')
70 64
71 if chi == 'fidelity chi': 65 if chi == 'fidelity chi':
72 return theta, alpha, reprs 66 return theta, alpha, reprs
73 elif chi == 'trace chi': +-
74 return theta, alpha, reprs
75 elif chi == 'weighted fidelity chi': =| 67 elif chi == 'weighted fidelity chi':
76 weights = np.ones((len(reprs), qubits)) 68 weights = np.ones((len(reprs), qubits))
77 return theta, alpha, weights, reprs 69 return theta, alpha, weights, reprs
78 70
79 [#A11l these are auxiliary functions for problem generator 71|{#A1l these are auxiliary functions for problem generator
80 |def circle(qubits, layers, qubits lab, chi): 72|def circle(qubits, layers, qubits lab, chi):
81 classes = 2 73 classes = 2
82 if chi == 'trace chi': <>
83 reprs = representatives tr(classes, qubits lab)
84 else:
85 reprs = representatives(classes, qubits lab) 74 reprs = representatives(classes, qubits lab)
86
87 theta = np.random.rand(qubits, layers, 3) =| 75 theta = np.random.rand(qubits, layers, 3)
88 alpha = np.random.rand(qubits, layers, 2) 76 alpha = np.random.rand(qubits, layers, 2)
89 return theta, alpha, reprs 77 return theta, alpha, reprs
90 78
91|def 3 circles(qubits, layers, qubits lab, chi): 79|def 3 circles(qubits, layers, qubits lab, chi):
92 classes = 4 80 classes = 4
93 reprs = representatives(classes, qubits lab) 81 reprs = representatives(classes, qubits lab)
94 theta = np.random.rand(qubits, layers, 3) 82 theta = np.random.rand(qubits, layers, 3)
95 alpha = np.random.rand(qubits, layers, 2) 83 alpha = np.random.rand(qubits, layers, 2)
96 return theta, alpha, reprs 84 return theta, alpha, reprs
97 85
98 |def wavy lines(qubits, layers, qubits lab, chi): 86|def wavy lines(qubits, layers, qubits lab, chi):
99 classes = 4 87 classes = 4
100 reprs = representatives(classes, qubits lab) 88 reprs = representatives(classes, qubits lab)
101 theta = np.random.rand(qubits, layers, 3) 89 theta = np.random.rand(qubits, layers, 3)
102 alpha = np.random.rand(qubits, layers, 2) 90 alpha = np.random.rand(qubits, layers, 2)
103 return theta, alpha, reprs 91 return theta, alpha, reprs
104 92
105|def squares(qubits, layers, qubits lab, chi): 93|def squares(qubits, layers, qubits lab, chi):
106 classes = 4 94 classes = 4
107 reprs = representatives(classes, qubits lab) 95 reprs = representatives(classes, qubits lab)
108 theta = np.random.rand(qubits, layers, 3) 96 theta = np.random.rand(qubits, layers, 3)
109 alpha = np.random.rand(qubits, layers, 2) 97 alpha = np.random.rand(qubits, layers, 2)
110 return theta, alpha, reprs 98 return theta, alpha, reprs
111 (# <>
112 (def Lline(qubits, layers, qubits lab, chi):
113 classes = 2
114 if chi == 'trace chi':
115 reprs = representatives tr(classes, qubits lab)
116 else:
117 reprs = representatives(classes, qubits lab)
118 99
119 theta = np.random.rand(qubits, layers, 3)
120 alpha = np.random.rand(qubits, layers, 2)
121 return theta, alpha, reprs
122 | #
123|def non convex(qubits, layers, qubits lab, chi): = | 100 |def non convex(qubits, layers, qubits lab, chi):
124 classes = 2 101 classes = 2
125 if chi == 'trace chi': <>
126 reprs = representatives tr(classes, qubits lab)
