Supporting Information

Scalable Reductive Deuteration of (Hetero)Aryl Chlorides with D_2O

Yu-Qiu Guan^a, Tian-Zhang Wang^a, Muhammad Bilal^a, Xin-Ru Tan^a, Lutz Ackermann^{b*} and Yu-Feng Liang^{a*}

"School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China,

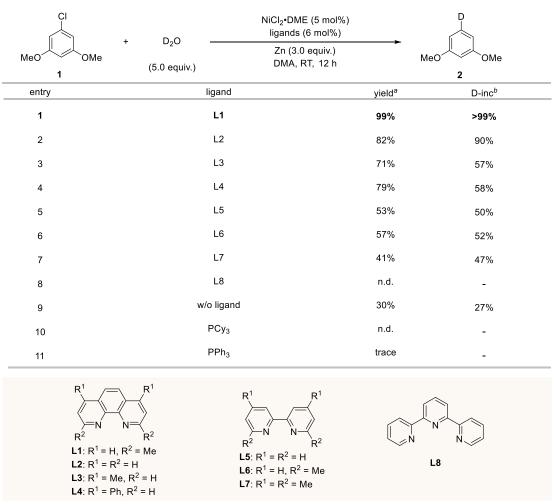
 $\hbox{\it E-mail: yfliang@sdu.edu.cn}$

^bInstitut für Organische und Biomolekulare Chemie, Georg-August-Universität-Göttingen, Tammannstraße 2, 37077 Göttingen, Germany, E-mail: Lutz.Ackermann@chemie.uni-goettingen.de

Table of Contents

1. General remarks	S2
2. Optimization of reaction conditions	S3
3. General procedure	S6
4. Characterization data	S8
5. General procedure for the synthesis of aryl chlorides	S46
6. Mechanistic studies	S47
7. NMR Spectra	S63
8. References	S153

1. General remarks


¹H NMR, ¹³C NMR data were obtained on AVANCE III Bruker 400 or 500 MHz nuclear resonance spectrometers unless otherwise noted. Chemical shifts (in ppm) were referenced to tetramethylsilane (TMS) ($\delta = 0.00$ ppm) in CDCl₃ or dimethyl sulfoxide $(\delta = 2.50 \text{ ppm})$ in DMSO- d_6 as an internal standard. The data of ¹H NMR was reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet and br = broad), coupling constant (J values) in Hz and integration. 13 C NMR spectra were obtained by the same NMR spectrometers and were calibrated with CDCl₃ (δ = 77.00 ppm) or DMSO- d_6 ($\delta = 39.50$ ppm). Flash chromatography was performed using 300-400 mesh silica gel with the indicated eluent according to standard techniques. Analytical thin-layer chromatography (TLC) was performed on pre-coated, glassbacked silica gel plates. Analysis of crude reaction mixture was done on an Agilent 7890 GC System with an Agilent 5975 Mass Selective Detector. Visualization of the developed chromatogram was performed by UV absorbance (254 nm) unless otherwise noted. High-resolution mass spectral (HRMS) data were recorded on Bruker APEX IV Fourier transform ion cyclotron resonance mass spectrometer using electrospray ionization (ESI) mode.

2. Optimization of reaction conditions

Table S1 | Optimization of catalysts

Reaction conditions: **1** (0.2 mmol), D_2O (2.0 mmol), catalyst (5 mol %), 2,9-di-Me-1,10-phen (6 mol %), Zn (3.0 equiv.) and DMA (1.0 mL) at room temperature for 12 h under N_2 . ^aDetermined by GC–MS analysis of the crude reaction mixture using benzophenone as an internal standard. ^bDeuterium incorporation was determined by ¹H NMR analysis.

Table S2 | Optimization of ligands

Reaction conditions: **1** (0.2 mmol), D_2O (2.0 mmol), $NiCl_2 \cdot DME$ (5 mol %), ligand (6 mol %), Zn (3.0 equiv.) and DMA (1.0 mL) at room temperature for 12 h under N_2 . "Determined by GC–MS analysis of the crude reaction mixture using benzophenone as an internal standard. ^bDeuterium incorporation was determined by ¹H NMR analysis.

