
Boosting Quantum Classifier Efficiency through Data Re-Uploading and Dual

Cost Functions

Supplementary Documentation

Authors: Sara Aminpour1,2, Mike Banad1, Sarah Sharif1,2
*

Author Affiliations:
1 School of Electrical and Computer Engineering, University of Oklahoma,

Norman, OK 73019, USA
2Center for Quantum and Technology, University of Oklahoma, Norman, OK

73019 USA

*Corresponding author: Sarah Sharif (email: s.sh@ou.edu)

Table of contents

• Supplementary Note 1. Range of training samples and number of layers

• Supplementary Note 2. Evaluating LCP and non-LCP approaches for fidelity cost function in fixed

and random datasets for 1-qubit classifier for four different minimization methods

• Supplementary Note 3: Evaluating LCP and non-LCP approaches for trace distance cost function in

fixed and random datasets for 1-qubit classifier

• Supplementary Note 4: performance comparison of 5-layer single-qubit quantum classifiers using

fidelity and trace distance cost functions across various classification tasks and dataset types

• Supplementary Note 5: Evaluating LCP and non-LCP approaches for fidelity in fixed and random

datasets for 2-qubit and 2-qubit entangled classifiers

• Supplementary Note 6: Method

• Supplementary Note 7: Optimization Methods

• Supplementary Note 8: Comparing our developed code with original reference

Supplementary Note 1: Range of training samples and number of layers
Figure S1.1 illustrates the performance of a quantum classifier utilizing a fidelity cost function within a five-layer

framework for circular pattern classification in a fixed dataset, employing the L-BFGS-B optimization method. The

analysis encompasses training data up to 250 samples to benchmark our algorithm against the findings from the reference
1. The diagram depicts training accuracy with a blue dashed line and test accuracy with a solid blue line, underscoring

the algorithm's efficacy. A red dot highlights a notable benchmark from the reference, showing an 89% accuracy with

200 training samples, demonstrating parity with this published result. The inset provides a visual representation of the

classification process. Notably, test accuracy begins at approximately 70%, rising impressively to 96% for a slightly

expanded dataset of 210 samples. Remarkably, with as few as 60 training samples, the model achieves a test accuracy of

91.8%, and the discrepancy between training and test accuracy diminishes with the inclusion of 90 samples. This

observation underscores the efficiency of our approach, highlighting its capability to reach high accuracy levels without

necessitating extensive training data.

 Figure S1.2 showcases a systematic

evaluation of a circular pattern classification

model across a spectrum of architectural depths,

ranging from 1 to 5 layers. The graphical

analysis reveals that models with a solitary layer

lag in performance compared to those with

increased layer counts, marking a clear trend: as

the number of layers escalates, so does the

model's classification accuracy. Specifically, a

single-layer setup achieves a peak accuracy of

61.9%, whereas a more complex five-layer

configuration significantly elevates this metric

to 88.8%, even when limited to only 35 training

samples. This observation underscores a critical

insight—enhancing the model's depth

systematically improves its predictive

capabilities, a phenomenon consistent with the

advantages afforded by the data reuploading

strategy integral to our approach. Given this

marked improvement in model efficacy with

layer augmentation, the paper prioritizes an in-

depth investigation and discourse on the five-

layer model's architecture, focusing on its

ability to optimize classification accuracy with

efficient utilization of training data.

Supplementary Note 2: Evaluating

non-linear and linear classification

approaches for fidelity cost function

in fixed and random datasets for 1-

qubit classifier for four different

minimization methods

Figure 2 illustrates a comparison of four distinct optimization techniques, namely L-BFGS-B, COBYLA, Nelder-Mead,

and SLSQP, applied to the task of classifying the circle pattern. The comparison evaluates both training and test

accuracies using a fixed dataset of 4000 test samples and 5 layers. Initially, all algorithms demonstrate a perfect training

accuracy of 100% with just a single sample, a result that aligns with expectations. However, as we increase the sample

size, a divergence in performance becomes evident for these four minimization methods. The L- BFGS-B method

maintains a training accuracy close to 90%, showcasing its robustness against overfitting. In contrast, COBYLA, Nelder-

Mead, and SLSQP show significant variability and a decline in training accuracy, indicating a susceptibility to overfitting.

Interestingly, the peak accuracy for COBYLA, Nelder-Mead, and SLSQP is achieved with merely 50 samples, beyond

which overfitting becomes a significant issue. This observation suggests that, unlike L-BFGS-B, which requires a

minimum of 100 samples to achieve an accuracy of 92%, the other three methods can attain over 95% accuracy with

only 50 samples. L-BFGS-B does not reach this high accuracy level at 100 samples, and its performance slightly declines

with an increase in training samples after 150 training samples. This analysis highlights the critical importance of

carefully selecting the number of training samples based on the minimization method used. The right choice can

effectively prevent overfitting, thereby enhancing classification accuracy. This insight is crucial for optimizing machine

learning models and ensuring their generalizability and efficiency in practical applications.

Figure S1.1 Train and test accuracy of fidelity for the 5-layer

model of circle classification and fixed dataset for L-BFGS-B

minimization method. The inset graph shows the visualization of

a nonlinear classification reported on1.

Figure S1.2. Evaluate the test accuracy of fidelity for circle

classification and random dataset for L-BFGS-B minimization

method, ranging from 1 to 5 layers.

 Figure 3 delves into the accuracy of these four distinct minimization methods —L-BFGS-B, COBYLA, Nelder-

Mead, and SLSQP— when applied to a fidelity cost function and a random dataset for circle classification. This

analysis underscores a consistent trend across all methods: an initial increase in test accuracy corresponding to the rise

in the number of training samples, yet fails to surpass a peak accuracy of 90%. This trend highlights the inherent

challenges faced by these minimization methods when dealing with random datasets. In the L-BFGS-B method as

depicted in figure 3(a), showcases a notable performance, achieving its highest test accuracy of 88.8% with 35 training

samples. This point also marks the narrowest gap of 5% between training and test accuracy, indicating a relatively

high level of model efficiency and generalization at this sample size. However, as the analysis progresses, it becomes

apparent that increasing the number of training samples beyond this optimal point does not translate to improved

performance. The gap between the train and test accuracy remains notably constant at around 10% even as the sample

size is increased to 70 training samples. Transitioning to the COBYLA method, as depicted in figure 3(b), a different

performance pattern emerges. Contrary to L-BFGS-B, COBYLA achieves its best test accuracy at 84.8% with a higher

training sample equal to 70. This method experiences fluctuations, yet it is noteworthy that the gap between training

and test accuracies exhibits a decreasing trend, suggesting a gradual improvement in model generalization compared

to the initial stability seen with L-BFGS-B. Figure 3(c) focuses on the Nelder-Mead method, highlighting a decrease

in the gap between training and test accuracies as the number of training samples increases, culminating in a maximum

accuracy of 86.9% with 60 training samples. Figure 3(d) examines the SLSQP method, which shows an increase in

test accuracy up to 50 training samples before demonstrating a decline in both training and test accuracies. This shows

the SLSQP method is more prone to overfitting. The SLSQP method reaches a maximum accuracy of 86.7% when

applied to a dataset of 50 samples. These results, as detailed in figure 6, provide vital insights into the performance of

various minimization methods when working with a fidelity cost function and a random dataset. The diverse outcomes

emphasize the importance of choosing an optimal number of training samples to prevent overfitting and enhance

accuracy. This underlines the delicate balance needed to fully leverage these computational methods in practical

scenarios.

 Figure 4 illustrates a comparison of four different optimization techniques applied to the task of classifying line

patterns, using fidelity-based cost function and the fixed dataset. The subplot (a) focuses on the performance of the L-

BFGS-B method. Here, the training accuracy starts at a perfect 100% and impressively remains above 97% even as the

number of training samples increases. Conversely, the test accuracy initiates at a relatively lower rate of 62.2% with just

a single sample yet it progressively improves, reaching approximately 95% accuracy with 75 training samples and slightly

declines for larger training samples. An initial notable gap between the training and test accuracy is evident, but this gap

diminishes significantly as the dataset expands with more training data, indicating an improvement in the model's ability

to generalize from the training to the unseen test data. The subplot (b) depicts the results obtained using the COBYLA

algorithm, which exhibits a performance pattern similar to that of the L-BFGS-B method, consistently achieving 100%

accuracy on the training data. The accuracy on the test set starts at 66.9% and steadily improves as more training samples

are added, ultimately reaching 95% when 125 samples are used for training. The disparity between training and test set

accuracies mirrors the pattern observed with the L-BFGS-B method, consistently manifesting across all training dataset

sizes. The Nelder-Mead approach, shown in figure 4(c), achieves a notable test accuracy of 97.7% with 125 training

samples. The inset provides a graphical visualization of line classification using this minimization method at this specific

point, illustrating that the line classification performance is exceptionally well. The visualization clearly demonstrates

the method's effectiveness in accurately separating the data points into distinct classes, highlighting the Nelder-Mead

method's precision and robustness in handling line classification tasks with a substantial number of training samples.

Furthermore, the training and test accuracy curves show a notably smaller gap, converging to the same value with training

sets of 100 and 125 samples. The final subplot (d) evaluates the performance of the SLSQP method, which closely aligns

with the results from the COBYLA method. The test set accuracy exhibits a progressive increase, rising from 62.7% to

96.6%. The disparity between the training and test accuracies is similar to that observed with the COBYLA method. In

summary, all four optimization techniques demonstrate a reduction in overfitting as the training dataset size increases,

ultimately achieving a test accuracy of at least 95% when training with 125 samples for this line classification task.

 Figure 5 showcases an analysis of the classification accuracy obtained using the same minimization methods across

random datasets. Consistently, a rise in the number of training samples correlates with an increase in test accuracy across

all methods evaluated. Notably, with just 50 training samples, all methods surpass the 90% accuracy threshold.

Specifically, in figure 5(a), the L-BFGS-B method reaches the peak accuracy of 92.8% with 50 training samples. It was

observed that as the number of samples increased, the disparity between train and test accuracies for the L-BFGS-B

method began to narrow, although this gap persisted in being slightly wider than that observed in the other methods.

Figure 5(b) demonstrates that the COBYLA method, with the same number of samples, attains a superior accuracy of

93.5%. This suggests that COBYLA not only reaches high classification accuracy with a minimal dataset but also

demonstrates better generalization compared to L-BFGS-B, as reflected by the narrower gap between its training and test

accuracies. Figure 5(c) examines the Nelder-Mead method, showing its peak accuracy of 93% with 40 training samples,

after which its accuracy slightly declines. Interestingly, the smallest disparity between training and test accuracies—only

1.8%—occurs in 50 training samples. Despite slightly lower accuracy at this point, this smallest gap signifies that the

Nelder-Mead method achieves a remarkable balance between learning from the training data and generalizing to unseen

data, highlighting its efficiency and potential for precise model tuning. Figure 5(d) illustrates that the SLSQP method

achieves an impressive peak test accuracy of 96.4% for line classification using a random dataset, attained with 45

training samples. At this juncture, the discrepancy between training and test accuracies is notably small, indicating a high

level of model precision and generalization. Like the Nelder-Mead method, the SLSQP method exhibits a nonmonotonic

increment in test accuracy as a function of training samples, as indicated by the irregular slope of test accuracy. This

fluctuation suggests that for these methods, adding more training samples does not straightforwardly translate to higher

test accuracies, highlighting the complexity of optimizing model performance across different minimization techniques.

 A comparison of figures 2 and 4 reveals that the accuracy curves for line classification are more stable and consistent

across all optimization techniques when compared to those for circle classification. The accuracy values for classifying

circle patterns display greater variability and fluctuations than those observed in the line classification task. The

observed differences in performance between circle and line classification could stem from several technical factors:

(1) Line classification likely represents a more straightforward pattern that aligns better with the linear decision

boundaries most classifiers are adept at identifying. In contrast, circle classification involves recognizing more

complex, non-LCP, which can challenge the classifiers’ ability to generalize from the training data without overfitting

or underfitting. (2) The algorithms applied for circle classification might be more prone to getting trapped in local

minima due to the more intricate decision boundaries required to accurately classify circular patterns. This can hinder

the optimization process, leading to increased fluctuations in classification accuracy as the model struggles to find the

global optimum. (3) The differences in performance may also reflect the inherent adaptability of the algorithms to the

specific types of classification tasks with the geometric properties. A comparative analysis of Figures 6 and 8 indicates

that the specific characteristics of the classification problem significantly affect the potential to attain higher accuracy

with fewer samples. The fluctuations in the line classification pattern are less pronounced than those in the circle

classification pattern. This observation underscores the importance of selecting appropriate optimization methods

based on the complexity of the classification problem.

Supplementary Note 3: Evaluating non-linear and linear classification approaches for trace

distance cost function in fixed and random datasets for 1-qubit classifier

Figure 6 showcases the effectiveness of the trace distance cost function in classifying circular patterns within a fixed

dataset. In subplot (a), the L-BFGS-B minimization method achieves its highest test accuracy at 79.2% with a dataset

comprising 100 training samples. Subplot (b) examines the performance of the COBYLA method, which displays greater

variability in training accuracy than L-BFGS-B but ultimately achieves a higher peak test accuracy of 84.6%, also with

100 training samples. Notably, COBYLA demonstrates enhanced generalization capabilities relative to other methods,

as indicated by the narrower margin between its training and testing accuracies. This performance suggests that, when

applied alongside the trace distance cost function, the COBYLA method is particularly adept at optimizing parameters

for improved generalization to unseen testing data. An accompanying visualization within the inset illustrates the

classification of circular patterns at this accuracy peak. In subplot (c), the analysis shifts to the performance of the Nelder-

Mead method, which records its optimal test accuracy at 72.6% utilizing 60 training samples. This method exhibits signs

of overfitting, a condition where the model learns the training data too closely and fails to generalize well to new, unseen

data. Despite a narrowing gap between training and testing accuracies as the number of training samples grows, a

concurrent decline in training accuracy is observed, which adversely affects the overall test accuracy. This pattern

suggests a limitation in the Nelder-Mead method's capacity to effectively handle the trace distance cost function, likely

due to its inherent characteristics such as reliance on simplex-based optimization, which might struggle with the

complexity of the trace distance landscape. Consequently, this method appears less suited for tasks requiring robust

generalization from the trace distance cost function, particularly in scenarios demanding accurate classification of

complex patterns with a limited dataset. In subplot (d), the focus turns to the SLSQP method which attains its peak test

accuracy at 83.6% with a dataset of 100 training samples. The disparity between training and testing accuracy contracts

by increasing the training samples, indicating an improvement in the model's ability to generalize from the training to the

testing dataset. However, even at the point of 100 training samples, the gap between training and testing accuracies, while

reduced, remains significant. This persistent gap suggests that while the SLSQP method is effective at learning and

generalizing from the given data, there is still a margin for optimization to further bridge the difference in accuracies.

Each optimization technique successfully minimizes the cost function and attains perfect accuracy on the training set

using a comparatively small number of samples. However, their performance varies considerably when it comes to

generalizing to the test set. This highlights the crucial role played by the choice of optimization algorithm in determining

the overall effectiveness of the model. In conclusion, when considering the fixed dataset and the trace distance cost

function, the COBYLA method demonstrates superior performance in optimizing the parameters to generalize effectively

to unseen test data. Compared to the other techniques evaluated, it necessitates fewer training samples to achieve

satisfactory accuracy on the test set.

Figure 7 illustrates how the accuracy on both the training and test sets evolves as the number of training samples

grows, specifically for the task of classifying circular patterns using the trace distance cost function, evaluated on a

randomly generated dataset. Similar to all scenarios analyzed so far, a common pattern emerges where test accuracy

begins at a relatively low level for all minimization methods but demonstrates a consistent increase as more training

data is provided. This trend highlights the methods' capacity to effectively learn distinguishing features, thereby

enhancing their ability to generalize to unseen data. Specifically, in subplot (a), the L-BFGS-B method illustrates

impressive learning efficiency, with test accuracy exceeding 70% after incorporating just 40 training samples and

achieving its highest test accuracy of 77.8% with 45 training samples. In subplot (b), the COBYLA method's

performance is slightly lower compared to L-BFGS-B, plateauing at a test accuracy of 72.8% with 45 training samples.

This performance indicates that while COBYLA may be susceptible to some degree of overfitting, it nonetheless

achieves a reasonable level of generalization. Subplot (c) explores the Nelder-Mead method, which reaches its peak

test accuracy of 75.1% with 50 training samples. Subplot (d) utilizes the SLSQP method, which shows fluctuations in

its training accuracy remaining above 80%. The test accuracy for SLSQP was enhanced significantly, reaching 74.6%

with 50 samples. This fluctuation and eventual rise in test accuracy underscores the method's potential for optimizing

classification tasks, despite the initial variability. In sum, the L-BFGS-B method stands out for achieving the highest

test accuracy among the methods evaluated, requiring only 45 training samples to reach this optimum on a random

dataset. Summarily, employing the trace distance cost function across these various minimization strategies yields test

accuracy ranging from 65% to 78% on the random dataset, illustrating the function's effectiveness and the distinct

performance capabilities of each minimization method.

 Figure 8 offers a comparative analysis of the accuracy achieved by four different optimization methods when applied

to a trace distance cost function for line pattern classification using a fixed dataset. Subplot (a) highlights the L-BFGS-B

method, showcasing its high level of stability in training accuracy. The test accuracy shows a steady increase, reaching

91.8% with 100 training samples. While there is a substantial gap between the accuracies of the training and test sets at

the outset, this difference gradually narrows as more training samples are introduced. This highlights the L-BFGS-B

method's capacity to adapt and learn more complex patterns effectively, demonstrating robustness and in leveraging

larger datasets for improved generalization. The subplot (b) illustrates the results obtained using the COBYLA method.

In contrast to the L-BFGS-B approach, the accuracy of the training set shows greater fluctuations, even experiencing a

drop to 56.9% at one instance before rebounding. The test accuracy follows a similar pattern to that seen in L-BFGS-B,

beginning at 49.8% and increasing to 87.4%. Once the training set size reaches 80 samples, both the training and test

accuracies seem to reach a plateau, slightly below the 90% mark. In subplot (c), the Nelder-Mead method starts with a

modest test accuracy of 55.3%, which significantly improves to 87% with the addition of 60 training samples

demonstrating a similar trend as the L-BFGS-B method. Initially, a pronounced gap exists between training and test

accuracies, which persists until the dataset is expanded to include 80 training samples. Beyond this point, the sign of

overfitting emerges, as demonstrated by a decline in training accuracy while test accuracy plateaus. For 100 training

samples, the test accuracy interestingly becomes 2% higher than the training accuracy, indicating a unique inversion

where the model performs slightly better on unseen data than on the training set itself, a rare occurrence that may suggest

the model has reached a point of optimization where it generalizes exceptionally well to new data. The subplot (d) of

figure 11 presents the results of the SLSQP method. Notably, this technique achieves the highest accuracy on the test set,

reaching 93.3% using just 40 training examples. The SLSQP method appears to be the most appropriate choice for trace

distance classification tasks, as it exhibits a smaller discrepancy between its performance on the training and test datasets.

The inset provides a visual representation of the SLSQP's performance at this specific point. To summarize, all

optimization methods demonstrate an upward trajectory in test accuracy as the size of the training dataset increases,

suggesting enhanced generalization capabilities of the model. Among the four techniques evaluated, the SLSQP method

seems to strike the most favorable balance between its performance on the training and test sets.

 Figure 9 presents a comparison of different optimization techniques when applied to the task of classifying line pattern

using a randomly generated dataset and a cost function based on trace distance. In subplot (a), we examine the

performance of the L-BFGS-B method, which attains its peak test accuracy of 86.3% with 55 training samples. Before

reaching this point, the method's test accuracy demonstrated considerable variability, oscillating between 70% and 80%

as the number of training samples ranged from 20 to 50. However, a notable improvement occurs when the dataset is

expanded to 55 training samples, at which the test accuracy leaps to 86.3%, effectively surpassing the earlier fluctuation

band. This pivotal moment also marks the occurrence of the smallest gap between training and test accuracies,

showcasing a significant enhancement in the model's ability to generalize from the training dataset to unseen data, thereby

achieving an optimal balance at this specific training sample size. Subplot (b) delves into the efficacy of the COBYLA

optimization method, which achieves its highest test accuracy of 86.8% with a relatively smaller dataset of 35 training

samples. Beyond this optimal threshold, signs of overfitting become apparent, as both training and test accuracies start

to decline. This pattern suggests that while the COBYLA method is highly effective up to a certain point, adding more

training samples beyond this number paradoxically hampers the model's performance. The decline in accuracy indicates

that the model begins to memorize the training data rather than learning to generalize, leading to a decrease in its ability

to accurately predict outcomes on unseen data. This observation underscores the importance of identifying the ideal

number of training samples to maximize the effectiveness of the COBYLA method without crossing into the territory of

overfitting. In subplot (c), the focus is on the Nelder-Mead optimization method, which shows some fluctuations in

performance before reaching its maximum test accuracy. It successfully achieves a test accuracy of 88.1% with 40

training samples. However, akin to the pattern observed with the COBYLA method, the Nelder-Mead method also sees

a decline in both training and test accuracies when additional training samples are added beyond this optimal number.

This decline serves as a clear indication of the onset of overfitting, suggesting that while the Nelder-Mead method can

efficiently utilize a certain number of training samples to improve its predictive accuracy, exceeding this number leads

to a reduction in model performance. In subplot (d), a more continuous and stable increase in test accuracy is observed

with each increase in the number of training samples. This trend results in the highest test accuracy being recorded at

88.3% with 55 training samples. Unlike the previous methods discussed, this subplot suggests a method that maintains

its efficiency and ability to generalize well without showing immediate signs of overfitting up to this point. The gradual

and consistent improvement in test accuracy highlights the method's effective learning curve and suggests an optimal

balance between learning from the training data and applying this knowledge to unseen data.

Supplementary Note 4: performance comparison of 5-Layer single-qubit quantum classifiers

using fidelity and trace distance cost functions across various classification tasks and dataset

types

 Figure S4.1 offers a comparative analysis of the highest accuracies achieved for two distinct classification patterns –

linear (line) and non-linear (circle) – across the four distinct minimization methods when applied to both random and

fixed datasets within the context of a fidelity cost function. The analysis reveals a notable trend: in circle classification

tasks, the fixed dataset consistently yields higher accuracies than their random counterparts for all tested minimization

methods. This suggests that the inherent geometric complexities of non-LCP may align more closely with the simpler

structure of fixed datasets, thereby facilitating more accurate classification. Similarly, for line classification, the fixed

dataset leads to enhanced accuracies with the L-BFGS-B and SLSQP methods, indicating these methods' effectiveness

in leveraging structured data to accurately discern linear

relationships. However, the random dataset achieves better

accuracy when classified using the Nelder-Mead method.

This could suggest that the Nelder-Mead method, known for

its simplicity and direct search approach, might be

particularly adept at navigating the stochastic nature of

random datasets to identify linear patterns. Across all

algorithms, the task of classifying non-LCP, especially

within random datasets, emerges as inherently challenging.

This complexity likely stems from the algorithms' varying

abilities to parse and learn from the unpredictable variance

found in random datasets, as well as the added difficulty of

accurately modeling non-linear relationships. The findings

underscore the critical importance of selecting the

appropriate minimization method based on the dataset's

nature and the classification task's geometric complexity to

optimize classification accuracy.

 Figure S4.2 provides the performance comparison of two

distinct classification patterns—line and circle—across four different minimization methods when applied to both

random and fixed datasets, this time employing the trace distance cost function. A pivotal observation emerges when

comparing the performance of circle classification with a

fixed dataset (circle/fixed) against the fidelity cost function

results presented in figure S4.1. It is evident that the

accuracies achieved using the trace distance cost function are

notably lower across all minimization methods compared to

those obtained with the fidelity cost function. This

discrepancy highlights the inherent challenges and

differences in how each cost function interacts with the

underlying data and the classification task at hand. The trace

distance cost function, known for quantifying the

distinguishability between quantum states, may present a

more complex landscape for optimization, particularly when

applied to classical data patterns such as lines and circles.

This complexity could lead to lower classification accuracy

as the minimization methods struggle to navigate the nuances

of the trace distance landscape effectively. Such an

observation underscores the importance of cost function

selection in machine learning tasks, emphasizing that the

Figure S4.2. Evaluating of trace distance test

accuracy of 5-layer model across 50 samples for

LCP and non-LCP problems for random and fixed

datasets in four minimization methods.

Figure S4.1. Evaluating of Fidelity cost function

test accuracy of 5-layer model across 50 samples for

LCP and non-LCP problems for random and fixed

datasets in four minimization methods.

choice of cost function can significantly impact the model's ability to learn and generalize from the data. The comparative

analysis in figure S4.2 serves as a testament to the nuanced interplay between cost functions, dataset types (fixed vs.

random), and the geometric nature of the classification patterns, offering valuable insights into optimizing classification

accuracy through strategic method and cost function selection.

 In addition, the fixed dataset achieves superior accuracy specifically when employing the COBYLA minimization

method, indicating a unique synergy between COBYLA's optimization strategy and the structured nature of fixed datasets

for LCP. Conversely, for the random dataset, there's a notable trend where it consistently outperforms the fixed dataset

across all other minimization methods, suggesting that the stochastic characteristics of random datasets may be better

suited to the optimization landscapes these methods navigate, particularly for LCP. In circle classification tasks, the

random dataset not only demonstrates improved accuracy over the fixed dataset for all minimization methods but also

reinforces the observation that random datasets generally offer a more favorable context for the trace distance cost

function across both classification patterns. This enhancement in accuracy with random datasets could be attributed to

the trace distance cost function's sensitivity to the variances within the dataset, allowing for more effective differentiation

and classification of non-LCP like circles when the data is less predictable.

Supplementary Note 5: Evaluating non-linear and linear classification approaches for

fidelity in fixed and random datasets for 2-qubit and 2-qubit entangled classifiers

Focusing on figure 10(a), we observe the performance of a single-qubit system applied to a LCP pattern. The system

demonstrates a steep initial learning curve, with accuracy rapidly increasing from 51.6% to 92% after just 75 training

samples. This sharp rise highlights the single-qubit system's ability to efficiently learn and generalize from a relatively

small dataset. The notable jump in accuracy suggests that a properly trained single-qubit classifier can capture the

essential features of the LCP task with high precision. After reaching 92% accuracy at 75 training samples, the system

stabilizes, maintaining a test accuracy consistently in the range of 92% to 97.7% as the training sample size increases

to 125. The minimal fluctuation in accuracy indicates a robust performance, with the single-qubit system effectively

avoiding overfitting even as the training data expands. The stable test accuracy underscores the system's reliability

and suitability for LCP tasks where computational simplicity and consistent performance are crucial. In terms of

computational cost, as shown in figure 1(d), the single-qubit system exhibits a gentle increase in computational time,

reaching 62.15 seconds for 250 training samples. This computational efficiency, coupled with the system's stable

accuracy, makes the single-qubit classifier an appealing option for linear problems, particularly in scenarios where

computational resources are limited but high accuracy is still required.

In figure 10(b), the performance of the 2-qubit classifier in a LCP task shows a more gradual improvement in accuracy

compared to the single-qubit system. The initial accuracy is relatively high, starting at 73.2% with just one training

sample, which suggests that the additional qubit provides a more robust representation of the problem space even with

minimal training. As the number of training samples increases to 75, the accuracy rises steadily, reaching 94.1%. This

gradual improvement, as opposed to the sharp jump seen in the single-qubit system, highlights the ability of the 2-

qubit classifier to build on its already strong initial performance with increasing training data. Beyond 50 training

samples, the 2-qubit classifier continues to demonstrate incremental gains, eventually peaking at around 95.7% test

accuracy with 175 training samples. Notably, the test accuracy fluctuates between 92% and 96% throughout this range,

suggesting that while the system performs consistently well, there are slight variations in how the test data is classified

as more training samples are introduced. These fluctuations could indicate that the system is sensitive to the nature of

the training data or potentially approaching the limits of its capacity for linear classification. From a computational

perspective, shown in Figure 1(e), the 2-qubit classifier exhibits a significant increase in computational time as the

number of training samples grows. By the time the training sample size reaches 250, the computational time extends

to around 260 seconds. This is a sharp contrast to the single-qubit system, illustrating the tradeoff between the

enhanced accuracy and robustness offered by the 2-qubit classifier and the increased computational demands. For LCP

tasks, this suggests that while the 2-qubit classifier provides higher initial accuracy and steady performance

improvements, it comes at the cost of a much higher computational burden, making it potentially less suitable for

scenarios where time or resources are constrained.

Examining figure 10(c), the performance of the 2-qubit entangled classifier in a LCP task reveals a distinctive pattern

when compared to non-entangled systems. The initial accuracy is relatively low, starting at 51.3% with just one

training sample. This suggests that the entanglement introduces complexities that make the system less effective in

identifying patterns from very limited data. However, as the number of training samples increases to 75, the system

exhibits a steep improvement in accuracy, reaching 93.3%. This rapid climb indicates that while the entangled system

may struggle with very small datasets, it quickly capitalizes on additional training samples to enhance its classification

performance. As the training samples continue to increase beyond 75, the 2-qubit entangled classifier shows notable

fluctuations in accuracy, ranging between 88% and 97.5%. These fluctuations, which are more pronounced than those

seen in the single-qubit or non-entangled 2-qubit classifier, suggest that entanglement introduces both benefits and

challenges. On one hand, the system achieves the highest peak accuracy (97.5%) among all three systems,

demonstrating its potential for superior performance. On the other hand, the variability in test accuracy highlights the

sensitivity of the entangled system to the training data, possibly indicating overfitting or instability when processing

larger datasets. In terms of computational cost, as shown in figure 10(f), the 2-qubit entangled classifier mirrors the

trend seen in the non-entangled 2-qubit classifier, with computational time increasing significantly as the number of

training samples rises. At 250 training samples, the computational time reaches 260 seconds, similar to the non-

entangled classifier. Despite this computational burden, the 2-qubit entangled classifier offers a potential advantage in

terms of peak accuracy, making it a compelling choice for applications where achieving the highest possible accuracy

is paramount, even if it comes with the tradeoff of greater computational complexity and variability in performance.