127 else:
128 reprs = representatives(classes, qubits lab) 102 reprs = representatives(classes, qubits lab)
129
130 theta = np.random.rand(qubits, layers, 3) = (103 theta = np.random.rand(qubits, layers, 3)
131 alpha = np.random.rand(qubits, layers, 2) 104 alpha = np.random.rand(qubits, layers, 2)
132 return theta, alpha, reprs 105 return theta, alpha, reprs
133 106
134|def crown(qubits, layers, qubits lab, chi): 107 |def crown(qubits, layers, qubits lab, chi):
135 classes = 2 108 classes = 2
136 if chi == 'trace chi': <>
137 reprs = representatives tr(classes, qubits lab)
138 else:
139 reprs = representatives(classes, qubits lab) 109 reprs = representatives(classes, qubits lab)
140
141 theta = np.random.rand(qubits, layers, 3) =110 theta = np.random.rand(qubits, layers, 3)
142 alpha = np.random.rand(qubits, layers, 2) 111 alpha = np.random.rand(qubits, layers, 2)
143 return theta, alpha, reprs 112 return theta, alpha, reprs
144 113
145|def tricrown(qubits, layers, qubits lab, chi): 114 |def tricrown(qubits, layers, qubits lab, chi):
146 classes = 3 115 classes = 3
147 reprs = representatives(classes, qubits lab) 116 reprs = representatives(classes, qubits lab)
148 theta = np.random.rand(qubits, layers, 3) 117 theta = np.random.rand(qubits, layers, 3)
149 alpha = np.random.rand(qubits, layers, 2) 118 alpha = np.random.rand(qubits, layers, 2)
150 return theta, alpha, reprs 119 return theta, alpha, reprs
151 120
152 |def sphere(qubits, layers, qubits lab, chi): 121|def sphere(qubits, layers, qubits lab, chi):
153 classes = 2 122 classes = 2
154 reprs = representatives(classes, qubits lab) 123 reprs = representatives(classes, qubits lab)
155 theta = np.random.rand(qubits, layers, 3) 124 theta = np.random.rand(qubits, layers, 3)
156 alpha = np.random.rand(qubits, layers, 3) 125 alpha = np.random.rand(qubits, layers, 3)
157 return theta, alpha, reprs 126 return theta, alpha, reprs
158 127
159 |def hypersphere(qubits, layers, qubits lab, chi): 128 |def hypersphere(qubits, layers, qubits lab, chi):
160 classes = 2 129 classes = 2
161 reprs = representatives(classes, qubits lab) 130 reprs = representatives(classes, qubits lab)
162 theta = np.random.rand(qubits, layers, 6) 131 theta = np.random.rand(qubits, layers, 6)
163 alpha = np.random.rand(qubits, layers, 4) 132 alpha = np.random.rand(qubits, layers, 4)
164 return theta, alpha, reprs 133 return theta, alpha, reprs
165 134
166 +-
167 |def representatives tr(classes, qubits lab):
168 e
169 This function creates the label states for the classification task
170 INPUT:
171 -classes: number of classes of our problem
172 -qubits lab: how many qubits will store the labels
173 OUTPUT :
174 -reprs: the label states
175 e
176 #reprs = np.zeros((classes, 2**qubits lab), dtype = 'complex')
177 reprs = np.zeros((classes, 3), dtype = 'complex')
178 if qubits lab == 1:
179 if classes == 0:
180 raise ValueError('Nonsense classifier')
181 if classes ==
182 raise ValueError('Nonsense classifier"')
183 if classes == 2:
184 #reprs[0] = np.array([1, 0])
185 reprs[0] = np.array([0.2938926261462367, -0.5090369604551273, 0.8090169943749473])