Table S3 | Optimization of solvents

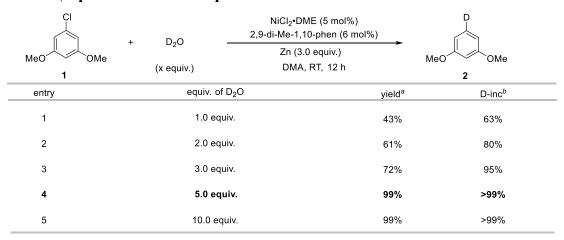

Reaction conditions: **1** (0.2 mmol), D₂O (2.0 mmol), NiCl₂·DME (5 mol %), 2,9-di-Me-1,10-phen (6 mol %), Zn (3.0 equiv.) and solvent (1.0 mL) at room temperature for 12 h under N₂. ^aDetermined by GC–MS analysis of the crude reaction mixture using benzophenone as an internal standard. ^bDeuterium incorporation was determined by ¹H NMR analysis.

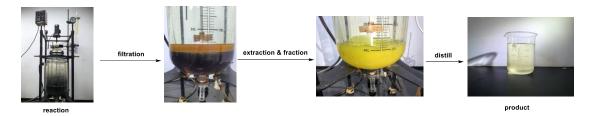
Table S4 | Optimization of temperature

CI	+ D ₂ O -	NiCl ₂ •DME (5 mol%) 2,9-di-Me-1,10-phen (6 mol Zn (3.0 equiv.)	%) ➤	D
MeO OMe	(5.0 equiv.)	DMA, Temp., 12 h		MeO OMe
entry	Temp.		yield ^a	D-inc ^b
1	0 °C		78%	92%
2	RT (25 °C)		99%	>99%
3	50 °C		81%	>99%
4	80 °C		65%	>99%
5	100 °C		23%	88%

Reaction conditions: **1** (0.2 mmol), D₂O (2.0 mmol), NiCl₂·DME (5 mol %), 2,9-di-Me-1,10-phen (6 mol %), Zn (3.0 equiv.) and DMA (1.0 mL) at different temperature for 12 h under N₂. ^aDetermined by GC–MS analysis of the crude reaction mixture using benzophenone as an internal standard. ^bDeuterium incorporation was determined by ¹H NMR analysis.

Table S5 | Optimization of the equivalents of D2O

Reaction conditions: 1 (0.2 mmol), D₂O (1.0-10.0 equiv.), NiCl₂·DME (5 mol %), 2,9-di-Me-1,10-phen (6 mol %), Zn (3.0 equiv.) and DMA (1.0 mL) at room temperature for 12 h under N₂. ^aDetermined by GC–MS analysis of the crude reaction mixture using benzophenone as an internal standard. ^bDeuterium incorporation was determined by ¹H NMR analysis.


3. General procedure

General procedure for the nickel-catalyzed deuteration: To a 10 mL Schlenk tube was added sequentially NiCl₂·DME (2.20 mg, 0.010 mmol), 2,9-dimethyl-1,10-phenanthroline (2.50 mg, 0.012 mmol), Zn powder (40.0 mg, 0.6 mmol). The vessel was evacuated and filled with argon (three times), DMA (0.50 mL) was added *via* syringe and the mixture was stirred at room temperature for 10 min. The deuterated water (20.0 – 40.0 mg, 1.0 – 2.0 mmol) was added, followed by the addition of aryl chloride (0.2 mmol) in one portion. DMA (0.50 mL) was subsequently added *via* syringe. The resulting solution was stirred for 12 h at room temperature. After this time, the crude reaction mixture was diluted with ethyl acetate (10 mL) and washed with water (2.0 mL × 3). The organic layer was dried over Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography.

General procedure for the kilogram synthesis of benzen-2-d-amine: To a 50 L reaction kettle was added sequentially NiCl₂·DME (164.79 g, 0.75 mol), 2,9-dimethyl-1,10-phenanthroline (187.43 g, 0.90 mol), Zn powder (2.93 kg, 45.0 mol). The vessel was evacuated and filled with argon. DMA (8.0 L) was added and the mixture was stirred at room temperature for 10 min. The deuterated water (3.0 kg, 150 mol) was added, followed by the addition of 2-chloroaniline (1913.55 g, 15.0 mol) in one portion. DMA (4.0 L) was subsequently added. The resulting solution was stirred for 12 h at room temperature. After this time, the crude reaction mixture was diluted with ethyl acetate (5.0 L) and washed with water (5.0 L), the additional zinc powder and solid byproduct was removed by filtrated. The organic layer was dried over Na₂SO₄, filtered, and concentrated. The residue was purified by reduced pressure distillation, yielded desired product (1016.7 g, 72%) as a yellow oil. More than 99% Deuterium incorporation was determined by ¹H NMR.

