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Supplementary Note 1: Range of training samples and number of layers 
Figure S1.1 illustrates the performance of a quantum classifier utilizing a fidelity cost function within a five-layer 

framework for circular pattern classification in a fixed dataset, employing the L-BFGS-B optimization method. The 

analysis encompasses training data up to 250 samples to benchmark our algorithm against the findings from the reference 
1. The diagram depicts training accuracy with a blue dashed line and test accuracy with a solid blue line, underscoring 

the algorithm's efficacy. A red dot highlights a notable benchmark from the reference, showing an 89% accuracy with 

200 training samples, demonstrating parity with this published result. The inset provides a visual representation of the 

classification process. Notably, test accuracy begins at approximately 70%, rising impressively to 96% for a slightly 

expanded dataset of 210 samples. Remarkably, with as few as 60 training samples, the model achieves a test accuracy of 

91.8%, and the discrepancy between training and test accuracy diminishes with the inclusion of 90 samples. This 

observation underscores the efficiency of our approach, highlighting its capability to reach high accuracy levels without 

necessitating extensive training data. 



    Figure S1.2 showcases a systematic 

evaluation of a circular pattern classification 

model across a spectrum of architectural depths, 

ranging from 1 to 5 layers. The graphical 

analysis reveals that models with a solitary layer 

lag in performance compared to those with 

increased layer counts, marking a clear trend: as 

the number of layers escalates, so does the 

model's classification accuracy. Specifically, a 

single-layer setup achieves a peak accuracy of 

61.9%, whereas a more complex five-layer 

configuration significantly elevates this metric 

to 88.8%, even when limited to only 35 training 

samples. This observation underscores a critical 

insight—enhancing the model's depth 

systematically improves its predictive 

capabilities, a phenomenon consistent with the 

advantages afforded by the data reuploading 

strategy integral to our approach. Given this 

marked improvement in model efficacy with 

layer augmentation, the paper prioritizes an in-

depth investigation and discourse on the five-

layer model's architecture, focusing on its 

ability to optimize classification accuracy with 

efficient utilization of training data. 

 

Supplementary Note 2: Evaluating 

non-linear and linear classification 

approaches for fidelity cost function 

in fixed and random datasets for 1-

qubit classifier for four different 

minimization methods 

Figure 2 illustrates a comparison of four distinct optimization techniques, namely L-BFGS-B, COBYLA, Nelder-Mead, 

and SLSQP, applied to the task of classifying the circle pattern. The comparison evaluates both training and test 

accuracies using a fixed dataset of 4000 test samples and 5 layers. Initially, all algorithms demonstrate a perfect training 

accuracy of 100% with just a single sample, a result that aligns with expectations. However, as we increase the sample 

size, a divergence in performance becomes evident for these four minimization methods. The L- BFGS-B method 

maintains a training accuracy close to 90%, showcasing its robustness against overfitting. In contrast, COBYLA, Nelder-

Mead, and SLSQP show significant variability and a decline in training accuracy, indicating a susceptibility to overfitting. 

Interestingly, the peak accuracy for COBYLA, Nelder-Mead, and SLSQP is achieved with merely 50 samples, beyond 

which overfitting becomes a significant issue. This observation suggests that, unlike L-BFGS-B, which requires a 

minimum of 100 samples to achieve an accuracy of 92%, the other three methods can attain over 95% accuracy with 

only 50 samples. L-BFGS-B does not reach this high accuracy level at 100 samples, and its performance slightly declines 

with an increase in training samples after 150 training samples. This analysis highlights the critical importance of 

carefully selecting the number of training samples based on the minimization method used. The right choice can 

effectively prevent overfitting, thereby enhancing classification accuracy. This insight is crucial for optimizing machine 

learning models and ensuring their generalizability and efficiency in practical applications. 

 

Figure S1.1  Train and test accuracy of fidelity for the 5-layer 

model of circle classification and fixed dataset for L-BFGS-B 

minimization method. The inset graph shows the visualization of 

a nonlinear classification reported on1. 

 

Figure S1.2.  Evaluate the test accuracy of fidelity for circle 

classification and random dataset for L-BFGS-B minimization 

method, ranging from 1 to 5 layers. 



    Figure 3 delves into the accuracy of these four distinct minimization methods —L-BFGS-B, COBYLA, Nelder-

Mead, and SLSQP— when applied to a fidelity cost function and a random dataset for circle classification. This 

analysis underscores a consistent trend across all methods: an initial increase in test accuracy corresponding to the rise 

in the number of training samples, yet fails to surpass a peak accuracy of 90%. This trend highlights the inherent 

challenges faced by these minimization methods when dealing with random datasets. In the L-BFGS-B method as 

depicted in figure 3(a), showcases a notable performance, achieving its highest test accuracy of 88.8% with 35 training 

samples.  This point also marks the narrowest gap of 5% between training and test accuracy, indicating a relatively 

high level of model efficiency and generalization at this sample size. However, as the analysis progresses, it becomes 

apparent that increasing the number of training samples beyond this optimal point does not translate to improved 

performance. The gap between the train and test accuracy remains notably constant at around 10% even as the sample 

size is increased to 70 training samples. Transitioning to the COBYLA method, as depicted in figure 3(b), a different 

performance pattern emerges. Contrary to L-BFGS-B, COBYLA achieves its best test accuracy at 84.8% with a higher 

training sample equal to 70. This method experiences fluctuations, yet it is noteworthy that the gap between training 

and test accuracies exhibits a decreasing trend, suggesting a gradual improvement in model generalization compared 

to the initial stability seen with L-BFGS-B. Figure 3(c) focuses on the Nelder-Mead method, highlighting a decrease 

in the gap between training and test accuracies as the number of training samples increases, culminating in a maximum 

accuracy of 86.9% with 60 training samples. Figure 3(d) examines the SLSQP method, which shows an increase in 

test accuracy up to 50 training samples before demonstrating a decline in both training and test accuracies. This shows 

the SLSQP method is more prone to overfitting. The SLSQP method reaches a maximum accuracy of 86.7% when 

applied to a dataset of 50 samples. These results, as detailed in figure 6, provide vital insights into the performance of 

various minimization methods when working with a fidelity cost function and a random dataset. The diverse outcomes 

emphasize the importance of choosing an optimal number of training samples to prevent overfitting and enhance 

accuracy. This underlines the delicate balance needed to fully leverage these computational methods in practical 

scenarios. 

    Figure 4 illustrates a comparison of four different optimization techniques applied to the task of classifying line 

patterns, using fidelity-based cost function and the fixed dataset. The subplot (a) focuses on the performance of the L-

BFGS-B method. Here, the training accuracy starts at a perfect 100% and impressively remains above 97% even as the 

number of training samples increases. Conversely, the test accuracy initiates at a relatively lower rate of 62.2% with just 

a single sample yet it progressively improves, reaching approximately 95% accuracy with 75 training samples and slightly 

declines for larger training samples. An initial notable gap between the training and test accuracy is evident, but this gap 

diminishes significantly as the dataset expands with more training data, indicating an improvement in the model's ability 

to generalize from the training to the unseen test data. The subplot (b) depicts the results obtained using the COBYLA 

algorithm, which exhibits a performance pattern similar to that of the L-BFGS-B method, consistently achieving 100% 

accuracy on the training data. The accuracy on the test set starts at 66.9% and steadily improves as more training samples 

are added, ultimately reaching 95% when 125 samples are used for training. The disparity between training and test set 

accuracies mirrors the pattern observed with the L-BFGS-B method, consistently manifesting across all training dataset 

sizes. The Nelder-Mead approach, shown in figure 4(c), achieves a notable test accuracy of 97.7% with 125 training 

samples. The inset provides a graphical visualization of line classification using this minimization method at this specific 

point, illustrating that the line classification performance is exceptionally well. The visualization clearly demonstrates 

the method's effectiveness in accurately separating the data points into distinct classes, highlighting the Nelder-Mead 

method's precision and robustness in handling line classification tasks with a substantial number of training samples. 

Furthermore, the training and test accuracy curves show a notably smaller gap, converging to the same value with training 

sets of 100 and 125 samples. The final subplot (d) evaluates the performance of the SLSQP method, which closely aligns 

with the results from the COBYLA method. The test set accuracy exhibits a progressive increase, rising from 62.7% to 

96.6%. The disparity between the training and test accuracies is similar to that observed with the COBYLA method. In 

summary, all four optimization techniques demonstrate a reduction in overfitting as the training dataset size increases, 

ultimately achieving a test accuracy of at least 95% when training with 125 samples for this line classification task.  



    Figure 5 showcases an analysis of the classification accuracy obtained using the same minimization methods across 

random datasets. Consistently, a rise in the number of training samples correlates with an increase in test accuracy across 

all methods evaluated. Notably, with just 50 training samples, all methods surpass the 90% accuracy threshold. 

Specifically, in figure 5(a), the L-BFGS-B method reaches the peak accuracy of 92.8% with 50 training samples. It was 

observed that as the number of samples increased, the disparity between train and test accuracies for the L-BFGS-B 

method began to narrow, although this gap persisted in being slightly wider than that observed in the other methods. 

Figure 5(b) demonstrates that the COBYLA method, with the same number of samples, attains a superior accuracy of 

93.5%. This suggests that COBYLA not only reaches high classification accuracy with a minimal dataset but also 

demonstrates better generalization compared to L-BFGS-B, as reflected by the narrower gap between its training and test 

accuracies. Figure 5(c) examines the Nelder-Mead method, showing its peak accuracy of 93% with 40 training samples, 

after which its accuracy slightly declines. Interestingly, the smallest disparity between training and test accuracies—only 

1.8%—occurs in 50 training samples. Despite slightly lower accuracy at this point, this smallest gap signifies that the 

Nelder-Mead method achieves a remarkable balance between learning from the training data and generalizing to unseen 

data, highlighting its efficiency and potential for precise model tuning. Figure 5(d) illustrates that the SLSQP method 

achieves an impressive peak test accuracy of 96.4% for line classification using a random dataset, attained with 45 

training samples. At this juncture, the discrepancy between training and test accuracies is notably small, indicating a high 

level of model precision and generalization. Like the Nelder-Mead method, the SLSQP method exhibits a nonmonotonic 

increment in test accuracy as a function of training samples, as indicated by the irregular slope of test accuracy. This 

fluctuation suggests that for these methods, adding more training samples does not straightforwardly translate to higher 

test accuracies, highlighting the complexity of optimizing model performance across different minimization techniques. 

    A comparison of figures 2 and 4 reveals that the accuracy curves for line classification are more stable and consistent 

across all optimization techniques when compared to those for circle classification. The accuracy values for classifying 

circle patterns display greater variability and fluctuations than those observed in the line classification task. The 

observed differences in performance between circle and line classification could stem from several technical factors: 

(1) Line classification likely represents a more straightforward pattern that aligns better with the linear decision 

boundaries most classifiers are adept at identifying. In contrast, circle classification involves recognizing more 

complex, non-LCP, which can challenge the classifiers’ ability to generalize from the training data without overfitting 

or underfitting. (2) The algorithms applied for circle classification might be more prone to getting trapped in local 

minima due to the more intricate decision boundaries required to accurately classify circular patterns. This can hinder 

the optimization process, leading to increased fluctuations in classification accuracy as the model struggles to find the 

global optimum. (3) The differences in performance may also reflect the inherent adaptability of the algorithms to the 

specific types of classification tasks with the geometric properties. A comparative analysis of Figures 6 and 8 indicates 

that the specific characteristics of the classification problem significantly affect the potential to attain higher accuracy 

with fewer samples. The fluctuations in the line classification pattern are less pronounced than those in the circle 

classification pattern. This observation underscores the importance of selecting appropriate optimization methods 

based on the complexity of the classification problem. 

Supplementary Note 3: Evaluating non-linear and linear classification approaches for trace 

distance cost function in fixed and random datasets for 1-qubit classifier 

Figure 6 showcases the effectiveness of the trace distance cost function in classifying circular patterns within a fixed 

dataset. In subplot (a), the L-BFGS-B minimization method achieves its highest test accuracy at 79.2% with a dataset 

comprising 100 training samples. Subplot (b) examines the performance of the COBYLA method, which displays greater 

variability in training accuracy than L-BFGS-B but ultimately achieves a higher peak test accuracy of 84.6%, also with 

100 training samples. Notably, COBYLA demonstrates enhanced generalization capabilities relative to other methods, 

as indicated by the narrower margin between its training and testing accuracies. This performance suggests that, when 

applied alongside the trace distance cost function, the COBYLA method is particularly adept at optimizing parameters 

for improved generalization to unseen testing data. An accompanying visualization within the inset illustrates the 

classification of circular patterns at this accuracy peak. In subplot (c), the analysis shifts to the performance of the Nelder-

Mead method, which records its optimal test accuracy at 72.6% utilizing 60 training samples. This method exhibits signs 



of overfitting, a condition where the model learns the training data too closely and fails to generalize well to new, unseen 

data. Despite a narrowing gap between training and testing accuracies as the number of training samples grows, a 

concurrent decline in training accuracy is observed, which adversely affects the overall test accuracy. This pattern 

suggests a limitation in the Nelder-Mead method's capacity to effectively handle the trace distance cost function, likely 

due to its inherent characteristics such as reliance on simplex-based optimization, which might struggle with the 

complexity of the trace distance landscape. Consequently, this method appears less suited for tasks requiring robust 

generalization from the trace distance cost function, particularly in scenarios demanding accurate classification of 

complex patterns with a limited dataset. In subplot (d), the focus turns to the SLSQP method which attains its peak test 

accuracy at 83.6% with a dataset of 100 training samples. The disparity between training and testing accuracy contracts 

by increasing the training samples, indicating an improvement in the model's ability to generalize from the training to the 

testing dataset. However, even at the point of 100 training samples, the gap between training and testing accuracies, while 

reduced, remains significant. This persistent gap suggests that while the SLSQP method is effective at learning and 

generalizing from the given data, there is still a margin for optimization to further bridge the difference in accuracies.  

Each optimization technique successfully minimizes the cost function and attains perfect accuracy on the training set 

using a comparatively small number of samples. However, their performance varies considerably when it comes to 

generalizing to the test set. This highlights the crucial role played by the choice of optimization algorithm in determining 

the overall effectiveness of the model. In conclusion, when considering the fixed dataset and the trace distance cost 

function, the COBYLA method demonstrates superior performance in optimizing the parameters to generalize effectively 

to unseen test data. Compared to the other techniques evaluated, it necessitates fewer training samples to achieve 

satisfactory accuracy on the test set. 

Figure 7 illustrates how the accuracy on both the training and test sets evolves as the number of training samples 

grows, specifically for the task of classifying circular patterns using the trace distance cost function, evaluated on a 

randomly generated dataset. Similar to all scenarios analyzed so far, a common pattern emerges where test accuracy 

begins at a relatively low level for all minimization methods but demonstrates a consistent increase as more training 

data is provided. This trend highlights the methods' capacity to effectively learn distinguishing features, thereby 

enhancing their ability to generalize to unseen data. Specifically, in subplot (a), the L-BFGS-B method illustrates 

impressive learning efficiency, with test accuracy exceeding 70% after incorporating just 40 training samples and 

achieving its highest test accuracy of 77.8% with 45 training samples. In subplot (b), the COBYLA method's 

performance is slightly lower compared to L-BFGS-B, plateauing at a test accuracy of 72.8% with 45 training samples. 

This performance indicates that while COBYLA may be susceptible to some degree of overfitting, it nonetheless 

achieves a reasonable level of generalization. Subplot (c) explores the Nelder-Mead method, which reaches its peak 

test accuracy of 75.1% with 50 training samples. Subplot (d) utilizes the SLSQP method, which shows fluctuations in 

its training accuracy remaining above 80%. The test accuracy for SLSQP was enhanced significantly, reaching 74.6% 

with 50 samples. This fluctuation and eventual rise in test accuracy underscores the method's potential for optimizing 

classification tasks, despite the initial variability. In sum, the L-BFGS-B method stands out for achieving the highest 

test accuracy among the methods evaluated, requiring only 45 training samples to reach this optimum on a random 

dataset. Summarily, employing the trace distance cost function across these various minimization strategies yields test 

accuracy ranging from 65% to 78% on the random dataset, illustrating the function's effectiveness and the distinct 

performance capabilities of each minimization method. 

    Figure 8 offers a comparative analysis of the accuracy achieved by four different optimization methods when applied 

to a trace distance cost function for line pattern classification using a fixed dataset. Subplot (a) highlights the L-BFGS-B 

method, showcasing its high level of stability in training accuracy. The test accuracy shows a steady increase, reaching 

91.8% with 100 training samples.  While there is a substantial gap between the accuracies of the training and test sets at 

the outset, this difference gradually narrows as more training samples are introduced. This highlights the L-BFGS-B 

method's capacity to adapt and learn more complex patterns effectively, demonstrating robustness and in leveraging 

larger datasets for improved generalization. The subplot (b) illustrates the results obtained using the COBYLA method. 

In contrast to the L-BFGS-B approach, the accuracy of the training set shows greater fluctuations, even experiencing a 

drop to 56.9% at one instance before rebounding. The test accuracy follows a similar pattern to that seen in L-BFGS-B, 



beginning at 49.8% and increasing to 87.4%. Once the training set size reaches 80 samples, both the training and test 

accuracies seem to reach a plateau, slightly below the 90% mark. In subplot (c), the Nelder-Mead method starts with a 

modest test accuracy of 55.3%, which significantly improves to 87% with the addition of 60 training samples 

demonstrating a similar trend as the L-BFGS-B method. Initially, a pronounced gap exists between training and test 

accuracies, which persists until the dataset is expanded to include 80 training samples. Beyond this point, the sign of 

overfitting emerges, as demonstrated by a decline in training accuracy while test accuracy plateaus. For 100 training 

samples, the test accuracy interestingly becomes 2% higher than the training accuracy, indicating a unique inversion 

where the model performs slightly better on unseen data than on the training set itself, a rare occurrence that may suggest 

the model has reached a point of optimization where it generalizes exceptionally well to new data.  The subplot (d) of 

figure 11 presents the results of the SLSQP method. Notably, this technique achieves the highest accuracy on the test set, 

reaching 93.3% using just 40 training examples. The SLSQP method appears to be the most appropriate choice for trace 

distance classification tasks, as it exhibits a smaller discrepancy between its performance on the training and test datasets. 

The inset provides a visual representation of the SLSQP's performance at this specific point. To summarize, all 

optimization methods demonstrate an upward trajectory in test accuracy as the size of the training dataset increases, 

suggesting enhanced generalization capabilities of the model. Among the four techniques evaluated, the SLSQP method 

seems to strike the most favorable balance between its performance on the training and test sets.  

    Figure 9 presents a comparison of different optimization techniques when applied to the task of classifying line pattern 

using a randomly generated dataset and a cost function based on trace distance. In subplot (a), we examine the 

performance of the L-BFGS-B method, which attains its peak test accuracy of 86.3% with 55 training samples. Before 

reaching this point, the method's test accuracy demonstrated considerable variability, oscillating between 70% and 80% 

as the number of training samples ranged from 20 to 50. However, a notable improvement occurs when the dataset is 

expanded to 55 training samples, at which the test accuracy leaps to 86.3%, effectively surpassing the earlier fluctuation 

band. This pivotal moment also marks the occurrence of the smallest gap between training and test accuracies, 

showcasing a significant enhancement in the model's ability to generalize from the training dataset to unseen data, thereby 

achieving an optimal balance at this specific training sample size. Subplot (b) delves into the efficacy of the COBYLA 

optimization method, which achieves its highest test accuracy of 86.8% with a relatively smaller dataset of 35 training 

samples. Beyond this optimal threshold, signs of overfitting become apparent, as both training and test accuracies start 

to decline. This pattern suggests that while the COBYLA method is highly effective up to a certain point, adding more 

training samples beyond this number paradoxically hampers the model's performance. The decline in accuracy indicates 

that the model begins to memorize the training data rather than learning to generalize, leading to a decrease in its ability 

to accurately predict outcomes on unseen data. This observation underscores the importance of identifying the ideal 

number of training samples to maximize the effectiveness of the COBYLA method without crossing into the territory of 

overfitting. In subplot (c), the focus is on the Nelder-Mead optimization method, which shows some fluctuations in 

performance before reaching its maximum test accuracy. It successfully achieves a test accuracy of 88.1% with 40 

training samples. However, akin to the pattern observed with the COBYLA method, the Nelder-Mead method also sees 

a decline in both training and test accuracies when additional training samples are added beyond this optimal number. 

This decline serves as a clear indication of the onset of overfitting, suggesting that while the Nelder-Mead method can 

efficiently utilize a certain number of training samples to improve its predictive accuracy, exceeding this number leads 

to a reduction in model performance. In subplot (d), a more continuous and stable increase in test accuracy is observed 

with each increase in the number of training samples. This trend results in the highest test accuracy being recorded at 

88.3% with 55 training samples. Unlike the previous methods discussed, this subplot suggests a method that maintains 

its efficiency and ability to generalize well without showing immediate signs of overfitting up to this point. The gradual 

and consistent improvement in test accuracy highlights the method's effective learning curve and suggests an optimal 

balance between learning from the training data and applying this knowledge to unseen data. 

 

 



Supplementary Note 4: performance comparison of 5-Layer single-qubit quantum classifiers 

using fidelity and trace distance cost functions across various classification tasks and dataset 

types 

    Figure S4.1 offers a comparative analysis of the highest accuracies achieved for two distinct classification patterns – 

linear (line) and non-linear (circle) – across the four distinct minimization methods when applied to both random and 

fixed datasets within the context of a fidelity cost function. The analysis reveals a notable trend: in circle classification 

tasks, the fixed dataset consistently yields higher accuracies than their random counterparts for all tested minimization 

methods. This suggests that the inherent geometric complexities of non-LCP may align more closely with the simpler 

structure of fixed datasets, thereby facilitating more accurate classification.  Similarly, for line classification, the fixed 

dataset leads to enhanced accuracies with the L-BFGS-B and SLSQP methods, indicating these methods' effectiveness 

in leveraging structured data to accurately discern linear 

relationships. However, the random dataset achieves better 

accuracy when classified using the Nelder-Mead method. 

This could suggest that the Nelder-Mead method, known for 

its simplicity and direct search approach, might be 

particularly adept at navigating the stochastic nature of 

random datasets to identify linear patterns. Across all 

algorithms, the task of classifying non-LCP, especially 

within random datasets, emerges as inherently challenging. 

This complexity likely stems from the algorithms' varying 

abilities to parse and learn from the unpredictable variance 

found in random datasets, as well as the added difficulty of 

accurately modeling non-linear relationships. The findings 

underscore the critical importance of selecting the 

appropriate minimization method based on the dataset's 

nature and the classification task's geometric complexity to 

optimize classification accuracy. 

    Figure S4.2 provides the performance comparison of two 

distinct classification patterns—line and circle—across four different minimization methods when applied to both 

random and fixed datasets, this time employing the trace distance cost function. A pivotal observation emerges when 

comparing the performance of circle classification with a 

fixed dataset (circle/fixed) against the fidelity cost function 

results presented in figure S4.1. It is evident that the 

accuracies achieved using the trace distance cost function are 

notably lower across all minimization methods compared to 

those obtained with the fidelity cost function. This 

discrepancy highlights the inherent challenges and 

differences in how each cost function interacts with the 

underlying data and the classification task at hand. The trace 

distance cost function, known for quantifying the 

distinguishability between quantum states, may present a 

more complex landscape for optimization, particularly when 

applied to classical data patterns such as lines and circles. 

This complexity could lead to lower classification accuracy 

as the minimization methods struggle to navigate the nuances 

of the trace distance landscape effectively. Such an 

observation underscores the importance of cost function 

selection in machine learning tasks, emphasizing that the 

 

Figure S4.2.  Evaluating of trace distance test 

accuracy of 5-layer model across 50 samples for 

LCP and non-LCP problems for random and fixed 

datasets in four minimization methods. 

 

 

 

 

Figure S4.1.  Evaluating of Fidelity cost function  

test accuracy of 5-layer model across 50 samples for 

LCP and non-LCP problems for random and fixed 

datasets in four minimization methods. 

 

 

 



choice of cost function can significantly impact the model's ability to learn and generalize from the data. The comparative 

analysis in figure S4.2 serves as a testament to the nuanced interplay between cost functions, dataset types (fixed vs. 

random), and the geometric nature of the classification patterns, offering valuable insights into optimizing classification 

accuracy through strategic method and cost function selection. 

    In addition, the fixed dataset achieves superior accuracy specifically when employing the COBYLA minimization 

method, indicating a unique synergy between COBYLA's optimization strategy and the structured nature of fixed datasets 

for LCP. Conversely, for the random dataset, there's a notable trend where it consistently outperforms the fixed dataset 

across all other minimization methods, suggesting that the stochastic characteristics of random datasets may be better 

suited to the optimization landscapes these methods navigate, particularly for LCP. In circle classification tasks, the 

random dataset not only demonstrates improved accuracy over the fixed dataset for all minimization methods but also 

reinforces the observation that random datasets generally offer a more favorable context for the trace distance cost 

function across both classification patterns. This enhancement in accuracy with random datasets could be attributed to 

the trace distance cost function's sensitivity to the variances within the dataset, allowing for more effective differentiation 

and classification of non-LCP like circles when the data is less predictable. 

Supplementary Note 5: Evaluating non-linear and linear classification approaches for 

fidelity in fixed and random datasets for 2-qubit and 2-qubit entangled classifiers  

Focusing on figure 10(a), we observe the performance of a single-qubit system applied to a LCP pattern. The system 

demonstrates a steep initial learning curve, with accuracy rapidly increasing from 51.6% to 92% after just 75 training 

samples. This sharp rise highlights the single-qubit system's ability to efficiently learn and generalize from a relatively 

small dataset. The notable jump in accuracy suggests that a properly trained single-qubit classifier can capture the 

essential features of the LCP task with high precision. After reaching 92% accuracy at 75 training samples, the system 

stabilizes, maintaining a test accuracy consistently in the range of 92% to 97.7% as the training sample size increases 

to 125. The minimal fluctuation in accuracy indicates a robust performance, with the single-qubit system effectively 

avoiding overfitting even as the training data expands. The stable test accuracy underscores the system's reliability 

and suitability for LCP tasks where computational simplicity and consistent performance are crucial. In terms of 

computational cost, as shown in figure 1(d), the single-qubit system exhibits a gentle increase in computational time, 

reaching 62.15 seconds for 250 training samples. This computational efficiency, coupled with the system's stable 

accuracy, makes the single-qubit classifier an appealing option for linear problems, particularly in scenarios where 

computational resources are limited but high accuracy is still required. 

In figure 10(b), the performance of the 2-qubit classifier in a LCP task shows a more gradual improvement in accuracy 

compared to the single-qubit system. The initial accuracy is relatively high, starting at 73.2% with just one training 

sample, which suggests that the additional qubit provides a more robust representation of the problem space even with 

minimal training. As the number of training samples increases to 75, the accuracy rises steadily, reaching 94.1%. This 

gradual improvement, as opposed to the sharp jump seen in the single-qubit system, highlights the ability of the 2-

qubit classifier to build on its already strong initial performance with increasing training data. Beyond 50 training 

samples, the 2-qubit classifier continues to demonstrate incremental gains, eventually peaking at around 95.7% test 

accuracy with 175 training samples. Notably, the test accuracy fluctuates between 92% and 96% throughout this range, 

suggesting that while the system performs consistently well, there are slight variations in how the test data is classified 

as more training samples are introduced. These fluctuations could indicate that the system is sensitive to the nature of 

the training data or potentially approaching the limits of its capacity for linear classification. From a computational 

perspective, shown in Figure 1(e), the 2-qubit classifier exhibits a significant increase in computational time as the 

number of training samples grows. By the time the training sample size reaches 250, the computational time extends 

to around 260 seconds. This is a sharp contrast to the single-qubit system, illustrating the tradeoff between the 

enhanced accuracy and robustness offered by the 2-qubit classifier and the increased computational demands. For LCP 

tasks, this suggests that while the 2-qubit classifier provides higher initial accuracy and steady performance 

improvements, it comes at the cost of a much higher computational burden, making it potentially less suitable for 

scenarios where time or resources are constrained. 



Examining figure 10(c), the performance of the 2-qubit entangled classifier in a LCP task reveals a distinctive pattern 

when compared to non-entangled systems. The initial accuracy is relatively low, starting at 51.3% with just one 

training sample. This suggests that the entanglement introduces complexities that make the system less effective in 

identifying patterns from very limited data. However, as the number of training samples increases to 75, the system 

exhibits a steep improvement in accuracy, reaching 93.3%. This rapid climb indicates that while the entangled system 

may struggle with very small datasets, it quickly capitalizes on additional training samples to enhance its classification 

performance. As the training samples continue to increase beyond 75, the 2-qubit entangled classifier shows notable 

fluctuations in accuracy, ranging between 88% and 97.5%. These fluctuations, which are more pronounced than those 

seen in the single-qubit or non-entangled 2-qubit classifier, suggest that entanglement introduces both benefits and 

challenges. On one hand, the system achieves the highest peak accuracy (97.5%) among all three systems, 

demonstrating its potential for superior performance. On the other hand, the variability in test accuracy highlights the 

sensitivity of the entangled system to the training data, possibly indicating overfitting or instability when processing 

larger datasets. In terms of computational cost, as shown in figure 10(f), the 2-qubit entangled classifier mirrors the 

trend seen in the non-entangled 2-qubit classifier, with computational time increasing significantly as the number of 

training samples rises. At 250 training samples, the computational time reaches 260 seconds, similar to the non-

entangled classifier. Despite this computational burden, the 2-qubit entangled classifier offers a potential advantage in 

terms of peak accuracy, making it a compelling choice for applications where achieving the highest possible accuracy 

is paramount, even if it comes with the tradeoff of greater computational complexity and variability in performance. 