186 reprs[1l] = np.array([-0.2938926261462367, 0.5090369604551273, -0.8090169943749473])
187 if classes == 3:
188 reprs[0] = np.array([1, 0])
189 reprs[1l] = np.array([1l / 2, np.sqrt(3) / 2])
190 reprs[2] = np.array([1l / 2, -np.sqrt(3) / 2])
191 if classes == 4:
192 reprs[0] = np.array([1, 0])
193 reprs[1l] = np.array([1l / np.sqrt(3), np.sqrt(2 / 3)1)
194 reprs[2] = np.array([1l / np.sqrt(3), np.exp(lj * 2 * np.pi / 3) * np.sqrt(2 / 3)1)
195 reprs[3] = np.array([1l / np.sqrt(3), np.exp(-1j * 2 * np.pi / 3) * np.sqrt(2 / 3)1)
196 if classes == 6:
197 reprs[0] = np.array([0.2938926261462367, -0.5090369604551273, 0.8090169943749473])
198 reprs[1l] = np.array([-0.2938926261462367, 0.5090369604551273, -0.8090169943749473])
199 reprs[2] = np.array([-0.7006292692220369, -0.4045084971874737, 0.5877852522924729])
200 reprs[3] = np.array([0.7006292692220369, 0.4045084971874737, -0.5877852522924729])
201 reprs[4] = np.array([0.4045084971874736, -0.7006292692220369, 0.5877852522924729])
202 reprs[5] = np.array([0.7006292692220369, 0.4045084971874737, -0.5877852522924729])
203
204 if qubits lab == 2:
205 if classes ==
206 raise ValueError('Nonsense classifier')
207 if classes == 1:
208 raise ValueError('Nonsense classifier')
209 if classes ==
210 reprs[0] = np.array([0.29, -0.5, 0.8])
211 reprs[1l] = np.array([-0.29, 0.5, -0.8])
212 if classes == 3:
213 reprs[0] = np.array([1l, 0, 0, 0])
214 reprs[1l] = np.array([0, 1, 0, 0])
215 reprs[2] = np.array([0, 0, 1, O])
216 if classes == 4:
217 reprs[0] = np.array([1, 0, 0, 0])
218 reprs[1l] = np.array([0, 1, 0, O])
219 reprs[2] = np.array([0, 0, 1, O])
220 reprs[3] = np.array([0, 0, 0, 1])
221
222 return reprs
223
224 |def representatives(classes, qubits lab): = |135|def representatives(classes, qubits lab):
225 e 136 e
226 This function creates the label states for the classification task 137 This function creates the label states for the classification task
227 INPUT: 138 INPUT:
228 -classes: number of classes of our problem 139 -classes: number of classes of our problem
229 -qubits lab: how many qubits will store the labels 140 -qubits lab: how many qubits will store the labels
230 OUTPUT: 141 OUTPUT:
231 -reprs: the label states 142 -reprs: the label states
232 e 143 e
233 reprs = np.zeros((classes, 2**qubits lab), dtype = 'complex"') 144 reprs = np.zeros((classes, 2**qubits lab), dtype = 'complex')
234 if qubits lab == 1: 145 if qubits lab == 1:
235 if classes == 146 if classes ==
236 raise ValueError('Nonsense classifier') 147 raise ValueError('Nonsense classifier')
237 if classes == 1: 148 if classes == 1:
238 raise ValueError('Nonsense classifier') 149 raise ValueError('Nonsense classifier')
239 if classes == 2: 150 if classes == 2:
240 reprs[0] = np.array([1, 0]) 151 reprs[0] = np.array([1, 0])
241 reprs[1] = np.array([0, 1]) 152 reprs[1] = np.array([0, 1])
242 if classes == 3: 153 if classes == 3:
243 reprs[0] = np.array([1, 0O]) 154 reprs[0] = np.array([1, 0])
244 reprs[1l] = np.array([1l / 2, np.sqrt(3) / 2]) 155 reprs[1] = np.array([1 / 2, np.sqrt(3) / 2])