In comparing the classifier, we observe clear tradeoffs between simplicity, stability, and computational complexity.

The single-qubit classifier is the most stable and computationally efficient but may not reach the same peak accuracies

as the more complex systems. The 2-qubit classifier offers higher initial accuracy and consistent improvement but

requires significantly more computational resources. Finally, the 2-qubit entangled system, while achieving the highest

peak accuracy, also introduces greater instability and computational demands, making it best suited for scenarios

where peak performance is the priority, and computational cost is less of a concern. Ultimately, the choice of system

depends on the specific requirements of the classification task, such as whether stability, computational efficiency, or

peak accuracy is the primary objective.

 Figure 11 presents a comprehensive analysis of two quantum classifiers - a 2-qubit classifier and a 2-qubit entangled

classifier for non-LCP. The results are displayed across six subplots, labeled (a) through (f), which provide insights

into the performance and characteristics of these classifiers under various conditions. Subplots (a) and (b) show the

train and test accuracies as a function of the number of training samples for the 2-qubit and the 2-qubit entangled

classifiers, respectively. In both cases, we observe that the accuracies generally improve as the number of training

samples increases. However, the 2-qubit classifier (a) shows higher initial test accuracy, 73.5%, and a more stable

performance across different sample sizes. The 2-qubit entangled classifier (b) starts with lower test accuracy, 47.6%

but shows significant improvement as the sample size increases. Both classifiers seem to converge in terms of train

and test accuracy around 175 training samples, which explains why this number was chosen for subsequent analyses.

Subplots (c) and (d) illustrate how the number of layers in the quantum circuit affects the accuracies of the classifiers

for a specific number of training samples. For the 2-qubit classifier (c), we see a general upward trend in both train

and test accuracies as the number of layers increases, with some fluctuations. The 2-qubit entangled classifier (d)

shows a more pronounced improvement with increasing layers, especially in the early stages. Both classifiers appear

to reach a plateau in performance after about 12-15 layers, suggesting that further increases in circuit depth may not

yield significant improvements. Subplots (e) and (f) depict the computational time required as the number of layers

increases for the 2-qubit and the 2-qubit entangled classifiers, respectively. Both show a clear exponential growth in

computational time as the number of layers increases. This trend is consistent across both classifiers, indicating that

the computational cost scales similarly regardless of whether entanglement is used. Comparing the classifiers overall,

we can see that the 2-qubit classifier generally achieves higher accuracies with fewer training samples and maintains

more consistent performance across different numbers of layers. The 2-qubit entangled classifier, while starting with

lower accuracy, shows more dramatic improvements as both the number of training samples and layers increase. This

suggests that entanglement might provide additional expressive power to the classifier, allowing it to capture more

complex patterns in the data as the circuit depth increases. However, this potential advantage comes at the cost of

increased sensitivity to the number of training samples and layers, as evidenced by the more volatile accuracy curves

in subplots (b) and (d). The computational time plots (e) and (f) remind us that increasing the number of layers quickly

becomes computationally expensive for both classifiers, which is an important consideration in practical applications.

In conclusion, these results provide valuable insights into the trade-offs between accuracy, circuit complexity, and

computational cost for quantum classifiers, highlighting the potential benefits and challenges of using entanglement

in quantum machine learning tasks.

Figure 12 presents a comparative analysis of four optimization algorithms (COBYLA, L-BFGS-B, NELDER MEAD,

and SLSQP) applied to a LCP using a quantum circuit with 2 qubits. The experiment uses a random dataset with 250

training samples and employs a fidelity cost function to measure the performance. The figure includes subplots

depicting accuracy and computational time for both 2-qubit and 2-qubit entangled classifiers. In terms of accuracy,

both training and test accuracies are generally high across all algorithms. However, there are subtle differences

between the algorithms. As shown in figure 12(a), for the 2-qubit entangled classifier, the average test accuracy is

approximately 2% higher than the 2-qubit non-entangled classifier. In terms of individual performance, the L-BFGS-

B minimization method consistently achieves the highest test accuracy, reaching 96.3% for non-entangled and 97%

for entangled classifiers. The overall variation in test accuracy between the highest and lowest performing algorithms

is 2.3%. For 2-qubit non-entangled classifier, COBYLA exhibits the lowest test accuracy at 94%, while for 2-qubit

entangled classifier, NELDER MEAD achieves the lowest test accuracy of 95.3%. Computational time analysis

reveals interesting patterns across both classifiers. In figure 12(c) the 2-qubit classifier, computational time varies

widely from 9 to 90 minutes. COBYLA stands out as the fastest method, completing the task in just 9 minutes, while

L-BFGS-B and NELDER_MEAD are the most time-consuming at 90 and 89 minutes respectively. SLSQP occupies

a middle ground, requiring 45 minutes. In figure 12(d) the 2-qubit entangled classifier generally shows improved

computational efficiency. While COBYLA maintains its swift performance at 9 minutes, other methods see reduced

execution times. Most notably, L-BFGS-B improves from 90 to 71 minutes, a significant reduction, while

NELDER_MEAD and SLSQP methods remain at 87 and 44 minutes respectively. In conclusion, this analysis reveals

that the 2-qubit entangled classifier generally outperforms the 2-qubit non-entangled classifier in both accuracy and

computational efficiency. The L-BFGS-B method consistently provides the highest accuracy, albeit at a higher

computational cost. COBYLA emerges as a well-balanced option, offering good accuracy with minimal computational

time, particularly in the 2-qubit entangled classifier. These findings underscore the significant impact of minimization

method selection on both accuracy and computational time in quantum machine learning tasks. Furthermore, the 2-

qubit entangled classifier's closer alignment of train and test accuracies suggests enhanced generalization capabilities,

a crucial factor in practical machine learning applications.

 Figure 13 shows a comprehensive comparison of different optimization methods for non-LCP using both 2-qubit

and 2-qubit entangled classifiers for a specific random dataset. This analysis encompasses four optimization

techniques: COBYLA, L-BFGS-B, NELDER_MEAD, and SLSQP, evaluating their performance based on accuracy

and computational time for 250 number of training samples. In the accuracy graphs (a) and (b), we observe distinct

performance patterns between the 2-qubit and 2-qubit entangled classifiers. For the 2-qubit classifier, L-BFGS-B

demonstrates the highest accuracy, with both train and test accuracies exceeding 90%. COBYLA shows the lowest

performance, with a test accuracy of 76.7% and train accuracy 81.4%. NELDER_MEAD and SLSQP exhibit

intermediate performance, with test accuracies in the 82-87% range. The 2-qubit entangled classifier, depicted in graph

(b), shows overall improved accuracy across all methods. L-BFGS-B maintains its superior performance, while

COBYLA shows significant improvement, reaching accuracies to 85.4%. Notably, the gap between train and test

accuracies is generally smaller in the 2-qubit entangled classifier, suggesting better generalization. The computational

time graphs (c) and (d) reveal interesting efficiency patterns. In the 2-qubit classifier, COBYLA is the fastest method,

requiring only 9 minutes. L-BFGS-B, despite its high accuracy, is the most time-consuming at 130 minutes.

NELDER_MEAD takes 89 minutes, while SLSQP requires 45 minutes. The 2-qubit entangled classifier (graph d)

shows generally reduced computational times. COBYLA remains the fastest, maintaining its 9-minute runtime. L-

BFGS-B shows the most dramatic improvement, reducing its time to 81 minutes. Interestingly, NELDER_MEAD in

the 2-qubit entangled classifier takes slightly longer than L-BFGS-B, at 88 minutes. SLSQP maintains a consistent

performance of about 42 minutes in both systems. These results highlight the trade-offs between accuracy and

computational efficiency in quantum machine learning tasks. The 2-qubit entangled classifier demonstrates superior

performance in both accuracy and computational time across all methods. L-BFGS-B consistently provides the highest

accuracy but at a higher computational cost, especially in the 2-qubit classifier. COBYLA emerges as a balanced

option, offering good accuracy with minimal computational time, particularly in the entangled system. This analysis

underscores the importance of choosing appropriate optimization methods and leveraging entanglement to enhance

the performance of quantum classification tasks.

Supplementary Note 6: Method

Quantum computing manipulates quantum systems to enhance information processing, leveraging superposition to

simultaneously operate on multiple states for faster and more complex computation. At its core is the qubit, represented

in a two-dimensional Hilbert space, with operations governed by quantum gates. These gates, essential for altering

quantum states, must be unitary to ensure the conservation of probability, a fundamental principle of quantum dynamics2.

 The framework of a quantum circuit unfolds in three key phases: encoding classical data into quantum format,

manipulating the quantum state using quantum gates, and measuring the quantum state post-transformation. This process

transitions from preparing an initial quantum state, through strategic alterations via quantum gates affecting computation

outcomes, to a final probabilistic measurement—distinguishing quantum computing's potential and challenges from

deterministic classical computing.

 Achieving optimal performance in quantum computing requires a nuanced understanding of these phases, including

the initial state preparation, the strategic selection and application of quantum gates, and the final measurement process.

Each component must be meticulously optimized to perform specific tasks, such as classification, highlighting the

intricate interplay between quantum mechanics and computational logic in the design and execution of quantum

algorithms.

A. RE-UPLOADING CLASSICAL INFORMATION AND PROCESSING

The integration of classical information into quantum computing represents a groundbreaking approach to data

processing and analysis. This process begins with the strategic encoding of data into the initial wave function’s

coefficients within a quantum circuit3. In simpler terms, data is initially uploaded through the manipulation of qubits via

rotational operations on a computational basis. This foundational step sets the stage for executing sophisticated quantum

algorithms, including those designed for classification tasks.

 The most successful programming paradigm in machine learning is predicated on artificial neural networks, which

represent a highly abstracted and simplified model inspired by the human brain 4. An artificial neural network comprises

interconnected units or nodes known as artificial neurons, often arranged in layers 5. These networks are characterized

by their diverse architectures and the ability to learn from data through the adjustment of a vast network of parameters

during the training phase. Among the various types of neural networks, feed-forward neural networks exemplify the

process of sequential data processing, where input data is transformed layer by layer, simulating a form of data re-

uploading at each neuron. This mechanism of data re-uploading and processing in ANNs provides a parallel to the

innovative approach of constructing a universal quantum classifier using a single qubit. The essence of this quantum

computing strategy lies in the repeated introduction of classical data at different stages of computation, analogous to the

data processing in a single hidden layer neural network. This process can be visualized diagrammatically, as shown in

figure 14 in the main paper. the neural network architecture is depicted, where data points are fed into individual

processing units, analogous to neurons within the hidden layer. These neurons collectively process these input data,

culminating in the activation of a final neuron responsible for constructing the output for subsequent analysis. Similarly,

in the quantum domain, the single-qubit classifier incorporates data points into each stage of the computation through

unitary rotations. These rotations are not isolated; rather, each one builds upon the transformations applied by its

predecessors, effectively integrating the input data multiple times throughout the computation. The culmination of this

process is a quantum state that encapsulates the computational outcome.

 To construct a universal quantum classifier with only a single qubit, a complex integration of data input and

computational processing within a single quantum circuit is crucial. We achieve this objective through the deployment

of parametrized quantum circuits (PQCs). In these circuits, certain rotational angles are meticulously adjusted based on

classical parameters, which are refined through an optimization process aimed at minimizing a specifically defined cost

function.

 The cost function plays a pivotal role in the operational efficacy of the quantum classifier. It quantitatively assesses

the circuit's performance in segregating data points into distinct categories, which are represented as separate regions on

the Bloch sphere. Each of these regions corresponds to a different class, and the classifier's goal is to assign data points

to the correct class based on their features.

B. Dataset Generation Methodology

In this section, we provide a detailed and standardized description of how both fixed and random datasets were

constructed and evaluated throughout the study.

• Sampling Distribution and Dimensionality:

All data points were sampled independently and uniformly from the interval [−1,1]2, corresponding to the two-

dimensional input space used in all classification problems. The sampling was performed using np.random.rand(2) and

scaled via the transformation 𝑥 ↦ 2𝑥 − 1 to ensure full coverage of the [−1,1] range along both axes.

• Class Balance and Geometric Design:

We carefully selected geometric parameters to maintain balanced class distributions. In the circle classification task (non-

LCP), we used a radius of 𝑟 = √(2/𝜋) such that the area inside and outside the circle is equal, yielding a 50/50 class

distribution. For the linear classification task (LCP), we defined the decision boundary as x1=x2, which symmetrically

divides the domain [−1,1]2 and likewise ensures class balance by design.

• Reproducibility and Standardization:

To ensure consistency across experiments, we fixed the random seed at 30 for all fixed dataset runs. The training set sizes

varied from 1 to 200 samples depending on model complexity, while each test set consisted of 4000 uniformly sampled

points. For randomized datasets, we deliberately omitted the use of a fixed seed, ensuring that each of the 20 iterations

generated a new sample set from the same distribution. This approach allowed us to test the classifier’s generalization

ability and robustness under different data realizations. Accuracy and runtime were averaged across these 20 independent

runs to obtain statistically meaningful results.

• Dataset Types and Parameters:

We focused on two primary classification tasks: (1) a line, representing linear separability (LCP), and (2) a circle,

representing a basic non-linear separability case (non-LCP). These were chosen as fundamental and interpretable decision

boundaries to evaluate the baseline performance of the quantum classifiers. All geometric parameters, such as the radius

for non-LCP and the slope/intercept for LCP, were held fixed across all trials to ensure consistency and enable fair

comparison across circuit designs and optimization methods.

C. Applying Cost Functions

In the realm of quantum computing, a quantum circuit is distinguished by its processing angles and associated weights

, leading to the generation of a final state . The measurement outcomes from this state are used to compute a

classification error metric, defined as . The goal is to minimize this error metric by adjusting the circuit’s classical

parameters, a process that can be effectively managed through various supervised machine learning techniques.

 At the heart of using quantum measurement for classification tasks lies the approach of optimally aligning observed

outputs with specific target classes. This alignment is primarily facilitated by the principle of maximizing orthogonality

between the output states, ensuring clear distinction6. In the context of binary (dichotomous) classification, this means

categorizing each observation into one of two predefined classes—referred to here as class A and class B. The decision

criterion involves comparing the probabilities of observing the quantum state for outcome 0 and for outcome

1. If , the observation is assigned to class A; otherwise, it falls under class B. To enhance this binary

classification scheme, one can introduce a bias , adjusting the threshold for classification such that observation is

deemed part of class A if is greater than , and class B if it falls below. The value of is chosen to maximize

classification accuracy on a training dataset. The effectiveness of this approach is then confirmed through evaluation on

a separate validation dataset.

 Viewed through a geometric lens, the single-qubit classifier operates within a 2-dimensional Hilbert space —the Bloch

sphere—where data encoding and classification decisions are delineated through specific rotational parameters. Any

operation is a rotation on the Bloch sphere surface. From this viewpoint, any point can be classified using just one

unitary operation. Consequently, we can transfer any point to another point on the Bloch sphere by precisely selecting

the rotation angles. However, when dealing with multiple data points, a single rotation may not suffice due to differing

optimal rotation requirements. The solution lies in introducing additional layers into the quantum circuit, enabling distinct

rotation and fostering a richer feature map. Within this enhanced feature space, data points can be effectively segregated

into their respective classes based on their positioning within the Bloch sphere's regions, thereby enabling a sophisticated

and adaptable approach to quantum classification.

1) FIDELITY COST FUNCTION

The goal is to align the quantum states () as closely as possible to a designated target state on the Bloch

sphere, as outlined in 1. This alignment can be quantitatively assessed by measuring the angular distance between the

labeled state and the data state, using the metric of relative fidelity 7. The primary objective focuses on maximizing the

average fidelity between the quantum states produced by the circuit and the label states corresponding to their respective

classes. To facilitate this, a cost function is introduced and mathematically formulated as Equation 1:

 (1)

where |𝜓̃𝑠⟩ is the correct label state of the 𝜇 data point, which will correspond to one of the classes.

2) TRACE DISTANCE COST FUNCTION

In quantum information theory, quantifying the dissimilarity between two quantum states is a fundamental problem.

Various distance measures have been proposed, each with its unique properties and applications. One such measure is

the trace distance, which captures the distinguishability between two quantum states 7. Perez-Salinas et al. have analyzed

the fidelity cost function with data re-uploading 1. However, the authors do not consider the case of the trace distance

cost function, which is what we focus on in this section. We will explore the definition and properties of the trace distance,

particularly in the context of single-qubit systems, and discuss its potential as a cost function for quantum classifiers.

Despite the different mathematical formulations of trace distance and fidelity, these two measures share many similar

properties and are widely used in the quantum computing and quantum information community. However, depending on

the specific application, one measure may be more convenient or easier to work with than the other. This versatility and

widespread adoption of both trace distance and fidelity in the field motivates our decision to discuss and compare these

two important distance measures in the context of quantum classifiers. The trace distance between quantum states 𝜌 and

𝜎 can be defined as,

 (2)

 The trace distance between two single-qubit states, represented by their respective Bloch vectors and , is equal to

one-half of the Euclidean distance between these vectors on the Bloch sphere. 7

 (3)

 This relation provides a geometric interpretation of the trace distance for single-qubit systems, linking it to the intuitive

notion of distance in three-dimensional space.

D. From Universality of the Single-Qubit Classifier to the Expansion into Multi-Qubit Quantum Classification

A key challenge in Quantum Machine Learning (QML) involves creating quantum circuits that efficiently handle

complex tasks like classification without excessive use of quantum resources. The Universal Approximation Theorem

(UAT) 8 is crucial for tackling this issue, demonstrating that a single-layer neural network with an appropriate activation

function can approximate any continuous function to a desired accuracy, assuming enough hidden neurons are available.

This UAT finds a compelling parallel in the quantum computing domain, particularly when considering the dynamics of

quantum circuits. Here, the classical activation function is analogously performed by a unitary rotation acting upon a

qubit. Specifically, a single-qubit quantum classifier, enhanced by the technique of data re-uploading, emerges as a

universal approximator for any conceivable classification function. This universality hinges on the frequency of data re-

uploading throughout the circuit’s span 1, underscoring that even a solitary qubit is capable of encoding and processing

multifaceted high-dimensional data. This is achieved through the execution of multiple rotations, each characterized by

distinct angles and weights. The culmination of these processes is a final quantum state, which is then analyzed against

a predefined target state correlating to each class. Optimization of the circuit's parameters is pursued through the

minimization of a cost function, which is indicative of the fidelity or trace distance between the comparative states.

By establishing the UAT within the context of quantum classifiers, a robust theoretical foundation is laid, alongside

practical guidelines for the design and implementation of quantum circuits adept at sophisticated and non-LCP tasks with

minimal quantum resource expenditure. This breakthrough not only forges a theoretical link between quantum circuits

and neural networks but also paves the way for innovative approaches in QML. Through this lens, quantum circuits are

envisioned not merely as computational tools but as entities with the potential to parallel, and possibly surpass, the

capabilities of their classical neural network counterparts, inspiring a new wave of methodologies in the realm of QML.

 To enhance the performance of the single-qubit classifier, it is proposed to extend it to a multi-qubit system.

Adding more qubits, especially with entanglement, can improve the classifier's effectiveness, similar to how adding layers

enhances neural networks. Entanglement may provide a quantum advantage in classification, though the analogy between

multi-qubit classifiers and neural networks with entanglement is not fully understood and requires further exploration.

Perez et al. propose a measurement strategy for multi-qubit classifiers, which extends the single-qubit approach. These

strategies utilize a fidelity-based cost function.

E. Variational Circuit Architecture and Parameterization

To fully specify the architecture of the quantum classifier and support reproducibility, we detail here the structure of the

variational circuits used in this study. The models are built using a data re-uploading framework, in which classical input

data is embedded into the quantum circuit by modifying gate parameters via a linear transformation. Each circuit is

composed of multiple layers; each layer includes data-dependent single-qubit gates followed by optional entanglement

gates between qubits.

The primary quantum gates used are 𝑈(𝜙) gates, which are universal single-qubit rotation gates parameterized by three

angles 𝜙 = (𝜃, 𝜑, 𝜆). These gates are used for both trainable processing and data encoding. When entanglement is

introduced, Controlled-Z (CZ) gates are applied between qubit pairs.

The parameter set for each circuit is divided into two categories:

• 𝜃, the base rotation angles, organized as a tensor of shape (qubits, layers, 3),

• 𝛼, the data encoding weights, shaped as (qubits, layers, data dimension).

The total number of trainable parameters scales with both the number of qubits and the number of re-uploading layers.

For example, the single-qubit configuration contains 3×layers trainable parameters. The two-qubit configuration without

entanglement uses two parallel 𝑈(𝜙) gates per layer (one on each qubit), resulting in 6×layers parameters. When

entanglement is included, the same number of 𝑈(𝜙) gates are used, along with (layers−1) Controlled-Z gates placed

between adjacent qubit layers.

The data encoding follows the transformation 𝜃𝑒𝑛𝑐𝑜𝑑𝑒𝑑 = 𝜃 + 𝛼 ⊗ 𝑥, where 𝑥 is the input feature vector. This allows

the same circuit structure to dynamically adapt to different input data points while preserving trainable components.

Class label encoding differs based on the cost function used. For fidelity-based classification, labels are represented as

computational basis states such as |0⟩ or |1⟩. For trace-distance-based classification, target class states are defined using

Bloch sphere coordinates.

Supplementary Note 7: Optimization Methods

In practice, deploying a parameterized quantum classifier involves a process of minimizing within the parameter space

that delineates the circuit's configuration. The process is often termed a hybrid algorithm, denoting the symbiotic

relationship and advantages derived from combining quantum logic and classical logic. In particular, the ensemble of

angles () and weights () defines a parameter space that requires systematic exploration to achieve the minimization

of .

 The occurrence of local minima is unavoidable e. The arrangement of rotation gates results in an intricate multiplication

of independent trigonometric functions, suggesting that our problem is characterized by a widespread distribution of

minima.

The primary challenge boils down to minimizing a function that is defined by a vast array of parameters. In the case of a

single-qubit classifier, the total number of parameters can be expressed as, where represents the problem's dimension

(that is, the dimension of), and signifies the number of layers. Among these parameters, three are rotational angles, while

the rest pertain to the weight [1]. To identify the most effective solution, we evaluate the performance of four distinct

minimization techniques: the L-BFGS-B method, the COBYLA method, the Nelder-Mead method, and the Sequential

Least Squares Programming (SLSQP) method.

The key challenge in optimizing a single-qubit classifier involves minimizing a function across a complex parameter

space, calculated as , where "d" is the problem's dimension and "N" is the number of layers. Also, in addition,

we need to consider rotational angles and the weight () corresponding to the dimension 1. To discover the optimal

solution, we delve into the efficiency of four diverse minimization strategies: the L-BFGS-B, COBYLA, Nelder-Mead,

and Sequential Least Squares Programming (SLSQP) methods.

A. L-BFGS-B METHOD

The L-BFGS-B technique, part of the quasi-Newton optimization methods, refines the Broyden–Fletcher–Goldfarb–

Shanno (BFGS) approach by efficiently using limited computer memory 10. Its design excels in handling optimization

tasks involving numerous variables, offering a linear memory usage advantage, making it highly effective for large-scale

problems 11.

 The L-BFGS-B method is widely recognized as a cornerstone technique across various advanced applications in the

field of graphics 12,13. It specializes in minimizing a scalar function of one or several variables by initiating with a

preliminary estimate of the optimum value. Through iterative refinement, it progressively improves upon this initial

estimate to approach an optimal solution. The method employs function derivatives to determine the direction of steepest

descent and approximates the Hessian matrix (second-order derivatives) using limited memory. The parameter update

rule is given by14:

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑘𝐻𝑘
−1𝛻𝑓(𝜃𝑘)

where 𝜃𝑘 is the current parameter vector, 𝛻𝑓(𝜃𝑘) is the gradient, 𝐻𝑘
−1 is an approximation of the inverse Hessian, and

𝛼𝑘 is a step size typically determined by line search. This method is particularly efficient in handling large-scale problems

due to its low memory usage and fast matrix-vector multiplications.

B. CONSTRAINED OPTIMIZATION BY LINEAR APPROXIMATION METHOD

COBYLA (Constrained Optimization BY Linear Approximation) is an optimization algorithm designed to minimize a

scalar objective function that depends on one or more variables, subject to constraints 15,16. One of the key features of

COBYLA is that it does not require the calculation of derivatives, such as gradients or Hessians, of the objective function

or constraints. This makes COBYLA particularly useful in situations where the derivatives are unknown, unreliable, or

computationally expensive to obtain 15. Instead of requiring gradients or Hessians, COBYLA constructs linear

approximations of both the objective function and constraints within a trust region framework. At each iteration, it solves

a subproblem defined by: min┬𝜃 〖𝑓(〗 𝜃) subject to 𝑐𝑖(𝜃) ≥ 0 and approximates the objective function locally as:

𝑓(𝜃 + 𝛥𝜃) ≈ 𝑓(𝜃) + 𝛻𝑓(𝜃)𝑇𝛥𝜃

although 𝛻𝑓(𝜃) is never explicitly calculated—its effect is estimated using linear interpolation.

COBYLA has been effectively utilized in quantum computing, especially as a classical optimization routine within

Variational Hybrid Quantum-Classical Algorithms (VHQCAs) 17. These algorithms employ a parameterized quantum

circuit, or ansatz, which is refined through a dynamic interchange between a classical computer and a quantum device.

The classical computer adjusts the ansatz's parameters to minimize a cost function, which the quantum device efficiently

evaluates. Through iterative updates based on the cost function outcomes, the VHQCA aims to discover the most

effective ansatz configuration for specific problems. The derivative-free characteristic of COBYLA makes it particularly

advantageous for this setting, where the cost functions often lack easily computable or analytically defined derivatives.

C. NELDER-MEAD METHOD

The Nelder-Mead algorithm, introduced by John Nelder and Roger Mead in 1965, is a widely used direct search method

for unconstrained optimization problems 18. The algorithm operates by maintaining a simplex of n+1 points in an n-

dimensional space, iteratively moving the simplex toward the optimal solution through a series of transformations,

including reflection, expansion, contraction, and shrinkage 18. These operations are defined as follows:

• Reflection:

𝜃𝑟 = 𝜃̅ + 𝛼(𝜃̅ − 𝜃ℎ)

• Expansion:

𝜃𝑒 = 𝜃̅ + 𝛾(𝜃𝑟 − 𝜃̅)

• Contraction:

𝜃𝑐 = 𝜃̅ + 𝜌(𝜃𝑟 − 𝜃̅)

• Shrinkage:

𝜃𝑖 = 𝜃𝑙 + 𝜎(𝜃𝑖 − 𝜃𝑙)

Here, 𝜃̅ is the centroid of the best n points, 𝜃ℎ is the worst-performing point, and 𝛼, 𝛾, 𝜌, and 𝜎 are user-defined

coefficients controlling the behavior of each transformation. This method is especially effective in low-dimensional, non-

convex optimization landscapes and is widely used when the objective function is noisy, non-differentiable, or

discontinuous.

Recent studies have focused on enhancing the Nelder-Mead algorithm to improve its efficiency and adaptability. Gao

and Han 19proposed an implementation of the Nelder-Mead algorithm with adaptive parameters, which can automatically

adjust the parameter values based on the optimization progress. This adaptive approach has been shown to improve the

algorithm's convergence speed and solution quality 19.

 Its capacity to address problems in which derivative information is not readily accessible renders it a favorable option

for numerous applications in QML. However, it is essential to conduct comprehensive evaluations to scrutinize the

method's accuracy, efficiency, and sensitivity to the initial guess for each unique application 20,21.

D. SEQUANTIAL LEAST SQUARES PROGRAMMING METHOD

The Sequential Least Squares Programming (SLSQP) method is an optimization technique that minimizes functions

while adhering to specific constraints 22. It is based on Sequential Quadratic Programming (SQP), which simplifies the

optimization problem into a series of smaller, more manageable quadratic subproblems. In each subproblem, a quadratic

approximation of the objective function and constraints is constructed using a second-order parabolic curve to model the

function’s behavior near a specific point. SLSQP updates this approximation using the quasi-Newton method.

Specifically, the subproblem it solves takes the form:

min┬∆𝜃 〖1/2 ∆𝜃^𝑇 𝐵_𝑘 ∆𝜃 + ∇𝑓(𝜃_𝑘)^𝑇 ∆𝜃〗
subject to:

𝑐𝑖(𝜃𝑘) + 𝛻𝑐𝑖(𝜃𝑘)𝑇𝛥𝜃 ≥ 0 (inequality constraints)

ℎ𝑗(𝜃𝑘) + 𝛻ℎ𝑗(𝜃𝑘)𝑇𝛥𝜃 = 0 (equality constraints)

where 𝐵𝑘 is an approximation to the Hessian of the Lagrangian, and 𝛻𝑓, 𝛻𝑐𝑖, and 𝛻ℎ𝑗 are gradients of the objective and

constraint functions.