In comparing the classifier, we observe clear tradeoffs between simplicity, stability, and computational complexity. 

The single-qubit classifier is the most stable and computationally efficient but may not reach the same peak accuracies 

as the more complex systems. The 2-qubit classifier offers higher initial accuracy and consistent improvement but 

requires significantly more computational resources. Finally, the 2-qubit entangled system, while achieving the highest 

peak accuracy, also introduces greater instability and computational demands, making it best suited for scenarios 

where peak performance is the priority, and computational cost is less of a concern. Ultimately, the choice of system 

depends on the specific requirements of the classification task, such as whether stability, computational efficiency, or 

peak accuracy is the primary objective. 

    Figure 11 presents a comprehensive analysis of two quantum classifiers - a 2-qubit classifier and a 2-qubit entangled 

classifier for non-LCP. The results are displayed across six subplots, labeled (a) through (f), which provide insights 

into the performance and characteristics of these classifiers under various conditions. Subplots (a) and (b) show the 

train and test accuracies as a function of the number of training samples for the 2-qubit and the 2-qubit entangled 

classifiers, respectively. In both cases, we observe that the accuracies generally improve as the number of training 

samples increases. However, the 2-qubit classifier (a) shows higher initial test accuracy, 73.5%, and a more stable 

performance across different sample sizes. The 2-qubit entangled classifier (b) starts with lower test accuracy, 47.6% 

but shows significant improvement as the sample size increases. Both classifiers seem to converge in terms of train 

and test accuracy around 175 training samples, which explains why this number was chosen for subsequent analyses. 

Subplots (c) and (d) illustrate how the number of layers in the quantum circuit affects the accuracies of the classifiers 

for a specific number of training samples. For the 2-qubit classifier (c), we see a general upward trend in both train 

and test accuracies as the number of layers increases, with some fluctuations. The 2-qubit entangled classifier (d) 

shows a more pronounced improvement with increasing layers, especially in the early stages. Both classifiers appear 

to reach a plateau in performance after about 12-15 layers, suggesting that further increases in circuit depth may not 

yield significant improvements. Subplots (e) and (f) depict the computational time required as the number of layers 

increases for the 2-qubit and the 2-qubit entangled classifiers, respectively. Both show a clear exponential growth in 

computational time as the number of layers increases. This trend is consistent across both classifiers, indicating that 

the computational cost scales similarly regardless of whether entanglement is used. Comparing the classifiers overall, 

we can see that the 2-qubit classifier generally achieves higher accuracies with fewer training samples and maintains 

more consistent performance across different numbers of layers. The 2-qubit entangled classifier, while starting with 

lower accuracy, shows more dramatic improvements as both the number of training samples and layers increase. This 



suggests that entanglement might provide additional expressive power to the classifier, allowing it to capture more 

complex patterns in the data as the circuit depth increases. However, this potential advantage comes at the cost of 

increased sensitivity to the number of training samples and layers, as evidenced by the more volatile accuracy curves 

in subplots (b) and (d). The computational time plots (e) and (f) remind us that increasing the number of layers quickly 

becomes computationally expensive for both classifiers, which is an important consideration in practical applications. 

In conclusion, these results provide valuable insights into the trade-offs between accuracy, circuit complexity, and 

computational cost for quantum classifiers, highlighting the potential benefits and challenges of using entanglement 

in quantum machine learning tasks. 

Figure 12 presents a comparative analysis of four optimization algorithms (COBYLA, L-BFGS-B, NELDER MEAD, 

and SLSQP) applied to a LCP using a quantum circuit with 2 qubits. The experiment uses a random dataset with 250 

training samples and employs a fidelity cost function to measure the performance. The figure includes subplots 

depicting accuracy and computational time for both 2-qubit and 2-qubit entangled classifiers. In terms of accuracy, 

both training and test accuracies are generally high across all algorithms. However, there are subtle differences 

between the algorithms. As shown in figure 12(a), for the 2-qubit entangled classifier, the average test accuracy is 

approximately 2% higher than the 2-qubit non-entangled classifier. In terms of individual performance, the L-BFGS-

B minimization method consistently achieves the highest test accuracy, reaching 96.3% for non-entangled and 97% 

for entangled classifiers. The overall variation in test accuracy between the highest and lowest performing algorithms 

is 2.3%. For 2-qubit non-entangled classifier, COBYLA exhibits the lowest test accuracy at 94%, while for 2-qubit 

entangled classifier, NELDER MEAD achieves the lowest test accuracy of 95.3%. Computational time analysis 

reveals interesting patterns across both classifiers. In figure 12(c) the 2-qubit classifier, computational time varies 

widely from 9 to 90 minutes. COBYLA stands out as the fastest method, completing the task in just 9 minutes, while 

L-BFGS-B and NELDER_MEAD are the most time-consuming at 90 and 89 minutes respectively. SLSQP occupies 

a middle ground, requiring 45 minutes. In figure 12(d) the 2-qubit entangled classifier generally shows improved 

computational efficiency. While COBYLA maintains its swift performance at 9 minutes, other methods see reduced 

execution times. Most notably, L-BFGS-B improves from 90 to 71 minutes, a significant reduction, while 

NELDER_MEAD and SLSQP methods remain at 87 and 44 minutes respectively. In conclusion, this analysis reveals 

that the 2-qubit entangled classifier generally outperforms the 2-qubit non-entangled classifier in both accuracy and 

computational efficiency. The L-BFGS-B method consistently provides the highest accuracy, albeit at a higher 

computational cost. COBYLA emerges as a well-balanced option, offering good accuracy with minimal computational 

time, particularly in the 2-qubit entangled classifier. These findings underscore the significant impact of minimization 

method selection on both accuracy and computational time in quantum machine learning tasks. Furthermore, the 2-

qubit entangled classifier's closer alignment of train and test accuracies suggests enhanced generalization capabilities, 

a crucial factor in practical machine learning applications. 

    Figure 13 shows a comprehensive comparison of different optimization methods for non-LCP using both 2-qubit 

and 2-qubit entangled classifiers for a specific random dataset. This analysis encompasses four optimization 

techniques: COBYLA, L-BFGS-B, NELDER_MEAD, and SLSQP, evaluating their performance based on accuracy 

and computational time for 250 number of training samples. In the accuracy graphs (a) and (b), we observe distinct 

performance patterns between the 2-qubit and 2-qubit entangled classifiers. For the 2-qubit classifier, L-BFGS-B 

demonstrates the highest accuracy, with both train and test accuracies exceeding 90%. COBYLA shows the lowest 

performance, with a test accuracy of 76.7% and train accuracy 81.4%. NELDER_MEAD and SLSQP exhibit 

intermediate performance, with test accuracies in the 82-87% range. The 2-qubit entangled classifier, depicted in graph 

(b), shows overall improved accuracy across all methods. L-BFGS-B maintains its superior performance, while 

COBYLA shows significant improvement, reaching accuracies to 85.4%. Notably, the gap between train and test 

accuracies is generally smaller in the 2-qubit entangled classifier, suggesting better generalization. The computational 

time graphs (c) and (d) reveal interesting efficiency patterns. In the 2-qubit classifier, COBYLA is the fastest method, 

requiring only 9 minutes. L-BFGS-B, despite its high accuracy, is the most time-consuming at 130 minutes. 

NELDER_MEAD takes 89 minutes, while SLSQP requires 45 minutes. The 2-qubit entangled classifier (graph d) 



shows generally reduced computational times. COBYLA remains the fastest, maintaining its 9-minute runtime. L-

BFGS-B shows the most dramatic improvement, reducing its time to 81 minutes. Interestingly, NELDER_MEAD in 

the 2-qubit entangled classifier takes slightly longer than L-BFGS-B, at 88 minutes. SLSQP maintains a consistent 

performance of about 42 minutes in both systems. These results highlight the trade-offs between accuracy and 

computational efficiency in quantum machine learning tasks. The 2-qubit entangled classifier demonstrates superior 

performance in both accuracy and computational time across all methods. L-BFGS-B consistently provides the highest 

accuracy but at a higher computational cost, especially in the 2-qubit classifier. COBYLA emerges as a balanced 

option, offering good accuracy with minimal computational time, particularly in the entangled system. This analysis 

underscores the importance of choosing appropriate optimization methods and leveraging entanglement to enhance 

the performance of quantum classification tasks. 

Supplementary Note 6: Method 

Quantum computing manipulates quantum systems to enhance information processing, leveraging superposition to 

simultaneously operate on multiple states for faster and more complex computation. At its core is the qubit, represented 

in a two-dimensional Hilbert space, with operations governed by quantum gates. These gates, essential for altering 

quantum states, must be unitary to ensure the conservation of probability, a fundamental principle of quantum dynamics2. 

    The framework of a quantum circuit unfolds in three key phases: encoding classical data into quantum format, 

manipulating the quantum state using quantum gates, and measuring the quantum state post-transformation. This process 

transitions from preparing an initial quantum state, through strategic alterations via quantum gates affecting computation 

outcomes, to a final probabilistic measurement—distinguishing quantum computing's potential and challenges from 

deterministic classical computing. 

    Achieving optimal performance in quantum computing requires a nuanced understanding of these phases, including 

the initial state preparation, the strategic selection and application of quantum gates, and the final measurement process. 

Each component must be meticulously optimized to perform specific tasks, such as classification, highlighting the 

intricate interplay between quantum mechanics and computational logic in the design and execution of quantum 

algorithms. 

A. RE-UPLOADING CLASSICAL INFORMATION AND PROCESSING 

The integration of classical information into quantum computing represents a groundbreaking approach to data 

processing and analysis. This process begins with the strategic encoding of data into the initial wave function’s 

coefficients within a quantum circuit3. In simpler terms, data is initially uploaded through the manipulation of qubits via 

rotational operations on a computational basis. This foundational step sets the stage for executing sophisticated quantum 

algorithms, including those designed for classification tasks. 

    The most successful programming paradigm in machine learning is predicated on artificial neural networks, which 

represent a highly abstracted and simplified model inspired by the human brain 4. An artificial neural network comprises 

interconnected units or nodes known as artificial neurons, often arranged in layers 5. These networks are characterized 

by their diverse architectures and the ability to learn from data through the adjustment of a vast network of parameters 

during the training phase. Among the various types of neural networks, feed-forward neural networks exemplify the 

process of sequential data processing, where input data is transformed layer by layer, simulating a form of data re-

uploading at each neuron. This mechanism of data re-uploading and processing in ANNs provides a parallel to the 

innovative approach of constructing a universal quantum classifier using a single qubit. The essence of this quantum 

computing strategy lies in the repeated introduction of classical data at different stages of computation, analogous to the 

data processing in a single hidden layer neural network. This process can be visualized diagrammatically, as shown in 

figure 14 in the main paper. the neural network architecture is depicted, where data points are fed into individual 

processing units, analogous to neurons within the hidden layer. These neurons collectively process these input data, 

culminating in the activation of a final neuron responsible for constructing the output for subsequent analysis. Similarly, 

in the quantum domain, the single-qubit classifier incorporates data points into each stage of the computation through 

unitary rotations. These rotations are not isolated; rather, each one builds upon the transformations applied by its 

predecessors, effectively integrating the input data multiple times throughout the computation. The culmination of this 

process is a quantum state that encapsulates the computational outcome. 

    To construct a universal quantum classifier with only a single qubit, a complex integration of data input and 

computational processing within a single quantum circuit is crucial. We achieve this objective through the deployment 

of parametrized quantum circuits (PQCs). In these circuits, certain rotational angles are meticulously adjusted based on 



classical parameters, which are refined through an optimization process aimed at minimizing a specifically defined cost 

function. 

    The cost function plays a pivotal role in the operational efficacy of the quantum classifier. It quantitatively assesses 

the circuit's performance in segregating data points into distinct categories, which are represented as separate regions on 

the Bloch sphere. Each of these regions corresponds to a different class, and the classifier's goal is to assign data points 

to the correct class based on their features. 

B. Dataset Generation Methodology 

In this section, we provide a detailed and standardized description of how both fixed and random datasets were 

constructed and evaluated throughout the study. 

• Sampling Distribution and Dimensionality: 

All data points were sampled independently and uniformly from the interval [−1,1]2, corresponding to the two-

dimensional input space used in all classification problems. The sampling was performed using np.random.rand(2) and 

scaled via the transformation 𝑥 ↦ 2𝑥 − 1 to ensure full coverage of the [−1,1] range along both axes. 

• Class Balance and Geometric Design: 

We carefully selected geometric parameters to maintain balanced class distributions. In the circle classification task (non-

LCP), we used a radius of 𝑟 = √(2/𝜋) such that the area inside and outside the circle is equal, yielding a 50/50 class 

distribution. For the linear classification task (LCP), we defined the decision boundary as x1=x2, which symmetrically 

divides the domain [−1,1]2 and likewise ensures class balance by design. 

• Reproducibility and Standardization: 

To ensure consistency across experiments, we fixed the random seed at 30 for all fixed dataset runs. The training set sizes 

varied from 1 to 200 samples depending on model complexity, while each test set consisted of 4000 uniformly sampled 

points. For randomized datasets, we deliberately omitted the use of a fixed seed, ensuring that each of the 20 iterations 

generated a new sample set from the same distribution. This approach allowed us to test the classifier’s generalization 

ability and robustness under different data realizations. Accuracy and runtime were averaged across these 20 independent 

runs to obtain statistically meaningful results. 

• Dataset Types and Parameters: 

We focused on two primary classification tasks: (1) a line, representing linear separability (LCP), and (2) a circle, 

representing a basic non-linear separability case (non-LCP). These were chosen as fundamental and interpretable decision 

boundaries to evaluate the baseline performance of the quantum classifiers. All geometric parameters, such as the radius 

for non-LCP and the slope/intercept for LCP, were held fixed across all trials to ensure consistency and enable fair 

comparison across circuit designs and optimization methods. 

C. Applying Cost Functions 

In the realm of quantum computing, a quantum circuit is distinguished by its processing angles  and associated weights 

, leading to the generation of a final state . The measurement outcomes from this state are used to compute a 

classification error metric, defined as . The goal is to minimize this error metric by adjusting the circuit’s classical 

parameters, a process that can be effectively managed through various supervised machine learning techniques. 

    At the heart of using quantum measurement for classification tasks lies the approach of optimally aligning observed 

outputs with specific target classes. This alignment is primarily facilitated by the principle of maximizing orthogonality 

between the output states, ensuring clear distinction6. In the context of binary (dichotomous) classification, this means 

categorizing each observation into one of two predefined classes—referred to here as class A and class B. The decision 

criterion involves comparing the probabilities of observing the quantum state  for outcome 0 and  for outcome 

1. If , the observation is assigned to class A; otherwise, it falls under class B. To enhance this binary 

classification scheme, one can introduce a bias , adjusting the threshold for classification such that observation is 

deemed part of class A if  is greater than , and class B if it falls below. The value of  is chosen to maximize 

classification accuracy on a training dataset. The effectiveness of this approach is then confirmed through evaluation on 

a separate validation dataset. 

     Viewed through a geometric lens, the single-qubit classifier operates within a 2-dimensional Hilbert space —the Bloch 

sphere—where data encoding and classification decisions are delineated through specific rotational parameters. Any 

operation  is a rotation on the Bloch sphere surface. From this viewpoint, any point can be classified using just one 

unitary operation. Consequently, we can transfer any point to another point on the Bloch sphere by precisely selecting 

the rotation angles. However, when dealing with multiple data points, a single rotation may not suffice due to differing 

optimal rotation requirements. The solution lies in introducing additional layers into the quantum circuit, enabling distinct 



rotation and fostering a richer feature map. Within this enhanced feature space, data points can be effectively segregated 

into their respective classes based on their positioning within the Bloch sphere's regions, thereby enabling a sophisticated 

and adaptable approach to quantum classification.   

1) FIDELITY COST FUNCTION 

The goal is to align the quantum states ( ) as closely as possible to a designated target state on the Bloch 

sphere, as outlined in 1. This alignment can be quantitatively assessed by measuring the angular distance between the 

labeled state and the data state, using the metric of relative fidelity 7.  The primary objective focuses on maximizing the 

average fidelity between the quantum states produced by the circuit and the label states corresponding to their respective 

classes. To facilitate this, a cost function is introduced and mathematically formulated as Equation 1: 

                         

               (1) 

 

where |𝜓̃𝑠⟩ is the correct label state of the 𝜇 data point, which will correspond to one of the classes. 

2) TRACE DISTANCE COST FUNCTION 

In quantum information theory, quantifying the dissimilarity between two quantum states is a fundamental problem. 

Various distance measures have been proposed, each with its unique properties and applications. One such measure is 

the trace distance, which captures the distinguishability between two quantum states 7. Perez-Salinas et al. have analyzed 

the fidelity cost function with data re-uploading 1. However, the authors do not consider the case of the trace distance 

cost function, which is what we focus on in this section. We will explore the definition and properties of the trace distance, 

particularly in the context of single-qubit systems, and discuss its potential as a cost function for quantum classifiers. 

Despite the different mathematical formulations of trace distance and fidelity, these two measures share many similar 

properties and are widely used in the quantum computing and quantum information community. However, depending on 

the specific application, one measure may be more convenient or easier to work with than the other. This versatility and 

widespread adoption of both trace distance and fidelity in the field motivates our decision to discuss and compare these 

two important distance measures in the context of quantum classifiers. The trace distance between quantum states 𝜌 and 

𝜎 can be defined as,
 
 

 

                                                (2) 

     

    The trace distance between two single-qubit states, represented by their respective Bloch vectors  and , is equal to 

one-half of the Euclidean distance between these vectors on the Bloch sphere. 7 
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    This relation provides a geometric interpretation of the trace distance for single-qubit systems, linking it to the intuitive 

notion of distance in three-dimensional space. 

D.  From Universality of the Single-Qubit Classifier to the Expansion into Multi-Qubit Quantum Classification 

A key challenge in Quantum Machine Learning (QML) involves creating quantum circuits that efficiently handle 

complex tasks like classification without excessive use of quantum resources. The Universal Approximation Theorem 

(UAT) 8 is crucial for tackling this issue, demonstrating that a single-layer neural network with an appropriate activation 

function can approximate any continuous function to a desired accuracy, assuming enough hidden neurons are available. 

This UAT finds a compelling parallel in the quantum computing domain, particularly when considering the dynamics of 

quantum circuits. Here, the classical activation function is analogously performed by a unitary rotation acting upon a 

qubit. Specifically, a single-qubit quantum classifier, enhanced by the technique of data re-uploading, emerges as a 

universal approximator for any conceivable classification function. This universality hinges on the frequency of data re-

uploading throughout the circuit’s span 1, underscoring that even a solitary qubit is capable of encoding and processing 

multifaceted high-dimensional data. This is achieved through the execution of multiple rotations, each characterized by 

distinct angles and weights. The culmination of these processes is a final quantum state, which is then analyzed against 

a predefined target state correlating to each class. Optimization of the circuit's parameters is pursued through the 

minimization of a cost function, which is indicative of the fidelity or trace distance between the comparative states. 



By establishing the UAT within the context of quantum classifiers, a robust theoretical foundation is laid, alongside 

practical guidelines for the design and implementation of quantum circuits adept at sophisticated and non-LCP tasks with 

minimal quantum resource expenditure. This breakthrough not only forges a theoretical link between quantum circuits 

and neural networks but also paves the way for innovative approaches in QML. Through this lens, quantum circuits are 

envisioned not merely as computational tools but as entities with the potential to parallel, and possibly surpass, the 

capabilities of their classical neural network counterparts, inspiring a new wave of methodologies in the realm of QML. 

 To enhance the performance of the single-qubit classifier, it is proposed to extend it to a multi-qubit system. 

Adding more qubits, especially with entanglement, can improve the classifier's effectiveness, similar to how adding layers 

enhances neural networks. Entanglement may provide a quantum advantage in classification, though the analogy between 

multi-qubit classifiers and neural networks with entanglement is not fully understood and requires further exploration. 

Perez et al. propose a measurement strategy for multi-qubit classifiers, which extends the single-qubit approach. These 

strategies utilize a fidelity-based cost function. 

E.  Variational Circuit Architecture and Parameterization 

To fully specify the architecture of the quantum classifier and support reproducibility, we detail here the structure of the 

variational circuits used in this study. The models are built using a data re-uploading framework, in which classical input 

data is embedded into the quantum circuit by modifying gate parameters via a linear transformation. Each circuit is 

composed of multiple layers; each layer includes data-dependent single-qubit gates followed by optional entanglement 

gates between qubits. 

The primary quantum gates used are 𝑈(𝜙) gates, which are universal single-qubit rotation gates parameterized by three 

angles 𝜙 = (𝜃, 𝜑, 𝜆). These gates are used for both trainable processing and data encoding. When entanglement is 

introduced, Controlled-Z (CZ) gates are applied between qubit pairs. 

The parameter set for each circuit is divided into two categories: 

• 𝜃, the base rotation angles, organized as a tensor of shape (qubits, layers, 3), 

• 𝛼, the data encoding weights, shaped as (qubits, layers, data dimension). 

The total number of trainable parameters scales with both the number of qubits and the number of re-uploading layers. 

For example, the single-qubit configuration contains 3×layers trainable parameters. The two-qubit configuration without 

entanglement uses two parallel 𝑈(𝜙) gates per layer (one on each qubit), resulting in 6×layers parameters. When 

entanglement is included, the same number of 𝑈(𝜙) gates are used, along with (layers−1) Controlled-Z gates placed 

between adjacent qubit layers.  

The data encoding follows the transformation 𝜃𝑒𝑛𝑐𝑜𝑑𝑒𝑑 = 𝜃 + 𝛼 ⊗ 𝑥, where 𝑥 is the input feature vector. This allows 

the same circuit structure to dynamically adapt to different input data points while preserving trainable components. 

Class label encoding differs based on the cost function used. For fidelity-based classification, labels are represented as 

computational basis states such as |0⟩ or |1⟩. For trace-distance-based classification, target class states are defined using 

Bloch sphere coordinates.  

 

Supplementary Note 7: Optimization Methods 

In practice, deploying a parameterized quantum classifier involves a process of minimizing within the parameter space 

that delineates the circuit's configuration. The process is often termed a hybrid algorithm, denoting the symbiotic 

relationship and advantages derived from combining quantum logic and classical logic. In particular, the ensemble of 

angles ( ) and weights ( ) defines a parameter space that requires systematic exploration to achieve the minimization 

of . 

    The occurrence of local minima is unavoidable e. The arrangement of rotation gates results in an intricate multiplication 

of independent trigonometric functions, suggesting that our problem is characterized by a widespread distribution of 

minima. 

The primary challenge boils down to minimizing a function that is defined by a vast array of parameters. In the case of a 

single-qubit classifier, the total number of parameters can be expressed as, where represents the problem's dimension 

(that is, the dimension of), and signifies the number of layers. Among these parameters, three are rotational angles, while 

the rest pertain to the weight [1]. To identify the most effective solution, we evaluate the performance of four distinct 

minimization techniques: the L-BFGS-B method, the COBYLA method, the Nelder-Mead method, and the Sequential 

Least Squares Programming (SLSQP) method. 

The key challenge in optimizing a single-qubit classifier involves minimizing a function across a complex parameter 

space, calculated as  , where "d" is the problem's dimension and "N" is the number of layers. Also, in addition, 



we need to consider rotational angles and the weight ( ) corresponding to the dimension 1. To discover the optimal 

solution, we delve into the efficiency of four diverse minimization strategies: the L-BFGS-B, COBYLA, Nelder-Mead, 

and Sequential Least Squares Programming (SLSQP) methods. 

A.  L-BFGS-B METHOD 

The L-BFGS-B technique, part of the quasi-Newton optimization methods, refines the Broyden–Fletcher–Goldfarb–

Shanno (BFGS) approach by efficiently using limited computer memory 10. Its design excels in handling optimization 

tasks involving numerous variables, offering a linear memory usage advantage, making it highly effective for large-scale 

problems 11. 

    The L-BFGS-B method is widely recognized as a cornerstone technique across various advanced applications in the 

field of graphics 12,13. It specializes in minimizing a scalar function of one or several variables by initiating with a 

preliminary estimate of the optimum value. Through iterative refinement, it progressively improves upon this initial 

estimate to approach an optimal solution. The method employs function derivatives to determine the direction of steepest 

descent and approximates the Hessian matrix (second-order derivatives) using limited memory. The parameter update 

rule is given by14: 

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑘𝐻𝑘
−1𝛻𝑓(𝜃𝑘) 

where 𝜃𝑘 is the current parameter vector, 𝛻𝑓(𝜃𝑘) is the gradient, 𝐻𝑘
−1 is an approximation of the inverse Hessian, and 

𝛼𝑘 is a step size typically determined by line search. This method is particularly efficient in handling large-scale problems 

due to its low memory usage and fast matrix-vector multiplications. 

B.  CONSTRAINED OPTIMIZATION BY LINEAR APPROXIMATION METHOD 

COBYLA (Constrained Optimization BY Linear Approximation) is an optimization algorithm designed to minimize a 

scalar objective function that depends on one or more variables, subject to constraints 15,16. One of the key features of 

COBYLA is that it does not require the calculation of derivatives, such as gradients or Hessians, of the objective function 

or constraints. This makes COBYLA particularly useful in situations where the derivatives are unknown, unreliable, or 

computationally expensive to obtain 15. Instead of requiring gradients or Hessians, COBYLA constructs linear 

approximations of both the objective function and constraints within a trust region framework. At each iteration, it solves 

a subproblem defined by: min┬𝜃 〖𝑓(〗 𝜃) subject to 𝑐𝑖(𝜃) ≥ 0 and approximates the objective function locally as: 

𝑓(𝜃 + 𝛥𝜃) ≈ 𝑓(𝜃) + 𝛻𝑓(𝜃)𝑇𝛥𝜃 

although 𝛻𝑓(𝜃) is never explicitly calculated—its effect is estimated using linear interpolation.  

COBYLA has been effectively utilized in quantum computing, especially as a classical optimization routine within 

Variational Hybrid Quantum-Classical Algorithms (VHQCAs) 17. These algorithms employ a parameterized quantum 

circuit, or ansatz, which is refined through a dynamic interchange between a classical computer and a quantum device. 

The classical computer adjusts the ansatz's parameters to minimize a cost function, which the quantum device efficiently 

evaluates. Through iterative updates based on the cost function outcomes, the VHQCA aims to discover the most 

effective ansatz configuration for specific problems. The derivative-free characteristic of COBYLA makes it particularly 

advantageous for this setting, where the cost functions often lack easily computable or analytically defined derivatives. 

C.  NELDER-MEAD METHOD 

The Nelder-Mead algorithm, introduced by John Nelder and Roger Mead in 1965, is a widely used direct search method 

for unconstrained optimization problems 18.  The algorithm operates by maintaining a simplex of n+1 points in an n-

dimensional space, iteratively moving the simplex toward the optimal solution through a series of transformations, 

including reflection, expansion, contraction, and shrinkage 18. These operations are defined as follows: 

• Reflection: 

𝜃𝑟 = 𝜃̅ + 𝛼(𝜃̅ − 𝜃ℎ) 

• Expansion: 

𝜃𝑒 = 𝜃̅ + 𝛾(𝜃𝑟 − 𝜃̅) 

• Contraction: 

𝜃𝑐 = 𝜃̅ + 𝜌(𝜃𝑟 − 𝜃̅) 

• Shrinkage: 

𝜃𝑖 = 𝜃𝑙 + 𝜎(𝜃𝑖 − 𝜃𝑙) 

Here, 𝜃̅ is the centroid of the best n points, 𝜃ℎ is the worst-performing point, and 𝛼, 𝛾, 𝜌, and 𝜎 are user-defined 

coefficients controlling the behavior of each transformation. This method is especially effective in low-dimensional, non-



convex optimization landscapes and is widely used when the objective function is noisy, non-differentiable, or 

discontinuous. 

 

Recent studies have focused on enhancing the Nelder-Mead algorithm to improve its efficiency and adaptability. Gao 

and Han 19proposed an implementation of the Nelder-Mead algorithm with adaptive parameters, which can automatically 

adjust the parameter values based on the optimization progress. This adaptive approach has been shown to improve the 

algorithm's convergence speed and solution quality 19. 

    Its capacity to address problems in which derivative information is not readily accessible renders it a favorable option 

for numerous applications in QML. However, it is essential to conduct comprehensive evaluations to scrutinize the 

method's accuracy, efficiency, and sensitivity to the initial guess for each unique application 20,21. 

D. SEQUANTIAL LEAST SQUARES PROGRAMMING METHOD 

The Sequential Least Squares Programming (SLSQP) method is an optimization technique that minimizes functions 

while adhering to specific constraints 22. It is based on Sequential Quadratic Programming (SQP), which simplifies the 

optimization problem into a series of smaller, more manageable quadratic subproblems. In each subproblem, a quadratic 

approximation of the objective function and constraints is constructed using a second-order parabolic curve to model the 

function’s behavior near a specific point. SLSQP updates this approximation using the quasi-Newton method. 