245 reprs[2] = np.array([1l / 2, -np.sqrt(3) / 2]) 156 reprs[2] = np.array([1 / 2, -np.sqrt(3) / 2])
246 if classes == 4: 157 if classes == 4:
247 reprs[0] = np.array([1, 0]) 158 reprs[0] = np.array([1, 0])
248 reprs[1l] = np.array([1l / np.sqrt(3), np.sqrt(2 / 3)1]) 159 reprs[1l] = np.array([1l / np.sqrt(3), np.sqrt(2 / 3)1)
249 reprs[2] = np.array([1 / np.sqrt(3), np.exp(lj * 2 * np.pi / 3) * np.sqrt(2 / 3)1) 160 reprs[2] = np.array([1 / np.sqrt(3), np.exp(lj * 2 * np.pi / 3) * np.sqrt(2 / 3)])
250 reprs[3] = np.array([1l / np.sqrt(3), np.exp(-1j * 2 * np.pi / 3) * np.sqrt(2 / 3)1]) 161 reprs[3] = np.array([1 / np.sqrt(3), np.exp(-1j * 2 * np.pi / 3) * np.sqrt(2 / 3)1)
251 if classes == 6: 162 if classes == 6:
252 reprs[0] = np.array([1, 0]) 163 reprs[0] = np.array([1, 0])
253 reprs[1] = np.array([0, 1]) 164 reprs[1l] = np.array([0, 1])
254 reprs[2] = 1 / np.sqrt(2) * np.array([1, 1]) 165 reprs[2] =1 / np.sqrt(2) * np.array([1l, 1])
255 reprs[3] =1 / np.sqrt(2) * np.array([1l, -1]) 166 reprs[3] =1 / np.sqrt(2) * np.array([1l, -1])
256 reprs[4] =1 / np.sqrt(2) * np.array([1l, 1j]) 167 reprs[4] =1 / np.sqrt(2) * np.array([1l, 1j])
257 reprs[5] = 1 / np.sqrt(2) * np.array([1l, -1j]) 168 reprs[5] = 1 / np.sqrt(2) * np.array([1l, -1j])
258 169
259 if qubits lab == 2: 170 if qubits lab == 2:
260 if classes == 0: 171 if classes == 0:
261 raise ValueError('Nonsense classifier') 172 raise ValueError('Nonsense classifier')
262 if classes == 1: 173 if classes == 1:
263 raise ValueError('Nonsense classifier') 174 raise ValueError('Nonsense classifier')
264 if classes == 2: 175 if classes == 2:
265 reprs[0] = np.array([1, 0, 0, 0]) 176 reprs[0] = np.array([1l, 0, 0, 0O])
266 reprs[1] = np.array([0, 0, 0, 1]) 177 reprs[1] = np.array([0, 0, 0, 1])
267 if classes == 3: 178 if classes == 3:
268 reprs[0] = np.array([1l, 0, 0, 0]) 179 reprs[0] = np.array([1l, 0, 0, 0O])
269 reprs[1] = np.array([0, 1, 0, 0]) 180 reprs[1l] = np.array([0, 1, 0, O])
270 reprs[2] = np.array([0, 0, 1, 0]) 181 reprs[2] = np.array([0, 0, 1, 0])
271 if classes == 4: 182 if classes == 4:
272 reprs[0@] = np.array([1, 0, 0, 0]) 183 reprs[0@] = np.array([1, 0, 0, 0])
273 reprs[1] = np.array([0, 1, O, 0]) 184 reprs[1] = np.array([0, 1, 0, 0])
274 reprs[2] = np.array([0, 0, 1, 0]) 185 reprs[2] = np.array([0, 0, 1, 0])
275 reprs[3] = np.array([0, 0, 0, 1]) 186 reprs[3] = np.array([0, 0, 0, 1])
276 187
277 return reprs 188 return reprs
278 +-

Text Compare

1|# coding=utf-8 +-
2 | #HHHAHRHRH AR AR HRH AR AR AR H R A AR AR AR A AR RH AR AR AR R AR = U i i e B L et B B i et B
3|#Quantum classifier 2| #Quantum classifier
4 |#Sara Aminpour, Mike Banad, Sarah Sharif <> 3|#Adrian Pérez-Salinas, Alba Cervera-Lierta, Elies Gil, J. Ignacio Latorre
5| #September 25th 2024 4| #Code by APS
5| #Code-checks by ACL
6|#June 3rd 2019
6 = 7
7 |#School of Electrical and Computer Engineering/ Center for Quantum and Technology, University of Oklahoma, Norman, OK 73019 USA, <> 8
Ol 2
9 | #IMPORTANT NOTE:
10 |#The code on the left was developed by Sara Aminpour, while the code on the right serves as the reference implementation by Adridn
Pérez-Salinas.