 Additionally, SLSQP applies a least-squares method to solve these quadratic subproblems, striving to minimize the

total squared deviations between the approximation and actual function values. This method can handle both equality

and inequality constraints, including variable bounds, by integrating a penalty function that imposes additional costs for

any constraint or bound violations. SLSQP ensures efficient convergence by terminating the optimization process upon

meeting a predefined convergence criterion, typically related to changes in the objective function value or the gradient

vector's norm. This safeguard prevents indefinite computations, ensuring timely solutions.

 Local minima are common challenges in both neural networks and quantum classifiers due to their complex

mathematical structures—neural networks with compounded nonlinear functions and quantum circuits with prevalent

trigonometric functions. This complexity increases the likelihood of encountering local minima during optimization.

Moreover, with smaller training sets, the choice of optimization method is crucial. For instance, the Nelder-Mead method

is noted for its robustness, particularly its lower susceptibility to local minima.

 It is also critical to recognize that minimization methods are sensitive to noise, which can significantly impact their

effectiveness, especially in practical quantum computing applications 17.

Supplementary Note 8: Comparing the developed code for this research with original reference.

1 # coding=utf-8 +-

2 ## = 1 ##

3 #Quantum classifier 2 #Quantum classifier

4 #Sara Aminpour, Mike Banad, Sarah Sharif <> 3 #Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil, J. Ignacio Latorre

5 #September 25th 2024 4 #Code by APS

5 #Code-checks by ACL

6 #June 3rd 2019

6 = 7

<> 8

7 #School of Electrical and Computer Engineering/ Center for Quantum and Technology, University of Oklahoma, Norman, OK

73019 USA,

9 #Universitat de Barcelona / Barcelona Supercomputing Center/Institut de Ciències del Cosmos

10

8 ### = 11 ###

9 #IMPORTANT_NOTE: <> 12

10 #The code on the left was developed by Sara Aminpour, while the code on the right serves as the reference implementation

by Adrián Pérez-Salinas.

11 #The code on the left has been restructured to handle random data. So some certain sections has been deleted from the

reference code.

12 #Additionally, our code on the left developed to analyze trace distance cost function and linear classification problem 13 #This file is a file taking many different functions from other files and mixing them all together

13 #as well as necessary modification to apply COBYLA, L-BFGS-B, NELDER-MEAD, and SLSQP minimization methods.

14 ###

15 # so that the usage is automatized = 14 # so that the usage is automatized

16 import datetime <> 15

17 from data_gen import data_generator = 16 from data_gen import data_generator

18 from problem_gen import problem_generator, representatives, representatives_tr <> 17 from problem_gen import problem_generator, representatives

19 from fidelity_minimization import fidelity_minimization = 18 from fidelity_minimization import fidelity_minimization

20 from trace_minimization import trace_minimization +-

21 from weighted_fidelity_minimization import weighted_fidelity_minimization = 19 from weighted_fidelity_minimization import weighted_fidelity_minimization

22 from test_data import Accuracy_test, tester 20 from test_data import Accuracy_test, tester

23 from save_data import write_summary, read_summary, name_folder, samples_paint, samples_paint_worldmap, laea_x, laea_y 21 from save_data import write_summary, read_summary, name_folder, samples_paint, samples_paint_worldmap,

laea_x, laea_y

24 from save_data import write_epochs_file, write_epoch, close_epochs_file, create_folder, write_epochs_error_rate 22 from save_data import write_epochs_file, write_epoch, close_epochs_file, create_folder,

write_epochs_error_rate

25 import numpy as np 23 import numpy as np

26 import matplotlib.pyplot as plt 24 import matplotlib.pyplot as plt

27 from circuitery import code_coords, circuit 25 from circuitery import code_coords, circuit

28 from matplotlib.cm import get_cmap 26 from matplotlib.cm import get_cmap

29 from matplotlib.colors import Normalize 27 from matplotlib.colors import Normalize

30 28

31 def minimizer(chi, problem, qubits, entanglement, layers, method, name, 29 def minimizer(chi, problem, qubits, entanglement, layers, method, name,

32 epochs=3000, batch_size=20, eta=0.1): <> 30 seed = 30, epochs=3000, batch_size=20, eta=0.1):

33

34 """ 31 """

35 This function creates data and minimizes whichever problem (from the selected ones) 32 This function creates data and minimizes whichever problem (from the selected ones)

36 INPUT: 33 INPUT:

37 -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi' 34 -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'

38 -problem: name of the problem, to choose among 35 -problem: name of the problem, to choose among

39 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy

lines']

36 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere',

'squares', 'wavy lines']

40 -qubits: number of qubits, must be an integer 37 -qubits: number of qubits, must be an integer

41 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n' 38 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

42 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account 39 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in

account

43 -method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize] 40 -method: minimization method, to choose among ['SGD', another valid for function

scipy.optimize.minimize]

44 -name: a name we want for our our files to be save with 41 -name: a name we want for our our files to be save with

45 -seed: seed of numpy.random, needed for replicating results 42 -seed: seed of numpy.random, needed for replicating results

46 -epochs: number of epochs for a 'SGD' method. If there is another method, this input has got no importance 43 -epochs: number of epochs for a 'SGD' method. If there is another method, this input has got

no importance

47 -batch_size: size of the batches for stochastic gradient descent, only for 'SGD' method 44 -batch_size: size of the batches for stochastic gradient descent, only for 'SGD' method

48 -eta: learning rate, only for 'SGD' method 45 -eta: learning rate, only for 'SGD' method

49 OUTPUT: 46 OUTPUT:

50 This function has got no outputs, but several files are saved in an appropiate folder. The files are 47 This function has got no outputs, but several files are saved in an appropiate folder. The

files are

51 -summary.txt: Saves useful information for the problem 48 -summary.txt: Saves useful information for the problem

52 -theta.txt: saves the theta parameters as a flat array 49 -theta.txt: saves the theta parameters as a flat array

53 -alpha.txt: saves the alpha parameters as a flat array 50 -alpha.txt: saves the alpha parameters as a flat array

54 -weight.txt: saves the weights as a flat array if they exist 51 -weight.txt: saves the weights as a flat array if they exist

55 """ 52 """

56 53 np.random.seed(seed)

57 data, drawing = data_generator(problem) 54 data, drawing = data_generator(problem)

58 if problem == 'sphere': 55 if problem == 'sphere':

59 train_data = data[:500] 56 train_data = data[:500]

60 test_data = data[500:] 57 test_data = data[500:]

61 elif problem == 'hypersphere': 58 elif problem == 'hypersphere':

62 train_data = data[:1000] 59 train_data = data[:1000]

63 test_data = data[1000:] 60 test_data = data[1000:]

64 else: 61 else:

65 train_data = data[:250] 62 train_data = data[:200]

66 test_data = data[250:] 63 test_data = data[200:]

67

68 if chi == 'fidelity_chi':

69 Accuracy_tr=0

70 Accuracy_te=0

71 i=1

72 while i<21:

73 qubits_lab = qubits

74 theta, alpha, reprs = problem_generator(problem,qubits, layers, chi,

75 qubits_lab=qubits_lab)

76

77 theta, alpha, f = fidelity_minimization(theta, alpha, train_data, reprs,

78 entanglement, method,

79 batch_size, eta, epochs)

80

81 acc_train = tester(theta, alpha, train_data, reprs, entanglement, chi)

82 Accuracy_tr+=acc_train

83

84 acc_test = tester(theta, alpha, test_data, reprs, entanglement, chi)

85 Accuracy_te+=acc_test

86 = 64

87 text_file_nn = open('acc.txt', mode='a+') <>

88 text_file_nn.write(str(i) + problem +'_'+ chi +'_'+ str(qubits) +'Qubits_' + str(layers) +'Layers_' +

entanglement +'_'+ method +'_'+'acc_train'+' = '+ str(acc_train))

89 text_file_nn.write('\n')

90 text_file_nn.write(str(i) + problem +'_'+ chi +'_'+ str(qubits) +'Qubits_' + str(layers) +'Layers_' +

entanglement +'_'+ method +'_'+'acc_test'+' = '+ str(acc_test))

91 text_file_nn.write('\n')

92 text_file_nn.write('==')

93 text_file_nn.write('\n')

94 text_file_nn.close()

95

96 i+=1

97 print(i-1)

98 atr=Accuracy_tr/(i-1)

99 ate=Accuracy_te/(i-1)

100

101

102 text_file_nn = open('AverageAcc.txt', mode='a+')

103 text_file_nn.write(problem +'_'+ chi +'_'+ str(qubits) +'Qubits_' + str(layers) +'Layers_' + entanglement

+'_'+ method +'_'+'Ave_acc_train'+' = '+ str(atr))

104 text_file_nn.write('\n')

105 text_file_nn.write(problem +'_'+ chi +'_'+ str(qubits) +'Qubits_' + str(layers) +'Layers_' + entanglement

+'_'+ method +'_'+ 'Ave_acc_test'+' = '+ str(ate))

106 text_file_nn.write('\n')

107 text_file_nn.write('==')

108 text_file_nn.write('\n')

109 text_file_nn.close()

110

111 write_summary(chi, problem, qubits, entanglement, layers, method, name,

112 theta, alpha, 0, f, atr, ate, epochs=epochs)

113 elif chi == 'trace_chi': 65 if chi == 'fidelity_chi':

114

115 Accuracy_tr=0

116 Accuracy_te=0

117 i=1

118 while i<21:

119 qubits_lab = qubits 66 qubits_lab = qubits

120 theta, alpha, reprs = problem_generator(problem,qubits, layers, chi, 67 theta, alpha, reprs = problem_generator(problem,qubits, layers, chi,

121 qubits_lab=qubits_lab) 68 qubits_lab=qubits_lab)

122 theta, alpha, f = trace_minimization(theta, alpha, train_data, reprs, 69 theta, alpha, f = fidelity_minimization(theta, alpha, train_data, reprs,

123 entanglement, method, 70 entanglement, method,

124 batch_size, eta, epochs) 71 batch_size, eta, epochs)

125

126

127 acc_train = tester(theta, alpha, train_data, reprs, entanglement, chi) 72 acc_train = tester(theta, alpha, train_data, reprs, entanglement, chi)

128 Accuracy_tr+=acc_train

129

130 acc_test = tester(theta, alpha, test_data, reprs, entanglement, chi) 73 acc_test = tester(theta, alpha, test_data, reprs, entanglement, chi)

131 Accuracy_te+=acc_test

132

133 text_file_nn = open('acc.txt', mode='a+')

134 text_file_nn.write(str(i) + problem +'_'+ chi +'_'+ str(qubits) +'Qubits_' + str(layers) +'Layers_' +

entanglement +'_'+ method +'_'+'acc_train'+' = '+ str(acc_train))

135 text_file_nn.write('\n')

136 text_file_nn.write(str(i) + problem +'_'+ chi +'_'+ str(qubits) +'Qubits_' + str(layers) +'Layers_' +

entanglement +'_'+ method +'_'+'acc_test'+' = '+ str(acc_test))

137 text_file_nn.write('\n')

138 text_file_nn.write('==')

139 text_file_nn.write('\n')

140 text_file_nn.close()

141

142

143 i+=1

144 print(i-1)

145 atr=Accuracy_tr/(i-1)

146 ate=Accuracy_te/(i-1)

147

148

149 text_file_nn = open('AverageAcc.txt', mode='a+')

150 text_file_nn.write(problem +'_'+ chi +'_'+ str(qubits) +'Qubits_' + str(layers) +'Layers_' + entanglement

+'_'+ method +'_'+'Ave_acc_train'+' = '+ str(atr))

151 text_file_nn.write('\n')

152 text_file_nn.write(problem +'_'+ chi +'_'+ str(qubits) +'Qubits_' + str(layers) +'Layers_' + entanglement

+'_'+ method +'_'+'Ave_acc_test'+' = '+ str(ate))

153 text_file_nn.write('\n')

154 text_file_nn.write('==')

155 text_file_nn.write('\n')

156 text_file_nn.close()

157

158

159 write_summary(chi, problem, qubits, entanglement, layers, method, name, 74 write_summary(chi, problem, qubits, entanglement, layers, method, name,

160 theta, alpha, 0, f, atr, ate, epochs=epochs) 75 theta, alpha, 0, f, acc_train, acc_test, seed, epochs=epochs)

161 elif chi == 'weighted_fidelity_chi': 76 elif chi == 'weighted_fidelity_chi':

162

163

164 Accuracy_tr=0

165 Accuracy_te=0

166 i=1

167 while i<21:

168 qubits_lab = 1 77 qubits_lab = 1

169 theta, alpha, weight, reprs = problem_generator(problem,qubits, layers, chi, 78 theta, alpha, weight, reprs = problem_generator(problem,qubits, layers, chi,

170 qubits_lab=qubits_lab) 79 qubits_lab=qubits_lab)

171 theta, alpha, weight, f = weighted_fidelity_minimization(theta, alpha, weight, train_data, reprs, 80 theta, alpha, weight, f = weighted_fidelity_minimization(theta, alpha, weight, train_data,

reprs,

172 entanglement, method) 81 entanglement, method)

173

174

175

176 acc_train = tester(theta, alpha, train_data, reprs, entanglement, chi, weights=weight) 82 acc_train = tester(theta, alpha, train_data, reprs, entanglement, chi, weights=weight)

177 Accuracy_tr+=acc_train

178

179 acc_test = tester(theta, alpha, test_data, reprs, entanglement, chi, weights=weight) 83 acc_test = tester(theta, alpha, test_data, reprs, entanglement, chi, weights=weight)

180 Accuracy_te+=acc_test

181

182 text_file_nn = open('acc.txt', mode='a+')

183 text_file_nn.write(str(i) + problem +'_'+ chi +'_'+ str(qubits) +'Qubits_' + str(layers) +'Layers_' +

entanglement +'_'+ method +'_'+'acc_train'+' = '+ str(acc_train))

184 text_file_nn.write('\n')

185 text_file_nn.write(str(i) + problem +'_'+ chi +'_'+ str(qubits) +'Qubits_' + str(layers) +'Layers_' +

entanglement +'_'+ method +'_'+'acc_test'+' = '+ str(acc_test))

186 text_file_nn.write('\n')

187 text_file_nn.write('==')

188 text_file_nn.write('\n')

189 text_file_nn.close()

190

191

192 i+=1

193 print(i-1)

194 atr=Accuracy_tr/(i-1)

195 ate=Accuracy_te/(i-1)

196

197

198 text_file_nn = open('AverageAcc.txt', mode='a+')

199 text_file_nn.write(problem +'_'+ chi +'_'+ str(qubits) +'Qubits_' + str(layers) +'Layers_' + entanglement

+'_'+ method +'_'+'Ave_acc_train'+' = '+ str(atr))

200 text_file_nn.write('\n')

201 text_file_nn.write(problem +'_'+ chi +'_'+ str(qubits) +'Qubits_' + str(layers) +'Layers_' + entanglement

+'_'+ method +'_'+'Ave_acc_test'+' = '+ str(ate))

202 text_file_nn.write('\n')

203 text_file_nn.write('==')

204 text_file_nn.write('\n')

205 text_file_nn.close()

206

207 write_summary(chi, problem, qubits, entanglement, layers, method, name, 84 write_summary(chi, problem, qubits, entanglement, layers, method, name,

208 theta, alpha, weight, f, acc_train, acc_test, epochs=epochs) 85 theta, alpha, weight, f, acc_train, acc_test, seed, epochs=epochs)

209 = 86

210 <> 87

211

212

213 def painter(chi, problem, qubits, entanglement, layers, method, name, = 88 def painter(chi, problem, qubits, entanglement, layers, method, name,

214 standard_test = True, samples = 4000, bw = False, err = False): <> 89 seed = 30, standard_test = True, samples = 4000, bw = False, err = False):

215 a=datetime.datetime.now()

216 """ = 90 """

217 This function takes written text files and paint the results of the problem 91 This function takes written text files and paint the results of the problem

218 INPUT: 92 INPUT:

219 -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi' 93 -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'

220 -problem: name of the problem, to choose among 94 -problem: name of the problem, to choose among

221 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy lines'] 95 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere',

'squares', 'wavy lines']

222 -qubits: number of qubits, must be an integer 96 -qubits: number of qubits, must be an integer

223 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n' 97 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

224 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account 98 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in

account

225 -method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize] 99 -method: minimization method, to choose among ['SGD', another valid for function

scipy.optimize.minimize]

226 -name: a name we want for our our files to be save with 100 -name: a name we want for our our files to be save with

227 -seed: seed of numpy.random, needed for replicating results 101 -seed: seed of numpy.random, needed for replicating results

228 -standard_test: Whether we want to paint the set test used for checking when minimizing. If True, seed and

samples are not taken in account

102 -standard_test: Whether we want to paint the set test used for checking when minimizing. If

True, seed and samples are not taken in account

229 -samples: number of samples of the test set 103 -samples: number of samples of the test set

230 -bw: painting in black and white 104 -bw: painting in black and white

231 OUTPUT: 105 OUTPUT:

232 This function has got no outputs, but a file containing the representation of the test set is created 106 This function has got no outputs, but a file containing the representation of the test set is

created

233 """ 107 """

234 <> 108 np.random.seed(seed)

235 = 109

236 if chi == 'fidelity_chi': 110 if chi == 'fidelity_chi':

237 qubits_lab = qubits 111 qubits_lab = qubits

238 +-

239 elif chi == 'trace_chi':

240 qubits_lab = qubits

241

242 elif chi == 'weighted_fidelity_chi': = 112 elif chi == 'weighted_fidelity_chi':

243 qubits_lab = 1 113 qubits_lab = 1

244 114

245 if standard_test == True: 115 if standard_test == True:

246 data, drawing = data_generator(problem) 116 data, drawing = data_generator(problem)

247 if problem == 'sphere': 117 if problem == 'sphere':

248 test_data = data[500:] 118 test_data = data[500:]

249 elif problem == 'hypersphere': 119 elif problem == 'hypersphere':

250 test_data = data[1000:] 120 test_data = data[1000:]

251 else: 121 else:

252 test_data = data[250:] <> 122 test_data = data[200:]

253 = 123

254 elif standard_test == False: 124 elif standard_test == False:

255 test_data, drawing = data_generator(problem, samples = samples) 125 test_data, drawing = data_generator(problem, samples = samples)

256 126

257 if problem in ['circle','line', '2 lines', 'wavy circle','sphere', 'non convex', 'crown', 'hypersphere']: <> 127 if problem in ['circle','wavy circle','sphere', 'non convex', 'crown', 'hypersphere']:

258 classes = 2 = 128 classes = 2

259 if problem in ['tricrown']: 129 if problem in ['tricrown']:

260 classes = 3 130 classes = 3

261 if problem in ['6squares']: +-

262 classes = 6

263 elif problem in ['3 circles','wavy lines','squares']: = 131 elif problem in ['3 circles','wavy lines','squares']:

264 classes = 4 132 classes = 4

265 133

266 #reprs = representatives(classes, qubits_lab) <> 134 reprs = representatives(classes, qubits_lab)

267 = 135

268 params = read_summary(chi, problem, qubits, entanglement, layers, method, name) 136 params = read_summary(chi, problem, qubits, entanglement, layers, method, name)

269 137

270 if chi == 'fidelity_chi': 138 if chi == 'fidelity_chi':

271 reprs = representatives(classes, qubits_lab) +-

272 theta, alpha = params = 139 theta, alpha = params

273 sol_test, acc_test = Accuracy_test(theta, alpha, test_data, reprs, entanglement, chi) 140 sol_test, acc_test = Accuracy_test(theta, alpha, test_data, reprs, entanglement, chi)

274 +-

275 = 141

276 if chi == 'trace_chi': +-

277 reprs = representatives_tr(classes, qubits_lab)

278 theta, alpha = params

279 sol_test, acc_test = Accuracy_test(theta, alpha, test_data, reprs, entanglement, chi)

280

281 if chi == 'weighted_fidelity_chi': = 142 if chi == 'weighted_fidelity_chi':

282 reprs = representatives(classes, qubits_lab) +-

283 theta, alpha, weight = params = 143 theta, alpha, weight = params

284 sol_test, acc_test = Accuracy_test(theta, alpha, test_data, reprs, 144 sol_test, acc_test = Accuracy_test(theta, alpha, test_data, reprs,

285 entanglement, chi, weights = weight) 145 entanglement, chi, weights = weight)

286 146

287 foldname = name_folder(chi, problem, qubits, entanglement, layers, method) 147 foldname = name_folder(chi, problem, qubits, entanglement, layers, method)

288 samples_paint(problem, drawing, sol_test, foldname, name, bw) 148 samples_paint(problem, drawing, sol_test, foldname, name, bw)

289 +-

290

291 = 149

292 b=datetime.datetime.now() <>

293 c=b-a

294 text_file_nn = open('time.txt', mode='a+')

295 text_file_nn.write(problem +'_'+ chi +'_'+ str(layers) +'Layers' +'_'+ 'painter' +' = '+ str(c))

296 text_file_nn.write('\n')

297 text_file_nn.close()

298 '''

299 def paint_world(chi, problem, qubits, entanglement, layers, method, name, 150 def paint_world(chi, problem, qubits, entanglement, layers, method, name,

300 seed = 30, standard_test = True, samples = 4000, bw = False, err = False): 151 seed = 30, standard_test = True, samples = 4000, bw = False, err = False):

301 np.random.seed(seed) 152 np.random.seed(seed)

302 = 153

303 if chi == 'fidelity_chi': <> 154 if chi == 'fidelity_chi':

304 qubits_lab = qubits 155 qubits_lab = qubits

305 if chi == 'trace_chi':

306 qubits_lab = qubits

307 elif chi == 'weighted_fidelity_chi': 156 elif chi == 'weighted_fidelity_chi':

308 qubits_lab = 1 157 qubits_lab = 1

309 = 158

310 if standard_test == True: <> 159 if standard_test == True:

311 data, drawing = data_generator(problem) 160 data, drawing = data_generator(problem)

312 if problem == 'sphere': 161 if problem == 'sphere':

313 test_data = data[500:] 162 test_data = data[500:]

314 elif problem == 'hypersphere': 163 elif problem == 'hypersphere':

315 test_data = data[1000:] 164 test_data = data[1000:]

316 else: 165 else:

317 test_data = data[:250] 166 test_data = data[200:]

318 = 167

319 elif standard_test == False: <> 168 elif standard_test == False:

320 test_data, drawing = data_generator(problem, samples=samples) 169 test_data, drawing = data_generator(problem, samples=samples)

321 = 170

322 if problem in ['circle', 'line', '2 lines', 'wavy circle', 'sphere', 'non convex', 'crown', 'hypersphere']: <> 171 if problem in ['circle', 'wavy circle', 'sphere', 'non convex', 'crown', 'hypersphere']:

323 classes = 2 172 classes = 2

324 if problem in ['tricrown']: 173 if problem in ['tricrown']:

325 classes = 3 174 classes = 3

326 if problem in ['6squares']:

327 classes = 6

328 elif problem in ['3 circles', 'wavy lines', 'squares']: 175 elif problem in ['3 circles', 'wavy lines', 'squares']:

329 classes = 4 176 classes = 4

330 = 177

331 #reprs = representatives(classes, qubits_lab) <> 178 reprs = representatives(classes, qubits_lab)

332 = 179

333 params = read_summary(chi, problem, qubits, entanglement, layers, method, name) <> 180 params = read_summary(chi, problem, qubits, entanglement, layers, method, name)

334 = 181

335 if chi == 'fidelity_chi': <> 182 if chi == 'fidelity_chi':

336 reprs = representatives(classes, qubits_lab)

337 theta, alpha = params 183 theta, alpha = params

338 sol_test, acc_test = Accuracy_test(theta, alpha, test_data, reprs, entanglement, chi) 184 sol_test, acc_test = Accuracy_test(theta, alpha, test_data, reprs, entanglement, chi)

339

340 if chi == 'trace_chi':

341 reprs = representatives_tr(classes, qubits_lab)

342 theta, alpha = params

343 sol_test, acc_test = Accuracy_test(theta, alpha, test_data, reprs, entanglement, chi)

344 = 185

345 if chi == 'weighted_fidelity_chi': <> 186 if chi == 'weighted_fidelity_chi':

346 reprs = representatives(classes, qubits_lab)

347 theta, alpha, weight = params 187 theta, alpha, weight = params

348 sol_test, acc_test = Accuracy_test(theta, alpha, test_data, reprs, 188 sol_test, acc_test = Accuracy_test(theta, alpha, test_data, reprs,

349 entanglement, chi, weights=weight) 189 entanglement, chi, weights=weight)

350 = 190

351 foldname = name_folder(chi, problem, qubits, entanglement, layers, method) <> 191 foldname = name_folder(chi, problem, qubits, entanglement, layers, method)

352 angles = np.zeros((len(sol_test), 2)) 192 angles = np.zeros((len(sol_test), 2))

353 for i, x in enumerate(sol_test[:, :2]): 193 for i, x in enumerate(sol_test[:, :2]):

354 theta_aux = code_coords(theta, alpha, x) 194 theta_aux = code_coords(theta, alpha, x)

355 C = circuit(theta_aux, entanglement) 195 C = circuit(theta_aux, entanglement)

356 angles[i, 0] = np.arccos(np.abs(C.psi[0])**2 - np.abs(C.psi[1])**2) - np.pi/2 196 angles[i, 0] = np.arccos(np.abs(C.psi[0])**2 - np.abs(C.psi[1])**2) - np.pi/2

357 angles[i, 1] = np.angle(C.psi[1] / C.psi[0]) 197 angles[i, 1] = np.angle(C.psi[1] / C.psi[0])

358 print(angles[i]) 198 print(angles[i])

359 199

360 if bw == False: 200 if bw == False:

361 colors_classes = get_cmap('plasma') 201 colors_classes = get_cmap('plasma')

362 norm_class = Normalize(vmin=-.5, vmax=np.max(sol_test[:, -3]) + .5) 202 norm_class = Normalize(vmin=-.5, vmax=np.max(sol_test[:, -3]) + .5)

363 = 203

364 colors_rightwrong = get_cmap('RdYlGn') <> 204 colors_rightwrong = get_cmap('RdYlGn')

365 norm_rightwrong = Normalize(vmin=-.1, vmax=1.1) 205 norm_rightwrong = Normalize(vmin=-.1, vmax=1.1)

366 = 206

367 if bw == True: <> 207 if bw == True:

368 colors_classes = get_cmap('Greys') 208 colors_classes = get_cmap('Greys')

369 norm_class = Normalize(vmin=-.1, vmax=np.max(sol[:, -3]) + .1) 209 norm_class = Normalize(vmin=-.1, vmax=np.max(sol[:, -3]) + .1)

370 = 210

371 colors_rightwrong = get_cmap('Greys') <> 211 colors_rightwrong = get_cmap('Greys')

372 norm_rightwrong = Normalize(vmin=-.1, vmax=1.1) 212 norm_rightwrong = Normalize(vmin=-.1, vmax=1.1)

373 = 213

374 fig, ax = plt.subplots(nrows=2) <> 214 fig, ax = plt.subplots(nrows=2)

375 ax[0].plot(laea_x(np.pi, np.linspace(0, np.pi)), laea_y(np.pi, np.linspace(0, np.pi)), color='k') 215 ax[0].plot(laea_x(np.pi, np.linspace(0, np.pi)), laea_y(np.pi, np.linspace(0, np.pi)), color='k')

376 ax[0].plot(laea_x(-np.pi, np.linspace(0, -np.pi)), laea_y(-np.pi, np.linspace(0, -np.pi)), color='k') 216 ax[0].plot(laea_x(-np.pi, np.linspace(0, -np.pi)), laea_y(-np.pi, np.linspace(0, -np.pi)),

color='k')

377 ax[1].plot(laea_x(np.pi, np.linspace(0, np.pi)), laea_y(np.pi, np.linspace(0, np.pi)), color='k') 217 ax[1].plot(laea_x(np.pi, np.linspace(0, np.pi)), laea_y(np.pi, np.linspace(0, np.pi)), color='k')

378 ax[1].plot(laea_x(-np.pi, np.linspace(0, -np.pi)), laea_y(-np.pi, np.linspace(0, -np.pi)), color='k') 218 ax[1].plot(laea_x(-np.pi, np.linspace(0, -np.pi)), laea_y(-np.pi, np.linspace(0, -np.pi)),

color='k')

379 ax[0].scatter(laea_x(angles[:, 1], angles[:, 0]), laea_y(angles[:, 1], angles[:, 0]), c=sol_test[:, -2], 219 ax[0].scatter(laea_x(angles[:, 1], angles[:, 0]), laea_y(angles[:, 1], angles[:, 0]),

c=sol_test[:, -2],

380 cmap=colors_classes, s=2, norm=norm_class) 220 cmap=colors_classes, s=2, norm=norm_class)

381 ax[1].scatter(laea_x(angles[:, 1], angles[:, 0]), laea_y(angles[:, 1], angles[:, 0]), c=sol_test[:,-1], cmap =

colors_rightwrong, s=2, norm=norm_rightwrong)

221 ax[1].scatter(laea_x(angles[:, 1], angles[:, 0]), laea_y(angles[:, 1], angles[:, 0]),

c=sol_test[:,-1], cmap = colors_rightwrong, s=2, norm=norm_rightwrong)

382 plt.show() 222 plt.show()

383 ''' 223

384 = 224

385 def SGD_step_by_step_minimization(problem, qubits, entanglement, layers, name, 225 def SGD_step_by_step_minimization(problem, qubits, entanglement, layers, name,