General procedure for the kilogram synthesis of 4,4,5,5-tetramethyl-2-(phenyl-2-d)-1,3,2-dioxaborolane: To a 50 L reaction kettle was added sequentially NiCl₂·DME (65.92 g, 0.3 mol), 2,9-dimethyl-1,10-phenanthroline (74.97 g, 0.36 mol), Zn powder (1.18 kg, 18.0 mol). The vessel was evacuated and filled with argon. DMA (4.0 L) was added and the mixture was stirred at room temperature for 10 min. The deuterated water (1.2 kg, 60 mol) was added, followed by the addition of 2-(2-chlorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1431.12 g, 6.0 mol) in one portion. DMA (1.0 L) was subsequently added. The resulting solution was stirred for 12 h at room temperature. After this time, the crude reaction mixture was diluted with ethyl acetate (5.0 L) and washed with water (5.0 L), the additional zinc powder and solid byproduct was removed

by filtrated. The organic layer was dried over Na₂SO₄, filtered, and concentrated. The residue was purified by reduced pressure distillation, yielded desired product (1045.91 g, 85%) as a yellow oil. More than 99% Deuterium incorporation was determined by ¹H NMR.

4. Characterization data

1,3-Dimethoxybenzene-5-*d* (2)¹. The representative procedure was followed using 1-chloro-3,5-dimethoxybenzene (34.52 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 100 : 1) yielded **2** (27.5 mg, 99 %) as a colorless oil. More than 99 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 6.52 – 6.51 (m, 2H), 6.48 – 6.47 (m, 1H), 3.79 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 160.78, 129.58 (t, J_{C-D} = 27.5 Hz), 105.97, 100.35, 55.22; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₈H₁₀DO₂ 140.0816, found: 140.0809.

Naphthalene-1-d (3)¹. The representative procedure was followed using 1-chloronaphthalene (32.52 mg, 0.20 mmol) and D_2O (18 μ L, 1.0 mmol). Isolation by

column chromatography (*n*-hexane) yielded **3** (23.5 mg, 91 %) as a colorless oil. More than 99 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.85 – 7.83 (m, 3H), 7.48 – 7.46 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 133.41, 133.35, 127.85, 127.81, 127.53 (t, J_{C-D} = 24.5 Hz), 125.79, 125.67; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₀H₈D 130.0762, found: 130.0768.

Naphthalene-2-*d* (4)². The representative procedure was followed using 2-chloronaphthalene (32.52 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane) yielded 4 (22.7 mg, 88 %) as a colorless oil. 99 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.85 – 7.83 (m, 4H), 7.49 – 7.47 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 133.42, 127.86, 127.74, 125.79, 125.69, 125.51 (t, J_{C-D} = 24.5 Hz); HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₀H₈D 130.0762, found: 130.0766.

1,1'-Biphenyl-4-*d* (**5**)². The representative procedure was followed using 4-chloro-1,1'-biphenyl (37.73 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane) yielded **5** (27.9 mg, 90 %) as a white solid. 98 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (**500 MHz, CDCl₃**) δ 7.52 – 7.50 (m, 4H), 7.37 – 7.34 (m, 4H), 7.28 – 7.24 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 141.22, 128.72, 128.61, 127.22, 127.14, 126.93 (t, J_{C-D} = 24.5 Hz); HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₂H₁₀D 156.0918, found: 156.0911.

1,1'-Biphenyl-2-*d* (6)². The representative procedure was followed using 2-chloro-1,1'-biphenyl (37.73 mg, 0.20 mmol) and D₂O (18 μ L, 1.0 mmol). Isolation by column chromatography (*n*-hexane) yielded **6** (24.8 mg, 80 %) as a white solid. More than 99 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.52 – 7.50 (m, 3H), 7.37 – 7.34 (m, 4H), 7.28 – 7.24 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 141.19, 141.14, 128.73, 128.62, 127.22, 127.14, 126.84 (t, J_{C-D} = 23.5 Hz); HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₂H₁₀D 156.0918, found: 156.0914.