11 |#The code on the left has been restructured to handle random data. So some certain sections has been deleted from the reference
code.
12 |#Additionally, our code on the left developed to analyze trace distance cost function and linear classification problem 9|#Universitat de Barcelona / Barcelona Supercomputing Center/Institut de Ciencies del
Cosmos
13| #as well as necessary modification to apply COBYLA, L-BFGS-B, NELDER-MEAD, and SLSQP minimization methods. 10
14 | ###HHHHHHHHHHHHHH SRR = | 11| #HHHHHH R R S
15 12
16 13
17 |## This is an auxiliary file. It provides the tools needed for simulating quantum 14| ## This is an auxiliary file. It provides the tools needed for simulating quantum
18 |# circuits. 15(# circuits.
19 16
20 |import numpy as np 17 |import numpy as np
21| class QCircuit(object): 18| class QCircuit(object):
22 def init (self,qubits): 19 def init (self,qubits):
23 self.num _qubits = qubits 20 self.num _qubits = qubits
24 self.psi = [0]*2**self.num _qubits 21 self.psi = [0]*2**self.num qubits
25 self.psi[0] =1 22 self.psi[0] =1
26 self.E x=0 23 self.E x=0
27 self.E y=0 24 self.E y=0
28 self.E z=0 25 self.E z=0
29 self.r=np.array([0,0,0]) +-
30 =| 26
31 def Ry(self,i,theta): 27 def Ry(self,i,theta):
32 if i>=self.num qubits: raise ValueError('There are not enough qubits"') 28 if i>=self.num qubits: raise ValueError('There are not enough qubits"')
33 C = np.cos(theta/2) 29 C = np.cos(theta/2)
34 s = np.sin(theta/2) 30 s = np.sin(theta/2)
35 for k in range(2**(self.num qubits-1)): 31 for k in range(2**(self.num qubits-1)):
36 S = k%(2*¥*1) + 2*(k - k%(2**i)) 32 S = Kk%(2*¥*1) + 2*(k - k%(2**i))
37 S =S + 2%¥*i 33 S =S + 2%*i
38 a=c*self.psi[S] - s*self.psi[S 1; 34 a=c*self.psi[S] - s*self.psilS 1;
39 b=s*self.psi[S] + c*self.psi[S 1; 35 b=s*self.psi[S] + c*self.psi[S 1;
40 self.psi[S]=a; self.psi[S 1=b; 36 self.psi[S]=a; self.psi[S 1=b;
41 37
42 def Rx(self,i,theta): 38 def Rx(self,i,theta):
43 if i>=self.num qubits: raise ValueError('There are not enough qubits"') 39 if i>=self.num qubits: raise ValueError('There are not enough qubits"')
44 C = np.cos(theta/2) 40 C = np.cos(theta/2)
45 s = np.sin(theta/2) 41 s = np.sin(theta/2)
46 for k in range(2**(self.num qubits-1)): 42 for k in range(2**(self.num qubits-1)):
47 S = k% (2*%*1i) + 2*(k - k%(2**i)) 43 S = Kk%(2*%*i) + 2*(k - k%(2**i))
48 S =S + 2%*i 44 S =S + 2%*i
49 a=c*self.psi[S] - 1j*s*self.psi[S 1; 45 a=c*self.psi[S] - 1j*s*self.psi[S 1;
50 b=-1j*s*self.psi[S] + c*self.psi[S 1; 46 b=-1j*s*self.psi[S] + c*self.psi[S 1;
51 self.psi[S]=a; self.psi[S 1=b; 47 self.psi[S]=a; self.psi[S 1=b;
52 48
53 def U2(self,i,phi,lamb): 49 def U2(self,i,phi,lamb):