386 epochs = 3000, batch_size = 20, eta = .1, err=False): <> 226 seed = 30, epochs = 3000, batch_size = 20, eta = .1, err=False):

387 """ = 227 """

388 This function creates data and minimizes whichever problem using a step by step SGD and saving all results from

accuracies for training and test sets

228 This function creates data and minimizes whichever problem using a step by step SGD and saving all

results from accuracies for training and test sets

389 INPUT: 229 INPUT:

390 -problem: name of the problem, to choose among 230 -problem: name of the problem, to choose among

391 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy lines'] 231 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere',

'squares', 'wavy lines']

392 -qubits: number of qubits, must be an integer 232 -qubits: number of qubits, must be an integer

393 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n' 233 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

394 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account 234 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in

account

395 -method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize] 235 -method: minimization method, to choose among ['SGD', another valid for function

scipy.optimize.minimize]

396 -name: a name we want for our our files to be save with 236 -name: a name we want for our our files to be save with

397 -seed: seed of numpy.random, needed for replicating results 237 -seed: seed of numpy.random, needed for replicating results

398 -epochs: number of epochs for a 'SGD' method. If there is another method, this input has got no importance 238 -epochs: number of epochs for a 'SGD' method. If there is another method, this input has got

no importance

399 -batch_size: size of the batches for stochastic gradient descent, only for 'SGD' method 239 -batch_size: size of the batches for stochastic gradient descent, only for 'SGD' method

400 -eta: learning rate, only for 'SGD' method 240 -eta: learning rate, only for 'SGD' method

401 OUTPUT: 241 OUTPUT:

402 This function has got no outputs, but several files are saved in an appropiate folder. The files are 242 This function has got no outputs, but several files are saved in an appropiate folder. The

files are

403 -summary.txt: Saves useful information for the problem 243 -summary.txt: Saves useful information for the problem

404 -theta.txt: saves the theta parameters as a flat array 244 -theta.txt: saves the theta parameters as a flat array

405 -alpha.txt: saves the alpha parameters as a flat array 245 -alpha.txt: saves the alpha parameters as a flat array

406 -error_rates: accuracies for training and test sets as flat arrays 246 -error_rates: accuracies for training and test sets as flat arrays

407 """ 247 """

408 chi = 'fidelity_chi' 248 chi = 'fidelity_chi'

409 method = 'SGD' 249 method = 'SGD'

410 250

411 <> 251 np.random.seed(seed)

412 data, drawing = data_generator(problem, err=err) = 252 data, drawing = data_generator(problem, err=err)

413 if problem == 'sphere': 253 if problem == 'sphere':

414 train_data = data[:500] 254 train_data = data[:500]

415 test_data = data[500:] 255 test_data = data[500:]

416 elif problem == 'hypersphere': 256 elif problem == 'hypersphere':

417 train_data = data[:1000] 257 train_data = data[:1000]

418 test_data = data[1000:] 258 test_data = data[1000:]

419 else: 259 else:

420 train_data = data[:250] <> 260 train_data = data[:200]

421 test_data = data[250:] 261 test_data = data[200:]

422 = 262

423 if chi == 'fidelity_chi': 263 if chi == 'fidelity_chi':

424 qubits_lab = qubits +-

425 if chi == 'trace_chi':

426 qubits_lab = qubits = 264 qubits_lab = qubits

427 elif chi == 'weighted_fidelity_chi': 265 elif chi == 'weighted_fidelity_chi':

428 qubits_lab = 1 266 qubits_lab = 1

429 267

430 theta, alpha, reprs = problem_generator(problem, qubits, layers, chi, 268 theta, alpha, reprs = problem_generator(problem, qubits, layers, chi,

431 qubits_lab=qubits_lab) 269 qubits_lab=qubits_lab)

432 accs_test=[] 270 accs_test=[]

433 accs_train=[] 271 accs_train=[]

434 chis=[] 272 chis=[]

435 acc_test_sol = 0 273 acc_test_sol = 0

436 acc_train_sol = 0 274 acc_train_sol = 0

437 fid_sol = 0 275 fid_sol = 0

438 best_epoch = 0 276 best_epoch = 0

439 theta_sol = theta.copy() 277 theta_sol = theta.copy()

440 alpha_sol = alpha.copy() 278 alpha_sol = alpha.copy()

441 279

442 file_text = write_epochs_file(chi, problem, qubits, entanglement, layers, method, name) 280 file_text = write_epochs_file(chi, problem, qubits, entanglement, layers, method, name)

443 for e in range(epochs): 281 for e in range(epochs):

444 theta, alpha, fid = fidelity_minimization(theta, alpha, train_data, reprs, 282 theta, alpha, fid = fidelity_minimization(theta, alpha, train_data, reprs,

445 entanglement, method, batch_size, eta, 1) 283 entanglement, method, batch_size, eta, 1)

446 284

447 acc_train = tester(theta, alpha, train_data, reprs, entanglement, chi) 285 acc_train = tester(theta, alpha, train_data, reprs, entanglement, chi)

448 acc_test = tester(theta, alpha, test_data, reprs, entanglement, chi) 286 acc_test = tester(theta, alpha, test_data, reprs, entanglement, chi)

449 accs_test.append(acc_test) 287 accs_test.append(acc_test)

450 accs_train.append(acc_train) 288 accs_train.append(acc_train)

451 chis.append(fid) 289 chis.append(fid)

452 290

453 write_epoch(file_text, e, theta, alpha, fid, acc_train, acc_test) 291 write_epoch(file_text, e, theta, alpha, fid, acc_train, acc_test)

454 292

455 if acc_test > acc_test_sol: 293 if acc_test > acc_test_sol:

456 294

457 acc_test_sol = acc_test 295 acc_test_sol = acc_test

458 acc_train_sol = acc_train 296 acc_train_sol = acc_train

459 fid_sol = fid 297 fid_sol = fid

460 theta_sol = theta 298 theta_sol = theta

461 alpha_sol = alpha 299 alpha_sol = alpha

462 best_epoch = e 300 best_epoch = e

463 301

464 close_epochs_file(file_text, best_epoch) 302 close_epochs_file(file_text, best_epoch)

465 write_summary(chi, problem, qubits, entanglement, layers, method, name, 303 write_summary(chi, problem, qubits, entanglement, layers, method, name,

466 theta_sol, alpha_sol, None, fid_sol, acc_train_sol, acc_test_sol, epochs) <> 304 theta_sol, alpha_sol, None, fid_sol, acc_train_sol, acc_test_sol, seed, epochs)

467 write_epochs_error_rate(chi, problem, qubits, entanglement, layers, method, name, = 305 write_epochs_error_rate(chi, problem, qubits, entanglement, layers, method, name,

468 accs_train, accs_test) 306 accs_train, accs_test)

469 307

470 def overlearning_paint(chi, problem, qubits, entanglement, layers, method, name): 308 def overlearning_paint(chi, problem, qubits, entanglement, layers, method, name):

471 """ 309 """

472 This function takes overlearning functions and paints them 310 This function takes overlearning functions and paints them

473 INPUT: 311 INPUT:

474 -chi: cost function, just 'fidelity_chi' 312 -chi: cost function, just 'fidelity_chi'

475 -problem: name of the problem, to choose among 313 -problem: name of the problem, to choose among

476 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy lines'] 314 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere',

'squares', 'wavy lines']

477 -qubits: number of qubits, must be an integer 315 -qubits: number of qubits, must be an integer

478 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n' 316 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

479 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account 317 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in

account

480 -method: minimization method, 'SGD' 318 -method: minimization method, 'SGD'

481 -name: a name we want for our our files to be save with 319 -name: a name we want for our our files to be save with

482 OUTPUT: 320 OUTPUT:

483 This function has got no outputs, but saves a picture with the information of the overlearning rates 321 This function has got no outputs, but saves a picture with the information of the overlearning

rates

484 """ 322 """

485 foldname = name_folder(chi, problem, qubits, entanglement, layers, method) 323 foldname = name_folder(chi, problem, qubits, entanglement, layers, method)

486 create_folder(foldname) 324 create_folder(foldname)

487 filename_train = foldname + '/' + name + '_train.txt' 325 filename_train = foldname + '/' + name + '_train.txt'

488 filename_test = foldname + '/' + name + '_test.txt' 326 filename_test = foldname + '/' + name + '_test.txt'

489 327

490 train_err_rate = np.loadtxt(filename_train) 328 train_err_rate = np.loadtxt(filename_train)

491 test_err_rate = np.loadtxt(filename_test) 329 test_err_rate = np.loadtxt(filename_test)

492 fig, ax = plt.subplots() 330 fig, ax = plt.subplots()

493 ax.plot(range(len(train_err_rate)), train_err_rate, label = 'Training set') 331 ax.plot(range(len(train_err_rate)), train_err_rate, label = 'Training set')

494 ax.plot(range(len(test_err_rate)), test_err_rate, label = 'Test set') 332 ax.plot(range(len(test_err_rate)), test_err_rate, label = 'Test set')

495 ax.set_xlabel('Epochs', fontsize=16) 333 ax.set_xlabel('Epochs', fontsize=16)

496 ax.set_ylabel('Error rate', fontsize=16) 334 ax.set_ylabel('Error rate', fontsize=16)

497 ax.legend() 335 ax.legend()

498 filename = foldname + '/' + name + '_overlearning' 336 filename = foldname + '/' + name + '_overlearning'

499 fig.savefig(filename) 337 fig.savefig(filename)

500 plt.close('all') 338 plt.close('all')

501 339

502 340

Text Compare

1 # coding=utf-8 +-

2 ## = 1 ##

3 #Quantum classifier 2 #Quantum classifier

4 #Sara Aminpour, Mike Banad, Sarah Sharif <> 3 #Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil, J. Ignacio Latorre

5 #September 25th 2024 4 #Code by APS

 5 #Code-checks by ACL

 6 #June 3rd 2019

6 = 7

7 #School of Electrical and Computer Engineering/ Center for Quantum and Technology, University of Oklahoma,

Norman, OK 73019 USA,

<> 8

8 ###

9 #IMPORTANT_NOTE:

10 #The code on the left was developed by Sara Aminpour, while the code on the right serves as the reference

implementation by Adrián Pérez-Salinas.

11 #The code on the left has been restructured to handle random data. So some certain sections has been deleted from

the reference code.

12 #Additionally, our code on the left developed to analyze trace distance cost function and linear classification

problem

 9 #Universitat de Barcelona / Barcelona Supercomputing Center/Institut de Ciències del Cosmos

13 #as well as necessary modification to apply COBYLA, L-BFGS-B, NELDER-MEAD, and SLSQP minimization methods. 10

14 ### = 11 ###

15 12

16 ## This file creates the data points for the different problems to be tackled by the quantum classifier 13 ## This file creates the data points for the different problems to be tackled by the quantum classifier

17 14

18 15

19 16

20 import numpy as np 17 import numpy as np

21 18

22 problems = ['circle', 'line', '3 circles', 'wavy circle', 'hypersphere', 'tricrown', 'non convex', 'crown',

'sphere', 'squares', 'wavy lines']

<> 19 problems = ['circle', '3 circles', 'wavy circle', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere',

'squares', 'wavy lines']

23 = 20

24 def data_generator(problem, samples=None): 21 def data_generator(problem, samples=None):

25 """ 22 """

26 This function generates the data for a problem 23 This function generates the data for a problem

27 INPUT: 24 INPUT:

28 -problem: Name of the problem, one of: 'circle', '3 circles', 'hypersphere', 'tricrown', 'non convex',

'crown', 'sphere', 'squares', 'wavy lines'

 25 -problem: Name of the problem, one of: 'circle', '3 circles', 'hypersphere', 'tricrown', 'non convex',

'crown', 'sphere', 'squares', 'wavy lines'

29 -samples Number of samples for the data 26 -samples Number of samples for the data

30 OUTPUT: 27 OUTPUT:

31 -data: set of training and test data 28 -data: set of training and test data

32 -settings: things needed for drawing 29 -settings: things needed for drawing

33 """ 30 """

34 problem = problem.lower() 31 problem = problem.lower()

35 if problem not in problems: 32 if problem not in problems:

36 raise ValueError('problem must be one of {}'.format(problems)) 33 raise ValueError('problem must be one of {}'.format(problems))

37 if samples == None: 34 if samples == None:

38 if problem == 'sphere': 35 if problem == 'sphere':

39 samples = 4500 36 samples = 4500

40 elif problem == 'hypersphere': 37 elif problem == 'hypersphere':

41 samples = 5000 38 samples = 5000

42 else: 39 else:

43 samples = 4250 <> 40 samples = 4200

44 = 41

45 if problem == 'circle': 42 if problem == 'circle':

46 data, settings = _circle(samples) 43 data, settings = _circle(samples)

47 44

48 if problem == '3 circles': 45 if problem == '3 circles':

49 data, settings = _3_circles(samples) 46 data, settings = _3_circles(samples)

50 47

51 if problem == 'wavy lines': 48 if problem == 'wavy lines':

52 data, settings = _wavy_lines(samples) 49 data, settings = _wavy_lines(samples)

53 50

54 if problem == 'squares': 51 if problem == 'squares':

55 data, settings = _squares(samples) 52 data, settings = _squares(samples)

56 53

57 if problem == 'sphere': 54 if problem == 'sphere':

58 data, settings = _sphere(samples) 55 data, settings = _sphere(samples)

59 56

60 if problem == 'non convex': 57 if problem == 'non convex':

61 data, settings = _non_convex(samples) 58 data, settings = _non_convex(samples)

62 59

63 if problem == 'crown': 60 if problem == 'crown':

64 data, settings = _crown(samples) 61 data, settings = _crown(samples)

65 62

66 if problem == 'tricrown': 63 if problem == 'tricrown':

67 data, settings = _tricrown(samples) 64 data, settings = _tricrown(samples)

68 65

69 if problem == 'hypersphere': 66 if problem == 'hypersphere':

70 data, settings = _hypersphere(samples) 67 data, settings = _hypersphere(samples)

71 #== <>

72 if problem == 'line':

73 data, settings = _line(samples)

74 #==

75 68

 69

76 return data, settings = 70 return data, settings

77 71

78 def _circle(samples): 72 def _circle(samples):

79 centers = np.array([[0, 0]]) 73 centers = np.array([[0, 0]])

80 radii = np.array([np.sqrt(2/np.pi)]) 74 radii = np.array([np.sqrt(2/np.pi)])

81 data=[] 75 data=[]

82 dim = 2 76 dim = 2

83 for i in range(samples): 77 for i in range(samples):

84 x = 2 * (np.random.rand(dim)) - 1 78 x = 2 * (np.random.rand(dim)) - 1

85 y = 0 79 y = 0

86 for c, r in zip(centers, radii): 80 for c, r in zip(centers, radii):

87 if np.linalg.norm(x - c) < r: 81 if np.linalg.norm(x - c) < r:

88 y = 1 82 y = 1

89 83

90 data.append([x, y]) 84 data.append([x, y])

91 <> 85

92 return data, (centers, radii) = 86 return data, (centers, radii)

93 87

94 def _3_circles(samples): 88 def _3_circles(samples):

95 centers = np.array([[-1, 1], [1, 0], [-.5, -.5]]) 89 centers = np.array([[-1, 1], [1, 0], [-.5, -.5]])

96 radii = np.array([1, np.sqrt(6/np.pi - 1), 1/2]) 90 radii = np.array([1, np.sqrt(6/np.pi - 1), 1/2])

97 data=[] 91 data=[]

98 dim = 2 92 dim = 2

99 for i in range(samples): 93 for i in range(samples):

100 x = 2 * (np.random.rand(dim)) - 1 94 x = 2 * (np.random.rand(dim)) - 1

101 y = 0 95 y = 0

102 for j, (c, r) in enumerate(zip(centers, radii)): 96 for j, (c, r) in enumerate(zip(centers, radii)):

103 if np.linalg.norm(x - c) < r: 97 if np.linalg.norm(x - c) < r:

104 y = j + 1 98 y = j + 1

105 99

106 data.append([x, y]) 100 data.append([x, y])

107 101

108 102

109 return data, (centers, radii) 103 return data, (centers, radii)

110 104

111 105

112 def _wavy_lines(samples, freq = 1): 106 def _wavy_lines(samples, freq = 1):

113 def fun1(s): 107 def fun1(s):

114 return s + np.sin(freq * np.pi * s) 108 return s + np.sin(freq * np.pi * s)

115 109

116 def fun2(s): 110 def fun2(s):

117 return -s + np.sin(freq * np.pi * s) 111 return -s + np.sin(freq * np.pi * s)

118 data=[] 112 data=[]

119 dim=2 113 dim=2

120 for i in range(samples): 114 for i in range(samples):

121 x = 2 * (np.random.rand(dim)) - 1 115 x = 2 * (np.random.rand(dim)) - 1

122 if x[1] < fun1(x[0]) and x[1] < fun2(x[0]): y = 0 116 if x[1] < fun1(x[0]) and x[1] < fun2(x[0]): y = 0

123 if x[1] < fun1(x[0]) and x[1] > fun2(x[0]): y = 1 117 if x[1] < fun1(x[0]) and x[1] > fun2(x[0]): y = 1

124 if x[1] > fun1(x[0]) and x[1] < fun2(x[0]): y = 2 118 if x[1] > fun1(x[0]) and x[1] < fun2(x[0]): y = 2

125 if x[1] > fun1(x[0]) and x[1] > fun2(x[0]): y = 3 119 if x[1] > fun1(x[0]) and x[1] > fun2(x[0]): y = 3

126 data.append([x, y]) 120 data.append([x, y])

127 121

128 return data, freq 122 return data, freq

129 123

130 def _squares(samples): 124 def _squares(samples):

131 data=[] 125 data=[]

132 dim=2 126 dim=2

133 for i in range(samples): 127 for i in range(samples):

134 x = 2 * (np.random.rand(dim)) - 1 128 x = 2 * (np.random.rand(dim)) - 1

135 if x[0] < 0 and x[1] < 0: y = 0 129 if x[0] < 0 and x[1] < 0: y = 0

136 if x[0] < 0 and x[1] > 0: y = 1 130 if x[0] < 0 and x[1] > 0: y = 1

137 if x[0] > 0 and x[1] < 0: y = 2 131 if x[0] > 0 and x[1] < 0: y = 2

138 if x[0] > 0 and x[1] > 0: y = 3 132 if x[0] > 0 and x[1] > 0: y = 3

139 data.append([x, y]) 133 data.append([x, y])

140 134

141 return data, None 135 return data, None

142 136

143 #== +-

144 def _line(samples):

145 data=[]

146 dim=2

147 for i in range(samples):

148 x = 2 * np.random.rand(dim) -1

149 #x = np.random.rand(dim)

150 if x[0] < x[1] : y = 0

151 if x[0] > x[1] : y = 1

152

153 data.append([x, y])

154

155 return data, None

156 #==

157 = 137

158 def _non_convex(samples, freq = 1, x_val = 2, sin_val = 1.5): 138 def _non_convex(samples, freq = 1, x_val = 2, sin_val = 1.5):

159 def fun(s): 139 def fun(s):

160 return -x_val * s + sin_val * np.sin(freq * np.pi * s) 140 return -x_val * s + sin_val * np.sin(freq * np.pi * s)

161 141

162 data = [] 142 data = []

163 dim = 2 143 dim = 2

164 for i in range(samples): 144 for i in range(samples):

165 x = 2 * (np.random.rand(dim)) - 1 145 x = 2 * (np.random.rand(dim)) - 1

166 if x[1] < fun(x[0]): y = 0 146 if x[1] < fun(x[0]): y = 0

167 if x[1] > fun(x[0]): y = 1 147 if x[1] > fun(x[0]): y = 1

168 data.append([x, y]) 148 data.append([x, y])

169 149

170 return data, (freq, x_val, sin_val) 150 return data, (freq, x_val, sin_val)

171 151

172 def _crown(samples): 152 def _crown(samples):

173 c = [[0,0],[0,0]] 153 c = [[0,0],[0,0]]

174 r = [np.sqrt(.8), np.sqrt(.8 - 2/np.pi)] 154 r = [np.sqrt(.8), np.sqrt(.8 - 2/np.pi)]

175 data = [] 155 data = []

176 dim = 2 156 dim = 2

177 for i in range(samples): 157 for i in range(samples):

178 x = 2 * (np.random.rand(dim)) - 1 158 x = 2 * (np.random.rand(dim)) - 1

179 if np.linalg.norm(x - c[0]) < r[0] and np.linalg.norm(x - c[1]) > r[1]: 159 if np.linalg.norm(x - c[0]) < r[0] and np.linalg.norm(x - c[1]) > r[1]:

180 y = 1 160 y = 1

181 else: 161 else:

182 y=0 162 y=0

183 data.append([x, y]) 163 data.append([x, y])

184 164

185 return data, (c, r) 165 return data, (c, r)

186 166

187 167

188 def _tricrown(samples): 168 def _tricrown(samples):

189 centers = [[0,0],[0,0]] 169 centers = [[0,0],[0,0]]

190 radii = [np.sqrt(.8 - 2/np.pi), np.sqrt(.8)] 170 radii = [np.sqrt(.8 - 2/np.pi), np.sqrt(.8)]

191 data = [] 171 data = []

192 dim = 2 172 dim = 2

193 for i in range(samples): 173 for i in range(samples):

194 x = 2 * (np.random.rand(dim)) - 1 174 x = 2 * (np.random.rand(dim)) - 1

195 y=0 175 y=0

196 for j,(r,c) in enumerate(zip(radii, centers)): 176 for j,(r,c) in enumerate(zip(radii, centers)):

197 if np.linalg.norm(x - c) > r: 177 if np.linalg.norm(x - c) > r:

198 y = j + 1 178 y = j + 1

199 data.append([x, y]) 179 data.append([x, y])

200 180

201 return data, (centers, radii) 181 return data, (centers, radii)

202 182

203 def _sphere(samples): 183 def _sphere(samples):

204 centers = np.array([[0, 0, 0]]) 184 centers = np.array([[0, 0, 0]])

205 radii = np.array([(3/np.pi)**(1/3)]) 185 radii = np.array([(3/np.pi)**(1/3)])

206 data=[] 186 data=[]

207 dim = 3 187 dim = 3

208 for i in range(samples): 188 for i in range(samples):

209 x = 2 * (np.random.rand(dim)) - 1 189 x = 2 * (np.random.rand(dim)) - 1

210 y = 0 190 y = 0

211 for c, r in zip(centers, radii): 191 for c, r in zip(centers, radii):

212 if np.linalg.norm(x - c) < r: 192 if np.linalg.norm(x - c) < r:

213 y = 1 193 y = 1

214 194

215 data.append([x, y]) 195 data.append([x, y])

216 196

217 return data, (centers, radii) 197 return data, (centers, radii)

218 198

219 def _hypersphere(samples): 199 def _hypersphere(samples):

220 centers = np.array([[0, 0, 0, 0]]) 200 centers = np.array([[0, 0, 0, 0]])

221 radii = np.array([(2/np.pi)**(1/2)]) 201 radii = np.array([(2/np.pi)**(1/2)])

222 data=[] 202 data=[]

223 dim = 4 203 dim = 4

224 for i in range(samples): 204 for i in range(samples):

225 x = 2 * (np.random.rand(dim)) - 1 205 x = 2 * (np.random.rand(dim)) - 1

226 y = 0 206 y = 0

227 for c, r in zip(centers, radii): 207 for c, r in zip(centers, radii):

228 if np.linalg.norm(x - c) < r: 208 if np.linalg.norm(x - c) < r:

229 y = 1 209 y = 1

230 210

231 data.append([x, y]) 211 data.append([x, y])

232 212

233 return data, (centers, radii) 213 return data, (centers, radii)

234 214

235 215

Text Compare

1 #Quantum classifier <>

2 #Sara Aminpour, Mike Banad, Sarah Sharif

3 #September 25th 2024

4

5 #School of Electrical and Computer Engineering/ Center for Quantum and Technology, University of Oklahoma, Norman, OK 73019 USA,

6 ###

7 #IMPORTANT_NOTE:

8 #The code on the left was developed by Sara Aminpour, while the code on the right serves as the reference implementation by Adrián

Pérez-Salinas.

9 #The code on the left has been restructured to handle random data. So some certain sections has been deleted from the reference code.

10 #Additionally, our code on the left developed to analyze trace distance cost function and linear classification problem

11 #as well as necessary modification to apply COBYLA, L-BFGS-B, NELDER-MEAD, and SLSQP minimization methods.

12 from big_functions import minimizer, painter, SGD_step_by_step_minimization, overlearning_paint 1 from big_functions import minimizer, painter, SGD_step_by_step_minimization,

overlearning_paint, paint_world

13 import datetime 2

14 qubits = 2 #integer, number of qubits 3 qubits = 1 #integer, number of qubits

15 layers = 5 #integer, number of layers (time we reupload data) = 4 layers = 5 #integer, number of layers (time we reupload data)

16 chi = 'fidelity_chi' #Cost function; choose between ['fidelity_chi', 'trace_chi] <> 5 chi = 'fidelity_chi' #Cost function; choose between ['fidelity_chi',

'weighted_fidelity_chi']

 6 problem='wavy lines' #name of the problem, choose among ['circle', 'wavy circle', '3

circles', 'wavy lines', 'sphere', 'non convex', 'crown']

17 entanglement = 'y' #entanglement y/n = 7 entanglement = 'y' #entanglement y/n

 -+ 8 method = 'L-BFGS-B' #minimization methods, scipy methods or 'SGD'

18 name = 'run' #However you want to name your files = 9 name = 'run' #However you want to name your files

19 seed = 30 #random seed 10 seed = 30 #random seed

20 #epochs=3000 #number of epochs, only for SGD methods 11 #epochs=3000 #number of epochs, only for SGD methods

21 12

22 <>

23 problem=['circle', 'line'] #name of the problem, choose among ['circle', 'wavy circle', '3 circles', 'wavy lines', 'sphere', 'non

convex', 'crown']

24 for problem in problem:

25

26 method = ['l-bfgs-b', 'cobyla', 'nelder-mead', 'slsqp'] #minimization methods between ['l-bfgs-b', 'cobyla', 'nelder-mead',

'slsqp']

27 for method in method:

28 a=datetime.datetime.now()

29 #SGD_step_by_step_minimization(problem, qubits, entanglement, layers, name) 13 #SGD_step_by_step_minimization(problem, qubits, entanglement, layers, name)

30 minimizer(chi, problem, qubits, entanglement, layers, method, name) 14 minimizer(chi, problem, qubits, entanglement, layers, method, name, seed = seed)

31 painter(chi, problem, qubits, entanglement, layers, method, name, standard_test=True) 15 painter(chi, problem, qubits, entanglement, layers, method, name, standard_test=True,

seed=seed)

32 #paint_world(chi, problem, qubits, entanglement, layers, method, name, standard_test=True) 16 paint_world(chi, problem, qubits, entanglement, layers, method, name,

standard_test=True, seed=seed)

33 b=datetime.datetime.now()

34 c=b-a

35

36 text_file_nn = open('time.txt', mode='a+')

37 text_file_nn.write(problem +'_'+ chi +'_'+ method +'_'+ str(qubits) +'Qubits_' + entanglement +'_'+ str(layers)

+'Layers_' + method + "__" + 'total_time'+' = '+ str(c))

38 text_file_nn.write('\n')

39 text_file_nn.write('==')

40 text_file_nn.write('\n')

41 text_file_nn.close()

Text Compare

1 # coding=utf-8 +-

2 ## = 1 ##

3 #Quantum classifier 2 #Quantum classifier

4 #Sara Aminpour, Mike Banad, Sarah Sharif <> 3 #Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil, J. Ignacio Latorre

5 #September 25th 2024 4 #Code by APS

 5 #Code-checks by ACL

 6 #June 3rd 2019

6 = 7

7 #School of Electrical and Computer Engineering/ Center for Quantum and Technology, University of Oklahoma, Norman,

OK 73019 USA,

<> 8

8 ###

9 #IMPORTANT_NOTE:

10 #The code on the left was developed by Sara Aminpour, while the code on the right serves as the reference

implementation by Adrián Pérez-Salinas.

11 #The code on the left has been restructured to handle random data. So some certain sections has been deleted from

the reference code.