Phenanthrene-9-*d* (7)². The representative procedure was followed using 9-chlorophenanthrene (42.54 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane) yielded 7 (26.9 mg, 75 %) as a white solid. 96 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 8.67 (d, J = 8.0 Hz, 2H), 7.87 (d, J = 8.0 Hz, 2H), 7.72 (s, 1H), 7.63 (t, J = 7.0 Hz, 2H), 7.58 (t, J = 7.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 132.02, 131.96, 130.27, 128.54, 128.48, 126.76, 126.57 (t, J_{C-D} = 24.0 Hz), 126.52, 122.63; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₄H₁₀D 180.0918, found: 180.0916.

2-Methoxynaphthalene-1-*d* (**8**)³. The representative procedure was followed using 1-chloro-2-methoxynaphthalene (38.53 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 100 : 1) yielded **8** (30.6 mg, 96 %) as a white solid. More than 99 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (**500 MHz, CDCl₃)** δ 7.68 – 7.63 (m, 3H), 7.36 – 7.32 (m, 1H), 7.26 – 7.22 (m, 1H), 7.07 – 7.05 (m, 1H), 3.81 (s, 3H); ¹³C NMR (**125 MHz, CDCl₃)** δ 157.46, 134.43, 129.33, 128.86, 127.61, 126.63, 126.32, 123.53, 118.69, 105.32 (t,

 $J_{C-D} = 24.0 \text{ Hz}$), 55.22; **HRMS** (ESI) m/z ([M+H]⁺) Calcd. for C₁₁H₁₀DO 160.0867, found: 160.0869.

2-Methoxynaphthalene-6-*d* (9)². The representative procedure was followed using 2-chloro-6-methoxynaphthalene (38.53 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 100 : 1) yielded **9** (28.7 mg, 90 %) as a white solid. 95 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.66 – 7.62 (m, 3H), 7.34 (d, J = 7.5 Hz, 1H), 7.25 – 7.22 (m, 0.05H), 7.06 – 7.03 (m, 2H), 3.80 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.54, 134.54, 129.34, 128.91, 127.49, 126.69, 126.22, 123.54, 123.26 (t, J_{C-D} = 24.5 Hz), 118.67, 105.70, 55.21; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₁H₁₀DO 160.0867, found: 160.0871.

1-(Benzyloxy)benzene-4-*d* (**10**)¹. The representative procedure was followed using 1-(benzyloxy)-4-chlorobenzene (43.74 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 50 : 1) yielded **10** (30.4 mg, 82 %) as a colorless oil. 90 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (**500 MHz, CDCl₃) δ** 7.36 – 7.35 (m, 2H), 7.31 – 7.28 (m, 2H), 7.25 – 7.24 (m, 1H), 7.22 – 7.20 (m, 2H), 6.91 – 6.89 (m, 2H), 4.98 (s, 2H); ¹³C NMR (**125 MHz, CDCl₃) δ** 158.73, 137.02, 129.34, 128.54, 127.90, 127.45, 120.62 (t, *J*_{C-D} = 24.5 Hz), 114.78, 69.85; **HRMS** (ESI) m/z ([M+H]⁺) Calcd. for C₁₃H₁₂DO 186.1024, found: 186.1031.

1-Phenoxybenzene-4-*d* (11)¹. The representative procedure was followed using 1-chloro-4-phenoxybenzene (40.93 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 50 : 1) yielded 11 (27.7 mg, 81 %) as a colorless oil. 95 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.27 – 7.23 (m, 4H), 7.03 – 7.00 (m, 1.05H), 6.94 – 6.92 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 157.23, 129.70, 129.59, 123.18, 122.91 (t, J_{C-D} = 24.5 Hz), 118.86; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₂H₁₀DO 172.0867, found: 172.0870.