54 if i >= self.num qubits: raise ValueError('There are not enough qubits") 50 if 1 >= self.num qubits: raise ValueError('There are not enough qubits")
55 f = np.exp(lj*phi) 51 f = np.exp(1lj*phi)
56 1 = np.exp(-1j*Llamb) 52 1 = np.exp(-1j*Llamb)
57 for k in range(2**(self.num qubits-1)): 53 for k in range(2**(self.num qubits-1)):
58 S = k%(2*¥*1) + 2*(k - k%(2**i)) 54 S = Kk%(2*%*1) + 2*(k - k%(2**i))
59 S =S + 2%*i 55 S =S + 2%*i
60 a=1l/np.sqrt(2)*(self.psi[S] - l*self.psilS 1); 56 a=1l/np.sqrt(2)*(self.psi[S] - l*self.psil[S 1);
61 b=1/np.sqrt(2)*(f*self.psi[S] + f*l*self.psi[S 1); 57 b=1/np.sqrt(2)*(f*self.psi[S] + f*l*self.psi[S 1);
62 self.psi[S]=a; self.psi[S 1=b; 58 self.psi[S]=a; self.psi[S 1=b;
63 59
64 def U3(self, i, theta3): 60 def U3(self, i, theta3):
65 if i >= self.num qubits: raise ValueError('There are not enough qubits") 61 if 1 >= self.num qubits: raise ValueError('There are not enough qubits")
66 C = np.cos(theta3[0] / 2) 62 C = np.cos(theta3[0] / 2)
67 s = np.sin(theta3[0] / 2) 63 s = np.sin(theta3[0] / 2)
68 e phi = np.exp(1lj * theta3[1l] / 2) 64 e phi = np.exp(1lj * theta3[1l] / 2)
69 e phi s = np.conj(e phi) 65 e phi s = np.conj(e phi)
70 e lambda = np.exp(lj * theta3[2] / 2) 66 e lambda = np.exp(lj * theta3[2] / 2)
71 e lambda s = np.conj(e lambda) 67 e lambda s = np.conj(e lambda)
72 +-
73 for k in range(2 ** (self.num qubits - 1)): =| 68 for k in range(2 ** (self.num qubits - 1)):
74 S=k% (2 *1i) +2* (k- k% (2 *1i)) 69 S=Kk% (2 *1i) +2* (k- k% (2**1))
75 S =S+ 2% 7] 70 S =S5+ 2 %k j
76 a=2c¢c*ephi* e lambda * self.psi[S] - s * e phi * e lambda s * self.psi[S 1; 71 a=2c¢c*ephi* e lambda * self.psi[S] - s * e phi * e lambda s *
self.psi[S 1;
77 b=s *e phis * e lambda * self.psi[S] + ¢ * e phi s * e lambda s * self.psi[S 1; 72 b=s * e phis * e lambda * self.psi[S] + ¢ * e phi s * e lambda s *
self.psi[S 1;
78 self.psi[S] = a; 73 self.psi[S] = a;
79 self.psi[S] = b; 74 self.psi[S] = b;
80 75
81 theta f=np.arccos(np.abs(self.psi[S])**2 - np.abs(self.psi[S])**2) - np.pi/2 +-
82 phi f=np.angle(self.psi[S] / self.psi[S])
83 self.r=np.array([np.sin(theta f)*np.cos(phi f),np.sin(phi f)*np.sin(theta f),np.cos(theta f)])
84
85 def Rz(self,i,theta): =] 76 def Rz(self,i,theta):
86 if i>=self.num qubits: raise ValueError('There are not enough qubits") 77 if i>=self.num qubits: raise ValueError('There are not enough qubits"')
87 ex = np.exp(lj*theta) 78 ex = np.exp(lj*theta)
88 for k in range(2**(self.num qubits-1)): 79 for k in range(2**(self.num qubits-1)):
89 S = k% (2*%*1i) + 2*%(k - Kk%(2**i)) + 2**i 80 S = Kk%(2*%*1i) + 2*%(k - k%(2**i)) + 2**i
90 self.psi[S]=ex*self.psi[S]; 81 self.psi[S]=ex*self.psi[S];
91 82
92 def Hx(self,i): 83 def Hx(self,i):
93 if i>=self.num qubits: raise ValueError('There are not enough qubits"') 84 if i>=self.num qubits: raise ValueError('There are not enough qubits"')