Specifically, the subproblem it solves takes the form: 

min┬∆𝜃 〖1/2 ∆𝜃^𝑇 𝐵_𝑘 ∆𝜃 + ∇𝑓(𝜃_𝑘 )^𝑇 ∆𝜃〗    
subject to: 

𝑐𝑖(𝜃𝑘) + 𝛻𝑐𝑖(𝜃𝑘)𝑇𝛥𝜃 ≥ 0 (inequality constraints) 

ℎ𝑗(𝜃𝑘) + 𝛻ℎ𝑗(𝜃𝑘)𝑇𝛥𝜃 = 0 (equality constraints) 

where 𝐵𝑘 is an approximation to the Hessian of the Lagrangian, and 𝛻𝑓, 𝛻𝑐𝑖, and 𝛻ℎ𝑗  are gradients of the objective and 

constraint functions.  

    Additionally, SLSQP applies a least-squares method to solve these quadratic subproblems, striving to minimize the 

total squared deviations between the approximation and actual function values. This method can handle both equality 

and inequality constraints, including variable bounds, by integrating a penalty function that imposes additional costs for 

any constraint or bound violations. SLSQP ensures efficient convergence by terminating the optimization process upon 

meeting a predefined convergence criterion, typically related to changes in the objective function value or the gradient 

vector's norm. This safeguard prevents indefinite computations, ensuring timely solutions. 

    Local minima are common challenges in both neural networks and quantum classifiers due to their complex 

mathematical structures—neural networks with compounded nonlinear functions and quantum circuits with prevalent 

trigonometric functions. This complexity increases the likelihood of encountering local minima during optimization. 

Moreover, with smaller training sets, the choice of optimization method is crucial. For instance, the Nelder-Mead method 

is noted for its robustness, particularly its lower susceptibility to local minima. 

    It is also critical to recognize that minimization methods are sensitive to noise, which can significantly impact their 

effectiveness, especially in practical quantum computing applications 17. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Note 8: Comparing the developed code for this research with original reference. 

1 # coding=utf-8 +-

2 ########################################################################## = 1 ##########################################################################

3 #Quantum classifier 2 #Quantum classifier

4 #Sara Aminpour, Mike Banad, Sarah Sharif <> 3 #Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil, J. Ignacio Latorre

5 #September 25th 2024 4 #Code by APS

5 #Code-checks by ACL

6 #June 3rd 2019

6 = 7

<> 8

7 #School of Electrical and Computer Engineering/ Center for Quantum and Technology, University of Oklahoma, Norman, OK

73019 USA, 

9 #Universitat de Barcelona / Barcelona Supercomputing Center/Institut de Ciències del Cosmos

10

8 ########################################################################### = 11 ###########################################################################

9 #IMPORTANT_NOTE: <> 12

10 #The code on the left was developed by Sara Aminpour, while the code on the right serves as the reference implementation

by Adrián Pérez-Salinas. 

11 #The code on the left has been restructured to handle random data. So some certain sections has been deleted from the

reference code. 

12 #Additionally, our code on the left developed to analyze trace distance cost function and linear classification problem 13 #This file is a file taking many different functions from other files and mixing them all together

13 #as well as necessary modification to apply COBYLA, L-BFGS-B, NELDER-MEAD, and SLSQP minimization methods.

14 ###########################################################################

15 # so that the usage is automatized = 14 # so that the usage is automatized

16 import datetime <> 15

17 from data_gen import data_generator = 16 from data_gen import data_generator

18 from problem_gen import problem_generator, representatives, representatives_tr <> 17 from problem_gen import problem_generator, representatives

19 from fidelity_minimization import fidelity_minimization = 18 from fidelity_minimization import fidelity_minimization

20 from trace_minimization import trace_minimization +-

21 from weighted_fidelity_minimization import weighted_fidelity_minimization = 19 from weighted_fidelity_minimization import weighted_fidelity_minimization

22 from test_data import Accuracy_test, tester 20 from test_data import Accuracy_test, tester

23 from save_data import write_summary, read_summary, name_folder, samples_paint, samples_paint_worldmap, laea_x, laea_y 21 from save_data import write_summary, read_summary, name_folder, samples_paint, samples_paint_worldmap,

laea_x, laea_y

24 from save_data import write_epochs_file, write_epoch, close_epochs_file, create_folder, write_epochs_error_rate 22 from save_data import write_epochs_file, write_epoch, close_epochs_file, create_folder,

write_epochs_error_rate

25 import numpy as np 23 import numpy as np

26 import matplotlib.pyplot as plt 24 import matplotlib.pyplot as plt

27 from circuitery import code_coords, circuit 25 from circuitery import code_coords, circuit

28 from matplotlib.cm import get_cmap 26 from matplotlib.cm import get_cmap

29 from matplotlib.colors import Normalize 27 from matplotlib.colors import Normalize

30 28

31 def minimizer(chi, problem, qubits, entanglement, layers, method, name, 29 def minimizer(chi, problem, qubits, entanglement, layers, method, name,

32  epochs=3000, batch_size=20,  eta=0.1): <> 30  seed = 30, epochs=3000, batch_size=20,  eta=0.1):

33

34  """ 31  """

35  This function creates data and minimizes whichever problem (from the selected ones)  32  This function creates data and minimizes whichever problem (from the selected ones) 

36  INPUT: 33  INPUT:

37 -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi' 34 -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'

38 -problem: name of the problem, to choose among 35 -problem: name of the problem, to choose among

39  ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy

lines']

36    ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere',

'squares', 'wavy lines']

40 -qubits: number of qubits, must be an integer 37 -qubits: number of qubits, must be an integer

41 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n' 38 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

42 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account 39 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in

account

43 -method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize] 40 -method: minimization method, to choose among ['SGD', another valid for function

scipy.optimize.minimize]

44 -name: a name we want for our our files to be save with 41 -name: a name we want for our our files to be save with

45 -seed: seed of numpy.random, needed for replicating results 42 -seed: seed of numpy.random, needed for replicating results

46 -epochs: number of epochs for a 'SGD' method. If there is another method, this input has got no importance 43 -epochs: number of epochs for a 'SGD' method. If there is another method, this input has got

no importance

47 -batch_size: size of the batches for stochastic gradient descent, only for 'SGD' method 44 -batch_size: size of the batches for stochastic gradient descent, only for 'SGD' method

48 -eta: learning rate, only for 'SGD' method 45 -eta: learning rate, only for 'SGD' method

49  OUTPUT: 46  OUTPUT:

50  This function has got no outputs, but several files are saved in an appropiate folder. The files are 47    This function has got no outputs, but several files are saved in an appropiate folder. The

files are

51 -summary.txt: Saves useful information for the problem 48 -summary.txt: Saves useful information for the problem

52 -theta.txt: saves the theta parameters as a flat array 49 -theta.txt: saves the theta parameters as a flat array

53 -alpha.txt: saves the alpha parameters as a flat array 50 -alpha.txt: saves the alpha parameters as a flat array

54 -weight.txt: saves the weights as a flat array if they exist 51 -weight.txt: saves the weights as a flat array if they exist

55  """ 52  """

56 53  np.random.seed(seed)

57  data, drawing = data_generator(problem) 54  data, drawing = data_generator(problem)

58  if problem == 'sphere': 55  if problem == 'sphere':

59  train_data = data[:500]  56  train_data = data[:500] 

60  test_data = data[500:] 57  test_data = data[500:]

61  elif problem == 'hypersphere': 58  elif problem == 'hypersphere':

62  train_data = data[:1000]  59  train_data = data[:1000] 

63  test_data = data[1000:] 60  test_data = data[1000:]

64  else: 61  else:

65  train_data = data[:250] 62  train_data = data[:200]

66  test_data = data[250:] 63  test_data = data[200:]

67

68  if chi == 'fidelity_chi':

69  Accuracy_tr=0

70  Accuracy_te=0

71  i=1

72  while i<21:

73  qubits_lab = qubits

74  theta, alpha, reprs = problem_generator(problem,qubits, layers, chi,

75  qubits_lab=qubits_lab)

76

77  theta, alpha, f = fidelity_minimization(theta, alpha, train_data, reprs,

78  entanglement, method, 

79  batch_size, eta, epochs)

80

81  acc_train = tester(theta, alpha, train_data, reprs, entanglement, chi)

82  Accuracy_tr+=acc_train

83

84  acc_test = tester(theta, alpha, test_data, reprs, entanglement, chi)

85  Accuracy_te+=acc_test

86 = 64

87  text_file_nn = open('acc.txt', mode='a+') <>

88    text_file_nn.write(str(i) + problem +'_'+ chi +'_'+ str(qubits) +'Qubits_' + str(layers) +'Layers_' +

entanglement +'_'+ method +'_'+'acc_train'+' = '+ str(acc_train))

89  text_file_nn.write('\n')

90    text_file_nn.write(str(i) + problem +'_'+ chi +'_'+ str(qubits) +'Qubits_' + str(layers) +'Layers_' +

entanglement +'_'+ method +'_'+'acc_test'+' = '+ str(acc_test))

91  text_file_nn.write('\n')

92  text_file_nn.write('======================================================================')

93  text_file_nn.write('\n')

94  text_file_nn.close() 

95

96  i+=1 

97  print(i-1)

98  atr=Accuracy_tr/(i-1)

99  ate=Accuracy_te/(i-1)

100

101

102  text_file_nn = open('AverageAcc.txt', mode='a+')

103    text_file_nn.write(problem +'_'+ chi +'_'+ str(qubits) +'Qubits_' + str(layers) +'Layers_' + entanglement

+'_'+ method +'_'+'Ave_acc_train'+' = '+ str(atr))

104  text_file_nn.write('\n')

105    text_file_nn.write(problem +'_'+ chi +'_'+ str(qubits) +'Qubits_' + str(layers) +'Layers_' + entanglement

+'_'+ method +'_'+ 'Ave_acc_test'+' = '+ str(ate))

106  text_file_nn.write('\n')

107  text_file_nn.write('======================================================================')

108  text_file_nn.write('\n')

109  text_file_nn.close() 

110

111  write_summary(chi, problem, qubits, entanglement, layers, method, name,

112  theta, alpha, 0, f, atr, ate, epochs=epochs)

113  elif chi == 'trace_chi': 65  if chi == 'fidelity_chi':

114

115  Accuracy_tr=0

116  Accuracy_te=0

117  i=1

118  while i<21: 

119  qubits_lab = qubits 66  qubits_lab = qubits

120  theta, alpha, reprs = problem_generator(problem,qubits, layers, chi, 67  theta, alpha, reprs = problem_generator(problem,qubits, layers, chi,

121  qubits_lab=qubits_lab) 68  qubits_lab=qubits_lab)

122  theta, alpha, f = trace_minimization(theta, alpha, train_data, reprs, 69  theta, alpha, f = fidelity_minimization(theta, alpha, train_data, reprs,

123  entanglement, method,  70  entanglement, method, 

124  batch_size, eta, epochs) 71  batch_size, eta, epochs)

125

126

127  acc_train = tester(theta, alpha, train_data, reprs, entanglement, chi) 72  acc_train = tester(theta, alpha, train_data, reprs, entanglement, chi)

128  Accuracy_tr+=acc_train

129

130  acc_test = tester(theta, alpha, test_data, reprs, entanglement, chi) 73  acc_test = tester(theta, alpha, test_data, reprs, entanglement, chi)

131  Accuracy_te+=acc_test

132

133  text_file_nn = open('acc.txt', mode='a+')

134    text_file_nn.write(str(i) + problem +'_'+ chi +'_'+ str(qubits) +'Qubits_' + str(layers) +'Layers_' +

entanglement +'_'+ method +'_'+'acc_train'+' = '+ str(acc_train))

135  text_file_nn.write('\n')

136    text_file_nn.write(str(i) + problem +'_'+ chi +'_'+ str(qubits) +'Qubits_' + str(layers) +'Layers_' +

entanglement +'_'+ method +'_'+'acc_test'+' = '+ str(acc_test))

137  text_file_nn.write('\n')

138  text_file_nn.write('======================================================================')

139  text_file_nn.write('\n')

140  text_file_nn.close()

141

142

143  i+=1 

144  print(i-1)

145  atr=Accuracy_tr/(i-1)

146  ate=Accuracy_te/(i-1)

147

148

149  text_file_nn = open('AverageAcc.txt', mode='a+')

150    text_file_nn.write(problem +'_'+ chi +'_'+ str(qubits) +'Qubits_' + str(layers) +'Layers_' + entanglement

+'_'+ method +'_'+'Ave_acc_train'+' = '+ str(atr))

151  text_file_nn.write('\n')

152    text_file_nn.write(problem +'_'+ chi +'_'+ str(qubits) +'Qubits_' + str(layers) +'Layers_' + entanglement

+'_'+ method +'_'+'Ave_acc_test'+' = '+ str(ate))

153  text_file_nn.write('\n')

154  text_file_nn.write('======================================================================')

155  text_file_nn.write('\n')

156  text_file_nn.close()

157

158

159  write_summary(chi, problem, qubits, entanglement, layers, method, name, 74  write_summary(chi, problem, qubits, entanglement, layers, method, name,

160  theta, alpha, 0, f, atr, ate, epochs=epochs)  75  theta, alpha, 0, f, acc_train, acc_test, seed, epochs=epochs)

161  elif chi == 'weighted_fidelity_chi': 76  elif chi == 'weighted_fidelity_chi':

162

163

164  Accuracy_tr=0

165  Accuracy_te=0

166  i=1

167  while i<21:

168  qubits_lab = 1 77  qubits_lab = 1

169  theta, alpha, weight, reprs = problem_generator(problem,qubits, layers, chi, 78  theta, alpha, weight, reprs = problem_generator(problem,qubits, layers, chi,

170  qubits_lab=qubits_lab) 79  qubits_lab=qubits_lab)

171  theta, alpha, weight, f = weighted_fidelity_minimization(theta, alpha, weight, train_data, reprs, 80  theta, alpha, weight, f = weighted_fidelity_minimization(theta, alpha, weight, train_data,

reprs,

172  entanglement, method) 81  entanglement, method)

173

174

175

176  acc_train = tester(theta, alpha, train_data, reprs, entanglement, chi, weights=weight) 82  acc_train = tester(theta, alpha, train_data, reprs, entanglement, chi, weights=weight)

177  Accuracy_tr+=acc_train

178

179  acc_test = tester(theta, alpha, test_data, reprs, entanglement, chi, weights=weight) 83  acc_test = tester(theta, alpha, test_data, reprs, entanglement, chi, weights=weight)

180  Accuracy_te+=acc_test

181

182  text_file_nn = open('acc.txt', mode='a+')

183    text_file_nn.write(str(i) + problem +'_'+ chi +'_'+ str(qubits) +'Qubits_' + str(layers) +'Layers_' +

entanglement +'_'+ method +'_'+'acc_train'+' = '+ str(acc_train))

184  text_file_nn.write('\n')

185    text_file_nn.write(str(i) + problem +'_'+ chi +'_'+ str(qubits) +'Qubits_' + str(layers) +'Layers_' +

entanglement +'_'+ method +'_'+'acc_test'+' = '+ str(acc_test))

186  text_file_nn.write('\n')

187  text_file_nn.write('======================================================================')

188  text_file_nn.write('\n')

189  text_file_nn.close()

190

191

192  i+=1 

193  print(i-1)

194  atr=Accuracy_tr/(i-1)

195  ate=Accuracy_te/(i-1)

196

197

198  text_file_nn = open('AverageAcc.txt', mode='a+')

199    text_file_nn.write(problem +'_'+ chi +'_'+ str(qubits) +'Qubits_' + str(layers) +'Layers_' + entanglement

+'_'+ method +'_'+'Ave_acc_train'+' = '+ str(atr))

200  text_file_nn.write('\n')

201    text_file_nn.write(problem +'_'+ chi +'_'+ str(qubits) +'Qubits_' + str(layers) +'Layers_' + entanglement

+'_'+ method +'_'+'Ave_acc_test'+' = '+ str(ate))

202  text_file_nn.write('\n')

203  text_file_nn.write('======================================================================')

204  text_file_nn.write('\n')

205  text_file_nn.close()

206

207  write_summary(chi, problem, qubits, entanglement, layers, method, name, 84  write_summary(chi, problem, qubits, entanglement, layers, method, name,

208  theta, alpha, weight, f, acc_train, acc_test, epochs=epochs) 85  theta, alpha, weight, f, acc_train, acc_test, seed, epochs=epochs)

209 = 86

210 <> 87

211

212

213 def painter(chi, problem, qubits, entanglement, layers, method, name,  = 88 def painter(chi, problem, qubits, entanglement, layers, method, name, 

214  standard_test = True, samples = 4000, bw = False, err = False): <> 89  seed = 30, standard_test = True, samples = 4000, bw = False, err = False):

215  a=datetime.datetime.now()

216  """ = 90  """

217  This function takes written text files and paint the results of the problem  91  This function takes written text files and paint the results of the problem 

218  INPUT: 92  INPUT:

219 -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi' 93 -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'

220 -problem: name of the problem, to choose among 94 -problem: name of the problem, to choose among

221  ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy lines'] 95    ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere',

'squares', 'wavy lines']

222 -qubits: number of qubits, must be an integer 96 -qubits: number of qubits, must be an integer

223 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n' 97 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

224 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account 98 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in

account

225 -method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize] 99 -method: minimization method, to choose among ['SGD', another valid for function

scipy.optimize.minimize]

226 -name: a name we want for our our files to be save with 100 -name: a name we want for our our files to be save with

227 -seed: seed of numpy.random, needed for replicating results 101 -seed: seed of numpy.random, needed for replicating results

228 -standard_test: Whether we want to paint the set test used for checking when minimizing. If True, seed and

samples are not taken in account

102 -standard_test: Whether we want to paint the set test used for checking when minimizing. If

True, seed and samples are not taken in account

229 -samples: number of samples of the test set 103 -samples: number of samples of the test set

230 -bw: painting in black and white 104 -bw: painting in black and white

231  OUTPUT: 105  OUTPUT:

232  This function has got no outputs, but a file containing the representation of the test set is created 106  This function has got no outputs, but a file containing the representation of the test set is

created

233  """ 107  """

234 <> 108  np.random.seed(seed)

235 = 109

236  if chi == 'fidelity_chi': 110  if chi == 'fidelity_chi':

237  qubits_lab = qubits 111  qubits_lab = qubits

238 +-

239  elif chi == 'trace_chi':

240  qubits_lab = qubits

241

242  elif chi == 'weighted_fidelity_chi': = 112  elif chi == 'weighted_fidelity_chi':

243  qubits_lab = 1 113  qubits_lab = 1

244 114

245  if standard_test == True: 115  if standard_test == True:

246  data, drawing = data_generator(problem) 116  data, drawing = data_generator(problem)

247  if problem == 'sphere': 117  if problem == 'sphere':

248  test_data = data[500:] 118  test_data = data[500:]

249  elif problem == 'hypersphere': 119  elif problem == 'hypersphere':

250  test_data = data[1000:] 120  test_data = data[1000:]

251  else: 121  else:

252  test_data = data[250:] <> 122  test_data = data[200:]

253 = 123

254  elif standard_test == False: 124  elif standard_test == False:

255  test_data, drawing = data_generator(problem, samples = samples) 125  test_data, drawing = data_generator(problem, samples = samples)

256 126

257  if problem in ['circle','line', '2 lines', 'wavy circle','sphere', 'non convex', 'crown', 'hypersphere']: <> 127  if problem in ['circle','wavy circle','sphere', 'non convex', 'crown', 'hypersphere']:

258  classes = 2 = 128  classes = 2

259  if problem in ['tricrown']: 129  if problem in ['tricrown']:

260  classes = 3 130  classes = 3

261  if problem in ['6squares']: +-

262  classes = 6

263  elif problem in ['3 circles','wavy lines','squares']: = 131  elif problem in ['3 circles','wavy lines','squares']:

264  classes = 4 132  classes = 4

265 133

266  #reprs = representatives(classes, qubits_lab) <> 134  reprs = representatives(classes, qubits_lab)

267 = 135

268  params = read_summary(chi, problem, qubits, entanglement, layers, method, name) 136  params = read_summary(chi, problem, qubits, entanglement, layers, method, name)

269 137

270  if chi == 'fidelity_chi': 138  if chi == 'fidelity_chi':

271  reprs = representatives(classes, qubits_lab) +-

272  theta, alpha = params = 139  theta, alpha = params

273  sol_test, acc_test = Accuracy_test(theta, alpha, test_data, reprs, entanglement, chi) 140  sol_test, acc_test = Accuracy_test(theta, alpha, test_data, reprs, entanglement, chi)

274 +-

275 = 141

276  if chi == 'trace_chi': +-

277  reprs = representatives_tr(classes, qubits_lab)

278  theta, alpha = params

279  sol_test, acc_test = Accuracy_test(theta, alpha, test_data, reprs, entanglement, chi)

280

281  if chi == 'weighted_fidelity_chi': = 142  if chi == 'weighted_fidelity_chi':

282  reprs = representatives(classes, qubits_lab) +-

283  theta, alpha, weight = params = 143  theta, alpha, weight = params

284  sol_test, acc_test = Accuracy_test(theta, alpha, test_data, reprs, 144  sol_test, acc_test = Accuracy_test(theta, alpha, test_data, reprs,

285  entanglement, chi, weights = weight) 145  entanglement, chi, weights = weight)

286 146

287  foldname = name_folder(chi, problem, qubits, entanglement, layers, method) 147  foldname = name_folder(chi, problem, qubits, entanglement, layers, method)

288  samples_paint(problem, drawing, sol_test, foldname, name, bw) 148  samples_paint(problem, drawing, sol_test, foldname, name, bw)

289 +-

290

291 = 149

292  b=datetime.datetime.now() <>

293  c=b-a

294  text_file_nn = open('time.txt', mode='a+')

295  text_file_nn.write(problem +'_'+ chi +'_'+ str(layers) +'Layers' +'_'+ 'painter' +' = '+ str(c))

296  text_file_nn.write('\n')

297  text_file_nn.close()

298 '''

299 def paint_world(chi, problem, qubits, entanglement, layers, method, name, 150 def paint_world(chi, problem, qubits, entanglement, layers, method, name,

300  seed = 30, standard_test = True, samples = 4000, bw = False, err = False): 151  seed = 30, standard_test = True, samples = 4000, bw = False, err = False):

301  np.random.seed(seed) 152  np.random.seed(seed)

302 = 153

303  if chi == 'fidelity_chi': <> 154  if chi == 'fidelity_chi':

304  qubits_lab = qubits 155  qubits_lab = qubits

305  if chi == 'trace_chi':

306  qubits_lab = qubits

307  elif chi == 'weighted_fidelity_chi': 156  elif chi == 'weighted_fidelity_chi':

308  qubits_lab = 1 157  qubits_lab = 1

309 = 158

310  if standard_test == True: <> 159  if standard_test == True:

311  data, drawing = data_generator(problem) 160  data, drawing = data_generator(problem)

312  if problem == 'sphere': 161  if problem == 'sphere':

313  test_data = data[500:] 162  test_data = data[500:]

314  elif problem == 'hypersphere': 163  elif problem == 'hypersphere':

315  test_data = data[1000:] 164  test_data = data[1000:]

316  else: 165  else:

317  test_data = data[:250] 166  test_data = data[200:]

318 = 167

319  elif standard_test == False: <> 168  elif standard_test == False:

320  test_data, drawing = data_generator(problem, samples=samples) 169  test_data, drawing = data_generator(problem, samples=samples)

321 = 170

322  if problem in ['circle', 'line', '2 lines', 'wavy circle', 'sphere', 'non convex', 'crown', 'hypersphere']: <> 171  if problem in ['circle', 'wavy circle', 'sphere', 'non convex', 'crown', 'hypersphere']:

323  classes = 2 172  classes = 2

324  if problem in ['tricrown']: 173  if problem in ['tricrown']:

325  classes = 3 174  classes = 3

326  if problem in ['6squares']:

327  classes = 6

328  elif problem in ['3 circles', 'wavy lines', 'squares']: 175  elif problem in ['3 circles', 'wavy lines', 'squares']:

329  classes = 4 176  classes = 4

330 = 177

331  #reprs = representatives(classes, qubits_lab) <> 178  reprs = representatives(classes, qubits_lab)

332 = 179

333  params = read_summary(chi, problem, qubits, entanglement, layers, method, name) <> 180  params = read_summary(chi, problem, qubits, entanglement, layers, method, name)

334 = 181

335  if chi == 'fidelity_chi': <> 182  if chi == 'fidelity_chi':

336  reprs = representatives(classes, qubits_lab)

337  theta, alpha = params 183  theta, alpha = params

338  sol_test, acc_test = Accuracy_test(theta, alpha, test_data, reprs, entanglement, chi) 184  sol_test, acc_test = Accuracy_test(theta, alpha, test_data, reprs, entanglement, chi)

339

340  if chi == 'trace_chi':

341  reprs = representatives_tr(classes, qubits_lab)

342  theta, alpha = params

343  sol_test, acc_test = Accuracy_test(theta, alpha, test_data, reprs, entanglement, chi)

344 = 185

345  if chi == 'weighted_fidelity_chi': <> 186  if chi == 'weighted_fidelity_chi':

346  reprs = representatives(classes, qubits_lab)

347  theta, alpha, weight = params 187  theta, alpha, weight = params

348  sol_test, acc_test = Accuracy_test(theta, alpha, test_data, reprs, 188  sol_test, acc_test = Accuracy_test(theta, alpha, test_data, reprs,

349  entanglement, chi, weights=weight) 189  entanglement, chi, weights=weight)

350 = 190

351  foldname = name_folder(chi, problem, qubits, entanglement, layers, method) <> 191  foldname = name_folder(chi, problem, qubits, entanglement, layers, method)

352  angles = np.zeros((len(sol_test), 2)) 192  angles = np.zeros((len(sol_test), 2))

353  for i, x in enumerate(sol_test[:, :2]): 193  for i, x in enumerate(sol_test[:, :2]):

354  theta_aux = code_coords(theta, alpha, x) 194  theta_aux = code_coords(theta, alpha, x)

355  C = circuit(theta_aux, entanglement) 195  C = circuit(theta_aux, entanglement)

356  angles[i, 0] = np.arccos(np.abs(C.psi[0])**2 - np.abs(C.psi[1])**2) - np.pi/2 196  angles[i, 0] = np.arccos(np.abs(C.psi[0])**2 - np.abs(C.psi[1])**2) - np.pi/2

357  angles[i, 1] = np.angle(C.psi[1] / C.psi[0]) 197  angles[i, 1] = np.angle(C.psi[1] / C.psi[0])

358  print(angles[i]) 198  print(angles[i])

359 199

360  if bw == False: 200  if bw == False:

361  colors_classes = get_cmap('plasma') 201  colors_classes = get_cmap('plasma')

362  norm_class = Normalize(vmin=-.5, vmax=np.max(sol_test[:, -3]) + .5) 202  norm_class = Normalize(vmin=-.5, vmax=np.max(sol_test[:, -3]) + .5)

363 = 203

364  colors_rightwrong = get_cmap('RdYlGn') <> 204  colors_rightwrong = get_cmap('RdYlGn')

365  norm_rightwrong = Normalize(vmin=-.1, vmax=1.1) 205  norm_rightwrong = Normalize(vmin=-.1, vmax=1.1)

366 = 206

367  if bw == True: <> 207  if bw == True:

368  colors_classes = get_cmap('Greys') 208  colors_classes = get_cmap('Greys')

369  norm_class = Normalize(vmin=-.1, vmax=np.max(sol[:, -3]) + .1) 209  norm_class = Normalize(vmin=-.1, vmax=np.max(sol[:, -3]) + .1)

370 = 210

371  colors_rightwrong = get_cmap('Greys') <> 211  colors_rightwrong = get_cmap('Greys')

372  norm_rightwrong = Normalize(vmin=-.1, vmax=1.1) 212  norm_rightwrong = Normalize(vmin=-.1, vmax=1.1)

373 = 213

374  fig, ax = plt.subplots(nrows=2) <> 214  fig, ax = plt.subplots(nrows=2)

375  ax[0].plot(laea_x(np.pi, np.linspace(0, np.pi)), laea_y(np.pi, np.linspace(0, np.pi)), color='k') 215  ax[0].plot(laea_x(np.pi, np.linspace(0, np.pi)), laea_y(np.pi, np.linspace(0, np.pi)), color='k')

376  ax[0].plot(laea_x(-np.pi, np.linspace(0, -np.pi)), laea_y(-np.pi, np.linspace(0, -np.pi)), color='k') 216    ax[0].plot(laea_x(-np.pi, np.linspace(0, -np.pi)), laea_y(-np.pi, np.linspace(0, -np.pi)),

color='k')

377  ax[1].plot(laea_x(np.pi, np.linspace(0, np.pi)), laea_y(np.pi, np.linspace(0, np.pi)), color='k') 217  ax[1].plot(laea_x(np.pi, np.linspace(0, np.pi)), laea_y(np.pi, np.linspace(0, np.pi)), color='k')

378  ax[1].plot(laea_x(-np.pi, np.linspace(0, -np.pi)), laea_y(-np.pi, np.linspace(0, -np.pi)), color='k') 218    ax[1].plot(laea_x(-np.pi, np.linspace(0, -np.pi)), laea_y(-np.pi, np.linspace(0, -np.pi)),

color='k')

379  ax[0].scatter(laea_x(angles[:, 1], angles[:, 0]), laea_y(angles[:, 1], angles[:, 0]), c=sol_test[:, -2], 219    ax[0].scatter(laea_x(angles[:, 1], angles[:, 0]), laea_y(angles[:, 1], angles[:, 0]),

c=sol_test[:, -2],

380  cmap=colors_classes, s=2, norm=norm_class) 220  cmap=colors_classes, s=2, norm=norm_class)

381    ax[1].scatter(laea_x(angles[:, 1], angles[:, 0]), laea_y(angles[:, 1], angles[:, 0]), c=sol_test[:,-1], cmap =

colors_rightwrong, s=2, norm=norm_rightwrong)

