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Table S2. Sensitivity analysis results across three different assumptions (ρ = 0.3, 0.6, and 0.9) for summary effect sizes, both before and after addressing influential cases.
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	0.005
	71.0%
	
	0.51
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	0.56
	[0.22, 0.89]
	0.001

	Superior longitudinal fasciculus
	FA
	Before
	
	-0.26
	[-0.57, 0.05]
	0.106
	
	-0.24
	[-0.57, 0.10]
	0.166
	92.1%
	
	-0.22
	[-0.58, 0.14]
	0.229

	
	
	After
	
	-0.41
	[-0.76, -0.05]
	0.026
	
	-0.40
	[-0.75, -0.05]
	0.027
	83.1%
	
	-0.39
	[-0.74, -0.04]
	0.028

	
	MD
	Before
	
	0.70
	[0.21, 1.19]
	0.005
	
	0.69
	[0.22, 1.15]
	0.004
	83.0%
	
	0.68
	[0.23, 1.12]
	0.003

	
	
	After
	
	0.67
	[0.22, 1.11]
	0.003
	
	0.66
	[0.23, 1.09]
	0.003
	75.0%
	
	0.65
	[0.23, 1.07]
	0.002

	Uncinate fasciculus
	FA
	Before
	
	-0.52
	[-0.84, -0.20]
	0.001
	
	-0.52
	[-0.83, -0.20]
	0.001
	78.0%
	
	-0.51
	[-0.81, -0.21]
	< .001

	
	
	After
	
	-0.48
	[-0.80, -0.17]
	0.003
	
	-0.48
	[-0.79, -0.17]
	0.002
	77.2%
	
	-0.48
	[-0.78, -0.18]
	0.002

	
	MD
	Before
	
	0.32
	[-0.03, 0.67]
	0.072
	
	0.31
	[-0.05, 0.67]
	0.089
	76.0%
	
	0.30
	[-0.07, 0.66]
	0.111

	
	
	After
	
	0.30
	[-0.09, 0.70]
	0.133
	
	0.30
	[-0.10, 0.70]
	0.144
	70.0%
	
	0.29
	[-0.12, 0.69]
	0.162


Note. Negative effect size = a lower value in ASD compared to TD; positive effect size = a higher value in ASD compared to TD. - = not applicable; FA = fractional anisotropy; MD = mean diffusivity.



	
	
	



Table S3. An explanation of moderator selection.
	Moderator
	Explanation

	Age
	Research suggests that patterns of white matter differences in ASD are not static but evolve throughout an individual's lifespan [1, 2, 3, 4, 5]. Specifically, evidence from cross-sectional investigations [2, 3, 5] and a longitudinal study [4] reveals age-related differences in white matter microstructure between ASD and TD, with these group-level differences varying across childhood, adolescence, and adulthood, with distinct developmental patterns observed in ASD. These studies collectively emphasize the relevance of age in moderating white matter microstructural characteristics in ASD. 

	Sex
	Research suggests that ASD traits manifest differently between sexes [6], with autistic males exhibiting reduced white matter connectivity, particularly in frontal and some language-related tracts, while such differences were not observed in autistic females [7], suggesting sex-specific neuroanatomical patterns. Studies also suggest that neuroanatomical features in ASD differ by sex, with minimal overlap in affected regions [8, 9], suggesting that the biological foundations of ASD in females may involve some differences in developmental processes compared to those in males. Furthermore, meta-analytic evidence suggests that sex contributes to variability in white matter alterations [10], highlighting the importance of considering sex as a moderating variable.

	IQ
	IQ has often been considered in autism research, particularly in understanding cognitive profiles and functional outcomes [11]. Recent neuroimaging research suggests that individuals with ASD who have intellectual impairments exhibit more pronounced white matter differences, particularly in tracts related to executive function, processing speed, and language [12]. However, meta-analytic findings revealed no moderating effect of IQ on white matter differences in ASD in tracts associated with language [10]. These mixed findings necessitate further investigation of IQ as a moderating factor across a broader array of white matter tracts. However, due to insufficient data for many of the tracts, particularly for the MD metric, the IQ moderation effect was only partially examined.

	Laterality
	Laterality was selected to examine potential lateralized microstructural differences in ASD, as individuals with ASD have demonstrated atypical hemispheric asymmetries across several brain regions [13, 14, 15]. Structural studies have reported reduced or reversed asymmetry in the frontal, temporal, and subcortical areas that are commonly associated with functions such as communication, cognition, and social behavior [15, 16]. Additionally, given that key speech and language processes are functionally lateralized, particularly through a left-dominant dorsal stream [17], collectively, examining the role of laterality in white matter differences is warranted.
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