94 for k in range(2**(self.num qubits-1)): 85 for k in range(2**(self.num qubits-1)):
95 S = k%(2*%*i) + 2*%(k - k%(2**i)) 86 S = Kk%(2*%*i) + 2*%(k - k%(2**i))
96 S =S + 2%*i 87 S =S + 2%*i
97 a=1l/np.sqrt(2)*self.psi[S] + 1/np.sqrt(2)*self.psi[S 1; 88 a=1/np.sqrt(2)*self.psi[S] + 1/np.sqrt(2)*self.psi[S 1;
98 b=1/np.sqrt(2)*self.psi[S] - 1/np.sqrt(2)*self.psi[S 1; 89 b=1/np.sqrt(2)*self.psi[S] - 1/np.sqrt(2)*self.psi[S];
99 self.psi[S] = a 90 self.psi[S] = a
100 self.psi[S] =D 91 self.psi[S] =D
101 92
102 def Hy(self,i): 93 def Hy(self,i):
103 if i>=self.num qubits: raise ValueError('There are not enough qubits"') 94 if i>=self.num qubits: raise ValueError('There are not enough qubits"')
104 for k in range(2**(self.num qubits-1)): 95 for k in range(2**(self.num qubits-1)):
105 S = k%(2*%*1i) + 2*(k - k%(2**i)) 96 S = Kk%(2*%*i) + 2*%(k - k%(2**i))
106 S =S + 2%*i 97 S =S + 2%*i
107 a =1/np.sqrt(2)*self.psi[S] -1j/np.sqrt(2)*self.psi[S 1; 98 a =1/np.sqrt(2)*self.psi[S] -1j/np.sqrt(2)*self.psi[S 1;
108 b =-1j/np.sqrt(2)*self.psi[S] + 1/np.sqrt(2)*self.psi[S]; 99 b =-1j/np.sqrt(2)*self.psi[S] + 1/np.sqrt(2)*self.psi[S];
109 self.psi[S] = a 100 self.psi[S] = a
110 self.psi[S 1 =D 101 self.psi[S 1 =D
111 102
112 def HyT(self,i): 103 def HyT(self,i):
113 if i>=self.num qubits: raise ValueError('There are not enough qubits"') 104 if i>=self.num qubits: raise ValueError('There are not enough qubits"')
114 for k in range(2**(self.num qubits-1)): 105 for k in range(2**(self.num qubits-1)):
115 S = k%(2*¥*1) + 2*(k - k%(2**i)) 106 S = Kk%(2*%*1i) + 2*(k - k%(2**i))
116 S =S + 2%¥*ji 107 S =S + 2%*i
117 a=1l/np.sqrt(2)*self.psi[S] +1j/np.sqrt(2)*self.psi[S 1; 108 a=1l/np.sqrt(2)*self.psi[S] +1j/np.sqrt(2)*self.psi[S 1;
118 b=1j/np.sqrt(2)*self.psi[S] + 1/np.sqrt(2)*self.psi[S 1; 109 b=1j/np.sqrt(2)*self.psi[S] + 1/np.sqrt(2)*self.psil[S];
119 self.psi[S]=a; self.psi[S 1=b; 110 self.psi[S]=a; self.psi[S 1=b;
120 111
121 def Cz(self,i,j): 112 def Cz(self,i,j):
122 if i>=self.num qubits: raise ValueError('There are not enough qubits"') 113 if i>=self.num qubits: raise ValueError('There are not enough qubits"')
123 if j>=self.num qubits: raise ValueError('There are not enough qubits"') 114 if j>=self.num qubits: raise ValueError('There are not enough qubits"')
124 if i==j: raise ValueError('Control and target qubits are the same') 115 if i==j: raise ValueError('Control and target qubits are the same')
125 if j<i: a=i; i=j; j=a; 116 if j<i: a=i; i=j; j=a;
126 for k in range(2**(self.num qubits-2)): 117 for k in range(2**(self.num qubits-2)):
127 S = Kk%2*¥*1 + (118 S = Kk%2*%*i + (
128 (k- k%2**1)*2)%2%*j + 2%(119 (k- k%2*¥*1)*2)%2%*] + 2%(