221    ax[1].scatter(laea_x(angles[:, 1], angles[:, 0]), laea_y(angles[:, 1], angles[:, 0]),

c=sol_test[:,-1], cmap = colors_rightwrong, s=2, norm=norm_rightwrong)

382  plt.show() 222  plt.show()

383 ''' 223

384 = 224

385 def SGD_step_by_step_minimization(problem, qubits, entanglement, layers, name,  225 def SGD_step_by_step_minimization(problem, qubits, entanglement, layers, name, 

386  epochs = 3000, batch_size = 20, eta = .1, err=False): <> 226  seed = 30, epochs = 3000, batch_size = 20, eta = .1, err=False):

387  """ = 227  """

388    This function creates data and minimizes whichever problem using a step by step SGD and saving all results from

accuracies for training and test sets

228    This function creates data and minimizes whichever problem using a step by step SGD and saving all

results from accuracies for training and test sets

389  INPUT: 229  INPUT:

390 -problem: name of the problem, to choose among 230 -problem: name of the problem, to choose among

391  ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy lines'] 231    ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere',

'squares', 'wavy lines']

392 -qubits: number of qubits, must be an integer 232 -qubits: number of qubits, must be an integer

393 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n' 233 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

394 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account 234 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in

account

395 -method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize] 235 -method: minimization method, to choose among ['SGD', another valid for function

scipy.optimize.minimize]

396 -name: a name we want for our our files to be save with 236 -name: a name we want for our our files to be save with

397 -seed: seed of numpy.random, needed for replicating results 237 -seed: seed of numpy.random, needed for replicating results

398 -epochs: number of epochs for a 'SGD' method. If there is another method, this input has got no importance 238 -epochs: number of epochs for a 'SGD' method. If there is another method, this input has got

no importance

399 -batch_size: size of the batches for stochastic gradient descent, only for 'SGD' method 239 -batch_size: size of the batches for stochastic gradient descent, only for 'SGD' method

400 -eta: learning rate, only for 'SGD' method 240 -eta: learning rate, only for 'SGD' method

401  OUTPUT: 241  OUTPUT:

402  This function has got no outputs, but several files are saved in an appropiate folder. The files are 242    This function has got no outputs, but several files are saved in an appropiate folder. The

files are

403 -summary.txt: Saves useful information for the problem 243 -summary.txt: Saves useful information for the problem

404 -theta.txt: saves the theta parameters as a flat array 244 -theta.txt: saves the theta parameters as a flat array

405 -alpha.txt: saves the alpha parameters as a flat array 245 -alpha.txt: saves the alpha parameters as a flat array

406 -error_rates: accuracies for training and test sets as flat arrays 246 -error_rates: accuracies for training and test sets as flat arrays

407  """ 247  """

408  chi = 'fidelity_chi' 248  chi = 'fidelity_chi'

409  method = 'SGD' 249  method = 'SGD'

410 250

411 <> 251  np.random.seed(seed)

412  data, drawing = data_generator(problem, err=err) = 252  data, drawing = data_generator(problem, err=err)

413  if problem == 'sphere': 253  if problem == 'sphere':

414  train_data = data[:500]  254  train_data = data[:500] 

415  test_data = data[500:] 255  test_data = data[500:]

416  elif problem == 'hypersphere': 256  elif problem == 'hypersphere':

417  train_data = data[:1000]  257  train_data = data[:1000] 

418  test_data = data[1000:] 258  test_data = data[1000:]

419  else: 259  else:

420  train_data = data[:250] <> 260  train_data = data[:200]

421  test_data = data[250:] 261  test_data = data[200:]

422 = 262

423  if chi == 'fidelity_chi': 263  if chi == 'fidelity_chi':

424  qubits_lab = qubits +-

425  if chi == 'trace_chi':

426  qubits_lab = qubits = 264  qubits_lab = qubits

427  elif chi == 'weighted_fidelity_chi': 265  elif chi == 'weighted_fidelity_chi':

428  qubits_lab = 1 266  qubits_lab = 1

429 267

430  theta, alpha, reprs = problem_generator(problem, qubits, layers, chi, 268  theta, alpha, reprs = problem_generator(problem, qubits, layers, chi,

431  qubits_lab=qubits_lab) 269  qubits_lab=qubits_lab)

432  accs_test=[] 270  accs_test=[]

433  accs_train=[] 271  accs_train=[]

434  chis=[] 272  chis=[]

435  acc_test_sol = 0 273  acc_test_sol = 0

436  acc_train_sol = 0 274  acc_train_sol = 0

437  fid_sol = 0 275  fid_sol = 0

438  best_epoch = 0 276  best_epoch = 0

439  theta_sol = theta.copy() 277  theta_sol = theta.copy()

440  alpha_sol = alpha.copy() 278  alpha_sol = alpha.copy()

441 279

442  file_text = write_epochs_file(chi, problem, qubits, entanglement, layers, method, name) 280  file_text = write_epochs_file(chi, problem, qubits, entanglement, layers, method, name)

443  for e in range(epochs): 281  for e in range(epochs):

444  theta, alpha, fid = fidelity_minimization(theta, alpha, train_data, reprs, 282  theta, alpha, fid = fidelity_minimization(theta, alpha, train_data, reprs,

445  entanglement, method, batch_size, eta, 1) 283  entanglement, method, batch_size, eta, 1)

446 284

447  acc_train = tester(theta, alpha, train_data, reprs, entanglement, chi) 285  acc_train = tester(theta, alpha, train_data, reprs, entanglement, chi)

448  acc_test = tester(theta, alpha, test_data, reprs, entanglement, chi) 286  acc_test = tester(theta, alpha, test_data, reprs, entanglement, chi)

449  accs_test.append(acc_test) 287  accs_test.append(acc_test)

450  accs_train.append(acc_train) 288  accs_train.append(acc_train)

451  chis.append(fid) 289  chis.append(fid)

452 290

453  write_epoch(file_text, e, theta, alpha, fid, acc_train, acc_test) 291  write_epoch(file_text, e, theta, alpha, fid, acc_train, acc_test)

454 292

455  if acc_test > acc_test_sol: 293  if acc_test > acc_test_sol:

456 294

457  acc_test_sol = acc_test 295  acc_test_sol = acc_test

458  acc_train_sol = acc_train 296  acc_train_sol = acc_train

459  fid_sol = fid 297  fid_sol = fid

460  theta_sol = theta 298  theta_sol = theta

461  alpha_sol = alpha 299  alpha_sol = alpha

462  best_epoch = e 300  best_epoch = e

463 301

464  close_epochs_file(file_text, best_epoch) 302  close_epochs_file(file_text, best_epoch)

465  write_summary(chi, problem, qubits, entanglement, layers, method, name, 303  write_summary(chi, problem, qubits, entanglement, layers, method, name,

466  theta_sol, alpha_sol, None, fid_sol, acc_train_sol, acc_test_sol, epochs) <> 304  theta_sol, alpha_sol, None, fid_sol, acc_train_sol, acc_test_sol, seed, epochs)

467  write_epochs_error_rate(chi, problem, qubits, entanglement, layers, method, name,  = 305  write_epochs_error_rate(chi, problem, qubits, entanglement, layers, method, name, 

468  accs_train, accs_test) 306  accs_train, accs_test)

469 307

470 def overlearning_paint(chi, problem, qubits, entanglement, layers, method, name): 308 def overlearning_paint(chi, problem, qubits, entanglement, layers, method, name):

471  """ 309  """

472  This function takes overlearning functions and paints them 310  This function takes overlearning functions and paints them

473  INPUT: 311  INPUT:

474 -chi: cost function, just 'fidelity_chi' 312 -chi: cost function, just 'fidelity_chi'

475 -problem: name of the problem, to choose among 313 -problem: name of the problem, to choose among

476  ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy lines'] 314    ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere',

'squares', 'wavy lines']

477 -qubits: number of qubits, must be an integer 315 -qubits: number of qubits, must be an integer

478 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n' 316 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

479 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account 317 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in

account

480 -method: minimization method, 'SGD' 318 -method: minimization method, 'SGD'

481 -name: a name we want for our our files to be save with 319 -name: a name we want for our our files to be save with

482  OUTPUT: 320  OUTPUT:

483  This function has got no outputs, but saves a picture with the information of the overlearning rates 321  This function has got no outputs, but saves a picture with the information of the overlearning

rates

484  """ 322  """

485  foldname = name_folder(chi, problem, qubits, entanglement, layers, method) 323  foldname = name_folder(chi, problem, qubits, entanglement, layers, method)

486  create_folder(foldname) 324  create_folder(foldname)

487  filename_train = foldname + '/' + name + '_train.txt' 325  filename_train = foldname + '/' + name + '_train.txt'

488  filename_test = foldname + '/' + name + '_test.txt' 326  filename_test = foldname + '/' + name + '_test.txt'

489 327

490  train_err_rate = np.loadtxt(filename_train) 328  train_err_rate = np.loadtxt(filename_train)

491  test_err_rate = np.loadtxt(filename_test) 329  test_err_rate = np.loadtxt(filename_test)

492  fig, ax = plt.subplots() 330  fig, ax = plt.subplots()

493  ax.plot(range(len(train_err_rate)), train_err_rate, label = 'Training set') 331  ax.plot(range(len(train_err_rate)), train_err_rate, label = 'Training set')

494  ax.plot(range(len(test_err_rate)), test_err_rate, label = 'Test set') 332  ax.plot(range(len(test_err_rate)), test_err_rate, label = 'Test set')

495  ax.set_xlabel('Epochs', fontsize=16) 333  ax.set_xlabel('Epochs', fontsize=16)

496  ax.set_ylabel('Error rate', fontsize=16) 334  ax.set_ylabel('Error rate', fontsize=16)

497  ax.legend() 335  ax.legend()

498  filename = foldname + '/' + name + '_overlearning' 336  filename = foldname + '/' + name + '_overlearning'

499  fig.savefig(filename) 337  fig.savefig(filename)

500  plt.close('all') 338  plt.close('all')

501 339

502 340



Text Compare
   

1 # coding=utf-8 +-    

2 ########################################################################## = 1 ##########################################################################

3 #Quantum classifier   2 #Quantum classifier

4 #Sara Aminpour, Mike Banad, Sarah Sharif <> 3 #Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil, J. Ignacio Latorre

5 #September 25th 2024   4 #Code by APS

      5 #Code-checks by ACL

      6 #June 3rd 2019

6   = 7  

7 #School of Electrical and Computer Engineering/ Center for Quantum and Technology, University of Oklahoma,

Norman, OK 73019 USA, 

<> 8  

8 ###########################################################################      

9 #IMPORTANT_NOTE:      

10 #The code on the left was developed by Sara Aminpour, while the code on the right serves as the reference

implementation by Adrián Pérez-Salinas. 

     

11 #The code on the left has been restructured to handle random data. So some certain sections has been deleted from

the reference code. 

     

12 #Additionally, our code on the left developed to analyze trace distance cost function and linear classification

problem

  9 #Universitat de Barcelona / Barcelona Supercomputing Center/Institut de Ciències del Cosmos

13 #as well as necessary modification to apply COBYLA, L-BFGS-B, NELDER-MEAD, and SLSQP minimization methods.   10  

14 ########################################################################### = 11 ###########################################################################

15     12  

16 ## This file creates the data points for the different problems to be tackled by the quantum classifier    13 ## This file creates the data points for the different problems to be tackled by the quantum classifier 

17     14  

18     15  

19     16  

20 import numpy as np   17 import numpy as np

21     18  

22 problems = ['circle', 'line', '3 circles', 'wavy circle', 'hypersphere', 'tricrown', 'non convex', 'crown',

'sphere', 'squares', 'wavy lines']

<> 19 problems = ['circle', '3 circles', 'wavy circle', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere',

'squares', 'wavy lines']

23   = 20  

24 def data_generator(problem, samples=None):   21 def data_generator(problem, samples=None):

25     """   22     """

26     This function generates the data for a problem   23     This function generates the data for a problem

27     INPUT:    24     INPUT: 

28         -problem: Name of the problem, one of: 'circle', '3 circles', 'hypersphere', 'tricrown', 'non convex',

'crown', 'sphere', 'squares', 'wavy lines'

  25         -problem: Name of the problem, one of: 'circle', '3 circles', 'hypersphere', 'tricrown', 'non convex',

'crown', 'sphere', 'squares', 'wavy lines'

29         -samples Number of samples for the data   26         -samples Number of samples for the data

30     OUTPUT:   27     OUTPUT:

31         -data: set of training and test data   28         -data: set of training and test data

32         -settings: things needed for drawing   29         -settings: things needed for drawing

33     """   30     """

34     problem = problem.lower()   31     problem = problem.lower()

35     if problem not in problems:   32     if problem not in problems:

36         raise ValueError('problem must be one of {}'.format(problems))   33         raise ValueError('problem must be one of {}'.format(problems))

37     if samples == None:   34     if samples == None:

38         if problem == 'sphere':    35         if problem == 'sphere': 

39             samples = 4500   36             samples = 4500

40         elif problem == 'hypersphere':   37         elif problem == 'hypersphere':

41             samples = 5000   38             samples = 5000

42         else:    39         else: 

43             samples = 4250 <> 40             samples = 4200

44              = 41             

45     if problem == 'circle':   42     if problem == 'circle':

46         data, settings = _circle(samples)   43         data, settings = _circle(samples)

47            44         

48     if problem == '3 circles':   45     if problem == '3 circles':

49         data, settings = _3_circles(samples)   46         data, settings = _3_circles(samples)

50            47         

51     if problem == 'wavy lines':   48     if problem == 'wavy lines':

52         data, settings = _wavy_lines(samples)   49         data, settings = _wavy_lines(samples)

53     50  

54     if problem == 'squares':   51     if problem == 'squares':

55         data, settings = _squares(samples)   52         data, settings = _squares(samples)

56            53         

57     if problem == 'sphere':   54     if problem == 'sphere':

58         data, settings = _sphere(samples)   55         data, settings = _sphere(samples)

59            56         

60     if problem == 'non convex':   57     if problem == 'non convex':

61         data, settings = _non_convex(samples)   58         data, settings = _non_convex(samples)

62            59         

63     if problem == 'crown':   60     if problem == 'crown':

64         data, settings = _crown(samples)   61         data, settings = _crown(samples)

65            62         

66     if problem == 'tricrown':   63     if problem == 'tricrown':

67         data, settings = _tricrown(samples)   64         data, settings = _tricrown(samples)

68            65         

69     if problem == 'hypersphere':   66     if problem == 'hypersphere':

70         data, settings = _hypersphere(samples)   67         data, settings = _hypersphere(samples)

71 #==============================================================================     <>    

72     if problem == 'line':      

73         data, settings = _line(samples)      

74 #==============================================================================      

75     68     

      69         

76     return data, settings  = 70     return data, settings 

77     71  

78 def _circle(samples):   72 def _circle(samples):

79     centers = np.array([[0, 0]])   73     centers = np.array([[0, 0]])

80     radii = np.array([np.sqrt(2/np.pi)])   74     radii = np.array([np.sqrt(2/np.pi)])

81     data=[]   75     data=[]

82     dim = 2   76     dim = 2

83     for i in range(samples):   77     for i in range(samples):

84         x = 2 * (np.random.rand(dim)) - 1   78         x = 2 * (np.random.rand(dim)) - 1

85         y = 0   79         y = 0

86         for c, r in zip(centers, radii):     80         for c, r in zip(centers, radii):  

87             if np.linalg.norm(x - c) < r:   81             if np.linalg.norm(x - c) < r:

88                 y = 1    82                 y = 1 

89     83  

90         data.append([x, y])   84         data.append([x, y])

91   <> 85             

92     return data, (centers, radii) = 86     return data, (centers, radii)

93     87  

94 def _3_circles(samples):   88 def _3_circles(samples):

95     centers = np.array([[-1, 1], [1, 0], [-.5, -.5]])   89     centers = np.array([[-1, 1], [1, 0], [-.5, -.5]])

96     radii = np.array([1, np.sqrt(6/np.pi - 1), 1/2])    90     radii = np.array([1, np.sqrt(6/np.pi - 1), 1/2]) 

97     data=[]   91     data=[]

98     dim = 2   92     dim = 2

99     for i in range(samples):   93     for i in range(samples):

100         x = 2 * (np.random.rand(dim)) - 1   94         x = 2 * (np.random.rand(dim)) - 1

101         y = 0   95         y = 0

102         for j, (c, r) in enumerate(zip(centers, radii)):    96         for j, (c, r) in enumerate(zip(centers, radii)): 

103             if np.linalg.norm(x - c) < r:   97             if np.linalg.norm(x - c) < r:

104                 y = j + 1    98                 y = j + 1 

105                    99                 

106         data.append([x, y])   100         data.append([x, y])

107                    101                 

108        102     

109     return data, (centers, radii)   103     return data, (centers, radii)

110        104     

111     105  

112 def _wavy_lines(samples, freq = 1):   106 def _wavy_lines(samples, freq = 1):

113     def fun1(s):   107     def fun1(s):

114         return s + np.sin(freq * np.pi * s)   108         return s + np.sin(freq * np.pi * s)

115        109     

116     def fun2(s):   110     def fun2(s):

117         return -s + np.sin(freq * np.pi * s)   111         return -s + np.sin(freq * np.pi * s)

118     data=[]   112     data=[]

119     dim=2   113     dim=2

120     for i in range(samples):   114     for i in range(samples):

121         x = 2 * (np.random.rand(dim)) - 1   115         x = 2 * (np.random.rand(dim)) - 1

122         if x[1] < fun1(x[0]) and x[1] < fun2(x[0]): y = 0   116         if x[1] < fun1(x[0]) and x[1] < fun2(x[0]): y = 0

123         if x[1] < fun1(x[0]) and x[1] > fun2(x[0]): y = 1   117         if x[1] < fun1(x[0]) and x[1] > fun2(x[0]): y = 1

124         if x[1] > fun1(x[0]) and x[1] < fun2(x[0]): y = 2   118         if x[1] > fun1(x[0]) and x[1] < fun2(x[0]): y = 2

125         if x[1] > fun1(x[0]) and x[1] > fun2(x[0]): y = 3           119         if x[1] > fun1(x[0]) and x[1] > fun2(x[0]): y = 3        

126         data.append([x, y])   120         data.append([x, y])

127     121  

128     return data, freq   122     return data, freq

129     123  

130 def _squares(samples):   124 def _squares(samples):

131     data=[]   125     data=[]

132     dim=2   126     dim=2

133     for i in range(samples):   127     for i in range(samples):

134         x = 2 * (np.random.rand(dim)) - 1   128         x = 2 * (np.random.rand(dim)) - 1

135         if x[0] < 0 and x[1] < 0: y = 0   129         if x[0] < 0 and x[1] < 0: y = 0

136         if x[0] < 0 and x[1] > 0: y = 1   130         if x[0] < 0 and x[1] > 0: y = 1

137         if x[0] > 0 and x[1] < 0: y = 2   131         if x[0] > 0 and x[1] < 0: y = 2

138         if x[0] > 0 and x[1] > 0: y = 3           132         if x[0] > 0 and x[1] > 0: y = 3        

139         data.append([x, y])   133         data.append([x, y])

140        134     

141     return data, None   135     return data, None

142     136  

143 #============================================================================== +-    

144 def _line(samples):      

145     data=[]      

146     dim=2      

147     for i in range(samples):      

148         x = 2 * np.random.rand(dim) -1      

149         #x = np.random.rand(dim)      

150         if x[0] < x[1] : y = 0      

151         if x[0] > x[1] : y = 1      

152             

153         data.append([x, y])      

154           

155     return data, None      

156 #==============================================================================      

157   = 137  

158 def _non_convex(samples, freq = 1, x_val = 2, sin_val = 1.5):   138 def _non_convex(samples, freq = 1, x_val = 2, sin_val = 1.5):

159     def fun(s):   139     def fun(s):

160         return -x_val * s + sin_val * np.sin(freq * np.pi * s)   140         return -x_val * s + sin_val * np.sin(freq * np.pi * s)

161        141     

162     data = []   142     data = []

163     dim = 2   143     dim = 2

164     for i in range(samples):   144     for i in range(samples):

165         x = 2 * (np.random.rand(dim)) - 1   145         x = 2 * (np.random.rand(dim)) - 1

166         if x[1] < fun(x[0]): y = 0   146         if x[1] < fun(x[0]): y = 0

167         if x[1] > fun(x[0]): y = 1   147         if x[1] > fun(x[0]): y = 1

168         data.append([x, y])   148         data.append([x, y])

169     149  

170     return data, (freq, x_val, sin_val)   150     return data, (freq, x_val, sin_val)

171                151             

172 def _crown(samples):   152 def _crown(samples):

173     c = [[0,0],[0,0]]   153     c = [[0,0],[0,0]]

174     r = [np.sqrt(.8), np.sqrt(.8 - 2/np.pi)]   154     r = [np.sqrt(.8), np.sqrt(.8 - 2/np.pi)]

175     data = []   155     data = []

176     dim = 2   156     dim = 2

177     for i in range(samples):   157     for i in range(samples):

178         x = 2 * (np.random.rand(dim)) - 1   158         x = 2 * (np.random.rand(dim)) - 1

179         if np.linalg.norm(x - c[0]) < r[0] and np.linalg.norm(x - c[1]) > r[1]:   159         if np.linalg.norm(x - c[0]) < r[0] and np.linalg.norm(x - c[1]) > r[1]:

180             y = 1   160             y = 1

181         else:    161         else: 

182             y=0   162             y=0

183         data.append([x, y])   163         data.append([x, y])

184     164  

185     return data, (c, r)   165     return data, (c, r)

186     166  

187     167  

188 def _tricrown(samples):   168 def _tricrown(samples):

189     centers = [[0,0],[0,0]]   169     centers = [[0,0],[0,0]]

190     radii = [np.sqrt(.8 - 2/np.pi), np.sqrt(.8)]   170     radii = [np.sqrt(.8 - 2/np.pi), np.sqrt(.8)]

191     data = []   171     data = []

192     dim = 2   172     dim = 2

193     for i in range(samples):   173     for i in range(samples):

194         x = 2 * (np.random.rand(dim)) - 1   174         x = 2 * (np.random.rand(dim)) - 1

195         y=0   175         y=0

196         for j,(r,c) in enumerate(zip(radii, centers)):   176         for j,(r,c) in enumerate(zip(radii, centers)):

197             if np.linalg.norm(x - c) > r:   177             if np.linalg.norm(x - c) > r:

198                 y = j + 1   178                 y = j + 1

199         data.append([x, y])   179         data.append([x, y])

200     180  

201     return data, (centers, radii)   181     return data, (centers, radii)

202     182  

203 def _sphere(samples):   183 def _sphere(samples):

204     centers = np.array([[0, 0, 0]])    184     centers = np.array([[0, 0, 0]]) 

205     radii = np.array([(3/np.pi)**(1/3)])    185     radii = np.array([(3/np.pi)**(1/3)]) 

206     data=[]   186     data=[]

207     dim = 3   187     dim = 3

208     for i in range(samples):   188     for i in range(samples):

209         x = 2 * (np.random.rand(dim)) - 1   189         x = 2 * (np.random.rand(dim)) - 1

210         y = 0   190         y = 0

211         for c, r in zip(centers, radii):    191         for c, r in zip(centers, radii): 

212             if np.linalg.norm(x - c) < r:   192             if np.linalg.norm(x - c) < r:

213                 y = 1    193                 y = 1 

214     194  

215         data.append([x, y])   195         data.append([x, y])

216        196     

217     return data, (centers, radii)   197     return data, (centers, radii)

218     198  

219 def _hypersphere(samples):   199 def _hypersphere(samples):

220     centers = np.array([[0, 0, 0, 0]])    200     centers = np.array([[0, 0, 0, 0]]) 

221     radii = np.array([(2/np.pi)**(1/2)])    201     radii = np.array([(2/np.pi)**(1/2)]) 

222     data=[]   202     data=[]

223     dim = 4   203     dim = 4

224     for i in range(samples):   204     for i in range(samples):

225         x = 2 * (np.random.rand(dim)) - 1    205         x = 2 * (np.random.rand(dim)) - 1 

226         y = 0   206         y = 0

227         for c, r in zip(centers, radii):    207         for c, r in zip(centers, radii): 

228             if np.linalg.norm(x - c) < r:   208             if np.linalg.norm(x - c) < r:

229                 y = 1    209                 y = 1 

230     210  

231         data.append([x, y])   211         data.append([x, y])

232        212     

233     return data, (centers, radii)   213     return data, (centers, radii)

234     214  

235     215  



Text Compare
   

1 #Quantum classifier <>    

2 #Sara Aminpour, Mike Banad, Sarah Sharif      

3 #September 25th 2024      

4        

5 #School of Electrical and Computer Engineering/ Center for Quantum and Technology, University of Oklahoma, Norman, OK 73019 USA,       

6 ###########################################################################      

7 #IMPORTANT_NOTE:      

8 #The code on the left was developed by Sara Aminpour, while the code on the right serves as the reference implementation by Adrián

Pérez-Salinas. 

     

9 #The code on the left has been restructured to handle random data. So some certain sections has been deleted from the reference code.       

10 #Additionally, our code on the left developed to analyze trace distance cost function and linear classification problem      

11 #as well as necessary modification to apply COBYLA, L-BFGS-B, NELDER-MEAD, and SLSQP minimization methods.      

12 from big_functions import minimizer, painter, SGD_step_by_step_minimization, overlearning_paint   1 from big_functions import minimizer, painter, SGD_step_by_step_minimization,

overlearning_paint, paint_world

13 import datetime   2  

14 qubits = 2  #integer, number of qubits   3 qubits = 1  #integer, number of qubits

15 layers = 5 #integer, number of layers (time we reupload data) = 4 layers = 5 #integer, number of layers (time we reupload data)

16 chi = 'fidelity_chi' #Cost function; choose between ['fidelity_chi', 'trace_chi] <> 5 chi = 'fidelity_chi' #Cost function; choose between ['fidelity_chi',

'weighted_fidelity_chi']

      6 problem='wavy lines' #name of the problem, choose among ['circle', 'wavy circle', '3

circles', 'wavy lines', 'sphere', 'non convex', 'crown']

17 entanglement = 'y' #entanglement y/n = 7 entanglement = 'y' #entanglement y/n

    -+ 8 method = 'L-BFGS-B' #minimization methods, scipy methods or 'SGD'

18 name = 'run' #However you want to name your files = 9 name = 'run' #However you want to name your files

19 seed = 30 #random seed   10 seed = 30 #random seed

20 #epochs=3000 #number of epochs, only for SGD methods   11 #epochs=3000 #number of epochs, only for SGD methods

21     12  

22          <>    

23 problem=['circle', 'line'] #name of the problem, choose among ['circle', 'wavy circle', '3 circles', 'wavy lines', 'sphere', 'non

convex', 'crown']

     

24 for problem in problem:      

25                   

26             method = ['l-bfgs-b', 'cobyla', 'nelder-mead', 'slsqp'] #minimization methods between ['l-bfgs-b', 'cobyla', 'nelder-mead',

'slsqp']

     

27             for method in method:      

28                 a=datetime.datetime.now()      

29                 #SGD_step_by_step_minimization(problem, qubits, entanglement, layers, name)   13 #SGD_step_by_step_minimization(problem, qubits, entanglement, layers, name)

30                 minimizer(chi, problem, qubits, entanglement, layers, method, name)   14 minimizer(chi, problem, qubits, entanglement, layers, method, name, seed = seed)

31                 painter(chi, problem, qubits, entanglement, layers, method, name, standard_test=True)   15 painter(chi, problem, qubits, entanglement, layers, method, name, standard_test=True,

seed=seed)

32                 #paint_world(chi, problem, qubits, entanglement, layers, method, name, standard_test=True)   16 paint_world(chi, problem, qubits, entanglement, layers, method, name,

standard_test=True, seed=seed)

33                 b=datetime.datetime.now()      

34                 c=b-a      

35                       

36                 text_file_nn = open('time.txt', mode='a+')      

37                 text_file_nn.write(problem +'_'+ chi +'_'+ method +'_'+ str(qubits) +'Qubits_' + entanglement +'_'+ str(layers)

+'Layers_' + method + "__" + 'total_time'+' = '+ str(c))

     

38                 text_file_nn.write('\n')      

39                 text_file_nn.write('======================================================================')      

40                 text_file_nn.write('\n')      

41                 text_file_nn.close()       



Text Compare
   

1 # coding=utf-8 +-    

2 ########################################################################## = 1 ##########################################################################

3 #Quantum classifier   2 #Quantum classifier

4 #Sara Aminpour, Mike Banad, Sarah Sharif <> 3 #Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil, J. Ignacio Latorre

5 #September 25th 2024   4 #Code by APS

      5 #Code-checks by ACL

      6 #June 3rd 2019

6   = 7  

7 #School of Electrical and Computer Engineering/ Center for Quantum and Technology, University of Oklahoma, Norman,

OK 73019 USA, 

<> 8  

8 ###########################################################################      

9 #IMPORTANT_NOTE:      

10 #The code on the left was developed by Sara Aminpour, while the code on the right serves as the reference

implementation by Adrián Pérez-Salinas. 

     

11 #The code on the left has been restructured to handle random data. So some certain sections has been deleted from

the reference code. 