12 #Additionally, our code on the left developed to analyze trace distance cost function and linear classification

problem

 9 #Universitat de Barcelona / Barcelona Supercomputing Center/Institut de Ciències del Cosmos

13 #as well as necessary modification to apply COBYLA, L-BFGS-B, NELDER-MEAD, and SLSQP minimization methods. 10

14 ### = 11 ###

15 12

16 ## This file creates the problems and their settings 13 ## This file creates the problems and their settings

17 import numpy as np 14 import numpy as np

18 15

19 def problem_generator(problem, qubits, layers, chi, qubits_lab=1): 16 def problem_generator(problem, qubits, layers, chi, qubits_lab=1):

20 """ 17 """

21 This function generates everything needed for solving the problem 18 This function generates everything needed for solving the problem

22 INPUT: 19 INPUT:

23 -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi' 20 -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'

24 -problem: name of the problem, to choose among 21 -problem: name of the problem, to choose among

25 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy

lines']

 22 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares',

'wavy lines']

26 -qubits: number of qubits, must be an integer 23 -qubits: number of qubits, must be an integer

27 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account 24 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account

28 25

29 26

30 OUTPUT: 27 OUTPUT:

31 -theta: set of parameters needed for the circuit. It is an array with shape (qubits, layers, 3) 28 -theta: set of parameters needed for the circuit. It is an array with shape (qubits, layers, 3)

32 -alpha: set of parameters needed for the circuit. It is an array with shape (qubits, layers, dimension of

data)

 29 -alpha: set of parameters needed for the circuit. It is an array with shape (qubits, layers,

dimension of data)

33 -weight: set of parameters needed fot the circuit only if chi == 'weighted_fidelity_chi'. It is an array

with shape (classes, qubits)

 30 -weight: set of parameters needed fot the circuit only if chi == 'weighted_fidelity_chi'. It is an

array with shape (classes, qubits)

34 -reprs: variable encoding the label states of the different classes 31 -reprs: variable encoding the label states of the different classes

35 """ 32 """

36 chi = chi.lower() 33 chi = chi.lower()

37 if chi in ['fidelity', 'weighted_fidelity','trace']: chi += '_chi' <> 34 if chi in ['fidelity', 'weighted_fidelity']: chi += '_chi'

38 if chi not in ['fidelity_chi', 'weighted_fidelity_chi','trace_chi']: 35 if chi not in ['fidelity_chi', 'weighted_fidelity_chi']:

39 raise ValueError('Figure of merit is not valid') = 36 raise ValueError('Figure of merit is not valid')

40 37

41 if chi == 'weighted_fidelity_chi' and qubits_lab != 1: 38 if chi == 'weighted_fidelity_chi' and qubits_lab != 1:

42 qubits_lab = 1 39 qubits_lab = 1

43 print('WARNING: number of qubits for the label states has been changed to 1') 40 print('WARNING: number of qubits for the label states has been changed to 1')

44 41

45 problem = problem.lower() 42 problem = problem.lower()

46 if problem == 'circle': 43 if problem == 'circle':

47 theta, alpha, reprs = _circle(qubits, layers, qubits_lab, chi) 44 theta, alpha, reprs = _circle(qubits, layers, qubits_lab, chi)

48 elif problem == '3 circles': 45 elif problem == '3 circles':

49 theta, alpha, reprs = _3_circles(qubits, layers, qubits_lab, chi) 46 theta, alpha, reprs = _3_circles(qubits, layers, qubits_lab, chi)

50 elif problem == 'wavy lines': 47 elif problem == 'wavy lines':

51 theta, alpha, reprs = _wavy_lines(qubits, layers, qubits_lab, chi) 48 theta, alpha, reprs = _wavy_lines(qubits, layers, qubits_lab, chi)

52 elif problem == 'squares': 49 elif problem == 'squares':

53 theta, alpha, reprs = _squares(qubits, layers, qubits_lab, chi) 50 theta, alpha, reprs = _squares(qubits, layers, qubits_lab, chi)

54 elif problem == 'sphere': 51 elif problem == 'sphere':

55 theta, alpha, reprs = _sphere(qubits, layers, qubits_lab, chi) 52 theta, alpha, reprs = _sphere(qubits, layers, qubits_lab, chi)

56 elif problem == 'non convex': 53 elif problem == 'non convex':

57 theta, alpha, reprs = _non_convex(qubits, layers, qubits_lab, chi) 54 theta, alpha, reprs = _non_convex(qubits, layers, qubits_lab, chi)

58 elif problem == 'crown': 55 elif problem == 'crown':

59 theta, alpha, reprs = _crown(qubits, layers, qubits_lab, chi) 56 theta, alpha, reprs = _crown(qubits, layers, qubits_lab, chi)

60 elif problem == 'tricrown': 57 elif problem == 'tricrown':

61 theta, alpha, reprs = _tricrown(qubits, layers, qubits_lab, chi) 58 theta, alpha, reprs = _tricrown(qubits, layers, qubits_lab, chi)

62 elif problem == 'hypersphere': 59 elif problem == 'hypersphere':

63 theta, alpha, reprs = _hypersphere(qubits, layers, qubits_lab, chi) 60 theta, alpha, reprs = _hypersphere(qubits, layers, qubits_lab, chi)

64 #== <> 61

65 elif problem == 'line':

66 theta, alpha, reprs = _line(qubits, layers, qubits_lab, chi)

67 #==

68 else: = 62 else:

69 raise ValueError('Problem is not valid') 63 raise ValueError('Problem is not valid')

70 64

71 if chi == 'fidelity_chi': 65 if chi == 'fidelity_chi':

72 return theta, alpha, reprs 66 return theta, alpha, reprs

73 elif chi == 'trace_chi': +-

74 return theta, alpha, reprs

75 elif chi == 'weighted_fidelity_chi': = 67 elif chi == 'weighted_fidelity_chi':

76 weights = np.ones((len(reprs), qubits)) 68 weights = np.ones((len(reprs), qubits))

77 return theta, alpha, weights, reprs 69 return theta, alpha, weights, reprs

78 70

79 #All these are auxiliary functions for problem_generator 71 #All these are auxiliary functions for problem_generator

80 def _circle(qubits, layers, qubits_lab, chi): 72 def _circle(qubits, layers, qubits_lab, chi):

81 classes = 2 73 classes = 2

82 if chi == 'trace_chi': <>

83 reprs = representatives_tr(classes, qubits_lab)

84 else:

85 reprs = representatives(classes, qubits_lab) 74 reprs = representatives(classes, qubits_lab)

86

87 theta = np.random.rand(qubits, layers, 3) = 75 theta = np.random.rand(qubits, layers, 3)

88 alpha = np.random.rand(qubits, layers, 2) 76 alpha = np.random.rand(qubits, layers, 2)

89 return theta, alpha, reprs 77 return theta, alpha, reprs

90 78

91 def _3_circles(qubits, layers, qubits_lab, chi): 79 def _3_circles(qubits, layers, qubits_lab, chi):

92 classes = 4 80 classes = 4

93 reprs = representatives(classes, qubits_lab) 81 reprs = representatives(classes, qubits_lab)

94 theta = np.random.rand(qubits, layers, 3) 82 theta = np.random.rand(qubits, layers, 3)

95 alpha = np.random.rand(qubits, layers, 2) 83 alpha = np.random.rand(qubits, layers, 2)

96 return theta, alpha, reprs 84 return theta, alpha, reprs

97 85

98 def _wavy_lines(qubits, layers, qubits_lab, chi): 86 def _wavy_lines(qubits, layers, qubits_lab, chi):

99 classes = 4 87 classes = 4

100 reprs = representatives(classes, qubits_lab) 88 reprs = representatives(classes, qubits_lab)

101 theta = np.random.rand(qubits, layers, 3) 89 theta = np.random.rand(qubits, layers, 3)

102 alpha = np.random.rand(qubits, layers, 2) 90 alpha = np.random.rand(qubits, layers, 2)

103 return theta, alpha, reprs 91 return theta, alpha, reprs

104 92

105 def _squares(qubits, layers, qubits_lab, chi): 93 def _squares(qubits, layers, qubits_lab, chi):

106 classes = 4 94 classes = 4

107 reprs = representatives(classes, qubits_lab) 95 reprs = representatives(classes, qubits_lab)

108 theta = np.random.rand(qubits, layers, 3) 96 theta = np.random.rand(qubits, layers, 3)

109 alpha = np.random.rand(qubits, layers, 2) 97 alpha = np.random.rand(qubits, layers, 2)

110 return theta, alpha, reprs 98 return theta, alpha, reprs

111 #== <>

112 def _line(qubits, layers, qubits_lab, chi):

113 classes = 2

114 if chi == 'trace_chi':

115 reprs = representatives_tr(classes, qubits_lab)

116 else:

117 reprs = representatives(classes, qubits_lab)

118 99

119 theta = np.random.rand(qubits, layers, 3)

120 alpha = np.random.rand(qubits, layers, 2)

121 return theta, alpha, reprs

122 #==

123 def _non_convex(qubits, layers, qubits_lab, chi): = 100 def _non_convex(qubits, layers, qubits_lab, chi):

124 classes = 2 101 classes = 2

125 if chi == 'trace_chi': <>

126 reprs = representatives_tr(classes, qubits_lab)

127 else:

128 reprs = representatives(classes, qubits_lab) 102 reprs = representatives(classes, qubits_lab)

129

130 theta = np.random.rand(qubits, layers, 3) = 103 theta = np.random.rand(qubits, layers, 3)

131 alpha = np.random.rand(qubits, layers, 2) 104 alpha = np.random.rand(qubits, layers, 2)

132 return theta, alpha, reprs 105 return theta, alpha, reprs

133 106

134 def _crown(qubits, layers, qubits_lab, chi): 107 def _crown(qubits, layers, qubits_lab, chi):

135 classes = 2 108 classes = 2

136 if chi == 'trace_chi': <>

137 reprs = representatives_tr(classes, qubits_lab)

138 else:

139 reprs = representatives(classes, qubits_lab) 109 reprs = representatives(classes, qubits_lab)

140

141 theta = np.random.rand(qubits, layers, 3) = 110 theta = np.random.rand(qubits, layers, 3)

142 alpha = np.random.rand(qubits, layers, 2) 111 alpha = np.random.rand(qubits, layers, 2)

143 return theta, alpha, reprs 112 return theta, alpha, reprs

144 113

145 def _tricrown(qubits, layers, qubits_lab, chi): 114 def _tricrown(qubits, layers, qubits_lab, chi):

146 classes = 3 115 classes = 3

147 reprs = representatives(classes, qubits_lab) 116 reprs = representatives(classes, qubits_lab)

148 theta = np.random.rand(qubits, layers, 3) 117 theta = np.random.rand(qubits, layers, 3)

149 alpha = np.random.rand(qubits, layers, 2) 118 alpha = np.random.rand(qubits, layers, 2)

150 return theta, alpha, reprs 119 return theta, alpha, reprs

151 120

152 def _sphere(qubits, layers, qubits_lab, chi): 121 def _sphere(qubits, layers, qubits_lab, chi):

153 classes = 2 122 classes = 2

154 reprs = representatives(classes, qubits_lab) 123 reprs = representatives(classes, qubits_lab)

155 theta = np.random.rand(qubits, layers, 3) 124 theta = np.random.rand(qubits, layers, 3)

156 alpha = np.random.rand(qubits, layers, 3) 125 alpha = np.random.rand(qubits, layers, 3)

157 return theta, alpha, reprs 126 return theta, alpha, reprs

158 127

159 def _hypersphere(qubits, layers, qubits_lab, chi): 128 def _hypersphere(qubits, layers, qubits_lab, chi):

160 classes = 2 129 classes = 2

161 reprs = representatives(classes, qubits_lab) 130 reprs = representatives(classes, qubits_lab)

162 theta = np.random.rand(qubits, layers, 6) 131 theta = np.random.rand(qubits, layers, 6)

163 alpha = np.random.rand(qubits, layers, 4) 132 alpha = np.random.rand(qubits, layers, 4)

164 return theta, alpha, reprs 133 return theta, alpha, reprs

165 134

166 +-

167 def representatives_tr(classes, qubits_lab):

168 """

169 This function creates the label states for the classification task

170 INPUT:

171 -classes: number of classes of our problem

172 -qubits_lab: how many qubits will store the labels

173 OUTPUT:

174 -reprs: the label states

175 """

176 #reprs = np.zeros((classes, 2**qubits_lab), dtype = 'complex')

177 reprs = np.zeros((classes, 3), dtype = 'complex')

178 if qubits_lab == 1:

179 if classes == 0:

180 raise ValueError('Nonsense classifier')

181 if classes == 1:

182 raise ValueError('Nonsense classifier')

183 if classes == 2:

184 #reprs[0] = np.array([1, 0])

185 reprs[0] = np.array([0.2938926261462367, -0.5090369604551273, 0.8090169943749473])

186 reprs[1] = np.array([-0.2938926261462367, 0.5090369604551273, -0.8090169943749473])

187 if classes == 3:

188 reprs[0] = np.array([1, 0])

189 reprs[1] = np.array([1 / 2, np.sqrt(3) / 2])

190 reprs[2] = np.array([1 / 2, -np.sqrt(3) / 2])

191 if classes == 4:

192 reprs[0] = np.array([1, 0])

193 reprs[1] = np.array([1 / np.sqrt(3), np.sqrt(2 / 3)])

194 reprs[2] = np.array([1 / np.sqrt(3), np.exp(1j * 2 * np.pi / 3) * np.sqrt(2 / 3)])

195 reprs[3] = np.array([1 / np.sqrt(3), np.exp(-1j * 2 * np.pi / 3) * np.sqrt(2 / 3)])

196 if classes == 6:

197 reprs[0] = np.array([0.2938926261462367, -0.5090369604551273, 0.8090169943749473])

198 reprs[1] = np.array([-0.2938926261462367, 0.5090369604551273, -0.8090169943749473])

199 reprs[2] = np.array([-0.7006292692220369, -0.4045084971874737, 0.5877852522924729])

200 reprs[3] = np.array([0.7006292692220369, 0.4045084971874737, -0.5877852522924729])

201 reprs[4] = np.array([0.4045084971874736, -0.7006292692220369, 0.5877852522924729])

202 reprs[5] = np.array([0.7006292692220369, 0.4045084971874737, -0.5877852522924729])

203

204 if qubits_lab == 2:

205 if classes == 0:

206 raise ValueError('Nonsense classifier')

207 if classes == 1:

208 raise ValueError('Nonsense classifier')

209 if classes == 2:

210 reprs[0] = np.array([0.29, -0.5, 0.8])

211 reprs[1] = np.array([-0.29, 0.5, -0.8])

212 if classes == 3:

213 reprs[0] = np.array([1, 0, 0, 0])

214 reprs[1] = np.array([0, 1, 0, 0])

215 reprs[2] = np.array([0, 0, 1, 0])

216 if classes == 4:

217 reprs[0] = np.array([1, 0, 0, 0])

218 reprs[1] = np.array([0, 1, 0, 0])

219 reprs[2] = np.array([0, 0, 1, 0])

220 reprs[3] = np.array([0, 0, 0, 1])

221

222 return reprs

223

224 def representatives(classes, qubits_lab): = 135 def representatives(classes, qubits_lab):

225 """ 136 """

226 This function creates the label states for the classification task 137 This function creates the label states for the classification task

227 INPUT: 138 INPUT:

228 -classes: number of classes of our problem 139 -classes: number of classes of our problem

229 -qubits_lab: how many qubits will store the labels 140 -qubits_lab: how many qubits will store the labels

230 OUTPUT: 141 OUTPUT:

231 -reprs: the label states 142 -reprs: the label states

232 """ 143 """

233 reprs = np.zeros((classes, 2**qubits_lab), dtype = 'complex') 144 reprs = np.zeros((classes, 2**qubits_lab), dtype = 'complex')

234 if qubits_lab == 1: 145 if qubits_lab == 1:

235 if classes == 0: 146 if classes == 0:

236 raise ValueError('Nonsense classifier') 147 raise ValueError('Nonsense classifier')

237 if classes == 1: 148 if classes == 1:

238 raise ValueError('Nonsense classifier') 149 raise ValueError('Nonsense classifier')

239 if classes == 2: 150 if classes == 2:

240 reprs[0] = np.array([1, 0]) 151 reprs[0] = np.array([1, 0])

241 reprs[1] = np.array([0, 1]) 152 reprs[1] = np.array([0, 1])

242 if classes == 3: 153 if classes == 3:

243 reprs[0] = np.array([1, 0]) 154 reprs[0] = np.array([1, 0])

244 reprs[1] = np.array([1 / 2, np.sqrt(3) / 2]) 155 reprs[1] = np.array([1 / 2, np.sqrt(3) / 2])

245 reprs[2] = np.array([1 / 2, -np.sqrt(3) / 2]) 156 reprs[2] = np.array([1 / 2, -np.sqrt(3) / 2])

246 if classes == 4: 157 if classes == 4:

247 reprs[0] = np.array([1, 0]) 158 reprs[0] = np.array([1, 0])

248 reprs[1] = np.array([1 / np.sqrt(3), np.sqrt(2 / 3)]) 159 reprs[1] = np.array([1 / np.sqrt(3), np.sqrt(2 / 3)])

249 reprs[2] = np.array([1 / np.sqrt(3), np.exp(1j * 2 * np.pi / 3) * np.sqrt(2 / 3)]) 160 reprs[2] = np.array([1 / np.sqrt(3), np.exp(1j * 2 * np.pi / 3) * np.sqrt(2 / 3)])

250 reprs[3] = np.array([1 / np.sqrt(3), np.exp(-1j * 2 * np.pi / 3) * np.sqrt(2 / 3)]) 161 reprs[3] = np.array([1 / np.sqrt(3), np.exp(-1j * 2 * np.pi / 3) * np.sqrt(2 / 3)])

251 if classes == 6: 162 if classes == 6:

252 reprs[0] = np.array([1, 0]) 163 reprs[0] = np.array([1, 0])

253 reprs[1] = np.array([0, 1]) 164 reprs[1] = np.array([0, 1])

254 reprs[2] = 1 / np.sqrt(2) * np.array([1, 1]) 165 reprs[2] = 1 / np.sqrt(2) * np.array([1, 1])

255 reprs[3] = 1 / np.sqrt(2) * np.array([1, -1]) 166 reprs[3] = 1 / np.sqrt(2) * np.array([1, -1])

256 reprs[4] = 1 / np.sqrt(2) * np.array([1, 1j]) 167 reprs[4] = 1 / np.sqrt(2) * np.array([1, 1j])

257 reprs[5] = 1 / np.sqrt(2) * np.array([1, -1j]) 168 reprs[5] = 1 / np.sqrt(2) * np.array([1, -1j])

258 169

259 if qubits_lab == 2: 170 if qubits_lab == 2:

260 if classes == 0: 171 if classes == 0:

261 raise ValueError('Nonsense classifier') 172 raise ValueError('Nonsense classifier')

262 if classes == 1: 173 if classes == 1:

263 raise ValueError('Nonsense classifier') 174 raise ValueError('Nonsense classifier')

264 if classes == 2: 175 if classes == 2:

265 reprs[0] = np.array([1, 0, 0, 0]) 176 reprs[0] = np.array([1, 0, 0, 0])

266 reprs[1] = np.array([0, 0, 0, 1]) 177 reprs[1] = np.array([0, 0, 0, 1])

267 if classes == 3: 178 if classes == 3:

268 reprs[0] = np.array([1, 0, 0, 0]) 179 reprs[0] = np.array([1, 0, 0, 0])

269 reprs[1] = np.array([0, 1, 0, 0]) 180 reprs[1] = np.array([0, 1, 0, 0])

270 reprs[2] = np.array([0, 0, 1, 0]) 181 reprs[2] = np.array([0, 0, 1, 0])

271 if classes == 4: 182 if classes == 4:

272 reprs[0] = np.array([1, 0, 0, 0]) 183 reprs[0] = np.array([1, 0, 0, 0])

273 reprs[1] = np.array([0, 1, 0, 0]) 184 reprs[1] = np.array([0, 1, 0, 0])

274 reprs[2] = np.array([0, 0, 1, 0]) 185 reprs[2] = np.array([0, 0, 1, 0])

275 reprs[3] = np.array([0, 0, 0, 1]) 186 reprs[3] = np.array([0, 0, 0, 1])

276 187

277 return reprs 188 return reprs

278 +-

Text Compare

1 # coding=utf-8 +-

2 ## = 1 ##

3 #Quantum classifier 2 #Quantum classifier

4 #Sara Aminpour, Mike Banad, Sarah Sharif <> 3 #Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil, J. Ignacio Latorre

5 #September 25th 2024 4 #Code by APS

 5 #Code-checks by ACL

 6 #June 3rd 2019

6 = 7

7 #School of Electrical and Computer Engineering/ Center for Quantum and Technology, University of Oklahoma, Norman, OK 73019 USA, <> 8

8 ###

9 #IMPORTANT_NOTE:

10 #The code on the left was developed by Sara Aminpour, while the code on the right serves as the reference implementation by Adrián

Pérez-Salinas.

11 #The code on the left has been restructured to handle random data. So some certain sections has been deleted from the reference

code.

12 #Additionally, our code on the left developed to analyze trace distance cost function and linear classification problem 9 #Universitat de Barcelona / Barcelona Supercomputing Center/Institut de Ciències del

Cosmos

13 #as well as necessary modification to apply COBYLA, L-BFGS-B, NELDER-MEAD, and SLSQP minimization methods. 10

14 ### = 11 ###

15 12

16 13

17 ## This is an auxiliary file. It provides the tools needed for simulating quantum 14 ## This is an auxiliary file. It provides the tools needed for simulating quantum

18 # circuits. 15 # circuits.

19 16

20 import numpy as np 17 import numpy as np

21 class QCircuit(object): 18 class QCircuit(object):

22 def __init__(self,qubits): 19 def __init__(self,qubits):

23 self.num_qubits = qubits 20 self.num_qubits = qubits

24 self.psi = [0]*2**self.num_qubits 21 self.psi = [0]*2**self.num_qubits

25 self.psi[0] = 1 22 self.psi[0] = 1

26 self.E_x=0 23 self.E_x=0

27 self.E_y=0 24 self.E_y=0

28 self.E_z=0 25 self.E_z=0

29 self.r=np.array([0,0,0]) +-

30 = 26

31 def Ry(self,i,theta): 27 def Ry(self,i,theta):

32 if i>=self.num_qubits: raise ValueError('There are not enough qubits') 28 if i>=self.num_qubits: raise ValueError('There are not enough qubits')

33 c = np.cos(theta/2) 29 c = np.cos(theta/2)

34 s = np.sin(theta/2) 30 s = np.sin(theta/2)

35 for k in range(2**(self.num_qubits-1)): 31 for k in range(2**(self.num_qubits-1)):

36 S = k%(2**i) + 2*(k - k%(2**i)) 32 S = k%(2**i) + 2*(k - k%(2**i))

37 S_=S + 2**i 33 S_=S + 2**i

38 a=c*self.psi[S] - s*self.psi[S_]; 34 a=c*self.psi[S] - s*self.psi[S_];

39 b=s*self.psi[S] + c*self.psi[S_]; 35 b=s*self.psi[S] + c*self.psi[S_];

40 self.psi[S]=a; self.psi[S_]=b; 36 self.psi[S]=a; self.psi[S_]=b;

41 37

42 def Rx(self,i,theta): 38 def Rx(self,i,theta):

43 if i>=self.num_qubits: raise ValueError('There are not enough qubits') 39 if i>=self.num_qubits: raise ValueError('There are not enough qubits')

44 c = np.cos(theta/2) 40 c = np.cos(theta/2)

45 s = np.sin(theta/2) 41 s = np.sin(theta/2)

46 for k in range(2**(self.num_qubits-1)): 42 for k in range(2**(self.num_qubits-1)):

47 S = k%(2**i) + 2*(k - k%(2**i)) 43 S = k%(2**i) + 2*(k - k%(2**i))

48 S_=S + 2**i 44 S_=S + 2**i

49 a=c*self.psi[S] - 1j*s*self.psi[S_]; 45 a=c*self.psi[S] - 1j*s*self.psi[S_];

50 b=-1j*s*self.psi[S] + c*self.psi[S_]; 46 b=-1j*s*self.psi[S] + c*self.psi[S_];

51 self.psi[S]=a; self.psi[S_]=b; 47 self.psi[S]=a; self.psi[S_]=b;

52 48

53 def U2(self,i,phi,lamb): 49 def U2(self,i,phi,lamb):

54 if i >= self.num_qubits: raise ValueError('There are not enough qubits') 50 if i >= self.num_qubits: raise ValueError('There are not enough qubits')

55 f = np.exp(1j*phi) 51 f = np.exp(1j*phi)

56 l = np.exp(-1j*lamb) 52 l = np.exp(-1j*lamb)

57 for k in range(2**(self.num_qubits-1)): 53 for k in range(2**(self.num_qubits-1)):

58 S = k%(2**i) + 2*(k - k%(2**i)) 54 S = k%(2**i) + 2*(k - k%(2**i))

59 S_=S + 2**i 55 S_=S + 2**i

60 a=1/np.sqrt(2)*(self.psi[S] - l*self.psi[S_]); 56 a=1/np.sqrt(2)*(self.psi[S] - l*self.psi[S_]);

61 b=1/np.sqrt(2)*(f*self.psi[S] + f*l*self.psi[S_]); 57 b=1/np.sqrt(2)*(f*self.psi[S] + f*l*self.psi[S_]);

62 self.psi[S]=a; self.psi[S_]=b; 58 self.psi[S]=a; self.psi[S_]=b;

63 59

64 def U3(self, i, theta3): 60 def U3(self, i, theta3):

65 if i >= self.num_qubits: raise ValueError('There are not enough qubits') 61 if i >= self.num_qubits: raise ValueError('There are not enough qubits')

66 c = np.cos(theta3[0] / 2) 62 c = np.cos(theta3[0] / 2)

67 s = np.sin(theta3[0] / 2) 63 s = np.sin(theta3[0] / 2)

68 e_phi = np.exp(1j * theta3[1] / 2) 64 e_phi = np.exp(1j * theta3[1] / 2)

69 e_phi_s = np.conj(e_phi) 65 e_phi_s = np.conj(e_phi)

70 e_lambda = np.exp(1j * theta3[2] / 2) 66 e_lambda = np.exp(1j * theta3[2] / 2)

71 e_lambda_s = np.conj(e_lambda) 67 e_lambda_s = np.conj(e_lambda)

72 +-

73 for k in range(2 ** (self.num_qubits - 1)): = 68 for k in range(2 ** (self.num_qubits - 1)):

74 S = k % (2 ** i) + 2 * (k - k % (2 ** i)) 69 S = k % (2 ** i) + 2 * (k - k % (2 ** i))

75 S_ = S + 2 ** i 70 S_ = S + 2 ** i

76 a = c * e_phi * e_lambda * self.psi[S] - s * e_phi * e_lambda_s * self.psi[S_]; 71 a = c * e_phi * e_lambda * self.psi[S] - s * e_phi * e_lambda_s *

self.psi[S_];

77 b = s * e_phi_s * e_lambda * self.psi[S] + c * e_phi_s * e_lambda_s * self.psi[S_]; 72 b = s * e_phi_s * e_lambda * self.psi[S] + c * e_phi_s * e_lambda_s *

self.psi[S_];

78 self.psi[S] = a; 73 self.psi[S] = a;

79 self.psi[S_] = b; 74 self.psi[S_] = b;

80 75

81 theta_f=np.arccos(np.abs(self.psi[S])**2 - np.abs(self.psi[S_])**2) - np.pi/2 +-

82 phi_f=np.angle(self.psi[S_] / self.psi[S])

83 self.r=np.array([np.sin(theta_f)*np.cos(phi_f),np.sin(phi_f)*np.sin(theta_f),np.cos(theta_f)])

84

85 def Rz(self,i,theta): = 76 def Rz(self,i,theta):

86 if i>=self.num_qubits: raise ValueError('There are not enough qubits') 77 if i>=self.num_qubits: raise ValueError('There are not enough qubits')

87 ex = np.exp(1j*theta) 78 ex = np.exp(1j*theta)

88 for k in range(2**(self.num_qubits-1)): 79 for k in range(2**(self.num_qubits-1)):

89 S = k%(2**i) + 2*(k - k%(2**i)) + 2**i 80 S = k%(2**i) + 2*(k - k%(2**i)) + 2**i

90 self.psi[S]=ex*self.psi[S]; 81 self.psi[S]=ex*self.psi[S];

91 82

92 def Hx(self,i): 83 def Hx(self,i):

93 if i>=self.num_qubits: raise ValueError('There are not enough qubits') 84 if i>=self.num_qubits: raise ValueError('There are not enough qubits')

94 for k in range(2**(self.num_qubits-1)): 85 for k in range(2**(self.num_qubits-1)):

95 S = k%(2**i) + 2*(k - k%(2**i)) 86 S = k%(2**i) + 2*(k - k%(2**i))

96 S_=S + 2**i 87 S_=S + 2**i

97 a=1/np.sqrt(2)*self.psi[S] + 1/np.sqrt(2)*self.psi[S_]; 88 a=1/np.sqrt(2)*self.psi[S] + 1/np.sqrt(2)*self.psi[S_];

98 b=1/np.sqrt(2)*self.psi[S] - 1/np.sqrt(2)*self.psi[S_]; 89 b=1/np.sqrt(2)*self.psi[S] - 1/np.sqrt(2)*self.psi[S_];

99 self.psi[S] = a 90 self.psi[S] = a

100 self.psi[S_] = b 91 self.psi[S_] = b

101 92

102 def Hy(self,i): 93 def Hy(self,i):

103 if i>=self.num_qubits: raise ValueError('There are not enough qubits') 94 if i>=self.num_qubits: raise ValueError('There are not enough qubits')

104 for k in range(2**(self.num_qubits-1)): 95 for k in range(2**(self.num_qubits-1)):

105 S = k%(2**i) + 2*(k - k%(2**i)) 96 S = k%(2**i) + 2*(k - k%(2**i))

106 S_=S + 2**i 97 S_=S + 2**i

107 a =1/np.sqrt(2)*self.psi[S] -1j/np.sqrt(2)*self.psi[S_]; 98 a =1/np.sqrt(2)*self.psi[S] -1j/np.sqrt(2)*self.psi[S_];

108 b =-1j/np.sqrt(2)*self.psi[S] + 1/np.sqrt(2)*self.psi[S_]; 99 b =-1j/np.sqrt(2)*self.psi[S] + 1/np.sqrt(2)*self.psi[S_];

109 self.psi[S] = a 100 self.psi[S] = a

110 self.psi[S_] = b 101 self.psi[S_] = b

111 102

112 def HyT(self,i): 103 def HyT(self,i):

113 if i>=self.num_qubits: raise ValueError('There are not enough qubits') 104 if i>=self.num_qubits: raise ValueError('There are not enough qubits')