1-(Phenyl-4-*d***)ethan-1-one** (**12**)⁴. The representative procedure was followed using 1-(4-chlorophenyl)ethan-1-one (30.92 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 100 : 1) yielded **12** (20.8 mg, 86 %) as a colorless oil. More than 99 % Deuterium incorporation was determined by 1 H NMR. 1 H NMR (**500 MHz, CDCl₃)** δ 7.97 – 7.96 (m, 2H), 7.48 – 7.46 (m, 2H), 2.61(s, 3H); 13 C NMR (**125 MHz, CDCl₃)** δ 198.14, 137.07, 132.77 (t, J_{C-D} = 24.5 Hz), 128.42, 128.27, 26.60; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₈H₈DO 122.0711, found: 122.0713.

1-(Phenyl-2-d)ethan-1-one (13)⁴. The representative procedure was followed using 1-(4-chlorophenyl)ethan-1-one (30.92 mg, 0.20 mmol) and D₂O (18 μ L, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 100 : 1) yielded **13** (16.7 mg,

69 %) as a colorless oil. 95 % Deuterium incorporation was determined by ${}^{1}H$ NMR. ${}^{1}H$ NMR (500 MHz, CDCl₃) δ 7.97 – 7.96 (m, 1.05H), 7.59 – 7.56 (m, 1H), 7.49 – 7.45 (m, 2H), 2.61(s, 2.41H); ${}^{13}C$ NMR (125 MHz, CDCl₃) δ 198.13, 137.04, 133.08, 128.55, 128.43, 128.26, 128.01 (t, J_{C-D} = 24.5 Hz), 26.60; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₈H₈DO 122.0711, found: 122.07018.

1-(3-Methylphenyl-4-*d***)ethan-1-one (14)**. The representative procedure was followed using 1-(4-chloro-3-methylphenyl)ethan-1-one (33.72 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 100 : 1) yielded **14** (25.4 mg, 94 %) as a colorless oil. More than 99 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.69 – 7.66 (m, 2H), 7.27 – 7.25 (m, 1H), 2.50 (s, 3H), 2.32 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 198.33, 138.16, 137.03, 133.45 (t, J_{C-D} = 24.5 Hz), 128.70, 128.24, 125.49, 26.60, 21.19; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₉H₁₀DO 136.0867, found: 136.0870.

Phenyl(phenyl-3-*d*)methanone (15). The representative procedure was followed using (3-chlorophenyl)(phenyl)methanone (43.33 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 100 : 1) yielded **15** (27.9 mg, 76 %) as a white solid. 84 % Deuterium incorporation was determined by 1 H NMR. 1 H NMR (500 MHz, CDCl₃) δ 7.75 – 7.72 (m, 4H), 7.53 – 7.50 (m, 2H),7.43 – 7.30 (m, 3.16H); 13 C NMR (125 MHz, CDCl₃) δ 196.73, 137.57, 132.39, 132.28, 130.03, 129.93, 128.25, 127.96 (t, J_{C-D} = 24.5 Hz); HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₃H₁₀DO 184.0867, found: 184.0873.

Phenyl(phenyl-4-*d*)methanone (16)⁵. The representative procedure was followed using (4-chlorophenyl)(phenyl)methanone (43.33 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 100 : 1) yielded 16 (34.4 mg, 94 %) as a white solid. 96 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.74 – 7.73 (m, 4H), 7.54 – 7.50 (m, 1.04H), 7.43 – 7.40 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 196.74, 137.57, 132.39, 132.09 (t, $J_{C-D} = 25.0 \text{ Hz}$), 130.04, 128.25, 128.14; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₃H₁₀DO 184.0867, found: 184.0869.

2,3-Dihydro-1*H***-inden-1-one-5**-*d* (17). The representative procedure was followed using 5-chloro-2,3-dihydro-1*H*-inden-1-one (33.32 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 30 : 1) yielded **17** (24.5 mg, 92 %) as a white solid. 91 % Deuterium incorporation was determined by 1 H NMR. 1 H NMR (500 MHz, CDCl₃) δ 7.76 (d, J = 7.5 Hz, 1H), 7.59 (t, J = 7.5 Hz, 0.09H), 7.48 (s, 1H), 7.37 (d, J = 7.5 Hz, 1H), 3.16 – 3.14 (m, 2H), 2.71 – 2.58 (m, 2H); 13 C NMR (125 MHz, CDCl₃) δ 207.02, 155.12, 137.06, 134.25 (t, J_{C-D} = 24.0 Hz), 127.13, 126.55, 123.68, 36.19, 25.77; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₉H₈DO 134.0711, found: 134.0716.