     

12 #Additionally, our code on the left developed to analyze trace distance cost function and linear classification

problem

  9 #Universitat de Barcelona / Barcelona Supercomputing Center/Institut de Ciències del Cosmos

13 #as well as necessary modification to apply COBYLA, L-BFGS-B, NELDER-MEAD, and SLSQP minimization methods.   10  

14 ########################################################################### = 11 ###########################################################################

15     12  

16 ## This file creates the problems and their settings   13 ## This file creates the problems and their settings

17 import numpy as np   14 import numpy as np

18     15  

19 def problem_generator(problem, qubits, layers, chi, qubits_lab=1):   16 def problem_generator(problem, qubits, layers, chi, qubits_lab=1):

20     """   17     """

21     This function generates everything needed for solving the problem   18     This function generates everything needed for solving the problem

22     INPUT:    19     INPUT: 

23         -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'   20         -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'

24         -problem: name of the problem, to choose among   21         -problem: name of the problem, to choose among

25             ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy

lines']

  22             ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares',

'wavy lines']

26         -qubits: number of qubits, must be an integer   23         -qubits: number of qubits, must be an integer

27         -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account   24         -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account

28     25  

29            26         

30     OUTPUT:   27     OUTPUT:

31         -theta: set of parameters needed for the circuit. It is an array with shape (qubits, layers, 3)   28         -theta: set of parameters needed for the circuit. It is an array with shape (qubits, layers, 3)

32         -alpha: set of parameters needed for the circuit. It is an array with shape (qubits, layers, dimension of

data)

  29         -alpha: set of parameters needed for the circuit. It is an array with shape (qubits, layers,

dimension of data)

33         -weight: set of parameters needed fot the circuit only if chi == 'weighted_fidelity_chi'. It is an array

with shape (classes, qubits)

  30         -weight: set of parameters needed fot the circuit only if chi == 'weighted_fidelity_chi'. It is an

array with shape (classes, qubits)

34         -reprs: variable encoding the label states of the different classes   31         -reprs: variable encoding the label states of the different classes

35     """   32     """

36     chi = chi.lower()   33     chi = chi.lower()

37     if chi in ['fidelity', 'weighted_fidelity','trace']: chi += '_chi' <> 34     if chi in ['fidelity', 'weighted_fidelity']: chi += '_chi'

38     if chi not in ['fidelity_chi', 'weighted_fidelity_chi','trace_chi']:   35     if chi not in ['fidelity_chi', 'weighted_fidelity_chi']:

39         raise ValueError('Figure of merit is not valid') = 36         raise ValueError('Figure of merit is not valid')

40            37         

41     if chi == 'weighted_fidelity_chi' and qubits_lab != 1:    38     if chi == 'weighted_fidelity_chi' and qubits_lab != 1: 

42         qubits_lab = 1   39         qubits_lab = 1

43         print('WARNING: number of qubits for the label states has been changed to 1')   40         print('WARNING: number of qubits for the label states has been changed to 1')

44        41     

45     problem = problem.lower()   42     problem = problem.lower()

46     if problem == 'circle':   43     if problem == 'circle':

47         theta, alpha, reprs = _circle(qubits, layers, qubits_lab, chi)   44         theta, alpha, reprs = _circle(qubits, layers, qubits_lab, chi)

48     elif problem == '3 circles':   45     elif problem == '3 circles':

49         theta, alpha, reprs = _3_circles(qubits, layers, qubits_lab, chi)   46         theta, alpha, reprs = _3_circles(qubits, layers, qubits_lab, chi)

50     elif problem == 'wavy lines':   47     elif problem == 'wavy lines':

51         theta, alpha, reprs = _wavy_lines(qubits, layers, qubits_lab, chi)   48         theta, alpha, reprs = _wavy_lines(qubits, layers, qubits_lab, chi)

52     elif problem == 'squares':   49     elif problem == 'squares':

53         theta, alpha, reprs = _squares(qubits, layers, qubits_lab, chi)   50         theta, alpha, reprs = _squares(qubits, layers, qubits_lab, chi)

54     elif problem == 'sphere':   51     elif problem == 'sphere':

55         theta, alpha, reprs = _sphere(qubits, layers, qubits_lab, chi)   52         theta, alpha, reprs = _sphere(qubits, layers, qubits_lab, chi)

56     elif problem == 'non convex':   53     elif problem == 'non convex':

57         theta, alpha, reprs = _non_convex(qubits, layers, qubits_lab, chi)   54         theta, alpha, reprs = _non_convex(qubits, layers, qubits_lab, chi)

58     elif problem == 'crown':   55     elif problem == 'crown':

59         theta, alpha, reprs = _crown(qubits, layers, qubits_lab, chi)   56         theta, alpha, reprs = _crown(qubits, layers, qubits_lab, chi)

60     elif problem == 'tricrown':   57     elif problem == 'tricrown':

61         theta, alpha, reprs = _tricrown(qubits, layers, qubits_lab, chi)   58         theta, alpha, reprs = _tricrown(qubits, layers, qubits_lab, chi)

62     elif problem == 'hypersphere':   59     elif problem == 'hypersphere':

63         theta, alpha, reprs = _hypersphere(qubits, layers, qubits_lab, chi)   60         theta, alpha, reprs = _hypersphere(qubits, layers, qubits_lab, chi)

64 #============================================================================== <> 61        

65     elif problem == 'line':      

66         theta, alpha, reprs = _line(qubits, layers, qubits_lab, chi)         

67 #==============================================================================      

68     else: = 62     else:

69         raise ValueError('Problem is not valid')   63         raise ValueError('Problem is not valid')

70            64         

71     if chi == 'fidelity_chi':   65     if chi == 'fidelity_chi':

72         return theta, alpha, reprs   66         return theta, alpha, reprs

73     elif chi == 'trace_chi': +-    

74         return theta, alpha, reprs      

75     elif chi == 'weighted_fidelity_chi': = 67     elif chi == 'weighted_fidelity_chi':

76         weights = np.ones((len(reprs), qubits))   68         weights = np.ones((len(reprs), qubits))

77         return theta, alpha, weights, reprs   69         return theta, alpha, weights, reprs

78     70  

79 #All these are auxiliary functions for problem_generator   71 #All these are auxiliary functions for problem_generator

80 def _circle(qubits, layers, qubits_lab, chi):   72 def _circle(qubits, layers, qubits_lab, chi):

81     classes = 2   73     classes = 2

82     if chi == 'trace_chi': <>    

83         reprs = representatives_tr(classes, qubits_lab)      

84     else:      

85         reprs = representatives(classes, qubits_lab)   74     reprs = representatives(classes, qubits_lab)

86        

87     theta = np.random.rand(qubits, layers, 3) = 75     theta = np.random.rand(qubits, layers, 3)

88     alpha = np.random.rand(qubits, layers, 2)   76     alpha = np.random.rand(qubits, layers, 2)

89     return theta, alpha, reprs   77     return theta, alpha, reprs

90            78         

91 def _3_circles(qubits, layers, qubits_lab, chi):   79 def _3_circles(qubits, layers, qubits_lab, chi):

92     classes = 4   80     classes = 4

93     reprs = representatives(classes, qubits_lab)   81     reprs = representatives(classes, qubits_lab)

94     theta = np.random.rand(qubits, layers, 3)   82     theta = np.random.rand(qubits, layers, 3)

95     alpha = np.random.rand(qubits, layers, 2)   83     alpha = np.random.rand(qubits, layers, 2)

96     return theta, alpha, reprs   84     return theta, alpha, reprs

97     85  

98 def _wavy_lines(qubits, layers, qubits_lab, chi):   86 def _wavy_lines(qubits, layers, qubits_lab, chi):

99     classes = 4   87     classes = 4

100     reprs = representatives(classes, qubits_lab)   88     reprs = representatives(classes, qubits_lab)

101     theta = np.random.rand(qubits, layers, 3)   89     theta = np.random.rand(qubits, layers, 3)

102     alpha = np.random.rand(qubits, layers, 2)   90     alpha = np.random.rand(qubits, layers, 2)

103     return theta, alpha, reprs           91     return theta, alpha, reprs        

104     92  

105 def _squares(qubits, layers, qubits_lab, chi):   93 def _squares(qubits, layers, qubits_lab, chi):

106     classes = 4   94     classes = 4

107     reprs = representatives(classes, qubits_lab)   95     reprs = representatives(classes, qubits_lab)

108     theta = np.random.rand(qubits, layers, 3)   96     theta = np.random.rand(qubits, layers, 3)

109     alpha = np.random.rand(qubits, layers, 2)   97     alpha = np.random.rand(qubits, layers, 2)

110     return theta, alpha, reprs           98     return theta, alpha, reprs        

111 #============================================================================== <>    

112 def _line(qubits, layers, qubits_lab, chi):      

113     classes = 2      

114     if chi == 'trace_chi':      

115         reprs = representatives_tr(classes, qubits_lab)      

116     else:      

117         reprs = representatives(classes, qubits_lab)      

118            99  

119     theta = np.random.rand(qubits, layers, 3)      

120     alpha = np.random.rand(qubits, layers, 2)      

121     return theta, alpha, reprs              

122 #==============================================================================      

123 def _non_convex(qubits, layers, qubits_lab, chi): = 100 def _non_convex(qubits, layers, qubits_lab, chi):

124     classes = 2   101     classes = 2

125     if chi == 'trace_chi': <>    

126         reprs = representatives_tr(classes, qubits_lab)      

127     else:      

128         reprs = representatives(classes, qubits_lab)   102     reprs = representatives(classes, qubits_lab)

129        

130     theta = np.random.rand(qubits, layers, 3) = 103     theta = np.random.rand(qubits, layers, 3)

131     alpha = np.random.rand(qubits, layers, 2)   104     alpha = np.random.rand(qubits, layers, 2)

132     return theta, alpha, reprs           105     return theta, alpha, reprs        

133     106  

134 def _crown(qubits, layers, qubits_lab, chi):   107 def _crown(qubits, layers, qubits_lab, chi):

135     classes = 2   108     classes = 2

136     if chi == 'trace_chi': <>    

137         reprs = representatives_tr(classes, qubits_lab)      

138     else:      

139         reprs = representatives(classes, qubits_lab)   109     reprs = representatives(classes, qubits_lab)

140        

141     theta = np.random.rand(qubits, layers, 3) = 110     theta = np.random.rand(qubits, layers, 3)

142     alpha = np.random.rand(qubits, layers, 2)   111     alpha = np.random.rand(qubits, layers, 2)

143     return theta, alpha, reprs           112     return theta, alpha, reprs        

144     113  

145 def _tricrown(qubits, layers, qubits_lab, chi):   114 def _tricrown(qubits, layers, qubits_lab, chi):

146     classes = 3   115     classes = 3

147     reprs = representatives(classes, qubits_lab)   116     reprs = representatives(classes, qubits_lab)

148     theta = np.random.rand(qubits, layers, 3)   117     theta = np.random.rand(qubits, layers, 3)

149     alpha = np.random.rand(qubits, layers, 2)   118     alpha = np.random.rand(qubits, layers, 2)

150     return theta, alpha, reprs         119     return theta, alpha, reprs      

151     120  

152 def _sphere(qubits, layers, qubits_lab, chi):   121 def _sphere(qubits, layers, qubits_lab, chi):

153     classes = 2   122     classes = 2

154     reprs = representatives(classes, qubits_lab)   123     reprs = representatives(classes, qubits_lab)

155     theta = np.random.rand(qubits, layers, 3)   124     theta = np.random.rand(qubits, layers, 3)

156     alpha = np.random.rand(qubits, layers, 3)   125     alpha = np.random.rand(qubits, layers, 3)

157     return theta, alpha, reprs      126     return theta, alpha, reprs   

158     127  

159 def _hypersphere(qubits, layers, qubits_lab, chi):   128 def _hypersphere(qubits, layers, qubits_lab, chi):

160     classes = 2   129     classes = 2

161     reprs = representatives(classes, qubits_lab)   130     reprs = representatives(classes, qubits_lab)

162     theta = np.random.rand(qubits, layers, 6)   131     theta = np.random.rand(qubits, layers, 6)

163     alpha = np.random.rand(qubits, layers, 4)   132     alpha = np.random.rand(qubits, layers, 4)

164     return theta, alpha, reprs      133     return theta, alpha, reprs   

165            134         

166   +-    

167 def representatives_tr(classes, qubits_lab):      

168     """      

169     This function creates the label states for the classification task      

170     INPUT:       

171         -classes: number of classes of our problem      

172         -qubits_lab: how many qubits will store the labels      

173     OUTPUT:      

174         -reprs: the label states      

175     """      

176     #reprs = np.zeros((classes, 2**qubits_lab), dtype = 'complex')      

177     reprs = np.zeros((classes, 3), dtype = 'complex')      

178     if qubits_lab == 1:      

179         if classes == 0:      

180             raise ValueError('Nonsense classifier')      

181         if classes == 1:      

182             raise ValueError('Nonsense classifier')      

183         if classes == 2:      

184             #reprs[0] = np.array([1, 0])      

185             reprs[0] = np.array([0.2938926261462367, -0.5090369604551273, 0.8090169943749473])      

186             reprs[1] = np.array([-0.2938926261462367, 0.5090369604551273, -0.8090169943749473])      

187         if classes == 3:      

188             reprs[0] = np.array([1, 0])      

189             reprs[1] = np.array([1 / 2, np.sqrt(3) / 2])      

190             reprs[2] = np.array([1 / 2, -np.sqrt(3) / 2])      

191         if classes == 4:      

192             reprs[0] = np.array([1, 0])      

193             reprs[1] = np.array([1 / np.sqrt(3), np.sqrt(2 / 3)])      

194             reprs[2] = np.array([1 / np.sqrt(3), np.exp(1j * 2 * np.pi / 3) * np.sqrt(2 / 3)])      

195             reprs[3] = np.array([1 / np.sqrt(3), np.exp(-1j * 2 * np.pi / 3) * np.sqrt(2 / 3)])      

196         if classes == 6:      

197             reprs[0] = np.array([0.2938926261462367, -0.5090369604551273, 0.8090169943749473])      

198             reprs[1] = np.array([-0.2938926261462367, 0.5090369604551273, -0.8090169943749473])      

199             reprs[2] = np.array([-0.7006292692220369, -0.4045084971874737, 0.5877852522924729])      

200             reprs[3] = np.array([0.7006292692220369, 0.4045084971874737, -0.5877852522924729])      

201             reprs[4] = np.array([0.4045084971874736, -0.7006292692220369, 0.5877852522924729])      

202             reprs[5] = np.array([0.7006292692220369, 0.4045084971874737, -0.5877852522924729])      

203        

204     if qubits_lab == 2:      

205         if classes == 0:      

206             raise ValueError('Nonsense classifier')      

207         if classes == 1:      

208             raise ValueError('Nonsense classifier')      

209         if classes == 2:      

210             reprs[0] = np.array([0.29, -0.5, 0.8])      

211             reprs[1] = np.array([-0.29, 0.5, -0.8])      

212         if classes == 3:      

213             reprs[0] = np.array([1, 0, 0, 0])      

214             reprs[1] = np.array([0, 1, 0, 0])      

215             reprs[2] = np.array([0, 0, 1, 0])      

216         if classes == 4:      

217             reprs[0] = np.array([1, 0, 0, 0])      

218             reprs[1] = np.array([0, 1, 0, 0])      

219             reprs[2] = np.array([0, 0, 1, 0])      

220             reprs[3] = np.array([0, 0, 0, 1])      

221                   

222     return reprs      

223        

224 def representatives(classes, qubits_lab): = 135 def representatives(classes, qubits_lab):

225     """   136     """

226     This function creates the label states for the classification task   137     This function creates the label states for the classification task

227     INPUT:    138     INPUT: 

228         -classes: number of classes of our problem   139         -classes: number of classes of our problem

229         -qubits_lab: how many qubits will store the labels   140         -qubits_lab: how many qubits will store the labels

230     OUTPUT:   141     OUTPUT:

231         -reprs: the label states   142         -reprs: the label states

232     """   143     """

233     reprs = np.zeros((classes, 2**qubits_lab), dtype = 'complex')   144     reprs = np.zeros((classes, 2**qubits_lab), dtype = 'complex')

234     if qubits_lab == 1:   145     if qubits_lab == 1:

235         if classes == 0:   146         if classes == 0:

236             raise ValueError('Nonsense classifier')   147             raise ValueError('Nonsense classifier')

237         if classes == 1:   148         if classes == 1:

238             raise ValueError('Nonsense classifier')   149             raise ValueError('Nonsense classifier')

239         if classes == 2:   150         if classes == 2:

240             reprs[0] = np.array([1, 0])   151             reprs[0] = np.array([1, 0])

241             reprs[1] = np.array([0, 1])   152             reprs[1] = np.array([0, 1])

242         if classes == 3:   153         if classes == 3:

243             reprs[0] = np.array([1, 0])   154             reprs[0] = np.array([1, 0])

244             reprs[1] = np.array([1 / 2, np.sqrt(3) / 2])   155             reprs[1] = np.array([1 / 2, np.sqrt(3) / 2])

245             reprs[2] = np.array([1 / 2, -np.sqrt(3) / 2])   156             reprs[2] = np.array([1 / 2, -np.sqrt(3) / 2])

246         if classes == 4:   157         if classes == 4:

247             reprs[0] = np.array([1, 0])   158             reprs[0] = np.array([1, 0])

248             reprs[1] = np.array([1 / np.sqrt(3), np.sqrt(2 / 3)])   159             reprs[1] = np.array([1 / np.sqrt(3), np.sqrt(2 / 3)])

249             reprs[2] = np.array([1 / np.sqrt(3), np.exp(1j * 2 * np.pi / 3) * np.sqrt(2 / 3)])   160             reprs[2] = np.array([1 / np.sqrt(3), np.exp(1j * 2 * np.pi / 3) * np.sqrt(2 / 3)])

250             reprs[3] = np.array([1 / np.sqrt(3), np.exp(-1j * 2 * np.pi / 3) * np.sqrt(2 / 3)])   161             reprs[3] = np.array([1 / np.sqrt(3), np.exp(-1j * 2 * np.pi / 3) * np.sqrt(2 / 3)])

251         if classes == 6:   162         if classes == 6:

252             reprs[0] = np.array([1, 0])   163             reprs[0] = np.array([1, 0])

253             reprs[1] = np.array([0, 1])   164             reprs[1] = np.array([0, 1])

254             reprs[2] = 1 / np.sqrt(2) * np.array([1, 1])   165             reprs[2] = 1 / np.sqrt(2) * np.array([1, 1])

255             reprs[3] = 1 / np.sqrt(2) * np.array([1, -1])   166             reprs[3] = 1 / np.sqrt(2) * np.array([1, -1])

256             reprs[4] = 1 / np.sqrt(2) * np.array([1, 1j])   167             reprs[4] = 1 / np.sqrt(2) * np.array([1, 1j])

257             reprs[5] = 1 / np.sqrt(2) * np.array([1, -1j])   168             reprs[5] = 1 / np.sqrt(2) * np.array([1, -1j])

258     169  

259     if qubits_lab == 2:   170     if qubits_lab == 2:

260         if classes == 0:   171         if classes == 0:

261             raise ValueError('Nonsense classifier')   172             raise ValueError('Nonsense classifier')

262         if classes == 1:   173         if classes == 1:

263             raise ValueError('Nonsense classifier')   174             raise ValueError('Nonsense classifier')

264         if classes == 2:   175         if classes == 2:

265             reprs[0] = np.array([1, 0, 0, 0])   176             reprs[0] = np.array([1, 0, 0, 0])

266             reprs[1] = np.array([0, 0, 0, 1])   177             reprs[1] = np.array([0, 0, 0, 1])

267         if classes == 3:   178         if classes == 3:

268             reprs[0] = np.array([1, 0, 0, 0])   179             reprs[0] = np.array([1, 0, 0, 0])

269             reprs[1] = np.array([0, 1, 0, 0])   180             reprs[1] = np.array([0, 1, 0, 0])

270             reprs[2] = np.array([0, 0, 1, 0])   181             reprs[2] = np.array([0, 0, 1, 0])

271         if classes == 4:   182         if classes == 4:

272             reprs[0] = np.array([1, 0, 0, 0])   183             reprs[0] = np.array([1, 0, 0, 0])

273             reprs[1] = np.array([0, 1, 0, 0])   184             reprs[1] = np.array([0, 1, 0, 0])

274             reprs[2] = np.array([0, 0, 1, 0])   185             reprs[2] = np.array([0, 0, 1, 0])

275             reprs[3] = np.array([0, 0, 0, 1])   186             reprs[3] = np.array([0, 0, 0, 1])

276                187             

277     return reprs   188     return reprs

278   +-    



Text Compare
   

1 # coding=utf-8 +-    

2 ########################################################################## = 1 ##########################################################################

3 #Quantum classifier   2 #Quantum classifier

4 #Sara Aminpour, Mike Banad, Sarah Sharif <> 3 #Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil, J. Ignacio Latorre

5 #September 25th 2024   4 #Code by APS

      5 #Code-checks by ACL

      6 #June 3rd 2019

6   = 7  

7 #School of Electrical and Computer Engineering/ Center for Quantum and Technology, University of Oklahoma, Norman, OK 73019 USA,  <> 8  

8 ###########################################################################      

9 #IMPORTANT_NOTE:      

10 #The code on the left was developed by Sara Aminpour, while the code on the right serves as the reference implementation by Adrián

Pérez-Salinas. 

     

11 #The code on the left has been restructured to handle random data. So some certain sections has been deleted from the reference

code. 

     

12 #Additionally, our code on the left developed to analyze trace distance cost function and linear classification problem   9 #Universitat de Barcelona / Barcelona Supercomputing Center/Institut de Ciències del

Cosmos

13 #as well as necessary modification to apply COBYLA, L-BFGS-B, NELDER-MEAD, and SLSQP minimization methods.   10  

14 ########################################################################### = 11 ###########################################################################

15     12  

16     13  

17 ## This is an auxiliary file. It provides the tools needed for simulating quantum   14 ## This is an auxiliary file. It provides the tools needed for simulating quantum

18 # circuits.   15 # circuits.

19     16  

20 import numpy as np   17 import numpy as np

21 class QCircuit(object):   18 class QCircuit(object):

22     def __init__(self,qubits):   19     def __init__(self,qubits):

23         self.num_qubits = qubits   20         self.num_qubits = qubits

24         self.psi = [0]*2**self.num_qubits   21         self.psi = [0]*2**self.num_qubits

25         self.psi[0] = 1   22         self.psi[0] = 1

26         self.E_x=0   23         self.E_x=0

27         self.E_y=0   24         self.E_y=0

28         self.E_z=0   25         self.E_z=0

29         self.r=np.array([0,0,0]) +-    

30          = 26         

31     def Ry(self,i,theta):   27     def Ry(self,i,theta):

32         if i>=self.num_qubits: raise ValueError('There are not enough qubits')   28         if i>=self.num_qubits: raise ValueError('There are not enough qubits')

33         c = np.cos(theta/2)   29         c = np.cos(theta/2)

34         s = np.sin(theta/2)   30         s = np.sin(theta/2)

35         for k in range(2**(self.num_qubits-1)):   31         for k in range(2**(self.num_qubits-1)):

36             S = k%(2**i) + 2*(k - k%(2**i))   32             S = k%(2**i) + 2*(k - k%(2**i))

37             S_=S + 2**i   33             S_=S + 2**i

38             a=c*self.psi[S] - s*self.psi[S_];   34             a=c*self.psi[S] - s*self.psi[S_];

39             b=s*self.psi[S] + c*self.psi[S_];   35             b=s*self.psi[S] + c*self.psi[S_];

40             self.psi[S]=a; self.psi[S_]=b;   36             self.psi[S]=a; self.psi[S_]=b;

41                37             

42     def Rx(self,i,theta):   38     def Rx(self,i,theta):

43         if i>=self.num_qubits: raise ValueError('There are not enough qubits')   39         if i>=self.num_qubits: raise ValueError('There are not enough qubits')

44         c = np.cos(theta/2)   40         c = np.cos(theta/2)

45         s = np.sin(theta/2)   41         s = np.sin(theta/2)

46         for k in range(2**(self.num_qubits-1)):   42         for k in range(2**(self.num_qubits-1)):

47             S = k%(2**i) + 2*(k - k%(2**i))   43             S = k%(2**i) + 2*(k - k%(2**i))

48             S_=S + 2**i   44             S_=S + 2**i

49             a=c*self.psi[S] - 1j*s*self.psi[S_];   45             a=c*self.psi[S] - 1j*s*self.psi[S_];

50             b=-1j*s*self.psi[S] + c*self.psi[S_];   46             b=-1j*s*self.psi[S] + c*self.psi[S_];

51             self.psi[S]=a; self.psi[S_]=b;   47             self.psi[S]=a; self.psi[S_]=b;

52     48  

53     def U2(self,i,phi,lamb):   49     def U2(self,i,phi,lamb):

54         if i >= self.num_qubits: raise ValueError('There are not enough qubits')   50         if i >= self.num_qubits: raise ValueError('There are not enough qubits')

55         f = np.exp(1j*phi)   51         f = np.exp(1j*phi)

56         l = np.exp(-1j*lamb)   52         l = np.exp(-1j*lamb)

57         for k in range(2**(self.num_qubits-1)):   53         for k in range(2**(self.num_qubits-1)):

58             S = k%(2**i) + 2*(k - k%(2**i))   54             S = k%(2**i) + 2*(k - k%(2**i))

59             S_=S + 2**i   55             S_=S + 2**i

60             a=1/np.sqrt(2)*(self.psi[S] - l*self.psi[S_]);   56             a=1/np.sqrt(2)*(self.psi[S] - l*self.psi[S_]);

61             b=1/np.sqrt(2)*(f*self.psi[S] + f*l*self.psi[S_]);   57             b=1/np.sqrt(2)*(f*self.psi[S] + f*l*self.psi[S_]);

62             self.psi[S]=a; self.psi[S_]=b;   58             self.psi[S]=a; self.psi[S_]=b;

63     59  

64     def U3(self, i, theta3):   60     def U3(self, i, theta3):

65         if i >= self.num_qubits: raise ValueError('There are not enough qubits')   61         if i >= self.num_qubits: raise ValueError('There are not enough qubits')

66         c = np.cos(theta3[0] / 2)   62         c = np.cos(theta3[0] / 2)

67         s = np.sin(theta3[0] / 2)   63         s = np.sin(theta3[0] / 2)

68         e_phi = np.exp(1j * theta3[1] / 2)   64         e_phi = np.exp(1j * theta3[1] / 2)

69         e_phi_s = np.conj(e_phi)   65         e_phi_s = np.conj(e_phi)

70         e_lambda = np.exp(1j * theta3[2] / 2)   66         e_lambda = np.exp(1j * theta3[2] / 2)

71         e_lambda_s = np.conj(e_lambda)   67         e_lambda_s = np.conj(e_lambda)

72          +-    

73         for k in range(2 ** (self.num_qubits - 1)): = 68         for k in range(2 ** (self.num_qubits - 1)):

74             S = k % (2 ** i) + 2 * (k - k % (2 ** i))   69             S = k % (2 ** i) + 2 * (k - k % (2 ** i))

75             S_ = S + 2 ** i   70             S_ = S + 2 ** i

76             a = c * e_phi * e_lambda * self.psi[S] - s * e_phi * e_lambda_s * self.psi[S_];   71             a = c * e_phi * e_lambda * self.psi[S] - s * e_phi * e_lambda_s *

self.psi[S_];

77             b = s * e_phi_s * e_lambda * self.psi[S] + c * e_phi_s * e_lambda_s * self.psi[S_];   72             b = s * e_phi_s * e_lambda * self.psi[S] + c * e_phi_s * e_lambda_s *

self.psi[S_];

78             self.psi[S] = a;   73             self.psi[S] = a;

79             self.psi[S_] = b;   74             self.psi[S_] = b;

80                75             

81         theta_f=np.arccos(np.abs(self.psi[S])**2 - np.abs(self.psi[S_])**2) - np.pi/2 +-    

82         phi_f=np.angle(self.psi[S_] / self.psi[S])       

83         self.r=np.array([np.sin(theta_f)*np.cos(phi_f),np.sin(phi_f)*np.sin(theta_f),np.cos(theta_f)])      

84        

85     def Rz(self,i,theta): = 76     def Rz(self,i,theta):

86         if i>=self.num_qubits: raise ValueError('There are not enough qubits')   77         if i>=self.num_qubits: raise ValueError('There are not enough qubits')

87         ex = np.exp(1j*theta)   78         ex = np.exp(1j*theta)

88         for k in range(2**(self.num_qubits-1)):   79         for k in range(2**(self.num_qubits-1)):

89             S = k%(2**i) + 2*(k - k%(2**i)) + 2**i   80             S = k%(2**i) + 2*(k - k%(2**i)) + 2**i

90             self.psi[S]=ex*self.psi[S];    81             self.psi[S]=ex*self.psi[S]; 

91                82             

92     def Hx(self,i):   83     def Hx(self,i):

93         if i>=self.num_qubits: raise ValueError('There are not enough qubits')   84         if i>=self.num_qubits: raise ValueError('There are not enough qubits')

94         for k in range(2**(self.num_qubits-1)):   85         for k in range(2**(self.num_qubits-1)):

95             S = k%(2**i) + 2*(k - k%(2**i))   86             S = k%(2**i) + 2*(k - k%(2**i))

96             S_=S + 2**i   87             S_=S + 2**i

97             a=1/np.sqrt(2)*self.psi[S] + 1/np.sqrt(2)*self.psi[S_];   88             a=1/np.sqrt(2)*self.psi[S] + 1/np.sqrt(2)*self.psi[S_];

98             b=1/np.sqrt(2)*self.psi[S] - 1/np.sqrt(2)*self.psi[S_];   89             b=1/np.sqrt(2)*self.psi[S] - 1/np.sqrt(2)*self.psi[S_];