114 for k in range(2**(self.num_qubits-1)): 105 for k in range(2**(self.num_qubits-1)):

115 S = k%(2**i) + 2*(k - k%(2**i)) 106 S = k%(2**i) + 2*(k - k%(2**i))

116 S_=S + 2**i 107 S_=S + 2**i

117 a=1/np.sqrt(2)*self.psi[S] +1j/np.sqrt(2)*self.psi[S_]; 108 a=1/np.sqrt(2)*self.psi[S] +1j/np.sqrt(2)*self.psi[S_];

118 b=1j/np.sqrt(2)*self.psi[S] + 1/np.sqrt(2)*self.psi[S_]; 109 b=1j/np.sqrt(2)*self.psi[S] + 1/np.sqrt(2)*self.psi[S_];

119 self.psi[S]=a; self.psi[S_]=b; 110 self.psi[S]=a; self.psi[S_]=b;

120 111

121 def Cz(self,i,j): 112 def Cz(self,i,j):

122 if i>=self.num_qubits: raise ValueError('There are not enough qubits') 113 if i>=self.num_qubits: raise ValueError('There are not enough qubits')

123 if j>=self.num_qubits: raise ValueError('There are not enough qubits') 114 if j>=self.num_qubits: raise ValueError('There are not enough qubits')

124 if i==j: raise ValueError('Control and target qubits are the same') 115 if i==j: raise ValueError('Control and target qubits are the same')

125 if j<i: a=i; i=j; j=a; 116 if j<i: a=i; i=j; j=a;

126 for k in range(2**(self.num_qubits-2)): 117 for k in range(2**(self.num_qubits-2)):

127 S = k%2**i + (118 S = k%2**i + (

128 (k - k%2**i)*2)%2**j + 2*(119 (k - k%2**i)*2)%2**j + 2*(

129 (k-k%2**i)*2-((2*(k-k%2**i))%2**j)) + 2**i + 2**j; 120 (k-k%2**i)*2-((2*(k-k%2**i))%2**j)) + 2**i + 2**j;

130 self.psi[S]=-self.psi[S] 121 self.psi[S]=-self.psi[S]

131 122

132 def SWAP(self,i,j): 123 def SWAP(self,i,j):

133 if i>=self.num_qubits: raise ValueError('There are not enough qubits') 124 if i>=self.num_qubits: raise ValueError('There are not enough qubits')

134 if j>=self.num_qubits: raise ValueError('There are not enough qubits') 125 if j>=self.num_qubits: raise ValueError('There are not enough qubits')

135 if i==j: raise ValueError('Control and target qubits are the same') 126 if i==j: raise ValueError('Control and target qubits are the same')

136 for k in range(2**(self.num_qubits-2)): 127 for k in range(2**(self.num_qubits-2)):

137 S = k%2**i + (128 S = k%2**i + (

138 (k - k%2**i)*2)%2**j + 2*(129 (k - k%2**i)*2)%2**j + 2*(

139 (k-k%2**i)*2-((2*(k-k%2**i))%2**j)) + 2**j; 130 (k-k%2**i)*2-((2*(k-k%2**i))%2**j)) + 2**j;

140 S_ = S + 2**i - 2**j 131 S_ = S + 2**i - 2**j

141 a=self.psi[S_] 132 a=self.psi[S_]

142 self.psi[S_] = self.psi[S] 133 self.psi[S_] = self.psi[S]

143 self.psi[S] = a 134 self.psi[S] = a

144 135

145 136

146 def Cx(self,i,j): 137 def Cx(self,i,j):

147 #i = control 138 #i = control

148 #j = target 139 #j = target

149 if i>=self.num_qubits: raise ValueError('There are not enough qubits') 140 if i>=self.num_qubits: raise ValueError('There are not enough qubits')

150 if j>=self.num_qubits: raise ValueError('There are not enough qubits') 141 if j>=self.num_qubits: raise ValueError('There are not enough qubits')

151 if i==j: raise ValueError('Control and target qubits are the same') 142 if i==j: raise ValueError('Control and target qubits are the same')

152 for k in range(2**(self.num_qubits-2)): 143 for k in range(2**(self.num_qubits-2)):

153 S = k%2**i + (144 S = k%2**i + (

154 (k - k%2**i)*2)%2**j + 2*(145 (k - k%2**i)*2)%2**j + 2*(

155 (k-k%2**i)*2-((2*(k-k%2**i))%2**j)) + 2**i; 146 (k-k%2**i)*2-((2*(k-k%2**i))%2**j)) + 2**i;

156 S_ = S + 2**j 147 S_ = S + 2**j

157 ''' 148 '''

158 a=self.psi[S_] 149 a=self.psi[S_]

159 self.psi[S_] = self.psi[S] 150 self.psi[S_] = self.psi[S]

160 self.psi[S] = a 151 self.psi[S] = a

161 ''' 152 '''

162 self.psi[S],self.psi[S_] = self.psi[S_],self.psi[S] 153 self.psi[S],self.psi[S_] = self.psi[S_],self.psi[S]

163 def Cy(self,i,j): 154 def Cy(self,i,j):

164 if i>=self.num_qubits: raise ValueError('There are not enough qubits') 155 if i>=self.num_qubits: raise ValueError('There are not enough qubits')

165 if j>=self.num_qubits: raise ValueError('There are not enough qubits') 156 if j>=self.num_qubits: raise ValueError('There are not enough qubits')

166 if i==j: raise ValueError('Control and target qubits are the same') 157 if i==j: raise ValueError('Control and target qubits are the same')

167 for k in range(2**(self.num_qubits-2)): 158 for k in range(2**(self.num_qubits-2)):

168 S = k%2**i + (159 S = k%2**i + (

169 (k - k%2**i)*2)%2**j + 2*(160 (k - k%2**i)*2)%2**j + 2*(

170 (k-k%2**i)*2-((2*(k-k%2**i))%2**j)) + 2**i; 161 (k-k%2**i)*2-((2*(k-k%2**i))%2**j)) + 2**i;

171 S_ = S + 2**j 162 S_ = S + 2**j

172 self.psi[S],self.psi[S_] = 1j*self.psi[S_],-1j*self.psi[S] 163 self.psi[S],self.psi[S_] = 1j*self.psi[S_],-1j*self.psi[S]

173 164

174 def MeasureZ(self): 165 def MeasureZ(self):

175 self.E_z = 0; 166 self.E_z = 0;

176 for h in range(2 ** self.num_qubits): 167 for h in range(2 ** self.num_qubits):

177 s = np.binary_repr(h, width=self.num_qubits) 168 s = np.binary_repr(h, width=self.num_qubits)

178 self.E_z += np.abs(self.psi[h])**2*(s.count('1')-s.count('0')) 169 self.E_z += np.abs(self.psi[h])**2*(s.count('1')-s.count('0'))

179 170

180 def MeasureX(self): 171 def MeasureX(self):

181 self.E_x = 0; 172 self.E_x = 0;

182 for i in range(self.num_qubits): 173 for i in range(self.num_qubits):

183 self.Hx(i); 174 self.Hx(i);

184 for h in range(2 ** self.num_qubits): 175 for h in range(2 ** self.num_qubits):

185 s = np.binary_repr(h, width=self.num_qubits) 176 s = np.binary_repr(h, width=self.num_qubits)

186 self.E_x += np.abs(self.psi[h])**2*(s.count('1')-s.count('0')) 177 self.E_x += np.abs(self.psi[h])**2*(s.count('1')-s.count('0'))

187 for i in range(self.num_qubits): 178 for i in range(self.num_qubits):

188 self.Hx(i); 179 self.Hx(i);

189 180

190 def MeasureY(self): 181 def MeasureY(self):

191 self.E_y = 0; 182 self.E_y = 0;

192 for i in range(self.num_qubits): 183 for i in range(self.num_qubits):

193 self.Hy(i); 184 self.Hy(i);

194 for h in range(2 ** self.num_qubits): 185 for h in range(2 ** self.num_qubits):

195 s = np.binary_repr(h, width=self.num_qubits) 186 s = np.binary_repr(h, width=self.num_qubits)

196 self.E_y += np.abs(self.psi[h])**2*(s.count('1')-s.count('0')) 187 self.E_y += np.abs(self.psi[h])**2*(s.count('1')-s.count('0'))

197 for i in range(self.num_qubits): 188 for i in range(self.num_qubits):

198 self.HyT(i); 189 self.HyT(i);

199 190

200 def reduced_density_matrix(self, q): 191 def reduced_density_matrix(self, q):

201 rho = np.zeros((2,2), dtype='complex') 192 rho = np.zeros((2,2), dtype='complex')

202 for i in range(2): 193 for i in range(2):

203 for j in range(i + 1): 194 for j in range(i + 1):

204 for k in range(2**(self.num_qubits-1)): 195 for k in range(2**(self.num_qubits-1)):

205 S = k%(2**q) + 2*(k - k%(2**q)) 196 S = k%(2**q) + 2*(k - k%(2**q))

206 rho[i,j] += self.psi[S + i*2**q] * np.conj(self.psi[S + j*2**q]) 197 rho[i,j] += self.psi[S + i*2**q] * np.conj(self.psi[S + j*2**q])

207 rho[j,i] = np.conj(rho[i,j]) 198 rho[j,i] = np.conj(rho[i,j])

208 return rho 199 return rho

209 200

210 201

Text Compare

1 # coding=utf-8 +-

2 ## = 1 ##

3 #Quantum classifier 2 #Quantum classifier

4 #Sara Aminpour, Mike Banad, Sarah Sharif <> 3 #Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil, J. Ignacio Latorre

5 #September 25th 2024 4 #Code by APS

 5 #Code-checks by ACL

 6 #June 3rd 2019

6 = 7

7 #School of Electrical and Computer Engineering/ Center for Quantum and Technology, University of Oklahoma,

Norman, OK 73019 USA,

<> 8

8 ###

9 #IMPORTANT_NOTE:

10 #The code on the left was developed by Sara Aminpour, while the code on the right serves as the reference

implementation by Adrián Pérez-Salinas.

11 #The code on the left has been restructured to handle random data. So some certain sections has been deleted from

the reference code.

12 #Additionally, our code on the left developed to analyze trace distance cost function and linear classification

problem

 9 #Universitat de Barcelona / Barcelona Supercomputing Center/Institut de Ciències del Cosmos

13 #as well as necessary modification to apply COBYLA, L-BFGS-B, NELDER-MEAD, and SLSQP minimization methods. 10

14 ### = 11 ###

15 12

16 13

17 #This file provides useful tools for painting and saving data according to the problem, 14 #This file provides useful tools for painting and saving data according to the problem,

18 # the minimization style, the number of qubits and layers. 15 # the minimization style, the number of qubits and layers.

19 16

20 import os 17 import os

21 import numpy as np 18 import numpy as np

22 import matplotlib.pyplot as plt 19 import matplotlib.pyplot as plt

23 from matplotlib.cm import get_cmap 20 from matplotlib.cm import get_cmap

24 from matplotlib.colors import Normalize 21 from matplotlib.colors import Normalize

25 22

26 +-

27 def write_summary(chi, problem, qubits, entanglement, layers, method, name, = 23 def write_summary(chi, problem, qubits, entanglement, layers, method, name,

28 theta, alpha, weights, chi_value, acc_train, acc_test, epochs): <> 24 theta, alpha, weights, chi_value, acc_train, acc_test, seed, epochs):

29 """ = 25 """

30 This function takes some informations of a given problem and saves some text files 26 This function takes some informations of a given problem and saves some text files

31 with this information and the parameters which are solution of the problem 27 with this information and the parameters which are solution of the problem

32 INPUT: 28 INPUT:

33 -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi' 29 -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'

34 -problem: name of the problem, to choose between 30 -problem: name of the problem, to choose between

35 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy

lines']

 31 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares',

'wavy lines']

36 -qubits: number of qubits, must be an integer 32 -qubits: number of qubits, must be an integer

37 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n' 33 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

38 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account 34 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account

39 -method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize] 35 -method: minimization method, to choose among ['SGD', another valid for function

scipy.optimize.minimize]

40 -name: a name we want for our our files to be save with 36 -name: a name we want for our our files to be save with

41 -theta: set of parameters needed for the circuit. Must be an array with shape (qubits, layers, 3) 37 -theta: set of parameters needed for the circuit. Must be an array with shape (qubits, layers, 3)

42 -alpha: set of parameters needed for the circuit. Must be an array with shape (qubits, layers, dimension

of data)

 38 -alpha: set of parameters needed for the circuit. Must be an array with shape (qubits, layers,

dimension of data)

43 -weight: set of parameters needed fot the circuit only if chi == 'weighted_fidelity_chi'. Must be an

array with shape (classes, qubits)

 39 -weight: set of parameters needed fot the circuit only if chi == 'weighted_fidelity_chi'. Must be an

array with shape (classes, qubits)

44 -chi_value: Value of the cost function after minimization 40 -chi_value: Value of the cost function after minimization

45 -acc_train: accuracy for the training set 41 -acc_train: accuracy for the training set

46 -acc_test: accuracy for the test set 42 -acc_test: accuracy for the test set

47 -seed: seed of numpy.random, needed for replicating results 43 -seed: seed of numpy.random, needed for replicating results

48 -epochs: number of epochs for a 'SGD' method. If there is another method, this input has got no

importance

 44 -epochs: number of epochs for a 'SGD' method. If there is another method, this input has got no

importance

49 45

50 OUTPUT: 46 OUTPUT:

51 This function has got no outputs, but several files are saved in an appropiate folder. The files are 47 This function has got no outputs, but several files are saved in an appropiate folder. The files are

52 -summary.txt: Saves useful information for the problem 48 -summary.txt: Saves useful information for the problem

53 -theta.txt: saves the theta parameters as a flat array 49 -theta.txt: saves the theta parameters as a flat array

54 -alpha.txt: saves the alpha parameters as a flat array 50 -alpha.txt: saves the alpha parameters as a flat array

55 -weight.txt: saves the weights as a flat array if they exist 51 -weight.txt: saves the weights as a flat array if they exist

56 """ 52 """

57 foldname = name_folder(chi, problem, qubits, entanglement, layers, method) 53 foldname = name_folder(chi, problem, qubits, entanglement, layers, method)

58 create_folder(foldname) 54 create_folder(foldname)

59 file_text = open(foldname + '/' + name + '_summary.txt','w') 55 file_text = open(foldname + '/' + name + '_summary.txt','w')

60 file_text.write('\nFigur of merit = '+chi) 56 file_text.write('\nFigur of merit = '+chi)

61 file_text.write('\nProblem = ' + problem) 57 file_text.write('\nProblem = ' + problem)

62 file_text.write('\nNumber of qubits = ' + str(qubits)) 58 file_text.write('\nNumber of qubits = ' + str(qubits))

63 +-

64

65 if qubits != 1: = 59 if qubits != 1:

66 file_text.write('\nEntanglement = ' + entanglement) 60 file_text.write('\nEntanglement = ' + entanglement)

67 file_text.write('\nNumber of layers = ' + str(layers)) 61 file_text.write('\nNumber of layers = ' + str(layers))

68 file_text.write('\nMinimization method = '+ method) 62 file_text.write('\nMinimization method = '+ method)

69 <> 63 file_text.write('\nRandom seed = '+ str(seed))

70 if method == 'SGD': = 64 if method == 'SGD':

71 file_text.write('\nNumber of epochs = '+ str(epochs)) 65 file_text.write('\nNumber of epochs = '+ str(epochs))

72 file_text.write('\n\nBEST RESULT\n\n') 66 file_text.write('\n\nBEST RESULT\n\n')

73 file_text.write('\nTHETA = \n') 67 file_text.write('\nTHETA = \n')

74 file_text.write(str(theta)) 68 file_text.write(str(theta))

75 file_text.write('\nALPHA = \n') 69 file_text.write('\nALPHA = \n')

76 file_text.write(str(alpha)) 70 file_text.write(str(alpha))

77 +-

78

79 #==

80

81 #==

82

83

84

85 if chi == 'weighted_fidelity_chi': = 71 if chi == 'weighted_fidelity_chi':

86 file_text.write('\nWEIGHTS = \n') +-

87 file_text.write(str(weights))

88 if chi == 'weighted_trace_chi':

89 file_text.write('\nWEIGHTS = \n') = 72 file_text.write('\nWEIGHTS = \n')

90 file_text.write(str(weights)) 73 file_text.write(str(weights))

91 file_text.write('\nchi**2 = ' + str(chi_value)) 74 file_text.write('\nchi**2 = ' + str(chi_value))

92 file_text.write('\nacc_train = ' + str(acc_train)) 75 file_text.write('\nacc_train = ' + str(acc_train))

93 file_text.write('\nacc_test = ' + str(acc_test)) 76 file_text.write('\nacc_test = ' + str(acc_test))

94 file_text.close() 77 file_text.close()

95 78

96 np.savetxt(foldname + '/' + name + '_theta.txt', theta.flatten()) 79 np.savetxt(foldname + '/' + name + '_theta.txt', theta.flatten())

97 np.savetxt(foldname + '/' + name + '_alpha.txt', alpha.flatten()) 80 np.savetxt(foldname + '/' + name + '_alpha.txt', alpha.flatten())

98 +-

99

100 if chi == 'weighted_fidelity_chi': = 81 if chi == 'weighted_fidelity_chi':

101 np.savetxt(foldname + '/' + name + '_weight.txt', weights.flatten()) 82 np.savetxt(foldname + '/' + name + '_weight.txt', weights.flatten())

102 83

103 if chi == 'weighted_trace_chi': +-

104 np.savetxt(foldname + '/' + name + '_weight.txt', weights.flatten())

105

106 = 84

107 +-

108 def write_summary_acc(chi, problem,layers, method, name, acc_test):

109

110 foldname_acc = name_folder_acc(chi, layers)

111 create_folder(foldname_acc)

112 file_text_acc = open(foldname_acc + '/' + name + '_accuracy.txt','a+')

113 file_text_acc.write('\nNEW')

114 file_text_acc.write('\nProblem = ' + problem + '\n')

115

116 file_text_acc.write('\nacc_test = ' + str(acc_test))

117

118

119 def read_summary(chi, problem, qubits, entanglement, layers, method, name): = 85 def read_summary(chi, problem, qubits, entanglement, layers, method, name):

120 86

121 """ 87 """

122 This function reads the files saved by write_summary and returns theta, alpha and weight parameters 88 This function reads the files saved by write_summary and returns theta, alpha and weight parameters

123 INPUT: 89 INPUT:

124 -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi' 90 -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'

125 -problem: name of the problem, to choose among 91 -problem: name of the problem, to choose among

126 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy

lines'

 92 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares',

'wavy lines'

127 -qubits: number of qubits, must be an integer 93 -qubits: number of qubits, must be an integer

128 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n' 94 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

129 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account 95 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account

130 -method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize] 96 -method: minimization method, to choose among ['SGD', another valid for function

scipy.optimize.minimize]

131 -name: a name we want for our our files to be save with 97 -name: a name we want for our our files to be save with

132 98

133 OUTPUT: 99 OUTPUT:

134 -theta: set of parameters needed for the circuit. It is an array with shape (qubits, layers, 3) 100 -theta: set of parameters needed for the circuit. It is an array with shape (qubits, layers, 3)

135 -alpha: set of parameters needed for the circuit. It is an array with shape (qubits, layers, dimension of

data)

 101 -alpha: set of parameters needed for the circuit. It is an array with shape (qubits, layers,

dimension of data)

136 -weight: set of parameters needed fot the circuit only if chi == 'weighted_fidelity_chi'. It is an array

with shape (classes, qubits)

 102 -weight: set of parameters needed fot the circuit only if chi == 'weighted_fidelity_chi'. It is an

array with shape (classes, qubits)

137 """ 103 """

138 chi = chi.lower().replace(' ','_') 104 chi = chi.lower().replace(' ','_')

139 if chi in ['fidelity', 'weighted_fidelity', 'trace', 'weighted_trace']: chi += '_chi' <> 105 if chi in ['fidelity', 'weighted_fidelity']: chi += '_chi'

140 if chi not in ['fidelity_chi', 'weighted_fidelity_chi','trace_chi', 'weighted_trace_chi']: 106 if chi not in ['fidelity_chi', 'weighted_fidelity_chi']:

141 raise ValueError('Figure of merit is not valid') = 107 raise ValueError('Figure of merit is not valid')

142 if chi == 'fidelity_chi': 108 if chi == 'fidelity_chi':

143 foldname = name_folder(chi, problem, qubits, entanglement, layers, method) 109 foldname = name_folder(chi, problem, qubits, entanglement, layers, method)

144 if problem in ['circle', 'line', '2 lines', '6squares', '3 circles', 'wavy circles', 'wavy lines', 'non

convex','crown','tricrown','squares']:

<> 110 if problem in ['circle', '3 circles', 'wavy circles', 'wavy lines', 'non

convex','crown','tricrown','squares']:

145 theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 3)) = 111 theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 3))

146 dim = 2 112 dim = 2

147 elif problem == 'sphere': 113 elif problem == 'sphere':

148 theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 3)) 114 theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 3))

149 dim = 3 115 dim = 3

150 elif problem in ['hypersphere']: 116 elif problem in ['hypersphere']:

151 theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 6)) 117 theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 6))

152 dim = 4 118 dim = 4

153 119

154 alpha = np.loadtxt(foldname + '/' + name + '_alpha.txt').reshape((qubits, layers, dim)) 120 alpha = np.loadtxt(foldname + '/' + name + '_alpha.txt').reshape((qubits, layers, dim))

155 return theta, alpha 121 return theta, alpha

156 #== <>

157 #Sara 122

158 if chi == 'trace_chi':

159 foldname = name_folder(chi, problem, qubits, entanglement, layers, method)

160 if problem in ['circle', 'line', '2 lines', '6squares', '3 circles', 'wavy circles', 'wavy lines', 'non

convex','crown','tricrown','squares']:

161 theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 3))

162 dim = 2

163 elif problem == 'sphere':

164 theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 3))

165 dim = 3

166 elif problem in ['hypersphere']:

167 theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 6))

168 dim = 4

169

170 alpha = np.loadtxt(foldname + '/' + name + '_alpha.txt').reshape((qubits, layers, dim))

171 return theta, alpha

172 #Sara

173 #==

174 if chi == 'weighted_fidelity_chi': = 123 if chi == 'weighted_fidelity_chi':

175 foldname = name_folder(chi, problem, qubits, entanglement, layers, method) 124 foldname = name_folder(chi, problem, qubits, entanglement, layers, method)

176 if problem in ['circle', 'line', '2 lines', '6squares', '3 circles', 'wavy circles', 'wavy lines', 'non

convex','crown','tricrown','squares']:

<> 125 if problem in ['circle', '3 circles', 'wavy circles', 'wavy lines', 'non

convex','crown','tricrown','squares']:

177 theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 3)) = 126 theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 3))

178 dim = 2 127 dim = 2

179 elif problem == 'sphere': 128 elif problem == 'sphere':

180 theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 3)) 129 theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 3))

181 dim = 3 130 dim = 3

182 elif problem in ['hypersphere']: 131 elif problem in ['hypersphere']:

183 theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 6)) 132 theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 6))

184 dim = 4 133 dim = 4

185 134

186 alpha = np.loadtxt(foldname + '/' + name + '_alpha.txt').reshape((qubits, layers, dim)) 135 alpha = np.loadtxt(foldname + '/' + name + '_alpha.txt').reshape((qubits, layers, dim))

187 136

188 if problem in ['3 circles','wavy lines','squares']: 137 if problem in ['3 circles','wavy lines','squares']:

189 weight = np.loadtxt(foldname + '/' + name + '_weight.txt').reshape((4, qubits)) 138 weight = np.loadtxt(foldname + '/' + name + '_weight.txt').reshape((4, qubits))

190 if problem in ['circle', 'line', '2 lines', 'wavy circle','sphere', 'non convex', 'crown',

'hypersphere']:

<> 139 if problem in ['circle','wavy circle','sphere', 'non convex', 'crown', 'hypersphere']:

191 weight = np.loadtxt(foldname + '/' + name + '_weight.txt').reshape((2, qubits)) = 140 weight = np.loadtxt(foldname + '/' + name + '_weight.txt').reshape((2, qubits))

192 if problem in ['tricrown']: 141 if problem in ['tricrown']:

193 weight = np.loadtxt(foldname + '/' + name + '_weight.txt').reshape((3, qubits)) 142 weight = np.loadtxt(foldname + '/' + name + '_weight.txt').reshape((3, qubits))

194 if problem in ['6squares']: +-

195 weight = np.loadtxt(foldname + '/' + name + '_weight.txt').reshape((6, qubits))

196 return theta, alpha, weight = 143 return theta, alpha, weight

197 +-

198 #==

199 #Sara

200 if chi == 'weighted_trace_chi':

201 foldname = name_folder(chi, problem, qubits, entanglement, layers, method)

202 if problem in ['circle', 'line', '2 lines', '6squares', '3 circles', 'wavy circles', 'wavy lines', 'non

convex','crown','tricrown','squares']:

203 theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 3))

204 dim = 2

205 elif problem == 'sphere':

206 theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 3))

207 dim = 3

208 elif problem in ['hypersphere']:

209 theta = np.loadtxt(foldname + '/' + name + '_theta.txt').reshape((qubits, layers, 6))

210 dim = 4

211

212 alpha = np.loadtxt(foldname + '/' + name + '_alpha.txt').reshape((qubits, layers, dim))

213

214 if problem in ['3 circles','wavy lines','squares']:

215 weight = np.loadtxt(foldname + '/' + name + '_weight.txt').reshape((4, qubits))

216 if problem in ['circle', 'line', '2 lines', 'wavy circle','sphere', 'non convex', 'crown',

'hypersphere']:

217 weight = np.loadtxt(foldname + '/' + name + '_weight.txt').reshape((2, qubits))

218 if problem in ['tricrown']:

219 weight = np.loadtxt(foldname + '/' + name + '_weight.txt').reshape((3, qubits))

220 if problem in ['6squares']:

221 weight = np.loadtxt(foldname + '/' + name + '_weight.txt').reshape((6, qubits))

222 return theta, alpha, weight

223 = 144

224 145

225 def write_epochs_file_acc(chi, layers, name): +-

226

227 """

228 This function creates a text file for saving data only in the SGD_step_by_step function

229 INPUT:

230 -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'

231 -problem: name of the problem, to choose among

232 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy

lines']

233 -qubits: number of qubits, must be an integer

234 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

235 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account

236 -method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize]

237 -name: a name we want for our our files to be save with

238 OUTPUT:

239 -file_text: an object which is an open textfile ready to be used

240 """

241 foldname_acc = name_folder_acc(chi, layers)

242 create_folder(foldname_acc)

243 filename_acc = foldname_acc + '/' + name + '_epochs.txt'

244 file_text_acc = open(filename_acc,'a+')

245 return file_text_acc

246 #Sara

247 #==

248 def write_epochs_file(chi, problem, qubits, entanglement, layers, method, name): = 146 def write_epochs_file(chi, problem, qubits, entanglement, layers, method, name):

249 147

250 """ 148 """

251 This function creates a text file for saving data only in the SGD_step_by_step function 149 This function creates a text file for saving data only in the SGD_step_by_step function

252 INPUT: 150 INPUT:

253 -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi' 151 -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'

254 -problem: name of the problem, to choose among 152 -problem: name of the problem, to choose among

255 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy

lines']

 153 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares',

'wavy lines']

256 -qubits: number of qubits, must be an integer 154 -qubits: number of qubits, must be an integer

257 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n' 155 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

258 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account 156 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account

259 -method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize] 157 -method: minimization method, to choose among ['SGD', another valid for function

scipy.optimize.minimize]

260 -name: a name we want for our our files to be save with 158 -name: a name we want for our our files to be save with

261 OUTPUT: 159 OUTPUT:

262 -file_text: an object which is an open textfile ready to be used 160 -file_text: an object which is an open textfile ready to be used

263 """ 161 """

264 foldname = name_folder(chi, problem, qubits, entanglement, layers, method) 162 foldname = name_folder(chi, problem, qubits, entanglement, layers, method)

265 create_folder(foldname) 163 create_folder(foldname)

266 filename = foldname + '/' + name + '_epochs.txt' 164 filename = foldname + '/' + name + '_epochs.txt'

267 file_text = open(filename,'w') 165 file_text = open(filename,'w')

268 return file_text 166 return file_text

269 167

270 def write_epoch(problem, file_text, epoch, theta, alpha, chi_value, acc_train, acc_test): <> 168 def write_epoch(file_text, epoch, theta, alpha, chi_value, acc_train, acc_test):

271 """ = 169 """

272 This function takes a text file and write information on it 170 This function takes a text file and write information on it

273 INPUT: 171 INPUT:

274 -file_text: an object which is an open textfile ready to be used, output of write_epochs_file 172 -file_text: an object which is an open textfile ready to be used, output of write_epochs_file

275 -epoch: the number of epoch providing this information 173 -epoch: the number of epoch providing this information

276 -theta: set of parameters needed for the circuit. Must be an array with shape (qubits, layers, 3) 174 -theta: set of parameters needed for the circuit. Must be an array with shape (qubits, layers, 3)

277 -alpha: set of parameters needed for the circuit. Must be an array with shape (qubits, layers, dimension

of data)

 175 -alpha: set of parameters needed for the circuit. Must be an array with shape (qubits, layers,

dimension of data)

278 -weight: set of parameters needed fot the circuit only if chi == 'weighted_fidelity_chi'. Must be an

array with shape (classes, qubits)

 176 -weight: set of parameters needed fot the circuit only if chi == 'weighted_fidelity_chi'. Must be an

array with shape (classes, qubits)