2,3-Dihydro-1*H***-inden-1-one-5-***d* (18). The representative procedure was followed using 5-chloro-2,3-dihydro-1*H*-inden-1-one (36.1 mg, 0.20 mmol) and D_2O (18 μL , 1.0

mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 30 : 1) yielded **18** (20.9 mg, 71 %) as a white solid. 89 % Deuterium incorporation was determined by 1 H NMR. 1 H NMR (**500 MHz, CDCl3**) δ 7.95 (d, J = 7.5 Hz, 1H), 7.38 (t, J = 7.5 Hz, 0.11H), 7.21 (d, J = 7.5 Hz, 1H), 7.16 (s, 1H), 2.88 (t, J = 6.0 Hz, 2H), 2.57 (t, J = 6.0 Hz, 2H), 2.07 – 2.04 (m, 2H); 13 C NMR (**125 MHz, CDCl3**) δ 198.27, 144.40, 133.30, 132.99 (t, J_{C-D} = 24.0 Hz), 132.53, 128.58, 127.06, 126.41, 39.08, 29.62, 23.21, 23.12; **HRMS** (ESI) m/z ([M+H] $^{+}$) Calcd. for C₁₀H₁₀DO 148.0867, found: 148.0861.

Benzaldehyde-4-*d* (19)⁶. The representative procedure was followed using 4-chlorobenzaldehyde (28.11 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 20 : 1) yielded 19 (18.6 mg, 87 %) as a colorless oil. 99 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 10.03 (s, 1H), 7.89 (d, J = 8.0 Hz, 2H), 7.55 (d, J = 8.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 192.38, 136.39, 134.45 (t, J_{C-D} = 25.0 Hz), 129.73, 128.87; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₇H₆DO 108.0554, found: 108.0552.

2-Naphthaldehyde-6-*d* **(20)**. The representative procedure was followed using 6-chloro-2-naphthaldehyde (38.13 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 20 : 1) yielded **20** (20.4 mg, 65 %) as a white solid. 99 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR **(500 MHz, CDCl₃) δ** 10.10 (s, 1H), 8.28 (s, 1H), 7.94 (d, J = 8.5 Hz, 1H), 7.89 – 7.88 (m, 2H), 7.84 (s, 1H), 7.52 (d, J = 8.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 192.22, 136.46, 134.52, 134.13, 132.66, 129.52, 129.10, 127.96, 126.98, 122.78; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₁H₈DO 158.0711, found: 158.0710.

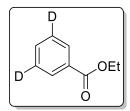
Methyl 2-(phenyl-4-*d*)acetate (21). The representative procedure was followed using methyl 2-(4-chlorophenyl)acetate (36.92 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 100 : 1) yielded **21** (25.1 mg, 83 %) as a green-yellow oil. 99 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.24 (d, J = 8.0 Hz, 2H), 7.19 (s, J = 8.0 Hz, 2H), 3.60 (s, 3H), 3.55 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 171.96, 133.91, 129.18, 128.40, 126.75 (t, J_{C-D} = 24.5 Hz), 51.97, 41.14; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₉H₁₀DO₂ 152.0816, found: 152.0817.

Dimethyl isophthalate-5-*d* (22)⁷. The representative procedure was followed using dimethyl 5-chloroisophthalate (45.70 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 50 : 1) yielded 22 (29.3 mg, 75 %) as a colorless oil. 96 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 8.61 – 8.60 (m, 1H), 8.15 – 8.14 (m, 2H), 7.45 (t, J = 7.5 Hz, 0.04 H), 3.87 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 166.16, 133.63, 130.62, 130.46, 128.28 (t, J_{C-D} = 27.0 Hz), 52.32; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₀H₁₀DO₄ 196.0715, found: 196.0719.

Methyl benzoate-2-d (23)8. The representative procedure was followed using methyl

2-chlorobenzoate (34.12 mg, 0.20 mmol) and D₂O (18 μ L, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 100 : 1) yielded **23** (23.3 mg, 85 %) as a colorless oil. 98 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.99 – 7.96 (m, 1H), 7.50 – 7.46 (m, 1H), 7.38 – 7.35 (m, 2H), 3.84 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 167.06, 132.87, 130.01, 129.51, 129.24 (t, J_{C-D} = 24.5 Hz), 128.31, 128.19, 52.06; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₈H₈DO₂ 138.0660, found: 138.0668.