99             self.psi[S] = a   90             self.psi[S] = a

100             self.psi[S_] = b   91             self.psi[S_] = b

101                92             

102     def Hy(self,i):   93     def Hy(self,i):

103         if i>=self.num_qubits: raise ValueError('There are not enough qubits')   94         if i>=self.num_qubits: raise ValueError('There are not enough qubits')

104         for k in range(2**(self.num_qubits-1)):   95         for k in range(2**(self.num_qubits-1)):

105             S = k%(2**i) + 2*(k - k%(2**i))   96             S = k%(2**i) + 2*(k - k%(2**i))

106             S_=S + 2**i   97             S_=S + 2**i

107             a =1/np.sqrt(2)*self.psi[S] -1j/np.sqrt(2)*self.psi[S_];   98             a =1/np.sqrt(2)*self.psi[S] -1j/np.sqrt(2)*self.psi[S_];

108             b =-1j/np.sqrt(2)*self.psi[S] + 1/np.sqrt(2)*self.psi[S_];   99             b =-1j/np.sqrt(2)*self.psi[S] + 1/np.sqrt(2)*self.psi[S_];

109             self.psi[S] = a   100             self.psi[S] = a

110             self.psi[S_] = b   101             self.psi[S_] = b

111                102             

112     def HyT(self,i):   103     def HyT(self,i):

113         if i>=self.num_qubits: raise ValueError('There are not enough qubits')   104         if i>=self.num_qubits: raise ValueError('There are not enough qubits')

114         for k in range(2**(self.num_qubits-1)):   105         for k in range(2**(self.num_qubits-1)):

115             S = k%(2**i) + 2*(k - k%(2**i))   106             S = k%(2**i) + 2*(k - k%(2**i))

116             S_=S + 2**i   107             S_=S + 2**i

117             a=1/np.sqrt(2)*self.psi[S] +1j/np.sqrt(2)*self.psi[S_];   108             a=1/np.sqrt(2)*self.psi[S] +1j/np.sqrt(2)*self.psi[S_];

118             b=1j/np.sqrt(2)*self.psi[S] + 1/np.sqrt(2)*self.psi[S_];   109             b=1j/np.sqrt(2)*self.psi[S] + 1/np.sqrt(2)*self.psi[S_];

119             self.psi[S]=a; self.psi[S_]=b;   110             self.psi[S]=a; self.psi[S_]=b;

120                111             

121     def Cz(self,i,j):   112     def Cz(self,i,j):

122         if i>=self.num_qubits: raise ValueError('There are not enough qubits')   113         if i>=self.num_qubits: raise ValueError('There are not enough qubits')

123         if j>=self.num_qubits: raise ValueError('There are not enough qubits')   114         if j>=self.num_qubits: raise ValueError('There are not enough qubits')

124         if i==j: raise ValueError('Control and target qubits are the same')   115         if i==j: raise ValueError('Control and target qubits are the same')

125         if j<i: a=i; i=j; j=a;   116         if j<i: a=i; i=j; j=a;

126         for k in range(2**(self.num_qubits-2)):   117         for k in range(2**(self.num_qubits-2)):

127             S = k%2**i + (   118             S = k%2**i + (

128                ( k - k%2**i)*2)%2**j + 2*(   119                ( k - k%2**i)*2)%2**j + 2*(

129                       (k-k%2**i)*2-((2*(k-k%2**i))%2**j)) + 2**i + 2**j;   120                       (k-k%2**i)*2-((2*(k-k%2**i))%2**j)) + 2**i + 2**j;

130             self.psi[S]=-self.psi[S]   121             self.psi[S]=-self.psi[S]

131         122      

132     def SWAP(self,i,j):   123     def SWAP(self,i,j):

133         if i>=self.num_qubits: raise ValueError('There are not enough qubits')   124         if i>=self.num_qubits: raise ValueError('There are not enough qubits')

134         if j>=self.num_qubits: raise ValueError('There are not enough qubits')   125         if j>=self.num_qubits: raise ValueError('There are not enough qubits')

135         if i==j: raise ValueError('Control and target qubits are the same')   126         if i==j: raise ValueError('Control and target qubits are the same')

136         for k in range(2**(self.num_qubits-2)):   127         for k in range(2**(self.num_qubits-2)):

137             S = k%2**i + (   128             S = k%2**i + (

138                ( k - k%2**i)*2)%2**j + 2*(   129                ( k - k%2**i)*2)%2**j + 2*(

139                       (k-k%2**i)*2-((2*(k-k%2**i))%2**j)) + 2**j;   130                       (k-k%2**i)*2-((2*(k-k%2**i))%2**j)) + 2**j;

140             S_ = S + 2**i - 2**j   131             S_ = S + 2**i - 2**j

141             a=self.psi[S_]   132             a=self.psi[S_]

142             self.psi[S_] = self.psi[S]   133             self.psi[S_] = self.psi[S]

143             self.psi[S] = a   134             self.psi[S] = a

144        135     

145        136     

146     def Cx(self,i,j):   137     def Cx(self,i,j):

147         #i = control   138         #i = control

148         #j = target   139         #j = target

149         if i>=self.num_qubits: raise ValueError('There are not enough qubits')   140         if i>=self.num_qubits: raise ValueError('There are not enough qubits')

150         if j>=self.num_qubits: raise ValueError('There are not enough qubits')   141         if j>=self.num_qubits: raise ValueError('There are not enough qubits')

151         if i==j: raise ValueError('Control and target qubits are the same')   142         if i==j: raise ValueError('Control and target qubits are the same')

152         for k in range(2**(self.num_qubits-2)):   143         for k in range(2**(self.num_qubits-2)):

153             S = k%2**i + (   144             S = k%2**i + (

154                ( k - k%2**i)*2)%2**j + 2*(   145                ( k - k%2**i)*2)%2**j + 2*(

155                       (k-k%2**i)*2-((2*(k-k%2**i))%2**j)) + 2**i;   146                       (k-k%2**i)*2-((2*(k-k%2**i))%2**j)) + 2**i;

156             S_ = S + 2**j   147             S_ = S + 2**j

157             '''   148             '''

158             a=self.psi[S_]   149             a=self.psi[S_]

159             self.psi[S_] = self.psi[S]   150             self.psi[S_] = self.psi[S]

160             self.psi[S] = a   151             self.psi[S] = a

161             '''   152             '''

162             self.psi[S],self.psi[S_] = self.psi[S_],self.psi[S]   153             self.psi[S],self.psi[S_] = self.psi[S_],self.psi[S]

163     def Cy(self,i,j):   154     def Cy(self,i,j):

164         if i>=self.num_qubits: raise ValueError('There are not enough qubits')   155         if i>=self.num_qubits: raise ValueError('There are not enough qubits')

165         if j>=self.num_qubits: raise ValueError('There are not enough qubits')   156         if j>=self.num_qubits: raise ValueError('There are not enough qubits')

166         if i==j: raise ValueError('Control and target qubits are the same')   157         if i==j: raise ValueError('Control and target qubits are the same')

167         for k in range(2**(self.num_qubits-2)):   158         for k in range(2**(self.num_qubits-2)):

168             S = k%2**i + (   159             S = k%2**i + (

169                ( k - k%2**i)*2)%2**j + 2*(   160                ( k - k%2**i)*2)%2**j + 2*(

170                       (k-k%2**i)*2-((2*(k-k%2**i))%2**j)) + 2**i;   161                       (k-k%2**i)*2-((2*(k-k%2**i))%2**j)) + 2**i;

171             S_ = S + 2**j   162             S_ = S + 2**j

172             self.psi[S],self.psi[S_] = 1j*self.psi[S_],-1j*self.psi[S]   163             self.psi[S],self.psi[S_] = 1j*self.psi[S_],-1j*self.psi[S]

173     164  

174     def MeasureZ(self):   165     def MeasureZ(self):

175         self.E_z = 0;   166         self.E_z = 0;

176         for h in range(2 ** self.num_qubits):   167         for h in range(2 ** self.num_qubits):

177             s = np.binary_repr(h, width=self.num_qubits)   168             s = np.binary_repr(h, width=self.num_qubits)

178             self.E_z += np.abs(self.psi[h])**2*(s.count('1')-s.count('0'))   169             self.E_z += np.abs(self.psi[h])**2*(s.count('1')-s.count('0'))

179     170  

180     def MeasureX(self):   171     def MeasureX(self):

181         self.E_x = 0;   172         self.E_x = 0;

182         for i in range(self.num_qubits):   173         for i in range(self.num_qubits):

183             self.Hx(i);   174             self.Hx(i);

184         for h in range(2 ** self.num_qubits):   175         for h in range(2 ** self.num_qubits):

185             s = np.binary_repr(h, width=self.num_qubits)   176             s = np.binary_repr(h, width=self.num_qubits)

186             self.E_x += np.abs(self.psi[h])**2*(s.count('1')-s.count('0'))   177             self.E_x += np.abs(self.psi[h])**2*(s.count('1')-s.count('0'))

187         for i in range(self.num_qubits):   178         for i in range(self.num_qubits):

188             self.Hx(i);   179             self.Hx(i);

189     180  

190     def MeasureY(self):   181     def MeasureY(self):

191         self.E_y = 0;   182         self.E_y = 0;

192         for i in range(self.num_qubits):   183         for i in range(self.num_qubits):

193             self.Hy(i);   184             self.Hy(i);

194         for h in range(2 ** self.num_qubits):   185         for h in range(2 ** self.num_qubits):

195             s = np.binary_repr(h, width=self.num_qubits)   186             s = np.binary_repr(h, width=self.num_qubits)

196             self.E_y += np.abs(self.psi[h])**2*(s.count('1')-s.count('0'))   187             self.E_y += np.abs(self.psi[h])**2*(s.count('1')-s.count('0'))

197         for i in range(self.num_qubits):   188         for i in range(self.num_qubits):

198             self.HyT(i);   189             self.HyT(i);

199     190  

200     def reduced_density_matrix(self, q):   191     def reduced_density_matrix(self, q):

201         rho = np.zeros((2,2), dtype='complex')   192         rho = np.zeros((2,2), dtype='complex')

202         for i in range(2):   193         for i in range(2):

203             for j in range(i + 1):   194             for j in range(i + 1):

204                 for k in range(2**(self.num_qubits-1)):   195                 for k in range(2**(self.num_qubits-1)):

205                     S = k%(2**q) + 2*(k - k%(2**q))   196                     S = k%(2**q) + 2*(k - k%(2**q))

206                     rho[i,j] += self.psi[S + i*2**q] * np.conj(self.psi[S + j*2**q])   197                     rho[i,j] += self.psi[S + i*2**q] * np.conj(self.psi[S + j*2**q])

207                 rho[j,i] = np.conj(rho[i,j])   198                 rho[j,i] = np.conj(rho[i,j])

208         return rho   199         return rho

209     200  

210     201  



Text Compare
   

1 # coding=utf-8 +-    

2 ########################################################################## = 1 ##########################################################################

3 #Quantum classifier   2 #Quantum classifier

4 #Sara Aminpour, Mike Banad, Sarah Sharif <> 3 #Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil, J. Ignacio Latorre

5 #September 25th 2024   4 #Code by APS

      5 #Code-checks by ACL

      6 #June 3rd 2019

6   = 7  

7 #School of Electrical and Computer Engineering/ Center for Quantum and Technology, University of Oklahoma,

Norman, OK 73019 USA, 

<> 8  

8 ###########################################################################      

9 #IMPORTANT_NOTE:      

10 #The code on the left was developed by Sara Aminpour, while the code on the right serves as the reference

implementation by Adrián Pérez-Salinas. 

     

11 #The code on the left has been restructured to handle random data. So some certain sections has been deleted from

the reference code. 

     

12 #Additionally, our code on the left developed to analyze trace distance cost function and linear classification

problem

  9 #Universitat de Barcelona / Barcelona Supercomputing Center/Institut de Ciències del Cosmos

13 #as well as necessary modification to apply COBYLA, L-BFGS-B, NELDER-MEAD, and SLSQP minimization methods.   10  

14 ########################################################################### = 11 ###########################################################################

15     12  

16     13  

17 #This file provides useful tools for painting and saving data according to the problem,    14 #This file provides useful tools for painting and saving data according to the problem, 

18 # the minimization style, the number of qubits and layers.   15 # the minimization style, the number of qubits and layers.

19     16  

20 import os   17 import os

21 import numpy as np   18 import numpy as np

22 import matplotlib.pyplot as plt   19 import matplotlib.pyplot as plt

23 from matplotlib.cm import get_cmap    20 from matplotlib.cm import get_cmap 

24 from matplotlib.colors import Normalize   21 from matplotlib.colors import Normalize

25     22  

26   +-    

27 def write_summary(chi, problem, qubits, entanglement, layers, method, name, = 23 def write_summary(chi, problem, qubits, entanglement, layers, method, name,

28           theta, alpha, weights, chi_value, acc_train, acc_test, epochs): <> 24           theta, alpha, weights, chi_value, acc_train, acc_test, seed, epochs):

29     """ = 25     """

30     This function takes some informations of a given problem and saves some text files    26     This function takes some informations of a given problem and saves some text files 

31     with this information and the parameters which are solution of the problem   27     with this information and the parameters which are solution of the problem

32     INPUT:    28     INPUT: 

33         -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'   29         -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'

34         -problem: name of the problem, to choose between   30         -problem: name of the problem, to choose between

35             ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy

lines']

  31             ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares',

'wavy lines']

36         -qubits: number of qubits, must be an integer   32         -qubits: number of qubits, must be an integer

37         -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'   33         -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

38         -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account   34         -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account

39         -method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize]   35         -method: minimization method, to choose among ['SGD', another valid for function

scipy.optimize.minimize]

40         -name: a name we want for our our files to be save with   36         -name: a name we want for our our files to be save with

41         -theta: set of parameters needed for the circuit. Must be an array with shape (qubits, layers, 3)   37         -theta: set of parameters needed for the circuit. Must be an array with shape (qubits, layers, 3)

42         -alpha: set of parameters needed for the circuit. Must be an array with shape (qubits, layers, dimension

of data)

  38         -alpha: set of parameters needed for the circuit. Must be an array with shape (qubits, layers,

dimension of data)

43         -weight: set of parameters needed fot the circuit only if chi == 'weighted_fidelity_chi'. Must be an

array with shape (classes, qubits)

  39         -weight: set of parameters needed fot the circuit only if chi == 'weighted_fidelity_chi'. Must be an

array with shape (classes, qubits)

44         -chi_value: Value of the cost function after minimization   40         -chi_value: Value of the cost function after minimization

45         -acc_train: accuracy for the training set   41         -acc_train: accuracy for the training set

46         -acc_test: accuracy for the test set   42         -acc_test: accuracy for the test set

47         -seed: seed of numpy.random, needed for replicating results   43         -seed: seed of numpy.random, needed for replicating results

48         -epochs: number of epochs for a 'SGD' method. If there is another method, this input has got no

importance

  44         -epochs: number of epochs for a 'SGD' method. If there is another method, this input has got no

importance

49            45         

50     OUTPUT:   46     OUTPUT:

51         This function has got no outputs, but several files are saved in an appropiate folder. The files are   47         This function has got no outputs, but several files are saved in an appropiate folder. The files are

52         -summary.txt: Saves useful information for the problem   48         -summary.txt: Saves useful information for the problem

53         -theta.txt: saves the theta parameters as a flat array   49         -theta.txt: saves the theta parameters as a flat array

54         -alpha.txt: saves the alpha parameters as a flat array   50         -alpha.txt: saves the alpha parameters as a flat array

55         -weight.txt: saves the weights as a flat array if they exist   51         -weight.txt: saves the weights as a flat array if they exist

56     """   52     """

57     foldname = name_folder(chi, problem, qubits, entanglement, layers, method)   53     foldname = name_folder(chi, problem, qubits, entanglement, layers, method)

58     create_folder(foldname)   54     create_folder(foldname)

59     file_text = open(foldname + '/' + name + '_summary.txt','w')   55     file_text = open(foldname + '/' + name + '_summary.txt','w')

60     file_text.write('\nFigur of merit = '+chi)   56     file_text.write('\nFigur of merit = '+chi)

61     file_text.write('\nProblem = ' + problem)   57     file_text.write('\nProblem = ' + problem)

62     file_text.write('\nNumber of qubits = ' + str(qubits))   58     file_text.write('\nNumber of qubits = ' + str(qubits))

63   +-    

64           

65     if qubits != 1: = 59     if qubits != 1:

66         file_text.write('\nEntanglement = ' + entanglement)   60         file_text.write('\nEntanglement = ' + entanglement)

67     file_text.write('\nNumber of layers = ' + str(layers))   61     file_text.write('\nNumber of layers = ' + str(layers))

68     file_text.write('\nMinimization method = '+ method)   62     file_text.write('\nMinimization method = '+ method)

69     <> 63     file_text.write('\nRandom seed = '+ str(seed))

70     if method == 'SGD': = 64     if method == 'SGD':

71         file_text.write('\nNumber of epochs = '+ str(epochs))   65         file_text.write('\nNumber of epochs = '+ str(epochs))

72     file_text.write('\n\nBEST RESULT\n\n')   66     file_text.write('\n\nBEST RESULT\n\n')

73     file_text.write('\nTHETA = \n')   67     file_text.write('\nTHETA = \n')

74     file_text.write(str(theta))   68     file_text.write(str(theta))

75     file_text.write('\nALPHA = \n')   69     file_text.write('\nALPHA = \n')

76     file_text.write(str(alpha))   70     file_text.write(str(alpha))

77      +-    

78           

79     #==============================================================================          

80        

81     #==============================================================================          

82               

83               

84           

85     if chi == 'weighted_fidelity_chi': = 71     if chi == 'weighted_fidelity_chi':

86         file_text.write('\nWEIGHTS = \n') +-    

87         file_text.write(str(weights))      

88     if chi == 'weighted_trace_chi':      

89         file_text.write('\nWEIGHTS = \n') = 72         file_text.write('\nWEIGHTS = \n')

90         file_text.write(str(weights))   73         file_text.write(str(weights))

91     file_text.write('\nchi**2 = ' + str(chi_value))   74     file_text.write('\nchi**2 = ' + str(chi_value))

92     file_text.write('\nacc_train = ' + str(acc_train))   75     file_text.write('\nacc_train = ' + str(acc_train))

93     file_text.write('\nacc_test = ' + str(acc_test))   76     file_text.write('\nacc_test = ' + str(acc_test))

94     file_text.close()   77     file_text.close()

95        78     

96     np.savetxt(foldname + '/' + name + '_theta.txt', theta.flatten())   79     np.savetxt(foldname + '/' + name + '_theta.txt', theta.flatten())

97     np.savetxt(foldname + '/' + name + '_alpha.txt', alpha.flatten())   80     np.savetxt(foldname + '/' + name + '_alpha.txt', alpha.flatten())

98      +-    

99        

100     if chi == 'weighted_fidelity_chi': = 81     if chi == 'weighted_fidelity_chi':

101         np.savetxt(foldname + '/' + name + '_weight.txt', weights.flatten())   82         np.savetxt(foldname + '/' + name + '_weight.txt', weights.flatten())

102            83         

103     if chi == 'weighted_trace_chi': +-    

104         np.savetxt(foldname + '/' + name + '_weight.txt', weights.flatten())      

105               

106   = 84  

107   +-    

108 def write_summary_acc(chi, problem,layers, method, name, acc_test):      

109        

110     foldname_acc = name_folder_acc(chi, layers)      

111     create_folder(foldname_acc)      

112     file_text_acc = open(foldname_acc + '/' + name + '_accuracy.txt','a+')      

113     file_text_acc.write('\nNEW')      

114     file_text_acc.write('\nProblem = ' + problem + '\n')      

115           

116     file_text_acc.write('\nacc_test = ' + str(acc_test))      

117           

118           

119 def read_summary(chi, problem, qubits, entanglement, layers, method, name): = 85 def read_summary(chi, problem, qubits, entanglement, layers, method, name):

120            86         

121     """   87     """

122     This function reads the files saved by write_summary and returns theta, alpha and weight parameters   88     This function reads the files saved by write_summary and returns theta, alpha and weight parameters

123     INPUT:    89     INPUT: 

124         -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'   90         -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'

125         -problem: name of the problem, to choose among   91         -problem: name of the problem, to choose among

126             ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy

lines'

  92             ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares',

'wavy lines'

127         -qubits: number of qubits, must be an integer   93         -qubits: number of qubits, must be an integer

128         -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'   94         -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

129         -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account   95         -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account

130         -method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize]   96         -method: minimization method, to choose among ['SGD', another valid for function

scipy.optimize.minimize]

131         -name: a name we want for our our files to be save with   97         -name: a name we want for our our files to be save with

132            98         

133     OUTPUT:   99     OUTPUT:

134         -theta: set of parameters needed for the circuit. It is an array with shape (qubits, layers, 3)   100         -theta: set of parameters needed for the circuit. It is an array with shape (qubits, layers, 3)

135         -alpha: set of parameters needed for the circuit. It is an array with shape (qubits, layers, dimension of

data)

  101         -alpha: set of parameters needed for the circuit. It is an array with shape (qubits, layers,

dimension of data)

136         -weight: set of parameters needed fot the circuit only if chi == 'weighted_fidelity_chi'. It is an array

with shape (classes, qubits)

  102         -weight: set of parameters needed fot the circuit only if chi == 'weighted_fidelity_chi'. It is an

array with shape (classes, qubits)

137     """   103     """

138     chi = chi.lower().replace(' ','_')   104     chi = chi.lower().replace(' ','_')

139     if chi in ['fidelity', 'weighted_fidelity', 'trace', 'weighted_trace']: chi += '_chi' <> 105     if chi in ['fidelity', 'weighted_fidelity']: chi += '_chi'

140     if chi not in ['fidelity_chi', 'weighted_fidelity_chi','trace_chi', 'weighted_trace_chi']:   106     if chi not in ['fidelity_chi', 'weighted_fidelity_chi']:

141         raise ValueError('Figure of merit is not valid') = 107         raise ValueError('Figure of merit is not valid')

142     if chi == 'fidelity_chi':   108     if chi == 'fidelity_chi':

143         foldname = name_folder(chi, problem, qubits, entanglement, layers, method)   109         foldname = name_folder(chi, problem, qubits, entanglement, layers, method)

144         if problem in ['circle', 'line', '2 lines', '6squares', '3 circles', 'wavy circles', 'wavy lines', 'non

convex','crown','tricrown','squares']:

<> 110         if problem in ['circle', '3 circles', 'wavy circles', 'wavy lines', 'non

convex','crown','tricrown','squares']:

145             theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 3)) = 111             theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 3))

146             dim = 2   112             dim = 2

147         elif problem == 'sphere':    113         elif problem == 'sphere': 

148             theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 3))   114             theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 3))

149             dim = 3   115             dim = 3

150         elif problem in ['hypersphere']:    116         elif problem in ['hypersphere']: 

151             theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 6))   117             theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 6))

152             dim = 4   118             dim = 4

153                119             

154         alpha = np.loadtxt(foldname + '/' + name + '_alpha.txt').reshape((qubits, layers, dim))   120         alpha = np.loadtxt(foldname + '/' + name + '_alpha.txt').reshape((qubits, layers, dim))

155         return theta, alpha   121         return theta, alpha

156 #============================================================================== <>    

157 #Sara       122     

158     if chi == 'trace_chi':      

159         foldname = name_folder(chi, problem, qubits, entanglement, layers, method)      

160         if problem in ['circle', 'line', '2 lines', '6squares', '3 circles', 'wavy circles', 'wavy lines', 'non

convex','crown','tricrown','squares']:

     

161             theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 3))      

162             dim = 2      

163         elif problem == 'sphere':       

164             theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 3))      

165             dim = 3      

166         elif problem in ['hypersphere']:       

167             theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 6))      

168             dim = 4      

169                   

170         alpha = np.loadtxt(foldname + '/' + name + '_alpha.txt').reshape((qubits, layers, dim))      

171         return theta, alpha      

172 #Sara      

173 #==============================================================================          

174     if chi == 'weighted_fidelity_chi': = 123     if chi == 'weighted_fidelity_chi':

175         foldname = name_folder(chi, problem, qubits, entanglement, layers, method)   124         foldname = name_folder(chi, problem, qubits, entanglement, layers, method)

176         if problem in ['circle', 'line', '2 lines', '6squares', '3 circles', 'wavy circles', 'wavy lines', 'non

convex','crown','tricrown','squares']:

<> 125         if problem in ['circle', '3 circles', 'wavy circles', 'wavy lines', 'non

convex','crown','tricrown','squares']:

177             theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 3)) = 126             theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 3))

178             dim = 2   127             dim = 2

179         elif problem == 'sphere':    128         elif problem == 'sphere': 

180             theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 3))   129             theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 3))

181             dim = 3   130             dim = 3

182         elif problem in ['hypersphere']:    131         elif problem in ['hypersphere']: 

183             theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 6))   132             theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 6))

184             dim = 4   133             dim = 4

185                134             

186         alpha = np.loadtxt(foldname + '/' + name + '_alpha.txt').reshape((qubits, layers, dim))   135         alpha = np.loadtxt(foldname + '/' + name + '_alpha.txt').reshape((qubits, layers, dim))

187     136  

188         if problem in ['3 circles','wavy lines','squares']:   137         if problem in ['3 circles','wavy lines','squares']:

189             weight = np.loadtxt(foldname + '/' + name + '_weight.txt').reshape((4, qubits))   138             weight = np.loadtxt(foldname + '/' + name + '_weight.txt').reshape((4, qubits))

190         if problem in ['circle', 'line', '2 lines', 'wavy circle','sphere', 'non convex', 'crown',

'hypersphere']:

<> 139         if problem in ['circle','wavy circle','sphere', 'non convex', 'crown', 'hypersphere']:

191             weight = np.loadtxt(foldname + '/' + name + '_weight.txt').reshape((2, qubits)) = 140             weight = np.loadtxt(foldname + '/' + name + '_weight.txt').reshape((2, qubits))

192         if problem in ['tricrown']:   141         if problem in ['tricrown']:

193             weight = np.loadtxt(foldname + '/' + name + '_weight.txt').reshape((3, qubits))   142             weight = np.loadtxt(foldname + '/' + name + '_weight.txt').reshape((3, qubits))

194         if problem in ['6squares']: +-    

195             weight = np.loadtxt(foldname + '/' + name + '_weight.txt').reshape((6, qubits))      

196         return theta, alpha, weight = 143         return theta, alpha, weight

197   +-    

198 #==============================================================================            

199 #Sara      

200     if chi == 'weighted_trace_chi':      

201         foldname = name_folder(chi, problem, qubits, entanglement, layers, method)      

202         if problem in ['circle', 'line', '2 lines', '6squares', '3 circles', 'wavy circles', 'wavy lines', 'non

convex','crown','tricrown','squares']:

     

203             theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 3))      

204             dim = 2      

205         elif problem == 'sphere':       

206             theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 3))      

207             dim = 3      

208         elif problem in ['hypersphere']:       

209             theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 6))      

210             dim = 4      

211                   

212         alpha = np.loadtxt(foldname + '/' + name + '_alpha.txt').reshape((qubits, layers, dim))      

213        

214         if problem in ['3 circles','wavy lines','squares']:      

215             weight = np.loadtxt(foldname + '/' + name + '_weight.txt').reshape((4, qubits))      

216         if problem in ['circle', 'line', '2 lines', 'wavy circle','sphere', 'non convex', 'crown',

'hypersphere']:

     

217             weight = np.loadtxt(foldname + '/' + name + '_weight.txt').reshape((2, qubits))      

218         if problem in ['tricrown']:      

219             weight = np.loadtxt(foldname + '/' + name + '_weight.txt').reshape((3, qubits))      

220         if problem in ['6squares']:      

221             weight = np.loadtxt(foldname + '/' + name + '_weight.txt').reshape((6, qubits))      

222         return theta, alpha, weight      

223      = 144     

224        145     

225 def write_epochs_file_acc(chi, layers, name): +-    

226               

227     """      

228     This function creates a text file for saving data only in the SGD_step_by_step function      

229     INPUT:       

230         -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'      

231         -problem: name of the problem, to choose among      

232             ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy

lines']

     

233         -qubits: number of qubits, must be an integer      

234         -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'      

235         -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account      

236         -method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize]      

237         -name: a name we want for our our files to be save with      

238     OUTPUT:      

239         -file_text: an object which is an open textfile ready to be used      

240     """      

241     foldname_acc = name_folder_acc(chi, layers)      

242     create_folder(foldname_acc)      

243     filename_acc = foldname_acc + '/' + name + '_epochs.txt'      

244     file_text_acc = open(filename_acc,'a+')      

245     return file_text_acc          

246 #Sara      

247 #==============================================================================            

248 def write_epochs_file(chi, problem, qubits, entanglement, layers, method, name): = 146 def write_epochs_file(chi, problem, qubits, entanglement, layers, method, name):

249            147         

250     """   148     """

251     This function creates a text file for saving data only in the SGD_step_by_step function   149     This function creates a text file for saving data only in the SGD_step_by_step function

252     INPUT:    150     INPUT: 

253         -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'   151         -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'

254         -problem: name of the problem, to choose among   152         -problem: name of the problem, to choose among

255             ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy

lines']

  153             ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares',

'wavy lines']

256         -qubits: number of qubits, must be an integer   154         -qubits: number of qubits, must be an integer

257         -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'   155         -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

258         -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account   156         -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account

259         -method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize]   157         -method: minimization method, to choose among ['SGD', another valid for function

scipy.optimize.minimize]