279 -chi_value: Value of the cost function after minimization 177 -chi_value: Value of the cost function after minimization

280 -acc_train: accuracy for the training set 178 -acc_train: accuracy for the training set

281 -acc_test: accuracy for the test set 179 -acc_test: accuracy for the test set

282 OUTPUT: 180 OUTPUT:

283 -file_text: with more information on it 181 -file_text: with more information on it

284 """ 182 """

285 +-

286 file_text.write('\n Epoch = ' + str(epoch)) = 183 file_text.write('\n Epoch = ' + str(epoch))

287 file_text.write('\nTHETA = \n') 184 file_text.write('\nTHETA = \n')

288 file_text.write(str(theta)) 185 file_text.write(str(theta))

289 file_text.write('\nALPHA = \n') 186 file_text.write('\nALPHA = \n')

290 file_text.write(str(alpha)) 187 file_text.write(str(alpha))

291 file_text.write('\n chi**2 = \n') 188 file_text.write('\n chi**2 = \n')

292 file_text.write(str(chi_value)) 189 file_text.write(str(chi_value))

293 file_text.write('\nacc_train = \n') 190 file_text.write('\nacc_train = \n')

294 file_text.write(str(acc_train)) 191 file_text.write(str(acc_train))

295 file_text.write('\nacc_test = \n') 192 file_text.write('\nacc_test = \n')

296 file_text.write(str(acc_test)) 193 file_text.write(str(acc_test))

297 +-

298 = 194

299 def close_epochs_file(file_text, best_epoch): 195 def close_epochs_file(file_text, best_epoch):

300 """ 196 """

301 This function takes a text file and closes it 197 This function takes a text file and closes it

302 INPUT: 198 INPUT:

303 -file_text: an object which is an open textfile ready to be used, output of write_epochs_file after

write_epoch

 199 -file_text: an object which is an open textfile ready to be used, output of write_epochs_file after

write_epoch

304 -best_epoch: the epoch with the best possible results 200 -best_epoch: the epoch with the best possible results

305 OUTPUT: 201 OUTPUT:

306 -file_text: closed 202 -file_text: closed

307 """ 203 """

308 file_text.write('\n\n\nBest epoch = ' + str(best_epoch)) 204 file_text.write('\n\n\nBest epoch = ' + str(best_epoch))

309 file_text.close() 205 file_text.close()

310 206

311 def write_epochs_error_rate(chi, problem, qubits, entanglement, layers, method, name, 207 def write_epochs_error_rate(chi, problem, qubits, entanglement, layers, method, name,

312 accs_train, accs_test): 208 accs_train, accs_test):

313 """ 209 """

314 This function takes information from the SGD_step_by_step function and saves the accuracies for training and

test sets. It is required for studying the overlearning

 210 This function takes information from the SGD_step_by_step function and saves the accuracies for training

and test sets. It is required for studying the overlearning

315 INPUT: 211 INPUT:

316 -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi' 212 -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'

317 -problem: name of the problem, to choose among 213 -problem: name of the problem, to choose among

318 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy

lines']

 214 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares',

'wavy lines']

319 -qubits: number of qubits, must be an integer 215 -qubits: number of qubits, must be an integer

320 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n' 216 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

321 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account 217 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account

322 -method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize] 218 -method: minimization method, to choose among ['SGD', another valid for function

scipy.optimize.minimize]

323 -name: a name we want for our our files to be save with 219 -name: a name we want for our our files to be save with

324 -accs_train: list or array with the accuracies of the training set for all epochs 220 -accs_train: list or array with the accuracies of the training set for all epochs

325 -accs_test: list or array with the accuracies of the test set for all epochs 221 -accs_test: list or array with the accuracies of the test set for all epochs

326 OUTPUT: 222 OUTPUT:

327 Two files with the error rates in them 223 Two files with the error rates in them

328 """ 224 """

329 foldname = name_folder(chi, problem, qubits, entanglement, layers, method) 225 foldname = name_folder(chi, problem, qubits, entanglement, layers, method)

330 create_folder(foldname) 226 create_folder(foldname)

331 filename_train = foldname + '/' + name + '_train.txt' 227 filename_train = foldname + '/' + name + '_train.txt'

332 filename_test = foldname + '/' + name + '_test.txt' 228 filename_test = foldname + '/' + name + '_test.txt'

333 229

334 np.savetxt(filename_train, 1 - np.array(accs_train)) 230 np.savetxt(filename_train, 1 - np.array(accs_train))

335 np.savetxt(filename_test, 1 - np.array(accs_test)) 231 np.savetxt(filename_test, 1 - np.array(accs_test))

336 232

337 def samples_paint(problem, settings, sol, foldname, filename, bw): 233 def samples_paint(problem, settings, sol, foldname, filename, bw):

338 """ 234 """

339 This function takes the problem and the points when they are already classified, and saves a picture of them 235 This function takes the problem and the points when they are already classified, and saves a picture of

them

340 INPUT: 236 INPUT:

341 -problem: name of the problem, to choose among 237 -problem: name of the problem, to choose among

342 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy

lines']

 238 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares',

'wavy lines']

343 -settings: parameters the function needs for drawing. Provided by problem_gen.problem_gen 239 -settings: parameters the function needs for drawing. Provided by problem_gen.problem_gen

344 -sol: solutions of the points alreafy classified 240 -sol: solutions of the points alreafy classified

345 -foldname : name of the folder where we store results 241 -foldname : name of the folder where we store results

346 -filename: name of the files we will produce 242 -filename: name of the files we will produce

347 -bw: black and white, True/False 243 -bw: black and white, True/False

348 OUTPUT: 244 OUTPUT:

349 a file with the points and their classes, and whether they are right or wrong 245 a file with the points and their classes, and whether they are right or wrong

350 """ 246 """

351 if bw == False: 247 if bw == False:

352 colors_classes = get_cmap('Dark2') <> 248 colors_classes = get_cmap('plasma')

353 norm_class = Normalize(vmin=-.5,vmax=np.max(sol[:,-3]) + .5) = 249 norm_class = Normalize(vmin=-.5,vmax=np.max(sol[:,-3]) + .5)

354 250

355 colors_rightwrong = get_cmap('RdYlGn') 251 colors_rightwrong = get_cmap('RdYlGn')

356 norm_rightwrong = Normalize(vmin=-.1,vmax=1.1) 252 norm_rightwrong = Normalize(vmin=-.1,vmax=1.1)

357 253

358 if bw == True: 254 if bw == True:

359 colors_classes = get_cmap('Greys') 255 colors_classes = get_cmap('Greys')

360 norm_class = Normalize(vmin=-.1,vmax=np.max(sol[:,-3]) + .1) 256 norm_class = Normalize(vmin=-.1,vmax=np.max(sol[:,-3]) + .1)

361 257

362 colors_rightwrong = get_cmap('Greys') 258 colors_rightwrong = get_cmap('Greys')

363 norm_rightwrong = Normalize(vmin=-.1,vmax=1.1) 259 norm_rightwrong = Normalize(vmin=-.1,vmax=1.1)

364 260

365 fig, axs = plt.subplots(ncols = 2, figsize=(10,5)) 261 fig, axs = plt.subplots(ncols = 2, figsize=(10,5))

366 ax = axs[0] 262 ax = axs[0]

367 if problem in ['circle', '3 circles', 'crown', 'tricrown']: 263 if problem in ['circle', '3 circles', 'crown', 'tricrown']:

368 centers, radii = settings 264 centers, radii = settings

369 for c, r in zip(centers, radii): 265 for c, r in zip(centers, radii):

370 ca = plt.Circle(c, r, color='k', fill=False, linewidth=2) 266 ca = plt.Circle(c, r, color='k', fill=False, linewidth=2)

371 ax.add_artist(ca) 267 ax.add_artist(ca)

372 elif problem == 'wavy circle': 268 elif problem == 'wavy circle':

373 centers, radii, wave, freq = settings 269 centers, radii, wave, freq = settings

374 phi = np.linspace(0, 2*np.pi, 1000) 270 phi = np.linspace(0, 2*np.pi, 1000)

375 for (c,r, w, f) in zip(centers, radii, wave, freq): 271 for (c,r, w, f) in zip(centers, radii, wave, freq):

376 ax.plot(c[0] + r*(1 + w * np.cos(f * phi)) * np.cos(phi), 272 ax.plot(c[0] + r*(1 + w * np.cos(f * phi)) * np.cos(phi),

377 c[1] + r*(1 + w * np.cos(f * phi)) * np.sin(phi), 273 c[1] + r*(1 + w * np.cos(f * phi)) * np.sin(phi),

378 'k-') 274 'k-')

379 elif problem == 'wavy lines': 275 elif problem == 'wavy lines':

380 freq = settings 276 freq = settings

381 s = np.linspace(-1,1,100) 277 s = np.linspace(-1,1,100)

382 ax.plot(s, np.clip(s + np.sin(freq * np.pi * s), -1, 1), 'k-') 278 ax.plot(s, np.clip(s + np.sin(freq * np.pi * s), -1, 1), 'k-')

383 ax.plot(s, -s + np.sin(freq * np.pi * s), 'k-') 279 ax.plot(s, -s + np.sin(freq * np.pi * s), 'k-')

384 elif problem == 'squares': 280 elif problem == 'squares':

385 freq = settings 281 freq = settings

386 s = np.linspace(-1,1,10) 282 s = np.linspace(-1,1,10)

387 ax.plot(s, np.zeros(10), 'k-') 283 ax.plot(s, np.zeros(10), 'k-')

388 ax.plot(np.zeros(10), s, 'k-') 284 ax.plot(np.zeros(10), s, 'k-')

389 #== <>

390 elif problem == 'line':

391 freq = settings 285

392 #s = np.linspace(-1,1,10)

393 s=np.linspace(-1,1,10)

394 #ax.plot(s, np.zeros(10), 'k-')

395 ax.plot(s, s, 'k-')

396 #==

397 elif problem == '2 lines':

398 freq = settings

399 s = np.linspace(-1,1,10)

400 #ax.plot(s, np.zeros(10), 'k-')

401 ax.plot(s, -s, 'k-')

402 ax.plot(s, s, 'k-')

403 #==

404 elif problem == '6squares':

405 freq = settings

406 s = np.linspace(-1,1,10)

407 ax.plot(s, np.zeros(10), 'k-')

408 a=np.array([-0.33,-0.33,-0.33,-0.33,-0.33,-0.33,-0.33,-0.33,-0.33,-0.33])

409 b=np.array([0.33,0.33,0.33,0.33,0.33,0.33,0.33,0.33,0.33,0.33])

410 ax.plot(a, s, 'k-')

411 ax.plot(b, s, 'k-')

412 #==

413 elif problem == 'non convex': = 286 elif problem == 'non convex':

414 freq, x_val, sin_val = settings 287 freq, x_val, sin_val = settings

415 s = np.linspace(-1,1,100) 288 s = np.linspace(-1,1,100)

416 ax.plot(s, np.clip(-x_val * s + sin_val * np.sin(freq * np.pi * s), -1, 1), 'k-') 289 ax.plot(s, np.clip(-x_val * s + sin_val * np.sin(freq * np.pi * s), -1, 1), 'k-')

417 290

418 ax.scatter(sol[:,0], sol[:,1], c=sol[:,-2], cmap = colors_classes, s=2, norm=norm_class) 291 ax.scatter(sol[:,0], sol[:,1], c=sol[:,-2], cmap = colors_classes, s=2, norm=norm_class)

419 292

420 ax.set_xlabel('x', fontsize=16) 293 ax.set_xlabel('x', fontsize=16)

421 ax.set_ylabel('y', fontsize=16) 294 ax.set_ylabel('y', fontsize=16)

422 ax.tick_params(axis='both',labelsize=16) 295 ax.tick_params(axis='both',labelsize=16)

423 ax.set_xlim(-1, 1) 296 ax.set_xlim(-1, 1)

424 ax.set_ylim(-1, 1) 297 ax.set_ylim(-1, 1)

425 ax.margins(0) 298 ax.margins(0)

426 ax.axis('equal') 299 ax.axis('equal')

427 300

428 bx = axs[1] 301 bx = axs[1]

429 bx.scatter(sol[:,0], sol[:,1], c=sol[:,-1], cmap = colors_rightwrong, s=2, norm=norm_rightwrong) 302 bx.scatter(sol[:,0], sol[:,1], c=sol[:,-1], cmap = colors_rightwrong, s=2, norm=norm_rightwrong)

430 if problem in ['circle', '3 circles', 'crown', 'tricrown']: 303 if problem in ['circle', '3 circles', 'crown', 'tricrown']:

431 centers, radii = settings 304 centers, radii = settings

432 for c, r in zip(centers, radii): 305 for c, r in zip(centers, radii):

433 ca = plt.Circle(c, r, color='k', fill=False, linewidth=2) 306 ca = plt.Circle(c, r, color='k', fill=False, linewidth=2)

434 bx.add_artist(ca) 307 bx.add_artist(ca)

435 elif problem == 'wavy circle': 308 elif problem == 'wavy circle':

436 centers, radii, wave, freq = settings 309 centers, radii, wave, freq = settings

437 phi = np.linspace(0, 2*np.pi, 1000) 310 phi = np.linspace(0, 2*np.pi, 1000)

438 bx.plot(c[0] + r*(1 + wave * np.cos(freq * phi)) * np.cos(phi), 311 bx.plot(c[0] + r*(1 + wave * np.cos(freq * phi)) * np.cos(phi),

439 c[1] + r*(1 + wave * np.cos(freq * phi)) * np.sin(phi), 312 c[1] + r*(1 + wave * np.cos(freq * phi)) * np.sin(phi),

440 'k-') 313 'k-')

441 elif problem == 'wavy lines': 314 elif problem == 'wavy lines':

442 freq = settings 315 freq = settings

443 s = np.linspace(-1,1,100) 316 s = np.linspace(-1,1,100)

444 bx.plot(s, np.clip(s + np.sin(freq * np.pi * s), -1, 1), 'k-') 317 bx.plot(s, np.clip(s + np.sin(freq * np.pi * s), -1, 1), 'k-')

445 bx.plot(s, -s + np.sin(freq * np.pi * s), 'k-') 318 bx.plot(s, -s + np.sin(freq * np.pi * s), 'k-')

446 319

447 elif problem == 'squares': 320 elif problem == 'squares':

448 freq = settings 321 freq = settings

449 s = np.linspace(-1,1,10) 322 s = np.linspace(-1,1,10)

450 bx.plot(s, np.zeros(10), 'k-') 323 bx.plot(s, np.zeros(10), 'k-')

451 bx.plot(np.zeros(10), s, 'k-') 324 bx.plot(np.zeros(10), s, 'k-')

452 #== <>

453 elif problem == 'line':

454 freq = settings 325

455 #s = np.linspace(-1,1,10)

456 s=np.linspace(-1,1,10)

457 #ax.plot(s, np.zeros(10), 'k-')

458 bx.plot(s, s, 'k-')

459 #==

460 elif problem == '2 lines':

461 freq = settings

462 s = np.linspace(-1,1,10)

463 #ax.plot(s, np.zeros(10), 'k-')

464 bx.plot(s, -s, 'k-')

465 bx.plot(s, s, 'k-')

466 #==

467 elif problem == '6squares':

468 freq = settings

469 s = np.linspace(-1,1,10)

470 ax.plot(s, np.zeros(10), 'k-')

471 a=np.array([-0.33,-0.33,-0.33,-0.33,-0.33,-0.33,-0.33,-0.33,-0.33,-0.33])

472 b=np.array([0.33,0.33,0.33,0.33,0.33,0.33,0.33,0.33,0.33,0.33])

473 ax.plot(a, s, 'k-')

474 ax.plot(b, s, 'k-')

475 #==

476 elif problem == 'non convex': = 326 elif problem == 'non convex':

477 freq, x_val, sin_val = settings 327 freq, x_val, sin_val = settings

478 s = np.linspace(-1,1,100) 328 s = np.linspace(-1,1,100)

479 bx.plot(s, np.clip(-x_val * s + sin_val * np.sin(freq * np.pi * s), -1, 1), 'k-') 329 bx.plot(s, np.clip(-x_val * s + sin_val * np.sin(freq * np.pi * s), -1, 1), 'k-')

480 330

481 331

482 bx.set_xlabel('x', fontsize=16) 332 bx.set_xlabel('x', fontsize=16)

483 bx.tick_params(axis='x', labelsize = 16) 333 bx.tick_params(axis='x', labelsize = 16)

484 bx.tick_params(axis='y', labelsize=0) 334 bx.tick_params(axis='y', labelsize=0)

485 bx.set_xlim([-1, 1]) 335 bx.set_xlim([-1, 1])

486 bx.set_ylim([-1, 1]) 336 bx.set_ylim([-1, 1])

487 bx.margins(0) 337 bx.margins(0)

488 bx.axis('equal') 338 bx.axis('equal')

489 339

490 fig.savefig(foldname + '/' + filename) 340 fig.savefig(foldname + '/' + filename)

491 plt.close('all') 341 plt.close('all')

492 342

493 def laea_x(lamb, phi): 343 def laea_x(lamb, phi):

494 return 2*np.sqrt(2) * np.cos(phi)*np.sin(lamb / 2) / np.sqrt(1 + np.cos(phi)*np.cos(lamb/2)) 344 return 2*np.sqrt(2) * np.cos(phi)*np.sin(lamb / 2) / np.sqrt(1 + np.cos(phi)*np.cos(lamb/2))

495 345

496 346

497 def laea_y(lamb, phi): 347 def laea_y(lamb, phi):

498 return np.sqrt(2) * np.sin(phi) / np.sqrt(1 + np.cos(phi)*np.cos(lamb/2)) 348 return np.sqrt(2) * np.sin(phi) / np.sqrt(1 + np.cos(phi)*np.cos(lamb/2))

499 349

500 350

501 def samples_paint_worldmap(problem, settings, sol, foldname, filename, bw): 351 def samples_paint_worldmap(problem, settings, sol, foldname, filename, bw):

502 """ 352 """

503 This function takes the problem and the points when they are already classified, and saves a picture of them 353 This function takes the problem and the points when they are already classified, and saves a picture of

them

504 INPUT: 354 INPUT:

505 -problem: name of the problem, to choose among 355 -problem: name of the problem, to choose among

506 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy

lines']

 356 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares',

'wavy lines']

507 -settings: parameters the function needs for drawing. Provided by problem_gen.problem_gen 357 -settings: parameters the function needs for drawing. Provided by problem_gen.problem_gen

508 -sol: solutions of the points alreafy classified 358 -sol: solutions of the points alreafy classified

509 -foldname : name of the folder where we store results 359 -foldname : name of the folder where we store results

510 -filename: name of the files we will produce 360 -filename: name of the files we will produce

511 -bw: black and white, True/False 361 -bw: black and white, True/False

512 OUTPUT: 362 OUTPUT:

513 a file with the points and their classes, and whether they are right or wrong 363 a file with the points and their classes, and whether they are right or wrong

514 """ 364 """

515 if bw == False: 365 if bw == False:

516 colors_classes = get_cmap('plasma') 366 colors_classes = get_cmap('plasma')

517 norm_class = Normalize(vmin=-.5,vmax=np.max(sol[:,-3]) + .5) 367 norm_class = Normalize(vmin=-.5,vmax=np.max(sol[:,-3]) + .5)

518 368

519 colors_rightwrong = get_cmap('RdYlGn') 369 colors_rightwrong = get_cmap('RdYlGn')

520 norm_rightwrong = Normalize(vmin=-.1,vmax=1.1) 370 norm_rightwrong = Normalize(vmin=-.1,vmax=1.1)

521 371

522 if bw == True: 372 if bw == True:

523 colors_classes = get_cmap('Greys') 373 colors_classes = get_cmap('Greys')

524 norm_class = Normalize(vmin=-.5,vmax=np.max(sol[:,-3]) + .5) 374 norm_class = Normalize(vmin=-.5,vmax=np.max(sol[:,-3]) + .5)

525 375

526 colors_rightwrong = get_cmap('Greys') 376 colors_rightwrong = get_cmap('Greys')

527 norm_rightwrong = Normalize(vmin=-.1,vmax=1.1) 377 norm_rightwrong = Normalize(vmin=-.1,vmax=1.1)

528 378

529 fig, axs = plt.subplots(nrows = 3, figsize=(5,15)) 379 fig, axs = plt.subplots(nrows = 3, figsize=(5,15))

530 380

531 line1 = _winkel_map((np.linspace(-np.pi,np.pi), np.zeros(50))) 381 line1 = _winkel_map((np.linspace(-np.pi,np.pi), np.zeros(50)))

532 line2 = _winkel_map((np.linspace(-np.pi,np.pi), np.ones(50))) 382 line2 = _winkel_map((np.linspace(-np.pi,np.pi), np.ones(50)))

533 line3 = _winkel_map((np.linspace(-np.pi,np.pi), -np.ones(50))) 383 line3 = _winkel_map((np.linspace(-np.pi,np.pi), -np.ones(50)))

534 line4 = _winkel_map((np.zeros(50), np.linspace(-np.pi/2,.5*np.pi))) 384 line4 = _winkel_map((np.zeros(50), np.linspace(-np.pi/2,.5*np.pi)))

535 line5 = _winkel_map((np.pi*np.ones(50), np.linspace(-np.pi/2,.5*np.pi))) 385 line5 = _winkel_map((np.pi*np.ones(50), np.linspace(-np.pi/2,.5*np.pi)))

536 line6 = _winkel_map((-np.pi*np.ones(50), np.linspace(-np.pi/2,.5*np.pi))) 386 line6 = _winkel_map((-np.pi*np.ones(50), np.linspace(-np.pi/2,.5*np.pi)))

537 ax = axs[0] 387 ax = axs[0]

538 ax.plot(line1[0], line1[1], 'k') 388 ax.plot(line1[0], line1[1], 'k')

539 ax.plot(line2[0], line2[1], 'k') 389 ax.plot(line2[0], line2[1], 'k')

540 ax.plot(line3[0], line3[1], 'k') 390 ax.plot(line3[0], line3[1], 'k')

541 ax.plot(line4[0], line4[1], 'k') 391 ax.plot(line4[0], line4[1], 'k')

542 ax.plot(line5[0], line5[1], 'k') 392 ax.plot(line5[0], line5[1], 'k')

543 ax.plot(line6[0], line6[1], 'k') 393 ax.plot(line6[0], line6[1], 'k')

544 394

545 X = np.empty((len(sol), 2)) 395 X = np.empty((len(sol), 2))

546 for i,s in enumerate(sol): 396 for i,s in enumerate(sol):

547 mapped = _winkel_map(s[:2]) 397 mapped = _winkel_map(s[:2])

548 X[i] = mapped 398 X[i] = mapped

549 399

550 ax.scatter(X[:,0], X[:,1], c=sol[:,-3], cmap = colors_classes, s=2, norm=norm_class) 400 ax.scatter(X[:,0], X[:,1], c=sol[:,-3], cmap = colors_classes, s=2, norm=norm_class)

551 401

552 #ax.set_xlabel('x', fontsize=16) 402 #ax.set_xlabel('x', fontsize=16)

553 #ax.set_ylabel('y', fontsize=16) 403 #ax.set_ylabel('y', fontsize=16)

554 #ax.tick_params(axis='both',labelsize=16) 404 #ax.tick_params(axis='both',labelsize=16)

555 #ax.set_xlim(-1, 1) 405 #ax.set_xlim(-1, 1)

556 #ax.set_ylim(-1, 1) 406 #ax.set_ylim(-1, 1)

557 #ax.margins(0) 407 #ax.margins(0)

558 #ax.axis('equal') 408 #ax.axis('equal')

559 409

560 bx = axs[1] 410 bx = axs[1]

561 bx.scatter(X[:,0], X[:,1], c=sol[:,-2], cmap = colors_classes, s=2, norm=norm_class) 411 bx.scatter(X[:,0], X[:,1], c=sol[:,-2], cmap = colors_classes, s=2, norm=norm_class)

562 412

563 cx = axs[2] 413 cx = axs[2]

564 cx.scatter(X[:,0], X[:,1], c=sol[:,-1], cmap = colors_rightwrong, s=2, norm=norm_rightwrong) 414 cx.scatter(X[:,0], X[:,1], c=sol[:,-1], cmap = colors_rightwrong, s=2, norm=norm_rightwrong)

565 415

566 #bx.set_xlabel('x', fontsize=16) 416 #bx.set_xlabel('x', fontsize=16)

567 #bx.tick_params(axis='x', labelsize = 16) 417 #bx.tick_params(axis='x', labelsize = 16)

568 #bx.tick_params(axis='y', labelsize=0) 418 #bx.tick_params(axis='y', labelsize=0)

569 #bx.set_xlim([-1, 1]) 419 #bx.set_xlim([-1, 1])

570 #bx.set_ylim([-1, 1]) 420 #bx.set_ylim([-1, 1])

571 #bx.margins(0) 421 #bx.margins(0)

572 #bx.axis('equal') 422 #bx.axis('equal')

573 423

574 fig.savefig(foldname + '/' + filename + '_worldmap') 424 fig.savefig(foldname + '/' + filename + '_worldmap')

575 plt.close('all') 425 plt.close('all')

576 426

577 def _winkel_map(angles): 427 def _winkel_map(angles):

578 428

579 alpha = np.arccos(np.cos(angles[1])*np.cos(angles[0] / 2)) 429 alpha = np.arccos(np.cos(angles[1])*np.cos(angles[0] / 2))

580 x = .5 * (angles[0] * 180 / np.pi + 2 * np.cos(angles[1] * np.sin(.5 * angles[0])) / np.sinc(alpha / np.pi)) 430 x = .5 * (angles[0] * 180 / np.pi + 2 * np.cos(angles[1] * np.sin(.5 * angles[0])) / np.sinc(alpha /

np.pi))

581 y = .5 * (angles[1] * 180 / np.pi + np.sin(angles[1])/np.sinc(alpha/np.pi)) 431 y = .5 * (angles[1] * 180 / np.pi + np.sin(angles[1])/np.sinc(alpha/np.pi))

582 432

583 return np.array([x,y]) 433 return np.array([x,y])

584 434

585 435

586 def create_folder(directory): 436 def create_folder(directory):

587 """ 437 """

588 Auxiliar function for creating directories with name directory 438 Auxiliar function for creating directories with name directory

589 439

590 """ 440 """

591 try: 441 try:

592 if not os.path.exists(directory): 442 if not os.path.exists(directory):

593 os.makedirs(directory) 443 os.makedirs(directory)

594 except OSError: 444 except OSError:

595 print ('Error: Creating directory. ' + directory) 445 print ('Error: Creating directory. ' + directory)

596 446

597 def name_folder(chi, problem, qubits, entanglement, layers, method): 447 def name_folder(chi, problem, qubits, entanglement, layers, method):

598 """ 448 """

599 This function takes information from the SGD_step_by_step function and saves the accuracies for training and

test sets. It is required for studying the overlearning

 449 This function takes information from the SGD_step_by_step function and saves the accuracies for training

and test sets. It is required for studying the overlearning

600 INPUT: 450 INPUT:

601 -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi' 451 -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'

602 -problem: name of the problem, to choose among 452 -problem: name of the problem, to choose among

603 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy

lines']

 453 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares',

'wavy lines']

604 -qubits: number of qubits, must be an integer 454 -qubits: number of qubits, must be an integer

605 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n' 455 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

606 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account 456 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account

607 -method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize] 457 -method: minimization method, to choose among ['SGD', another valid for function

scipy.optimize.minimize]

608 -name: a name we want for our our files to be save with 458 -name: a name we want for our our files to be save with

609 -accs_train: list or array with the accuracies of the training set for all epochs 459 -accs_train: list or array with the accuracies of the training set for all epochs

610 -accs_test: list or array with the accuracies of the test set for all epochs 460 -accs_test: list or array with the accuracies of the test set for all epochs

611 OUTPUT: 461 OUTPUT:

612 -foldname: A name for a folder 462 -foldname: A name for a folder

613 """ 463 """

614 chi = chi.lower().replace(' ','_') 464 chi = chi.lower().replace(' ','_')

615 if chi in ['fidelity', 'weighted_fidelity', 'trace', 'weighted_trace']: chi += '_chi' <> 465 if chi in ['fidelity', 'weighted_fidelity']: chi += '_chi'

616 if chi not in ['fidelity_chi', 'weighted_fidelity_chi', 'trace_chi', 'weighted_trace_chi']: 466 if chi not in ['fidelity_chi', 'weighted_fidelity_chi']:

617 raise ValueError('Figure of merit is not valid') = 467 raise ValueError('Figure of merit is not valid')

618 foldname = chi + '/' 468 foldname = chi + '/'

619 problem = problem.replace(' ', '_') 469 problem = problem.replace(' ', '_')

620 foldname += problem + '/' 470 foldname += problem + '/'

621 foldname += str(qubits) + '_qubits/' 471 foldname += str(qubits) + '_qubits/'

622 if qubits != 1: 472 if qubits != 1:

623 if entanglement.lower()[0] == 'y': 473 if entanglement.lower()[0] == 'y':

624 foldname += 'entangled/' 474 foldname += 'entangled/'

625 if entanglement.lower()[0] == 'n': 475 if entanglement.lower()[0] == 'n':

626 foldname += 'not_entangled/' 476 foldname += 'not_entangled/'

627 477

628 foldname += str(layers) + '_layers/' 478 foldname += str(layers) + '_layers/'

629 foldname += method 479 foldname += method

630 480

631 return foldname 481 return foldname

632 482

633 def name_folder_acc(chi, layers): +-

634 """

635 This function takes information from the SGD_step_by_step function and saves the accuracies for training and

test sets. It is required for studying the overlearning

636 INPUT:

637 -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'

638 -problem: name of the problem, to choose among

639 ['circle', '3 circles', 'hypersphere', 'tricrown', 'non convex', 'crown', 'sphere', 'squares', 'wavy

lines']

640 -qubits: number of qubits, must be an integer

641 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

642 -layers: number of layers, must be an integer. If layers == 1, entanglement is not taken in account

643 -method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize]

644 -name: a name we want for our our files to be save with

645 -accs_train: list or array with the accuracies of the training set for all epochs

646 -accs_test: list or array with the accuracies of the test set for all epochs

647 OUTPUT:

648 -foldname: A name for a folder

649 """

650 chi = chi.lower().replace(' ','_')

651 if chi in ['fidelity', 'weighted_fidelity', 'trace', 'weighted_trace']: chi += '_chi'

652 if chi not in ['fidelity_chi', 'weighted_fidelity_chi', 'trace_chi', 'weighted_trace_chi']:

653 raise ValueError('Figure of merit is not valid')

654 foldname = chi + '/'

655 foldname += str(layers) + '_layers/'

656

657 return foldname

658 = 483

659 484

660 485

Text Compare

1 # coding=utf-8 +-

2 ## = 1 ##

3 #Quantum classifier 2 #Quantum classifier

4 #Sara Aminpour, Mike Banad, Sarah Sharif <> 3 #Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil, J. Ignacio Latorre

5 #September 25th 2024 4 #Code by APS

 5 #Code-checks by ACL

 6 #June 3rd 2019

6 = 7

7 #School of Electrical and Computer Engineering/ Center for Quantum and Technology, University of Oklahoma, Norman, OK 73019

USA,

<> 8

8 ###

9 #IMPORTANT_NOTE:

10 #The code on the left was developed by Sara Aminpour, while the code on the right serves as the reference implementation by

Adrián Pérez-Salinas.