129 (k-k%2**1)*2- (2% (k-K%2**1))%2%*j)) + 2%*i + 2%*j. 120 (k-k%2**1)*2- ((2% (k-K%2**1))%2%*j)) + 2%*i + 2%*j;
130 self.psi[S]=-self.psi[S] 121 self.psi[S]=-self.psi[S]
131 122
132 def SWAP(self,i,j): 123 def SWAP(self,i,j):
133 if i>=self.num qubits: raise ValueError('There are not enough qubits"') 124 if i>=self.num qubits: raise ValueError('There are not enough qubits"')
134 if j>=self.num qubits: raise ValueError('There are not enough qubits") 125 if j>=self.num qubits: raise ValueError('There are not enough qubits"')
135 if i==j: raise ValueError('Control and target qubits are the same') 126 if i==j: raise ValueError('Control and target qubits are the same')
136 for k in range(2**(self.num qubits-2)): 127 for k in range(2**(self.num qubits-2)):
137 S = Kk%2*¥*1 + (128 S = Kk%2**1 + (
138 (k- Kk%2*¥*1)*2)%2%*j + 2%(129 (k- k%2*¥*1)*2)%2%*j + 2%(
139 (k-k%2**1)*2- (2% (K-K%2**1))%2**j)) + 2**j; 130 (k-k%2**1)*2- ((2* (k-Kk%2*¥*1))%2**j)) + 2%*j;
140 S =S 4 2¥¥i - 2%*j 131 S =S 4 2¥¥i - 2%*j
141 a=self.psi[S 1 132 a=self.psi[S 1
142 self.psi[S 1 = self.psi[S] 133 self.psi[S 1 = self.psi[S]
143 self.psi[S] = a 134 self.psi[S] = a
144 135
145 136
146 def Cx(self,i,j): 137 def Cx(self,i,j):
147 #1 = control 138 #1 = control
148 #j = target 139 #j = target
149 if i>=self.num qubits: raise ValueError('There are not enough qubits"') 140 if i>=self.num qubits: raise ValueError('There are not enough qubits"')
150 if j>=self.num qubits: raise ValueError('There are not enough qubits") 141 if j>=self.num qubits: raise ValueError('There are not enough qubits"')
151 if i==j: raise ValueError('Control and target qubits are the same') 142 if i==j: raise ValueError('Control and target qubits are the same')
152 for k in range(2**(self.num qubits-2)): 143 for k in range(2**(self.num qubits-2)):
153 S = k%2*¥*1 + (144 S = K%2*¥*1 + (
154 (k- Kk%2*¥*1)*2)%2%*j + 2%(145 (k- k%2*¥*1)*2)%2%*j + 2%(
155 (k-k%2**1)*2- (2% (K-K%2**1))%2**j)) + 2**ji; 146 (k-k%2**1)*2- ((2* (k-Kk%2*¥*1))%2**j)) + 2%*i;
156 S =S + 2%%j 147 S =S 4+ 2%x]
157 v 148 te
158 a=self.psi[S] 149 a=self.psi[S]
159 self.psi[S] = self.psi[S] 150 self.psi[S] = self.psi[S]
160 self.psi[S] = a 151 self.psi[S] = a
161 t 152 t
162 self.psi[S],self.psi[S] = self.psi[S],self.psi[S] 153 self.psi[S],self.psi[S] = self.psi[S],self.psi[S]
163 def Cy(self,i,j): 154 def Cy(self,i,j):
164 if i>=self.num qubits: raise ValueError('There are not enough qubits"') 155 if i>=self.num qubits: raise ValueError('There are not enough qubits"')
165 if j>=self.num qubits: raise ValueError('There are not enough qubits"') 156 if j>=self.num qubits: raise ValueError('There are not enough qubits"')
166 if i==j: raise ValueError('Control and target qubits are the same') 157 if