260         -name: a name we want for our our files to be save with   158         -name: a name we want for our our files to be save with

261     OUTPUT:   159     OUTPUT:

262         -file_text: an object which is an open textfile ready to be used   160         -file_text: an object which is an open textfile ready to be used

263     """   161     """

264     foldname = name_folder(chi, problem, qubits, entanglement, layers, method)   162     foldname = name_folder(chi, problem, qubits, entanglement, layers, method)

265     create_folder(foldname)   163     create_folder(foldname)

266     filename = foldname + '/' + name + '_epochs.txt'   164     filename = foldname + '/' + name + '_epochs.txt'

267     file_text = open(filename,'w')   165     file_text = open(filename,'w')

268     return file_text   166     return file_text

269        167     

270 def write_epoch(problem, file_text, epoch, theta, alpha, chi_value, acc_train, acc_test): <> 168 def write_epoch(file_text, epoch, theta, alpha, chi_value, acc_train, acc_test):

271     """ = 169     """

272     This function takes a text file and write information on it   170     This function takes a text file and write information on it

273     INPUT:    171     INPUT: 

274         -file_text: an object which is an open textfile ready to be used, output of write_epochs_file   172         -file_text: an object which is an open textfile ready to be used, output of write_epochs_file

275         -epoch: the number of epoch providing this information   173         -epoch: the number of epoch providing this information

276         -theta: set of parameters needed for the circuit. Must be an array with shape (qubits, layers, 3)   174         -theta: set of parameters needed for the circuit. Must be an array with shape (qubits, layers, 3)

277         -alpha: set of parameters needed for the circuit. Must be an array with shape (qubits, layers, dimension

of data)

  175         -alpha: set of parameters needed for the circuit. Must be an array with shape (qubits, layers,

dimension of data)

278         -weight: set of parameters needed fot the circuit only if chi == 'weighted_fidelity_chi'. Must be an

array with shape (classes, qubits)

  176         -weight: set of parameters needed fot the circuit only if chi == 'weighted_fidelity_chi'. Must be an

array with shape (classes, qubits)

279         -chi_value: Value of the cost function after minimization   177         -chi_value: Value of the cost function after minimization

280         -acc_train: accuracy for the training set   178         -acc_train: accuracy for the training set

281         -acc_test: accuracy for the test set   179         -acc_test: accuracy for the test set

282     OUTPUT:   180     OUTPUT:

283         -file_text: with more information on it   181         -file_text: with more information on it

284     """   182     """

285   +-    

286     file_text.write('\n Epoch = ' + str(epoch)) = 183     file_text.write('\n Epoch = ' + str(epoch))

287     file_text.write('\nTHETA = \n')   184     file_text.write('\nTHETA = \n')

288     file_text.write(str(theta))   185     file_text.write(str(theta))

289     file_text.write('\nALPHA = \n')   186     file_text.write('\nALPHA = \n')

290     file_text.write(str(alpha))   187     file_text.write(str(alpha))

291     file_text.write('\n chi**2 = \n')   188     file_text.write('\n chi**2 = \n')

292     file_text.write(str(chi_value))   189     file_text.write(str(chi_value))

293     file_text.write('\nacc_train = \n')   190     file_text.write('\nacc_train = \n')

294     file_text.write(str(acc_train))   191     file_text.write(str(acc_train))

295     file_text.write('\nacc_test = \n')   192     file_text.write('\nacc_test = \n')

296     file_text.write(str(acc_test))   193     file_text.write(str(acc_test))

297   +-    

298      = 194     

299 def close_epochs_file(file_text, best_epoch):   195 def close_epochs_file(file_text, best_epoch):

300     """   196     """

301     This function takes a text file and closes it   197     This function takes a text file and closes it

302     INPUT:    198     INPUT: 

303         -file_text: an object which is an open textfile ready to be used, output of write_epochs_file after

write_epoch

  199         -file_text: an object which is an open textfile ready to be used, output of write_epochs_file after

write_epoch

304         -best_epoch: the epoch with the best possible results   200         -best_epoch: the epoch with the best possible results

305     OUTPUT:   201     OUTPUT:

306         -file_text: closed   202         -file_text: closed

307     """   203     """

308     file_text.write('\n\n\nBest epoch = ' + str(best_epoch))   204     file_text.write('\n\n\nBest epoch = ' + str(best_epoch))

309     file_text.close()   205     file_text.close()

310        206     

311 def write_epochs_error_rate(chi, problem, qubits, entanglement, layers, method, name,    207 def write_epochs_error_rate(chi, problem, qubits, entanglement, layers, method, name, 

312                       accs_train, accs_test):      208                       accs_train, accs_test):   

313     """   209     """

314     This function takes information from the SGD_step_by_step function and saves the accuracies for training and

test sets. It is required for studying the overlearning

  210     This function takes information from the SGD_step_by_step function and saves the accuracies for training

and test sets. It is required for studying the overlearning

315     INPUT:    211     INPUT: 

316         -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'   212         -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'

317         -problem: name of the problem, to choose among   213         -problem: name of the problem, to choose among

318             ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy

lines']

  214             ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares',

'wavy lines']

319         -qubits: number of qubits, must be an integer   215         -qubits: number of qubits, must be an integer

320         -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'   216         -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

321         -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account   217         -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account

322         -method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize]   218         -method: minimization method, to choose among ['SGD', another valid for function

scipy.optimize.minimize]

323         -name: a name we want for our our files to be save with   219         -name: a name we want for our our files to be save with

324         -accs_train: list or array with the accuracies of the training set for all epochs   220         -accs_train: list or array with the accuracies of the training set for all epochs

325         -accs_test: list or array with the accuracies of the test set for all epochs   221         -accs_test: list or array with the accuracies of the test set for all epochs

326     OUTPUT:   222     OUTPUT:

327         Two files with the error rates in them   223         Two files with the error rates in them

328     """   224     """

329     foldname = name_folder(chi, problem, qubits, entanglement, layers, method)   225     foldname = name_folder(chi, problem, qubits, entanglement, layers, method)

330     create_folder(foldname)   226     create_folder(foldname)

331     filename_train = foldname + '/' + name + '_train.txt'   227     filename_train = foldname + '/' + name + '_train.txt'

332     filename_test = foldname + '/' + name + '_test.txt'   228     filename_test = foldname + '/' + name + '_test.txt'

333        229     

334     np.savetxt(filename_train, 1 - np.array(accs_train))   230     np.savetxt(filename_train, 1 - np.array(accs_train))

335     np.savetxt(filename_test, 1 - np.array(accs_test))   231     np.savetxt(filename_test, 1 - np.array(accs_test))

336        232     

337 def samples_paint(problem, settings, sol, foldname, filename, bw):   233 def samples_paint(problem, settings, sol, foldname, filename, bw):

338     """   234     """

339     This function takes the problem and the points when they are already classified, and saves a picture of them   235     This function takes the problem and the points when they are already classified, and saves a picture of

them

340     INPUT:    236     INPUT: 

341         -problem: name of the problem, to choose among   237         -problem: name of the problem, to choose among

342             ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy

lines']

  238             ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares',

'wavy lines']

343         -settings: parameters the function needs for drawing. Provided by problem_gen.problem_gen   239         -settings: parameters the function needs for drawing. Provided by problem_gen.problem_gen

344         -sol: solutions of the points alreafy classified   240         -sol: solutions of the points alreafy classified

345         -foldname : name of the folder where we store results   241         -foldname : name of the folder where we store results

346         -filename: name of the files we will produce   242         -filename: name of the files we will produce

347         -bw: black and white, True/False   243         -bw: black and white, True/False

348     OUTPUT:   244     OUTPUT:

349         a file with the points and their classes, and whether they are right or wrong   245         a file with the points and their classes, and whether they are right or wrong

350     """   246     """

351     if bw == False:   247     if bw == False:

352         colors_classes = get_cmap('Dark2') <> 248         colors_classes = get_cmap('plasma')

353         norm_class = Normalize(vmin=-.5,vmax=np.max(sol[:,-3]) + .5) = 249         norm_class = Normalize(vmin=-.5,vmax=np.max(sol[:,-3]) + .5)

354        250     

355         colors_rightwrong = get_cmap('RdYlGn')   251         colors_rightwrong = get_cmap('RdYlGn')

356         norm_rightwrong = Normalize(vmin=-.1,vmax=1.1)   252         norm_rightwrong = Normalize(vmin=-.1,vmax=1.1)

357            253         

358     if bw == True:   254     if bw == True:

359         colors_classes = get_cmap('Greys')   255         colors_classes = get_cmap('Greys')

360         norm_class = Normalize(vmin=-.1,vmax=np.max(sol[:,-3]) + .1)   256         norm_class = Normalize(vmin=-.1,vmax=np.max(sol[:,-3]) + .1)

361        257     

362         colors_rightwrong = get_cmap('Greys')   258         colors_rightwrong = get_cmap('Greys')

363         norm_rightwrong = Normalize(vmin=-.1,vmax=1.1)   259         norm_rightwrong = Normalize(vmin=-.1,vmax=1.1)

364     260  

365     fig, axs = plt.subplots(ncols = 2, figsize=(10,5))   261     fig, axs = plt.subplots(ncols = 2, figsize=(10,5))

366     ax = axs[0]   262     ax = axs[0]

367     if problem in ['circle', '3 circles', 'crown', 'tricrown']:   263     if problem in ['circle', '3 circles', 'crown', 'tricrown']:

368         centers, radii = settings   264         centers, radii = settings

369         for c, r in zip(centers, radii):   265         for c, r in zip(centers, radii):

370             ca = plt.Circle(c, r, color='k', fill=False, linewidth=2)   266             ca = plt.Circle(c, r, color='k', fill=False, linewidth=2)

371             ax.add_artist(ca)   267             ax.add_artist(ca)

372     elif problem == 'wavy circle':   268     elif problem == 'wavy circle':

373         centers, radii, wave, freq = settings   269         centers, radii, wave, freq = settings

374         phi = np.linspace(0, 2*np.pi, 1000)   270         phi = np.linspace(0, 2*np.pi, 1000)

375         for (c,r, w, f) in zip(centers, radii, wave, freq):   271         for (c,r, w, f) in zip(centers, radii, wave, freq):

376             ax.plot(c[0] + r*(1 + w * np.cos(f * phi)) * np.cos(phi),   272             ax.plot(c[0] + r*(1 + w * np.cos(f * phi)) * np.cos(phi),

377                     c[1] + r*(1 + w * np.cos(f * phi)) * np.sin(phi),   273                     c[1] + r*(1 + w * np.cos(f * phi)) * np.sin(phi),

378                     'k-')   274                     'k-')

379     elif problem == 'wavy lines':   275     elif problem == 'wavy lines':

380         freq = settings   276         freq = settings

381         s = np.linspace(-1,1,100)   277         s = np.linspace(-1,1,100)

382         ax.plot(s, np.clip(s + np.sin(freq * np.pi * s), -1, 1), 'k-')   278         ax.plot(s, np.clip(s + np.sin(freq * np.pi * s), -1, 1), 'k-')

383         ax.plot(s, -s + np.sin(freq * np.pi * s), 'k-')   279         ax.plot(s, -s + np.sin(freq * np.pi * s), 'k-')

384     elif problem == 'squares':   280     elif problem == 'squares':

385         freq = settings   281         freq = settings

386         s = np.linspace(-1,1,10)   282         s = np.linspace(-1,1,10)

387         ax.plot(s, np.zeros(10), 'k-')   283         ax.plot(s, np.zeros(10), 'k-')

388         ax.plot(np.zeros(10), s, 'k-')   284         ax.plot(np.zeros(10), s, 'k-')

389 #============================================================================== <>    

390     elif problem == 'line':      

391         freq = settings   285        

392         #s = np.linspace(-1,1,10)      

393         s=np.linspace(-1,1,10)      

394         #ax.plot(s, np.zeros(10), 'k-')      

395         ax.plot(s, s, 'k-')      

396 #==============================================================================      

397     elif problem == '2 lines':      

398         freq = settings      

399         s = np.linspace(-1,1,10)      

400         #ax.plot(s, np.zeros(10), 'k-')      

401         ax.plot(s, -s, 'k-')      

402         ax.plot(s, s, 'k-')      

403 #==============================================================================      

404     elif problem == '6squares':      

405         freq = settings      

406         s = np.linspace(-1,1,10)      

407         ax.plot(s, np.zeros(10), 'k-')      

408         a=np.array([-0.33,-0.33,-0.33,-0.33,-0.33,-0.33,-0.33,-0.33,-0.33,-0.33])      

409         b=np.array([0.33,0.33,0.33,0.33,0.33,0.33,0.33,0.33,0.33,0.33])      

410         ax.plot(a, s, 'k-')      

411         ax.plot(b, s, 'k-')      

412 #==============================================================================      

413     elif problem == 'non convex': = 286     elif problem == 'non convex':

414         freq, x_val, sin_val = settings   287         freq, x_val, sin_val = settings

415         s = np.linspace(-1,1,100)   288         s = np.linspace(-1,1,100)

416         ax.plot(s, np.clip(-x_val * s + sin_val * np.sin(freq * np.pi * s), -1, 1), 'k-')   289         ax.plot(s, np.clip(-x_val * s + sin_val * np.sin(freq * np.pi * s), -1, 1), 'k-')

417     290  

418     ax.scatter(sol[:,0], sol[:,1], c=sol[:,-2], cmap = colors_classes, s=2, norm=norm_class)   291     ax.scatter(sol[:,0], sol[:,1], c=sol[:,-2], cmap = colors_classes, s=2, norm=norm_class)

419        292     

420     ax.set_xlabel('x', fontsize=16)   293     ax.set_xlabel('x', fontsize=16)

421     ax.set_ylabel('y', fontsize=16)   294     ax.set_ylabel('y', fontsize=16)

422     ax.tick_params(axis='both',labelsize=16)   295     ax.tick_params(axis='both',labelsize=16)

423     ax.set_xlim(-1, 1)   296     ax.set_xlim(-1, 1)

424     ax.set_ylim(-1, 1)   297     ax.set_ylim(-1, 1)

425     ax.margins(0)   298     ax.margins(0)

426     ax.axis('equal')   299     ax.axis('equal')

427        300     

428     bx = axs[1]       301     bx = axs[1]    

429     bx.scatter(sol[:,0], sol[:,1], c=sol[:,-1], cmap = colors_rightwrong, s=2, norm=norm_rightwrong)     302     bx.scatter(sol[:,0], sol[:,1], c=sol[:,-1], cmap = colors_rightwrong, s=2, norm=norm_rightwrong)  

430     if problem in ['circle', '3 circles', 'crown', 'tricrown']:   303     if problem in ['circle', '3 circles', 'crown', 'tricrown']:

431         centers, radii = settings   304         centers, radii = settings

432         for c, r in zip(centers, radii):   305         for c, r in zip(centers, radii):

433             ca = plt.Circle(c, r, color='k', fill=False, linewidth=2)   306             ca = plt.Circle(c, r, color='k', fill=False, linewidth=2)

434             bx.add_artist(ca)   307             bx.add_artist(ca)

435     elif problem == 'wavy circle':   308     elif problem == 'wavy circle':

436         centers, radii, wave, freq = settings   309         centers, radii, wave, freq = settings

437         phi = np.linspace(0, 2*np.pi, 1000)   310         phi = np.linspace(0, 2*np.pi, 1000)

438         bx.plot(c[0] + r*(1 + wave * np.cos(freq * phi)) * np.cos(phi),   311         bx.plot(c[0] + r*(1 + wave * np.cos(freq * phi)) * np.cos(phi),

439                 c[1] + r*(1 + wave * np.cos(freq * phi)) * np.sin(phi),   312                 c[1] + r*(1 + wave * np.cos(freq * phi)) * np.sin(phi),

440                 'k-')   313                 'k-')

441     elif problem == 'wavy lines':   314     elif problem == 'wavy lines':

442         freq = settings   315         freq = settings

443         s = np.linspace(-1,1,100)   316         s = np.linspace(-1,1,100)

444         bx.plot(s, np.clip(s + np.sin(freq * np.pi * s), -1, 1), 'k-')   317         bx.plot(s, np.clip(s + np.sin(freq * np.pi * s), -1, 1), 'k-')

445         bx.plot(s, -s + np.sin(freq * np.pi * s), 'k-')   318         bx.plot(s, -s + np.sin(freq * np.pi * s), 'k-')

446     319  

447     elif problem == 'squares':   320     elif problem == 'squares':

448         freq = settings   321         freq = settings

449         s = np.linspace(-1,1,10)   322         s = np.linspace(-1,1,10)

450         bx.plot(s, np.zeros(10), 'k-')   323         bx.plot(s, np.zeros(10), 'k-')

451         bx.plot(np.zeros(10), s, 'k-')   324         bx.plot(np.zeros(10), s, 'k-')

452 #============================================================================== <>    

453     elif problem == 'line':      

454         freq = settings   325        

455         #s = np.linspace(-1,1,10)      

456         s=np.linspace(-1,1,10)      

457         #ax.plot(s, np.zeros(10), 'k-')      

458         bx.plot(s, s, 'k-')      

459 #==============================================================================      

460     elif problem == '2 lines':      

461         freq = settings      

462         s = np.linspace(-1,1,10)      

463         #ax.plot(s, np.zeros(10), 'k-')      

464         bx.plot(s, -s, 'k-')      

465         bx.plot(s, s, 'k-')      

466 #==============================================================================       

467     elif problem == '6squares':      

468         freq = settings      

469         s = np.linspace(-1,1,10)      

470         ax.plot(s, np.zeros(10), 'k-')      

471         a=np.array([-0.33,-0.33,-0.33,-0.33,-0.33,-0.33,-0.33,-0.33,-0.33,-0.33])      

472         b=np.array([0.33,0.33,0.33,0.33,0.33,0.33,0.33,0.33,0.33,0.33])      

473         ax.plot(a, s, 'k-')      

474         ax.plot(b, s, 'k-')      

475 #==============================================================================      

476     elif problem == 'non convex': = 326     elif problem == 'non convex':

477         freq, x_val, sin_val = settings   327         freq, x_val, sin_val = settings

478         s = np.linspace(-1,1,100)   328         s = np.linspace(-1,1,100)

479         bx.plot(s, np.clip(-x_val * s + sin_val * np.sin(freq * np.pi * s), -1, 1), 'k-')   329         bx.plot(s, np.clip(-x_val * s + sin_val * np.sin(freq * np.pi * s), -1, 1), 'k-')

480     330  

481        331     

482     bx.set_xlabel('x', fontsize=16)   332     bx.set_xlabel('x', fontsize=16)

483     bx.tick_params(axis='x', labelsize = 16)   333     bx.tick_params(axis='x', labelsize = 16)

484     bx.tick_params(axis='y', labelsize=0)   334     bx.tick_params(axis='y', labelsize=0)

485     bx.set_xlim([-1, 1])   335     bx.set_xlim([-1, 1])

486     bx.set_ylim([-1, 1])   336     bx.set_ylim([-1, 1])

487     bx.margins(0)   337     bx.margins(0)

488     bx.axis('equal')   338     bx.axis('equal')

489        339     

490     fig.savefig(foldname + '/' + filename)   340     fig.savefig(foldname + '/' + filename)

491     plt.close('all')   341     plt.close('all')

492     342  

493 def laea_x(lamb, phi):   343 def laea_x(lamb, phi):

494     return 2*np.sqrt(2) * np.cos(phi)*np.sin(lamb / 2) / np.sqrt(1 + np.cos(phi)*np.cos(lamb/2))   344     return 2*np.sqrt(2) * np.cos(phi)*np.sin(lamb / 2) / np.sqrt(1 + np.cos(phi)*np.cos(lamb/2))

495     345  

496     346  

497 def laea_y(lamb, phi):   347 def laea_y(lamb, phi):

498     return np.sqrt(2) * np.sin(phi) / np.sqrt(1 + np.cos(phi)*np.cos(lamb/2))   348     return np.sqrt(2) * np.sin(phi) / np.sqrt(1 + np.cos(phi)*np.cos(lamb/2))

499     349  

500     350  

501 def samples_paint_worldmap(problem, settings, sol, foldname, filename, bw):   351 def samples_paint_worldmap(problem, settings, sol, foldname, filename, bw):

502     """   352     """

503     This function takes the problem and the points when they are already classified, and saves a picture of them   353     This function takes the problem and the points when they are already classified, and saves a picture of

them

504     INPUT:    354     INPUT: 

505         -problem: name of the problem, to choose among   355         -problem: name of the problem, to choose among

506             ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy

lines']

  356             ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares',

'wavy lines']

507         -settings: parameters the function needs for drawing. Provided by problem_gen.problem_gen   357         -settings: parameters the function needs for drawing. Provided by problem_gen.problem_gen

508         -sol: solutions of the points alreafy classified   358         -sol: solutions of the points alreafy classified

509         -foldname : name of the folder where we store results   359         -foldname : name of the folder where we store results

510         -filename: name of the files we will produce   360         -filename: name of the files we will produce

511         -bw: black and white, True/False   361         -bw: black and white, True/False

512     OUTPUT:   362     OUTPUT:

513         a file with the points and their classes, and whether they are right or wrong   363         a file with the points and their classes, and whether they are right or wrong

514     """   364     """

515     if bw == False:   365     if bw == False:

516         colors_classes = get_cmap('plasma')   366         colors_classes = get_cmap('plasma')

517         norm_class = Normalize(vmin=-.5,vmax=np.max(sol[:,-3]) + .5)   367         norm_class = Normalize(vmin=-.5,vmax=np.max(sol[:,-3]) + .5)

518        368     

519         colors_rightwrong = get_cmap('RdYlGn')   369         colors_rightwrong = get_cmap('RdYlGn')

520         norm_rightwrong = Normalize(vmin=-.1,vmax=1.1)   370         norm_rightwrong = Normalize(vmin=-.1,vmax=1.1)

521            371         

522     if bw == True:   372     if bw == True:

523         colors_classes = get_cmap('Greys')   373         colors_classes = get_cmap('Greys')

524         norm_class = Normalize(vmin=-.5,vmax=np.max(sol[:,-3]) + .5)   374         norm_class = Normalize(vmin=-.5,vmax=np.max(sol[:,-3]) + .5)

525        375     

526         colors_rightwrong = get_cmap('Greys')   376         colors_rightwrong = get_cmap('Greys')

527         norm_rightwrong = Normalize(vmin=-.1,vmax=1.1)   377         norm_rightwrong = Normalize(vmin=-.1,vmax=1.1)

528     378  

529     fig, axs = plt.subplots(nrows = 3, figsize=(5,15))   379     fig, axs = plt.subplots(nrows = 3, figsize=(5,15))

530        380     

531     line1 = _winkel_map((np.linspace(-np.pi,np.pi), np.zeros(50)))   381     line1 = _winkel_map((np.linspace(-np.pi,np.pi), np.zeros(50)))

532     line2 = _winkel_map((np.linspace(-np.pi,np.pi), np.ones(50)))   382     line2 = _winkel_map((np.linspace(-np.pi,np.pi), np.ones(50)))

533     line3 = _winkel_map((np.linspace(-np.pi,np.pi), -np.ones(50)))   383     line3 = _winkel_map((np.linspace(-np.pi,np.pi), -np.ones(50)))

534     line4 = _winkel_map((np.zeros(50), np.linspace(-np.pi/2,.5*np.pi)))   384     line4 = _winkel_map((np.zeros(50), np.linspace(-np.pi/2,.5*np.pi)))

535     line5 = _winkel_map((np.pi*np.ones(50), np.linspace(-np.pi/2,.5*np.pi)))   385     line5 = _winkel_map((np.pi*np.ones(50), np.linspace(-np.pi/2,.5*np.pi)))

536     line6 = _winkel_map((-np.pi*np.ones(50), np.linspace(-np.pi/2,.5*np.pi)))   386     line6 = _winkel_map((-np.pi*np.ones(50), np.linspace(-np.pi/2,.5*np.pi)))

537     ax = axs[0]   387     ax = axs[0]

538     ax.plot(line1[0], line1[1], 'k')   388     ax.plot(line1[0], line1[1], 'k')

539     ax.plot(line2[0], line2[1], 'k')   389     ax.plot(line2[0], line2[1], 'k')

540     ax.plot(line3[0], line3[1], 'k')   390     ax.plot(line3[0], line3[1], 'k')

541     ax.plot(line4[0], line4[1], 'k')   391     ax.plot(line4[0], line4[1], 'k')

542     ax.plot(line5[0], line5[1], 'k')   392     ax.plot(line5[0], line5[1], 'k')

543     ax.plot(line6[0], line6[1], 'k')   393     ax.plot(line6[0], line6[1], 'k')

544     394  

545     X = np.empty((len(sol), 2))   395     X = np.empty((len(sol), 2))

546     for i,s in enumerate(sol):   396     for i,s in enumerate(sol):

547         mapped = _winkel_map(s[:2])   397         mapped = _winkel_map(s[:2])

548         X[i] = mapped   398         X[i] = mapped

549     399  

550     ax.scatter(X[:,0], X[:,1], c=sol[:,-3], cmap = colors_classes, s=2, norm=norm_class)   400     ax.scatter(X[:,0], X[:,1], c=sol[:,-3], cmap = colors_classes, s=2, norm=norm_class)

551        401     

552     #ax.set_xlabel('x', fontsize=16)   402     #ax.set_xlabel('x', fontsize=16)

553     #ax.set_ylabel('y', fontsize=16)   403     #ax.set_ylabel('y', fontsize=16)

554     #ax.tick_params(axis='both',labelsize=16)   404     #ax.tick_params(axis='both',labelsize=16)

555     #ax.set_xlim(-1, 1)   405     #ax.set_xlim(-1, 1)

556     #ax.set_ylim(-1, 1)   406     #ax.set_ylim(-1, 1)

557     #ax.margins(0)   407     #ax.margins(0)

558     #ax.axis('equal')   408     #ax.axis('equal')

559        409     

560     bx = axs[1]       410     bx = axs[1]    

561     bx.scatter(X[:,0], X[:,1], c=sol[:,-2], cmap = colors_classes, s=2, norm=norm_class)     411     bx.scatter(X[:,0], X[:,1], c=sol[:,-2], cmap = colors_classes, s=2, norm=norm_class)  

562        412     

563     cx = axs[2]       413     cx = axs[2]    

564     cx.scatter(X[:,0], X[:,1], c=sol[:,-1], cmap = colors_rightwrong, s=2, norm=norm_rightwrong)     414     cx.scatter(X[:,0], X[:,1], c=sol[:,-1], cmap = colors_rightwrong, s=2, norm=norm_rightwrong)  

565        415     

566     #bx.set_xlabel('x', fontsize=16)   416     #bx.set_xlabel('x', fontsize=16)

567     #bx.tick_params(axis='x', labelsize = 16)   417     #bx.tick_params(axis='x', labelsize = 16)

568     #bx.tick_params(axis='y', labelsize=0)   418     #bx.tick_params(axis='y', labelsize=0)

569     #bx.set_xlim([-1, 1])   419     #bx.set_xlim([-1, 1])

570     #bx.set_ylim([-1, 1])   420     #bx.set_ylim([-1, 1])

571     #bx.margins(0)   421     #bx.margins(0)

572     #bx.axis('equal')   422     #bx.axis('equal')

573        423     

574     fig.savefig(foldname + '/' + filename + '_worldmap')   424     fig.savefig(foldname + '/' + filename + '_worldmap')

575     plt.close('all')   425     plt.close('all')

576        426     

577 def _winkel_map(angles):   427 def _winkel_map(angles):

578        428     

579     alpha = np.arccos(np.cos(angles[1])*np.cos(angles[0] / 2))   429     alpha = np.arccos(np.cos(angles[1])*np.cos(angles[0] / 2))

580     x = .5 * (angles[0] * 180 / np.pi + 2 * np.cos(angles[1] * np.sin(.5 * angles[0])) / np.sinc(alpha / np.pi))   430     x = .5 * (angles[0] * 180 / np.pi + 2 * np.cos(angles[1] * np.sin(.5 * angles[0])) / np.sinc(alpha /

np.pi))

581     y = .5 * (angles[1] * 180 / np.pi + np.sin(angles[1])/np.sinc(alpha/np.pi))   431     y = .5 * (angles[1] * 180 / np.pi + np.sin(angles[1])/np.sinc(alpha/np.pi))

582        432     

583     return np.array([x,y])   433     return np.array([x,y])

584     434  

585        435     

586 def create_folder(directory):    436 def create_folder(directory): 

587     """   437     """

588     Auxiliar function for creating directories with name directory   438     Auxiliar function for creating directories with name directory

589        439     

590     """   440     """

591     try:   441     try:

592         if not os.path.exists(directory):   442         if not os.path.exists(directory):

593             os.makedirs(directory)   443             os.makedirs(directory)

594     except OSError:   444     except OSError:

595         print ('Error: Creating directory. ' + directory)   445         print ('Error: Creating directory. ' + directory)

596     446  

597 def name_folder(chi, problem, qubits, entanglement, layers, method):   447 def name_folder(chi, problem, qubits, entanglement, layers, method):

598     """   448     """

599     This function takes information from the SGD_step_by_step function and saves the accuracies for training and

test sets. It is required for studying the overlearning

  449     This function takes information from the SGD_step_by_step function and saves the accuracies for training

and test sets. It is required for studying the overlearning

600     INPUT:    450     INPUT: 

601         -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'   451         -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'

602         -problem: name of the problem, to choose among   452         -problem: name of the problem, to choose among

603             ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy

lines']

  453             ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares',

'wavy lines']

604         -qubits: number of qubits, must be an integer   454         -qubits: number of qubits, must be an integer

605         -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'   455         -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

606         -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account   456         -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account

607         -method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize]   457         -method: minimization method, to choose among ['SGD', another valid for function

scipy.optimize.minimize]

608         -name: a name we want for our our files to be save with   458         -name: a name we want for our our files to be save with

609         -accs_train: list or array with the accuracies of the training set for all epochs   459         -accs_train: list or array with the accuracies of the training set for all epochs

610         -accs_test: list or array with the accuracies of the test set for all epochs   460         -accs_test: list or array with the accuracies of the test set for all epochs

611     OUTPUT:   461     OUTPUT:

612         -foldname: A name for a folder   462         -foldname: A name for a folder

613     """   463     """

614     chi = chi.lower().replace(' ','_')   464     chi = chi.lower().replace(' ','_')

615     if chi in ['fidelity', 'weighted_fidelity', 'trace', 'weighted_trace']: chi += '_chi' <> 465     if chi in ['fidelity', 'weighted_fidelity']: chi += '_chi'

616     if chi not in ['fidelity_chi', 'weighted_fidelity_chi', 'trace_chi', 'weighted_trace_chi']:   466     if chi not in ['fidelity_chi', 'weighted_fidelity_chi']:

617         raise ValueError('Figure of merit is not valid') = 467         raise ValueError('Figure of merit is not valid')

618     foldname = chi + '/'   468     foldname = chi + '/'

619     problem = problem.replace(' ', '_')   469     problem = problem.replace(' ', '_')

620     foldname += problem + '/'   470     foldname += problem + '/'

621     foldname += str(qubits) + '_qubits/'   471     foldname += str(qubits) + '_qubits/'

622     if qubits != 1:    472     if qubits != 1: 

623         if entanglement.lower()[0] == 'y':   473         if entanglement.lower()[0] == 'y':

624             foldname += 'entangled/'   474             foldname += 'entangled/'

625         if entanglement.lower()[0] == 'n':   475         if entanglement.lower()[0] == 'n':

626             foldname += 'not_entangled/'   476             foldname += 'not_entangled/'

627                477             

628     foldname += str(layers) + '_layers/'   478     foldname += str(layers) + '_layers/'

629     foldname += method   479     foldname += method

630        480     

631     return foldname   481     return foldname

632        482     

633 def name_folder_acc(chi, layers): +-    

634     """      

635     This function takes information from the SGD_step_by_step function and saves the accuracies for training and

test sets. It is required for studying the overlearning

     

636     INPUT:       

637         -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'      

638         -problem: name of the problem, to choose among      

639             ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy

lines']

     

640         -qubits: number of qubits, must be an integer      

641         -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'      

642         -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account      

643         -method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize]      

644         -name: a name we want for our our files to be save with      

645         -accs_train: list or array with the accuracies of the training set for all epochs      

646         -accs_test: list or array with the accuracies of the test set for all epochs      

647     OUTPUT:      

648         -foldname: A name for a folder      

649     """      

650     chi = chi.lower().replace(' ','_')      

651     if chi in ['fidelity', 'weighted_fidelity', 'trace', 'weighted_trace']: chi += '_chi'      

652     if chi not in ['fidelity_chi', 'weighted_fidelity_chi', 'trace_chi', 'weighted_trace_chi']:      

653         raise ValueError('Figure of merit is not valid')      

654     foldname = chi + '/'      

655     foldname += str(layers) + '_layers/'      

656           

657     return foldname      

658   = 483  

659     484  

660     485  



Text Compare
   

1 # coding=utf-8 +-    

2 ########################################################################## = 1 ##########################################################################

3 #Quantum classifier   2 #Quantum classifier

4 #Sara Aminpour, Mike Banad, Sarah Sharif <> 3 #Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil, J. Ignacio Latorre

5 #September 25th 2024   4 #Code by APS

      5 #Code-checks by ACL

      6 #June 3rd 2019

6   = 7  

7 #School of Electrical and Computer Engineering/ Center for Quantum and Technology, University of Oklahoma, Norman, OK 73019

USA, 

<> 8  

8 ###########################################################################      

9 #IMPORTANT_NOTE:      

10 #The code on the left was developed by Sara Aminpour, while the code on the right serves as the reference implementation by

Adrián Pérez-Salinas. 