11 #The code on the left has been restructured to handle random data. So some certain sections has been deleted from the

reference code.

12 #Additionally, our code on the left developed to analyze trace distance cost function and linear classification problem 9 #Universitat de Barcelona / Barcelona Supercomputing Center/Institut de Ciències del Cosmos

13 #as well as necessary modification to apply COBYLA, L-BFGS-B, NELDER-MEAD, and SLSQP minimization methods. 10

14 ### = 11 ###

15 12

16 13

17 #This file provides useful tools checking how good our results are 14 #This file provides useful tools checking how good our results are

18 15

19 from circuitery import code_coords, circuit 16 from circuitery import code_coords, circuit

20 from fidelity_minimization import fidelity 17 from fidelity_minimization import fidelity

21 from trace_minimization import trace_dis +-

22 from weighted_fidelity_minimization import mat_fidelities, w_fidelities = 18 from weighted_fidelity_minimization import mat_fidelities, w_fidelities

23 import numpy as np 19 import numpy as np

24 20

25 def _claim(theta, alpha, weight, x, reprs, entanglement, chi): 21 def _claim(theta, alpha, weight, x, reprs, entanglement, chi):

26 """ 22 """

27 This function takes the parameters of a solved problem and one data computes classification of this point 23 This function takes the parameters of a solved problem and one data computes classification of

this point

28 INPUT: 24 INPUT:

29 -theta: initial point for the theta parameters. The shape must be correct (qubits, layers, 3) 25 -theta: initial point for the theta parameters. The shape must be correct (qubits, layers,

3)

30 -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers, dim) 26 -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers,

dim)

31 -weight: set of parameters needed fot the circuit. Must be an array with shape (classes, qubits) 27 -weight: set of parameters needed fot the circuit. Must be an array with shape (classes,

qubits)

32 -x: coordinates of data for testing. 28 -x: coordinates of data for testing.

33 -reprs: variable encoding the label states of the different classes 29 -reprs: variable encoding the label states of the different classes

34 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n' 30 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

35 -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi' 31 -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'

36 OUTPUT: 32 OUTPUT:

37 -y_: the class of x, according to the classifier 33 -y_: the class of x, according to the classifier

38 """ 34 """

39 chi = chi.lower().replace(' ','_') 35 chi = chi.lower().replace(' ','_')

40 if chi in ['fidelity', 'weighted_fidelity','trace']: chi += '_chi' <> 36 if chi in ['fidelity', 'weighted_fidelity']: chi += '_chi'

41 if chi not in ['fidelity_chi', 'weighted_fidelity_chi','trace_chi']: 37 if chi not in ['fidelity_chi', 'weighted_fidelity_chi']:

42 raise ValueError('Figure of merit is not valid') = 38 raise ValueError('Figure of merit is not valid')

43 39

44 if chi == 'fidelity_chi': 40 if chi == 'fidelity_chi':

45 y_ = _claim_fidelity(theta, alpha, x, reprs, entanglement) 41 y_ = _claim_fidelity(theta, alpha, x, reprs, entanglement)

46 42

47 if chi == 'trace_chi': +-

48 y_ = _claim_trace(theta, alpha, x, reprs, entanglement)

49

50 if chi == 'weighted_fidelity_chi': = 43 if chi == 'weighted_fidelity_chi':

51 y_ = _claim_weighted_fidelity(theta, alpha, weight, x, reprs, entanglement) 44 y_ = _claim_weighted_fidelity(theta, alpha, weight, x, reprs, entanglement)

52 <> 45

53 return y_ = 46 return y_

54 47

55 48

56 def _claim_fidelity(theta, alpha, x, reprs, entanglement): 49 def _claim_fidelity(theta, alpha, x, reprs, entanglement):

57 """ 50 """

58 This function is inside _claim for fidelity_chi 51 This function is inside _claim for fidelity_chi

59 INPUT: 52 INPUT:

60 -theta: initial point for the theta parameters. The shape must be correct (qubits, layers, 3) 53 -theta: initial point for the theta parameters. The shape must be correct (qubits, layers,

3)

61 -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers, dim) 54 -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers,

dim)

62 -weight: set of parameters needed fot the circuit. Must be an array with shape (classes, qubits) 55 -weight: set of parameters needed fot the circuit. Must be an array with shape (classes,

qubits)

63 -x: coordinates of data for testing. 56 -x: coordinates of data for testing.

64 -reprs: variable encoding the label states of the different classes 57 -reprs: variable encoding the label states of the different classes

65 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n' 58 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

66 OUTPUT: 59 OUTPUT:

67 the class of x, according to the classifier 60 the class of x, according to the classifier

68 """ 61 """

69 theta_aux = code_coords(theta, alpha, x) 62 theta_aux = code_coords(theta, alpha, x)

70 C = circuit(theta_aux, entanglement) 63 C = circuit(theta_aux, entanglement)

71 Fidelities = [fidelity(r, C.psi) for r in reprs] 64 Fidelities = [fidelity(r, C.psi) for r in reprs]

 -+ 65

72 return np.argmax(Fidelities) = 66 return np.argmax(Fidelities)

73 +-

74

75

76

77 #==

78 #==

79 #==

80 #==

81 #==

82

83 def _claim_trace(theta, alpha, x, reprs, entanglement):

84 """

85 This function is inside _claim for fidelity_chi

86 INPUT:

87 -theta: initial point for the theta parameters. The shape must be correct (qubits, layers, 3)

88 -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers, dim)

89 -weight: set of parameters needed fot the circuit. Must be an array with shape (classes, qubits)

90 -x: coordinates of data for testing.

91 -reprs: variable encoding the label states of the different classes

92 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

93 OUTPUT:

94 the class of x, according to the classifier

95 """

96 theta_aux = code_coords(theta, alpha, x)

97 C = circuit(theta_aux, entanglement)

98 #for r1 in reprs:

99 # Trace=trace_dis(r1, C.r)

100 Trace = [trace_dis(r1, C.r) for r1 in reprs]

101 #print('td=',Trace)

102 #print('reprs[y]=',r1)

103 #print('C.r=',C.r)

104 #print('min=',np.argmin(Trace))

105 return np.argmax(Trace)

106

107

108 #==

109 #==

110 #==

111 #==

112 #==

113

114

115 = 67

116 68

117 def _claim_weighted_fidelity(theta, alpha, weight, x, reprs, entanglement): 69 def _claim_weighted_fidelity(theta, alpha, weight, x, reprs, entanglement):

118 """ 70 """

119 This function is inside _claim for weighted_fidelity_chi 71 This function is inside _claim for weighted_fidelity_chi

120 INPUT: 72 INPUT:

121 -theta: initial point for the theta parameters. The shape must be correct (qubits, layers, 3) 73 -theta: initial point for the theta parameters. The shape must be correct (qubits, layers,

3)

122 -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers, dim) 74 -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers,

dim)

123 -weight: set of parameters needed fot the circuit. Must be an array with shape (classes, qubits) 75 -weight: set of parameters needed fot the circuit. Must be an array with shape (classes,

qubits)

124 -x: coordinates of data for testing. 76 -x: coordinates of data for testing.

125 -reprs: variable encoding the label states of the different classes 77 -reprs: variable encoding the label states of the different classes

126 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n' 78 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

127 OUTPUT: 79 OUTPUT:

128 the class of x, according to the classifier 80 the class of x, according to the classifier

129 """ 81 """

130 theta_aux = code_coords(theta, alpha, x) 82 theta_aux = code_coords(theta, alpha, x)

131 fids = mat_fidelities(theta_aux, weight, reprs, entanglement) 83 fids = mat_fidelities(theta_aux, weight, reprs, entanglement)

132 w_fid = w_fidelities(fids, weight) 84 w_fid = w_fidelities(fids, weight)

133 return np.argmax(w_fid) 85 return np.argmax(w_fid)

134 86

135 def tester(theta, alpha, test_data, reprs, entanglement, chi, weights=None): 87 def tester(theta, alpha, test_data, reprs, entanglement, chi, weights=None):

136 """ 88 """

137 This function takes the parameters of a solved problem and one data computes how many points are correct 89 This function takes the parameters of a solved problem and one data computes how many points

are correct

138 INPUT: 90 INPUT:

139 -theta: initial point for the theta parameters. The shape must be correct (qubits, layers, 3) 91 -theta: initial point for the theta parameters. The shape must be correct (qubits, layers,

3)

140 -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers, dim) 92 -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers,

dim)

141 -weight: set of parameters needed fot the circuit. Must be an array with shape (classes, qubits) 93 -weight: set of parameters needed fot the circuit. Must be an array with shape (classes,

qubits)

142 -test_data: set of data for testing 94 -test_data: set of data for testing

143 -reprs: variable encoding the label states of the different classes 95 -reprs: variable encoding the label states of the different classes

144 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n' 96 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

145 -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi' 97 -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'

146 OUTPUT: 98 OUTPUT:

147 -success normalized 99 -success normalized

148 """ 100 """

149 acc = 0 101 acc = 0

150 for i, d in enumerate(test_data): 102 for i, d in enumerate(test_data):

151 x, y = d 103 x, y = d

152 y_ = _claim(theta, alpha, weights, x, reprs, entanglement, chi) 104 y_ = _claim(theta, alpha, weights, x, reprs, entanglement, chi)

153 if y == y_: 105 if y == y_:

154 acc += 1 106 acc += 1

 -+ 107

155 return acc / len(test_data) = 108 return acc / len(test_data)

156 109

157 110

158 def Accuracy_test(theta, alpha, test_data, reprs, entanglement, chi, weights=None): 111 def Accuracy_test(theta, alpha, test_data, reprs, entanglement, chi, weights=None):

159 """ 112 """

160 This function takes the parameters of a solved problem and one data computes how many points are correct 113 This function takes the parameters of a solved problem and one data computes how many points

are correct

161 INPUT: 114 INPUT:

162 -theta: initial point for the theta parameters. The shape must be correct (qubits, layers, 3) 115 -theta: initial point for the theta parameters. The shape must be correct (qubits, layers,

3)

163 -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers, dim) 116 -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers,

dim)

164 -weight: set of parameters needed fot the circuit. Must be an array with shape (classes, qubits) 117 -weight: set of parameters needed fot the circuit. Must be an array with shape (classes,

qubits)

165 -test_data: set of data for testing 118 -test_data: set of data for testing

166 -reprs: variable encoding the label states of the different classes 119 -reprs: variable encoding the label states of the different classes

167 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n' 120 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

168 -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi' 121 -chi: cost function, to choose between 'fidelity_chi' or 'weighted_fidelity_chi'

169 OUTPUT: 122 OUTPUT:

170 -solutions of the classification 123 -solutions of the classification

171 -success normalized 124 -success normalized

172 """ 125 """

173 dim = len(test_data[0][0]) 126 dim = len(test_data[0][0])

174 solutions = np.zeros((len(test_data), dim + 3)) #data #Esto se podrá mejorar en el futuro 127 solutions = np.zeros((len(test_data), dim + 3)) #data #Esto se podrá mejorar en el futuro

175 for i, d in enumerate(test_data): 128 for i, d in enumerate(test_data):

176 x, y = d 129 x, y = d

177 y_ = _claim(theta, alpha, weights, x, reprs, entanglement, chi) 130 y_ = _claim(theta, alpha, weights, x, reprs, entanglement, chi)

178 solutions[i,:dim] = x 131 solutions[i,:dim] = x

179 solutions[i, -3] = y 132 solutions[i, -3] = y

180 solutions[i, -2] = y_ 133 solutions[i, -2] = y_

181 solutions[i, -1] = int(y == y_) 134 solutions[i, -1] = int(y == y_)

182 135

183 acc = np.sum(solutions[:, -1]) / (i + 1) 136 acc = np.sum(solutions[:, -1]) / (i + 1)

184 137

185 return solutions, acc 138 return solutions, acc

186 139

Text Compare

1 # coding=utf-8 +-

2 ##

3 #Quantum classifier

4 #Sara Aminpour, Mike Banad, Sarah Sharif

5 #September 25th 2024

6

7 #School of Electrical and Computer Engineering/ Center for Quantum and Technology, University of Oklahoma, Norman, OK 73019 USA,

8 ###

9 #IMPORTANT_NOTE:

10 #The code on the left was developed by Sara Aminpour, while the code on the right serves as the reference implementation by Adrián Pérez-Salinas.

11 #The code on the left has been restructured to handle random data. So some certain sections has been deleted from the reference code.

12 #Additionally, our code on the left developed to analyze trace distance cost function and linear classification problem

13 #as well as necessary modification to apply COBYLA, L-BFGS-B, NELDER-MEAD, and SLSQP minimization methods.

14 ###

15

16

17 #This file provides the minimization for the cheap chi square

18 from circuitery import code_coords, circuit

19 import numpy as np

20 import random

21 from scipy.optimize import minimize

22

23 def trace_minimization(theta, alpha, train_data, reprs,

24 entanglement, method,

25 batch_size, eta, epochs):

26 """

27 This function takes the parameters of a problem and computes the optimal parameters for it, using different functions. It uses the trace minimization

28 INPUT:

29 -theta: initial point for the theta parameters. The shape must be correct (qubits, layers, 3)

30 -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers, dim)

31 -train_data: set of data for training. There must be several entries (x,y)

32 -reprs: variable encoding the label states of the different classes

33 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

34 -method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize]

35 -batch_size: size of the batches for stochastic gradient descent, only for 'SGD' method

36 -eta: learning rate, only for 'SGD' method

37 -epochs: number of epochs , only for 'SGD' method

38 OUTPUT:

39 -theta: optimized point for the theta parameters. The shape is correct (qubits, layers, 3)

40 -alpha: optimized point for the alpha parameters. The shape is correct (qubits, layers, dim)

41 -chi: value of the minimization function

42 """

43

44 if method == 'SGD':

45 thetas, alphas, chis = _sgd(theta, alpha, train_data, reprs,

46 entanglement, eta, batch_size, epochs)

47 i = chis.index(max(chis))

48 return thetas[i], alphas[i], chis[i]

49

50 else:

51 params, hypars = _translate_to_scipy(theta, alpha)

52 results = minimize(_scipy_minimizing, params,

53 args = (hypars, train_data, reprs, entanglement),

54 method=method)

55 theta, alpha = _translate_from_scipy(results['x'], hypars)

56

57 return theta, alpha, results['fun']

58

59

60 def _gradient(theta, alpha, data, reprs, entanglement):

61 """

62 This function computes a gradient step for the SGD minimization

63 INPUT:

64 -theta: initial point for the theta parameters. The shape must be correct (qubits, layers, 3)

65 -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers, dim)

66 -data: one data for training. It must be (x,y)

67 -reprs: variable encoding the label states of the different classes

68 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

69

70 OUTPUT:

71 -grad_theta: gradient for the theta parameters. The shape is correct (qubits, layers, 3)

72 -grad_alpha: gradient for the alpha parameters. The shape is correct (qubits, layers, dim)

73 -results['fun']: value of the minimization function

74 """

75

76 x,y = data

77 theta_aux = code_coords(theta, alpha, x)

78 C = circuit(theta_aux, entanglement)

79 prod1 = np.dot(np.conj(reprs[y]), C.psi)

80 prods2 = np.zeros(theta.shape, dtype='complex')

81 (Q, L, I) = theta_aux.shape

82

83 for q in range(Q):

84 for l in range(L):

85 for i in range(I):

86 theta_aux[q, l, i] += np.pi

87 der_c = circuit(theta_aux, entanglement)

88 prods2[q, l, i] = np.dot(reprs[y], np.conj(der_c.psi))

89 theta_aux[q, l, i] -= np.pi

90 grad_theta = np.asfarray(np.real(prod1 * prods2))

91 if len(x) <= 3:

92 dim = len(x)

93 grad_alpha = np.empty((theta.shape[0], theta.shape[1], dim))

94 for q in range(Q):

95 for l in range(L):

96 for i in range(dim):

97 grad_alpha[q, l, i] = x[i] * grad_theta[q, l, i]

98

99 if len(x) == 4:

100 grad_alpha = np.empty((theta.shape[0], theta.shape[1], 4))

101 for q in range(Q):

102 grad_alpha[q, l, 0] = x[0] * grad_theta[q, l, 0]

103 grad_alpha[q, l, 1] = x[1] * grad_theta[q, l, 1]

104 grad_alpha[q, l, 2] = x[2] * grad_theta[q, l, 3]

105 grad_alpha[q, l, 3] = x[3] * grad_theta[q, l, 4]

106

107

108 return grad_theta, grad_alpha

109

110

111 def _train_batch(theta, alpha, batch, reprs, entanglement):

112 """

113 This function computes a gradient step for a complete batch for the SGD minimization

114 INPUT:

115 -theta: initial point for the theta parameters. The shape must be correct (qubits, layers, 3)

116 -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers, dim)

117 -batch: small set of data for training. It must be several (x,y)

118 -reprs: variable encoding the label states of the different classes

119 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

120

121 OUTPUT:

122 -grad_theta: gradient for the theta parameters averaged in batch. The shape is correct (qubits, layers, 3)

123 -grad_alpha: gradient for the alpha parameters averaged in batch. The shape is correct (qubits, layers, dim)

124 """

125 gradient_theta = np.zeros(theta.shape)

126 gradient_alpha = np.zeros(alpha.shape)

127 for d in batch:

128 g_t, g_a = _gradient(theta, alpha, d, reprs, entanglement)

129 gradient_theta += g_t

130 gradient_alpha += g_a

131

132 return gradient_theta / len(batch), gradient_alpha / len(batch)

133

134

135 def _session_sgd(theta, alpha, train_data, reprs, entanglement, eta, batch_size):

136 """

137 This function computes a gradient descent step for all batches

138 INPUT:

139 -theta: initial point for the theta parameters. The shape must be correct (qubits, layers, 3)

140 -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers, dim)

141 -train_data: set of data for training. There must be several entries (x,y)

142 -reprs: variable encoding the label states of the different classes

143 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

144 -eta: learning rate, only for 'SGD' method

145 -batch_size: size of the batches for stochastic gradient descent, only for 'SGD' method

146

147 OUTPUT:

148 -theta: updated point for the theta parameters. The shape is correct (qubits, layers, 3)

149 -alpha: updated point for the alpha parameters. The shape is correct (qubits, layers, dim)

150 -Av_chi_square: value of the minimization function

151 """

152 batches = [train_data[k:k + batch_size] for k in range(0,

153 len(train_data), batch_size)]

154 for batch in batches:

155 gradient_theta_batch, gradient_alpha_batch = _train_batch(

156 theta, alpha, batch, reprs, entanglement)

157 theta += eta * gradient_theta_batch #This sign is very important, it is the difference between maximizing or minimizing.

158 alpha += eta * gradient_alpha_batch

159

160 return theta, alpha, Av_Tr(theta, alpha, train_data, reprs, entanglement)

161

162

163

164 def _sgd(theta, alpha, train_data, reprs, entanglement, eta, batch_size, epochs):

165 """

166 This function completes the whole SGD strategy

167 INPUT:

168 -theta: initial point for the theta parameters. The shape must be correct (qubits, layers, 3)

169 -alpha: initial point for the alpha parameters. The shape must be correct (qubits, layers, dim)

170 -train_data: set of data for training. There must be several entries (x,y)

171 -reprs: variable encoding the label states of the different classes

172 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

173 -method: minimization method, to choose among ['SGD', another valid for function scipy.optimize.minimize]

174 -batch_size: size of the batches for stochastic gradient descent, only for 'SGD' method

175 -eta: learning rate, only for 'SGD' method

176 -epochs: number of epochs , only for 'SGD' method

177 OUTPUT:

178 -thetas: optimized points for the theta parameters for all epochs. The shape is correct (qubits, layers, 3)

179 -alphas: optimized points for the theta parameters for all epochs. The shape is correct (qubits, layers, dim)

180 -chis: value of the minimization function at every step

181 """

182 thetas = [np.empty(theta.shape)] * epochs

183 alphas = [np.empty(alpha.shape)] * epochs

184 chis = [0] * epochs

185 for e in range(epochs):

186 random.shuffle(train_data)

187 theta_, alpha_, chi_ = _session_sgd(theta, alpha, train_data, reprs,

188 entanglement, eta, batch_size)

189 thetas[e] = theta_

190 alphas[e] = alpha_

191 chis[e] = chi_ #Storage for solution

192

193 theta = theta_

194 alpha = alpha_ #Next step initialization

195

196 return thetas, alphas, chis

197

198

199

200 def _translate_to_scipy(theta, alpha):

201 """

202 This function is a intermediate step for translating theta and alpha to a single variable for scipy.optimize.minimize

203 """

204 qubits = theta.shape[0]

205 layers = theta.shape[1]

206 dim = alpha.shape[-1]

207

208 return np.concatenate((theta.flatten(), alpha.flatten())), (qubits, layers, dim)

209

210

211 def _translate_from_scipy(params, hypars):

212 """

213 This function is a intermediate step for getting theta and alpha from a single variable for scipy.optimize.minimize

214 """

215 (qubits, layers, dim) = hypars

216 if dim <= 3:

217 theta = params[:qubits * layers * 3]. reshape(qubits, layers, 3)

218 alpha = params[qubits * layers * 3: qubits * layers * 3 + qubits * layers * dim].reshape(qubits, layers, dim)

219

220 if dim == 4:

221 theta = params[:qubits * layers * 6]. reshape(qubits, layers, 6)

222 alpha = params[qubits * layers * 6: qubits * layers * 6 + qubits * layers * dim].reshape(qubits, layers, dim)

223 return theta, alpha

224

225

226

227 #==

228 #Sara

229 def _scipy_minimizing(params, hypars, train_data, reprs, entanglement):

230 """

231 This function returns the chi^2 function for using scipy

232 INPUT:

233 -params: theta and alpha inside the same variable

234 -hypars: hyperparameters needed to rebuild theta and alpha

235 -train_data: training dataset for the classifier

236 -reprs: variable encoding the label states of the different classes

237 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

238 OUTPUT:

239 - -Av_Tr, which is the function we want to minimize

240 """

241 theta, alpha = _translate_from_scipy(params, hypars)

242 return -Av_Tr(theta, alpha, train_data, reprs, entanglement)

243

244

245 #Sara

246 #==

247

248

249 def trace_dis(r,s):

250 """

251 This function returns the trace distance of two pure states

252 INPUT:

253 -2 vectors of pure states of the same dimension

254 OUTPUT:

255 -trace distance

256 """

257 dist = np.linalg.norm(r - s)

258 td=dist/2

259

260 return td

261

262 #==

263 def _Tr(theta, alpha, data, reprs, entanglement): #Chi for one point

264 """

265 This function compute chi^2 for only one point

266 INPUT:

267 -theta: set of parameters needed for the circuit. Must be an array with shape (qubits, layers, 3)

268 -alpha: set of parameters needed for the circuit. Must be an array with shape (qubits, layers, dimension of data)

269 -data: one data for training. It must be (x,y)

270 -reprs: variable encoding the label states of the different classes

271 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

272 OUTPUT:

273 -chi^2 for data

274 """

275 #

276 x, y = data

277 #print('data=',data)

278 theta_aux = code_coords(theta, alpha, x)

279 C = circuit(theta_aux, entanglement)

280

281

282 '''if y==0:

283 s=np.array([0,0,-1])

284

285 elif y==1:

286 s=np.array([0,0,1])

287

288 elif y==2:

289 s=np.array([1,0,0])

290

291 elif y==3:

292 s=np.array([-1,0,0])

293

294 elif y==4:

295 s=np.array([0,1,0])

296

297 elif y==5:

298 s=np.array([0,-1,0])'''

299

300 ans = trace_dis(reprs[y], C.r)

301 return ans

302

303 #==

304 #Sara

305 def Av_Tr(theta, alpha, train_data, reprs, entanglement): #Chi in average

306 """

307 This function compute chi^2 for only one point

308 INPUT:

309 -theta: set of parameters needed for the circuit. Must be an array with shape (qubits, layers, 3)

310 -alpha: set of parameters needed for the circuit. Must be an array with shape (qubits, layers, dimension of data)

311 -data: one data for training. It must be (x,y)

312 -reprs: variable encoding the label states of the different classes

313 -entanglement: whether there is entanglement or not in the Ansätze, just 'y'/'n'

314 OUTPUT:

315 -Averaged chi^2 for data

316 """

317 Av_Tr = 0

318 for d in train_data:

319 Av_Tr += _Tr(theta, alpha, d, reprs, entanglement)

320

321 return Av_Tr / len(train_data)

322 #Sara

323 #==

324

325

326

327

328

References

1 Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E. & Latorre, J. I. Data re-uploading for a universal

quantum classifier. Quantum 4, 226 (2020).

2 Schuld, M., Sinayskiy, I. & Petruccione, F. An introduction to quantum machine learning. Contemporary

Physics 56, 172-185 (2015).

3 Schuld, M., Bocharov, A., Svore, K. M. & Wiebe, N. Circuit-centric quantum classifiers. Physical Review A

101, 032308 (2020).

4 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. nature 521, 436-444 (2015).

5 Li, W. & Deng, D.-L. Recent advances for quantum classifiers. Science China Physics, Mechanics &

Astronomy 65, 220301 (2022).

6 Helstrom, C. W. Quantum detection and estimation theory. Journal of Statistical Physics 1, 231-252 (1969).

7 Nielsen, M. A. & Chuang, I. L. Quantum computation and quantum information. (Cambridge university

press, 2010).

8 Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural networks 4, 251-257

(1991).

9 Cerezo, M., Verdon, G., Huang, H.-Y., Cincio, L. & Coles, P. J. Challenges and opportunities in quantum

machine learning. Nature Computational Science 2, 567-576 (2022).

10 Liu, D. C. & Nocedal, J. On the limited memory BFGS method for large scale optimization. Mathematical

programming 45, 503-528 (1989).

11 Zhu, C., Byrd, R. H., Lu, P. & Nocedal, J. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale

bound-constrained optimization. ACM Transactions on mathematical software (TOMS) 23, 550-560 (1997).

12 Liu, Y. et al. On centroidal Voronoi tessellation—energy smoothness and fast computation. ACM

Transactions on Graphics (ToG) 28, 1-17 (2009).

13 Wang, L., Zhou, K., Yu, Y. & Guo, B. Vector solid textures. ACM Transactions on Graphics (TOG) 29, 1-8

(2010).

14 Byrd, R. H., Lu, P., Nocedal, J. & Zhu, C. A limited memory algorithm for bound constrained optimization.

SIAM Journal on scientific computing 16, 1190-1208 (1995).

15 Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature methods

17, 261-272 (2020).

16 Bonet-Monroig, X. et al. Performance comparison of optimization methods on variational quantum

algorithms. Physical Review A 107, 032407 (2023).

17 Pellow-Jarman, A., Sinayskiy, I., Pillay, A. & Petruccione, F. A comparison of various classical optimizers

for a variational quantum linear solver. Quantum Information Processing 20, 202 (2021).

18 Nelder, J. A. & Mead, R. A simplex method for function minimization. The computer journal 7, 308-313

(1965).

19 Gao, F. & Han, L. Implementing the Nelder-Mead simplex algorithm with adaptive parameters.

Computational Optimization and Applications 51, 259-277 (2012).

20 Abel, S., Blance, A. & Spannowsky, M. Quantum optimization of complex systems with a quantum

annealer. Physical Review A 106, 042607 (2022).

21 Lockwood, O. An empirical review of optimization techniques for quantum variational circuits. arXiv

preprint arXiv:2202.01389 (2022).

22 Kraft, D. A software package for sequential quadratic programming. Forschungsbericht- Deutsche

Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt (1988).