     

11 #The code on the left has been restructured to handle random data. So some certain sections has been deleted from the

reference code. 

     

12 #Additionally, our code on the left developed to analyze trace distance cost function and linear classification problem   9 #Universitat de Barcelona / Barcelona Supercomputing Center/Institut de Ciències del Cosmos

13 #as well as necessary modification to apply COBYLA, L-BFGS-B, NELDER-MEAD, and SLSQP minimization methods.   10  

14 ########################################################################### = 11 ###########################################################################

15     12  

16     13  

17 #This file provides useful tools checking how good our results are   14 #This file provides useful tools checking how good our results are

18     15  

19 from circuitery import code_coords, circuit   16 from circuitery import code_coords, circuit

20 from fidelity_minimization import fidelity   17 from fidelity_minimization import fidelity

21 from trace_minimization import trace_dis +-    

22 from weighted_fidelity_minimization import mat_fidelities, w_fidelities = 18 from weighted_fidelity_minimization import mat_fidelities, w_fidelities

23 import numpy as np   19 import numpy as np

24     20  

25 def _claim(theta, alpha, weight, x, reprs, entanglement, chi):   21 def _claim(theta, alpha, weight, x, reprs, entanglement, chi):

26     """   22     """

27     This function takes the parameters of a solved problem and one data computes classification of this point   23     This function takes the parameters of a solved problem and one data computes classification of

this point

28     INPUT:    24     INPUT: 

29         -theta: initial point for the theta parameters. The shape must be correct (qubits, layers, 3)   25         -theta: initial point for the theta parameters. The shape must be correct (qubits, layers,

3)

30         -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers, dim)   26         -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers,

dim)

31         -weight: set of parameters needed fot the circuit. Must be an array with shape (classes, qubits)   27         -weight: set of parameters needed fot the circuit. Must be an array with shape (classes,

qubits)

32         -x: coordinates of data for testing.   28         -x: coordinates of data for testing.

33         -reprs: variable encoding the label states of the different classes   29         -reprs: variable encoding the label states of the different classes

34         -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'   30         -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

35         -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'   31         -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'

36     OUTPUT:   32     OUTPUT:

37         -y_: the class of x, according to the classifier   33         -y_: the class of x, according to the classifier

38     """   34     """

39     chi = chi.lower().replace(' ','_')   35     chi = chi.lower().replace(' ','_')

40     if chi in ['fidelity', 'weighted_fidelity','trace']: chi += '_chi' <> 36     if chi in ['fidelity', 'weighted_fidelity']: chi += '_chi'

41     if chi not in ['fidelity_chi', 'weighted_fidelity_chi','trace_chi']:   37     if chi not in ['fidelity_chi', 'weighted_fidelity_chi']:

42         raise ValueError('Figure of merit is not valid') = 38         raise ValueError('Figure of merit is not valid')

43            39         

44     if chi == 'fidelity_chi':   40     if chi == 'fidelity_chi':

45         y_ = _claim_fidelity(theta, alpha, x, reprs, entanglement)   41         y_ = _claim_fidelity(theta, alpha, x, reprs, entanglement)

46            42         

47     if chi == 'trace_chi': +-    

48         y_ = _claim_trace(theta, alpha, x, reprs, entanglement)      

49               

50     if chi == 'weighted_fidelity_chi': = 43     if chi == 'weighted_fidelity_chi':

51         y_ = _claim_weighted_fidelity(theta, alpha, weight, x, reprs, entanglement)   44         y_ = _claim_weighted_fidelity(theta, alpha, weight, x, reprs, entanglement)

52   <> 45         

53     return y_    = 46     return y_   

54            47         

55        48     

56 def _claim_fidelity(theta, alpha, x, reprs, entanglement):   49 def _claim_fidelity(theta, alpha, x, reprs, entanglement):

57     """   50     """

58     This function is inside _claim for fidelity_chi   51     This function is inside _claim for fidelity_chi

59     INPUT:    52     INPUT: 

60         -theta: initial point for the theta parameters. The shape must be correct (qubits, layers, 3)   53         -theta: initial point for the theta parameters. The shape must be correct (qubits, layers,

3)

61         -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers, dim)   54         -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers,

dim)

62         -weight: set of parameters needed fot the circuit. Must be an array with shape (classes, qubits)   55         -weight: set of parameters needed fot the circuit. Must be an array with shape (classes,

qubits)

63         -x: coordinates of data for testing.   56         -x: coordinates of data for testing.

64         -reprs: variable encoding the label states of the different classes   57         -reprs: variable encoding the label states of the different classes

65         -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'   58         -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

66     OUTPUT:   59     OUTPUT:

67         the class of x, according to the classifier   60         the class of x, according to the classifier

68     """   61     """

69     theta_aux = code_coords(theta, alpha, x)   62     theta_aux = code_coords(theta, alpha, x)

70     C = circuit(theta_aux, entanglement)   63     C = circuit(theta_aux, entanglement)

71     Fidelities = [fidelity(r, C.psi) for r in reprs]   64     Fidelities = [fidelity(r, C.psi) for r in reprs]

    -+ 65     

72     return np.argmax(Fidelities) = 66     return np.argmax(Fidelities)

73   +-    

74        

75        

76        

77 #==============================================================================          

78 #==============================================================================          

79 #==============================================================================         

80 #==============================================================================        

81 #==============================================================================       

82        

83 def _claim_trace(theta, alpha, x, reprs, entanglement):      

84     """      

85     This function is inside _claim for fidelity_chi      

86     INPUT:       

87         -theta: initial point for the theta parameters. The shape must be correct (qubits, layers, 3)      

88         -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers, dim)      

89         -weight: set of parameters needed fot the circuit. Must be an array with shape (classes, qubits)      

90         -x: coordinates of data for testing.      

91         -reprs: variable encoding the label states of the different classes      

92         -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'      

93     OUTPUT:      

94         the class of x, according to the classifier      

95     """      

96     theta_aux = code_coords(theta, alpha, x)      

97     C = circuit(theta_aux, entanglement)      

98     #for r1 in reprs:      

99     #   Trace=trace_dis(r1, C.r)      

100     Trace = [trace_dis(r1, C.r) for r1 in reprs]      

101     #print('td=',Trace)      

102     #print('reprs[y]=',r1)      

103     #print('C.r=',C.r)      

104     #print('min=',np.argmin(Trace))      

105     return np.argmax(Trace)      

106        

107        

108 #==============================================================================          

109 #==============================================================================          

110 #==============================================================================         

111 #==============================================================================        

112 #==============================================================================       

113        

114        

115   = 67  

116     68  

117 def _claim_weighted_fidelity(theta, alpha, weight, x, reprs, entanglement):   69 def _claim_weighted_fidelity(theta, alpha, weight, x, reprs, entanglement):

118     """   70     """

119     This function is inside _claim for weighted_fidelity_chi   71     This function is inside _claim for weighted_fidelity_chi

120     INPUT:    72     INPUT: 

121         -theta: initial point for the theta parameters. The shape must be correct (qubits, layers, 3)   73         -theta: initial point for the theta parameters. The shape must be correct (qubits, layers,

3)

122         -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers, dim)   74         -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers,

dim)

123         -weight: set of parameters needed fot the circuit. Must be an array with shape (classes, qubits)   75         -weight: set of parameters needed fot the circuit. Must be an array with shape (classes,

qubits)

124         -x: coordinates of data for testing.   76         -x: coordinates of data for testing.

125         -reprs: variable encoding the label states of the different classes   77         -reprs: variable encoding the label states of the different classes

126         -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'   78         -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

127     OUTPUT:   79     OUTPUT:

128         the class of x, according to the classifier   80         the class of x, according to the classifier

129     """   81     """

130     theta_aux = code_coords(theta, alpha, x)   82     theta_aux = code_coords(theta, alpha, x)

131     fids = mat_fidelities(theta_aux, weight, reprs, entanglement)   83     fids = mat_fidelities(theta_aux, weight, reprs, entanglement)

132     w_fid = w_fidelities(fids, weight)   84     w_fid = w_fidelities(fids, weight)

133     return np.argmax(w_fid)   85     return np.argmax(w_fid)

134        86     

135 def tester(theta, alpha, test_data, reprs, entanglement, chi, weights=None):   87 def tester(theta, alpha, test_data, reprs, entanglement, chi, weights=None):

136     """   88     """

137     This function takes the parameters of a solved problem and one data computes how many points are correct   89     This function takes the parameters of a solved problem and one data computes how many points

are correct

138     INPUT:    90     INPUT: 

139         -theta: initial point for the theta parameters. The shape must be correct (qubits, layers, 3)   91         -theta: initial point for the theta parameters. The shape must be correct (qubits, layers,

3)

140         -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers, dim)   92         -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers,

dim)

141         -weight: set of parameters needed fot the circuit. Must be an array with shape (classes, qubits)   93         -weight: set of parameters needed fot the circuit. Must be an array with shape (classes,

qubits)

142         -test_data: set of data for testing   94         -test_data: set of data for testing

143         -reprs: variable encoding the label states of the different classes   95         -reprs: variable encoding the label states of the different classes

144         -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'   96         -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

145         -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'   97         -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'

146     OUTPUT:   98     OUTPUT:

147         -success normalized   99         -success normalized

148     """   100     """

149     acc = 0   101     acc = 0

150     for i, d in enumerate(test_data):   102     for i, d in enumerate(test_data):

151         x, y = d   103         x, y = d

152         y_ = _claim(theta, alpha, weights, x, reprs, entanglement, chi)   104         y_ = _claim(theta, alpha, weights, x, reprs, entanglement, chi)

153         if y == y_:   105         if y == y_:

154             acc += 1   106             acc += 1

    -+ 107     

155     return acc / len(test_data) = 108     return acc / len(test_data)

156            109         

157            110         

158 def Accuracy_test(theta, alpha, test_data, reprs, entanglement, chi, weights=None):   111 def Accuracy_test(theta, alpha, test_data, reprs, entanglement, chi, weights=None):

159     """   112     """

160     This function takes the parameters of a solved problem and one data computes how many points are correct   113     This function takes the parameters of a solved problem and one data computes how many points

are correct

161     INPUT:    114     INPUT: 

162         -theta: initial point for the theta parameters. The shape must be correct (qubits, layers, 3)   115         -theta: initial point for the theta parameters. The shape must be correct (qubits, layers,

3)

163         -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers, dim)   116         -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers,

dim)

164         -weight: set of parameters needed fot the circuit. Must be an array with shape (classes, qubits)   117         -weight: set of parameters needed fot the circuit. Must be an array with shape (classes,

qubits)

165         -test_data: set of data for testing   118         -test_data: set of data for testing

166         -reprs: variable encoding the label states of the different classes   119         -reprs: variable encoding the label states of the different classes

167         -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'   120         -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

168         -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'   121         -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'

169     OUTPUT:   122     OUTPUT:

170         -solutions of the classification   123         -solutions of the classification

171         -success normalized   124         -success normalized

172     """   125     """

173     dim = len(test_data[0][0])   126     dim = len(test_data[0][0])

174     solutions = np.zeros((len(test_data), dim + 3)) #data  #Esto se podrá mejorar en el futuro   127     solutions = np.zeros((len(test_data), dim + 3)) #data  #Esto se podrá mejorar en el futuro

175     for i, d in enumerate(test_data):   128     for i, d in enumerate(test_data):

176         x, y = d   129         x, y = d

177         y_ = _claim(theta, alpha, weights, x, reprs, entanglement, chi)   130         y_ = _claim(theta, alpha, weights, x, reprs, entanglement, chi)

178         solutions[i,:dim] = x   131         solutions[i,:dim] = x

179         solutions[i, -3] = y   132         solutions[i, -3] = y

180         solutions[i, -2] = y_   133         solutions[i, -2] = y_

181         solutions[i, -1] = int(y == y_)   134         solutions[i, -1] = int(y == y_)

182            135         

183     acc = np.sum(solutions[:, -1]) / (i + 1)   136     acc = np.sum(solutions[:, -1]) / (i + 1)

184        137     

185     return solutions, acc   138     return solutions, acc

186     139  



Text Compare
   

1 # coding=utf-8 +-    

2 ##########################################################################      

3 #Quantum classifier      

4 #Sara Aminpour, Mike Banad, Sarah Sharif      

5 #September 25th 2024      

6        

7 #School of Electrical and Computer Engineering/ Center for Quantum and Technology, University of Oklahoma, Norman, OK 73019 USA,       

8 ###########################################################################      

9 #IMPORTANT_NOTE:      

10 #The code on the left was developed by Sara Aminpour, while the code on the right serves as the reference implementation by Adrián Pérez-Salinas.       

11 #The code on the left has been restructured to handle random data. So some certain sections has been deleted from the reference code.       

12 #Additionally, our code on the left developed to analyze trace distance cost function and linear classification problem      

13 #as well as necessary modification to apply COBYLA, L-BFGS-B, NELDER-MEAD, and SLSQP minimization methods.      

14 ###########################################################################      

15        

16        

17 #This file provides the minimization for the cheap chi square      

18 from circuitery import code_coords, circuit      

19 import numpy as np      

20 import random      

21 from scipy.optimize import minimize      

22        

23 def trace_minimization(theta, alpha, train_data, reprs,       

24                        entanglement, method,      

25                        batch_size, eta, epochs):      

26     """      

27     This function takes the parameters of a problem and computes the optimal parameters for it, using different functions. It uses the trace minimization      

28     INPUT:       

29         -theta: initial point for the theta parameters. The shape must be correct (qubits, layers, 3)      

30         -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers, dim)      

31         -train_data: set of data for training. There must be several entries (x,y)      

32         -reprs: variable encoding the label states of the different classes      

33         -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'      

34         -method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize]      

35         -batch_size: size of the batches for stochastic gradient descent, only for 'SGD' method      

36         -eta: learning rate, only for 'SGD' method      

37         -epochs: number of epochs , only for 'SGD' method      

38     OUTPUT:      

39         -theta: optimized point for the theta parameters. The shape is correct (qubits, layers, 3)      

40         -alpha: optimized point for the alpha parameters. The shape is correct (qubits, layers, dim)      

41         -chi: value of the minimization function      

42     """      

43               

44     if method == 'SGD':      

45         thetas, alphas, chis = _sgd(theta, alpha, train_data, reprs,      

46                                         entanglement, eta, batch_size, epochs)      

47         i = chis.index(max(chis))      

48         return thetas[i], alphas[i], chis[i]      

49           

50     else:      

51         params, hypars = _translate_to_scipy(theta, alpha)      

52         results = minimize(_scipy_minimizing, params,       

53                            args = (hypars, train_data, reprs, entanglement),      

54                                    method=method)      

55         theta, alpha = _translate_from_scipy(results['x'], hypars)      

56               

57         return theta, alpha, results['fun']      

58               

59               

60 def _gradient(theta, alpha, data, reprs, entanglement):      

61     """      

62     This function computes a gradient step for the SGD minimization      

63     INPUT:       

64         -theta: initial point for the theta parameters. The shape must be correct (qubits, layers, 3)      

65         -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers, dim)      

66         -data: one data for training. It must be (x,y)      

67         -reprs: variable encoding the label states of the different classes      

68         -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'      

69               

70     OUTPUT:      

71         -grad_theta: gradient for the theta parameters. The shape is correct (qubits, layers, 3)      

72         -grad_alpha: gradient for the alpha parameters. The shape is correct (qubits, layers, dim)      

73         -results['fun']: value of the minimization function      

74     """      

75               

76     x,y = data      

77     theta_aux = code_coords(theta, alpha, x)      

78     C = circuit(theta_aux, entanglement)      

79     prod1 = np.dot(np.conj(reprs[y]), C.psi)      

80     prods2 = np.zeros(theta.shape, dtype='complex')      

81     (Q, L, I) = theta_aux.shape      

82           

83     for q in range(Q):      

84         for l in range(L):      

85             for i in range(I):      

86                 theta_aux[q, l, i] += np.pi       

87                 der_c = circuit(theta_aux, entanglement)      

88                 prods2[q, l, i] = np.dot(reprs[y], np.conj(der_c.psi))      

89                 theta_aux[q, l, i] -= np.pi      

90     grad_theta = np.asfarray(np.real(prod1 * prods2))      

91     if len(x) <= 3:      

92         dim = len(x)      

93         grad_alpha = np.empty((theta.shape[0], theta.shape[1], dim))      

94         for q in range(Q):      

95             for l in range(L):      

96                 for i in range(dim):      

97                     grad_alpha[q, l, i] = x[i] * grad_theta[q, l, i]      

98                           

99     if len(x) == 4:      

100         grad_alpha = np.empty((theta.shape[0], theta.shape[1], 4))      

101         for q in range(Q):      

102             grad_alpha[q, l, 0] = x[0] * grad_theta[q, l, 0]      

103             grad_alpha[q, l, 1] = x[1] * grad_theta[q, l, 1]      

104             grad_alpha[q, l, 2] = x[2] * grad_theta[q, l, 3]      

105             grad_alpha[q, l, 3] = x[3] * grad_theta[q, l, 4]      

106                       

107                       

108     return grad_theta, grad_alpha      

109                       

110        

111 def _train_batch(theta, alpha, batch, reprs, entanglement):      

112     """      

113     This function computes a gradient step for a complete batch for the SGD minimization      

114     INPUT:       

115         -theta: initial point for the theta parameters. The shape must be correct (qubits, layers, 3)      

116         -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers, dim)      

117         -batch: small set of data for training. It must be several (x,y)      

118         -reprs: variable encoding the label states of the different classes      

119         -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'      

120               

121     OUTPUT:      

122         -grad_theta: gradient for the theta parameters averaged in batch. The shape is correct (qubits, layers, 3)      

123         -grad_alpha: gradient for the alpha parameters averaged in batch. The shape is correct (qubits, layers, dim)      

124     """      

125     gradient_theta = np.zeros(theta.shape)      

126     gradient_alpha = np.zeros(alpha.shape)      

127     for d in batch:      

128         g_t, g_a = _gradient(theta, alpha, d, reprs, entanglement)      

129         gradient_theta += g_t      

130         gradient_alpha += g_a      

131               

132     return gradient_theta / len(batch), gradient_alpha / len(batch)      

133        

134        

135 def _session_sgd(theta, alpha, train_data, reprs, entanglement, eta, batch_size):      

136     """      

137     This function computes a gradient descent step for all batches      

138     INPUT:       

139         -theta: initial point for the theta parameters. The shape must be correct (qubits, layers, 3)      

140         -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers, dim)      

141         -train_data: set of data for training. There must be several entries (x,y)      

142         -reprs: variable encoding the label states of the different classes      

143         -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'      

144         -eta: learning rate, only for 'SGD' method      

145         -batch_size: size of the batches for stochastic gradient descent, only for 'SGD' method      

146        

147     OUTPUT:      

148         -theta: updated point for the theta parameters. The shape is correct (qubits, layers, 3)      

149         -alpha: updated point for the alpha parameters. The shape is correct (qubits, layers, dim)      

150         -Av_chi_square: value of the minimization function      

151     """      

152     batches = [train_data[k:k + batch_size] for k in range(0,       

153                len(train_data), batch_size)]      

154     for batch in batches:      

155         gradient_theta_batch, gradient_alpha_batch = _train_batch(      

156                 theta, alpha, batch, reprs, entanglement)      

157         theta += eta * gradient_theta_batch #This sign is very important, it is the difference between maximizing or minimizing.       

158         alpha += eta * gradient_alpha_batch      

159           

160     return theta, alpha, Av_Tr(theta, alpha, train_data, reprs, entanglement)      

161        

162        

163        

164 def _sgd(theta, alpha, train_data, reprs, entanglement, eta, batch_size, epochs):      

165     """      

166     This function completes the whole SGD strategy      

167     INPUT:       

168         -theta: initial point for the theta parameters. The shape must be correct (qubits, layers, 3)      

169         -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers, dim)      

170         -train_data: set of data for training. There must be several entries (x,y)      

171         -reprs: variable encoding the label states of the different classes      

172         -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'      

173         -method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize]      

174         -batch_size: size of the batches for stochastic gradient descent, only for 'SGD' method      

175         -eta: learning rate, only for 'SGD' method      

176         -epochs: number of epochs , only for 'SGD' method      

177     OUTPUT:      

178         -thetas: optimized points for the theta parameters for all epochs. The shape is correct (qubits, layers, 3)      

179         -alphas: optimized points for the theta parameters for all epochs. The shape is correct (qubits, layers, dim)      

180         -chis: value of the minimization function at every step      

181     """      

182     thetas = [np.empty(theta.shape)] * epochs      

183     alphas = [np.empty(alpha.shape)] * epochs      

184     chis = [0] * epochs      

185     for e in range(epochs):      

186         random.shuffle(train_data)      

187         theta_, alpha_, chi_ = _session_sgd(theta, alpha, train_data, reprs,       

188                                           entanglement, eta, batch_size)      

189         thetas[e] = theta_      

190         alphas[e] = alpha_      

191         chis[e] = chi_            #Storage for solution      

192               

193         theta = theta_      

194         alpha = alpha_            #Next step initialization      

195               

196     return thetas, alphas, chis      

197               

198               

199           

200 def _translate_to_scipy(theta, alpha):      

201     """      

202     This function is a intermediate step for translating theta and alpha to a single variable for scipy.optimize.minimize      

203     """      

204     qubits = theta.shape[0]      

205     layers = theta.shape[1]      

206     dim = alpha.shape[-1]      

207           

208     return np.concatenate((theta.flatten(), alpha.flatten())), (qubits, layers, dim)      

209        

210        

211 def _translate_from_scipy(params, hypars):      

212     """      

213     This function is a intermediate step for getting theta and alpha from a single variable for scipy.optimize.minimize      

214     """      

215     (qubits, layers, dim) = hypars      

216     if dim <= 3:      

217         theta = params[:qubits * layers * 3]. reshape(qubits, layers, 3)      

218         alpha = params[qubits * layers * 3: qubits * layers * 3 + qubits * layers * dim].reshape(qubits, layers, dim)      

219               

220     if dim == 4:      

221         theta = params[:qubits * layers * 6]. reshape(qubits, layers, 6)      

222         alpha = params[qubits * layers * 6: qubits * layers * 6 + qubits * layers * dim].reshape(qubits, layers, dim)      

223     return theta, alpha      

224           

225        

226        

227 #==============================================================================      

228 #Sara      

229 def _scipy_minimizing(params, hypars, train_data, reprs, entanglement):      

230     """      

231     This function returns the chi^2 function for using scipy      

232     INPUT:      

233         -params: theta and alpha inside the same variable      

234         -hypars: hyperparameters needed to rebuild theta and alpha      

235         -train_data: training dataset for the classifier      

236         -reprs: variable encoding the label states of the different classes      

237         -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'      

238     OUTPUT:      

239         - -Av_Tr, which is the function we want to minimize      

240     """      

241     theta, alpha = _translate_from_scipy(params, hypars)      

242     return -Av_Tr(theta, alpha, train_data, reprs, entanglement)      

243        

244        

245 #Sara      

246 #==============================================================================      

247        

248        

249 def trace_dis(r,s):      

250     """      

251     This function returns the trace distance of two pure states      

252     INPUT:      

253         -2 vectors of pure states of the same dimension      

254     OUTPUT:      

255         -trace distance      

256     """      

257     dist = np.linalg.norm(r - s)      

258     td=dist/2      

259           

260     return td      

261        

262 #==============================================================================      

263 def _Tr(theta, alpha, data, reprs, entanglement): #Chi for one point      

264     """      

265     This function compute chi^2 for only one point      

266     INPUT:       

267         -theta: set of parameters needed for the circuit. Must be an array with shape (qubits, layers, 3)      

268         -alpha: set of parameters needed for the circuit. Must be an array with shape (qubits, layers, dimension of data)      

269         -data: one data for training. It must be (x,y)      

270         -reprs: variable encoding the label states of the different classes      

271         -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'      

272     OUTPUT:       

273         -chi^2 for data      

274     """      

275     #      

276     x, y = data      

277     #print('data=',data)      

278     theta_aux = code_coords(theta, alpha, x)      

279     C = circuit(theta_aux, entanglement)      

280           

281        

282     '''if y==0:      

283         s=np.array([0,0,-1])      

284                   

285     elif y==1:      

286         s=np.array([0,0,1])      

287                   

288     elif y==2:      

289         s=np.array([1,0,0])      

290                       

291     elif y==3:      

292         s=np.array([-1,0,0])      

293                   

294     elif y==4:      

295         s=np.array([0,1,0])      

296                       

297     elif y==5:      

298         s=np.array([0,-1,0])'''                  

299                    

300     ans = trace_dis(reprs[y], C.r)      

301     return ans      

302        

303 #==============================================================================      

304 #Sara      

305 def Av_Tr(theta, alpha, train_data, reprs, entanglement): #Chi in average      

306     """      

307     This function compute chi^2 for only one point      

308     INPUT:       

309         -theta: set of parameters needed for the circuit. Must be an array with shape (qubits, layers, 3)      

310         -alpha: set of parameters needed for the circuit. Must be an array with shape (qubits, layers, dimension of data)      

311         -data: one data for training. It must be (x,y)      

312         -reprs: variable encoding the label states of the different classes      

313         -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'      

314     OUTPUT:       

315         -Averaged chi^2 for data      

316     """      

317     Av_Tr = 0      

318     for d in train_data:      

319         Av_Tr += _Tr(theta, alpha, d, reprs, entanglement)      

320        

321     return Av_Tr / len(train_data)      

322 #Sara      

323 #==============================================================================      

324        

325        

326        

327        

328           
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