Methyl 2-methylbenzoate-3-*d* (24). The representative procedure was followed using methyl 3-chloro-2-methylbenzoate (36.8 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 100 : 1) yielded 24 (27.2 mg, 90 %) as a colorless oil. More than 99 % Deuterium incorporation was determined by 1 H NMR. 1 H NMR (500 MHz, CDCl₃) δ 7.82 (d, J = 7.5 Hz, 1H), 7.30 (d, J = 7.5 Hz, 1H), 7.15 (t, J = 7.5 Hz, 1H) ,3.80 (s, 3H), 2.51 (s, 3H); 13 C NMR (125 MHz, CDCl₃) δ 167.00, 140.03, 131.77, 131.29 (t, J_{C-D} = 24.5 Hz), 130.50, 129.50, 125.61, 51.71, 21.58; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₉H₁₀DO₂ 152.0816, found: 152.0824.


$$\begin{bmatrix}
0 & D \\
D & D
\end{bmatrix}$$

Chroman-4-one-3,3,6-d₃ (25). The representative procedure was followed using 6-chlorochroman-4-one (36.52 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 50 : 1) yielded **25** (22.9 mg, 77 %) as a colorless oil. 95 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.81 (s, 1H), 7.39 (d, J = 7.5 Hz, 1H), 6.94 (t, J = 7.5 Hz, 0.05H), 6.89 (d, J = 8.5 Hz, 1H) ,4.45 (s, 2H), 2.74 – 2.71 (m, 0.32H); ¹³C NMR (125 MHz, CDCl₃) δ 191.83, 161.81, 135.81, 126.94, 121.28, 121.02 (t, J_{C-D} = 24.5 Hz), 117.81,

66.85, 37.30 (hexet, $J_{C-D} = 20.0 \text{ Hz}$); **HRMS** (ESI) m/z ([M+H]⁺) Calcd. for C₉H₆D₃O₂ 152.0785, found: 152.0779.

Ethyl 3-(phenyl-4-*d*)propanoate (26). The representative procedure was followed using ethyl 3-(4-chlorophenyl)propanoate (42.5 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 50 : 1) yielded 26 (29.4 mg, 82 %) as a colorless oil. More than 99 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.20 (d, J = 7.5 Hz, 2H), 7.12 (d, J = 7.5 Hz, 2H) ,4.04 (q, J = 7.0 Hz, 2H), 2.87 (t, J = 7.5 Hz, 2H), 2.54 (t, J = 7.5 Hz, 2H), 1.15 (t, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.83, 140.51, 128.29, 128.22, 125.86 (t, J_{C-D} = 24.5 Hz), 60.33, 35.89, 30.92, 14.14; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₁H₁₄DO₂ 180.1129, found: 180.1130.

Isobenzofuran-1(3*H*)-one-6-*d* (27). The representative procedure was followed using 6-chloroisobenzofuran-1(3*H*)-one (33.7 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 50 : 1) yielded 27 (21.8 mg, 81 %) as a colorless oil. More than 99 % Deuterium incorporation was determined by 1 H NMR. 1 H NMR (500 MHz, CDCl₃) δ 7.85 (s, 1H), 7.62 (d, J = 7.5 Hz, 1H) , 7.44 (d, J = 7.5 Hz, 1H), 5.25 (s, 2H); 13 C NMR (125 MHz, CDCl₃) δ 171.03, 146.47, 133.85, 128.68 (t, J_{C-D} = 24.5 Hz), 125.56, 122.05, 69.60; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₈H₆DO₂ 136.0503, found: 136.0504.

Ethyl benzoate-3,5- d_2 (28). The representative procedure was followed using methyl ethyl 3,5-dichlorobenzoate (43.80 mg, 0.20 mmol) and D₂O (36 μL, 2.0 mmol). Isolation by column chromatography (n-hexane : EtOAc = 100 : 1) yielded 28 (24.4 mg, 80 %) as a yellow oil. 99 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 8.51 (s, 2H), 7.55 (s, 1H), 4.38 (q, J = 7.0 Hz, 2H), 1.40 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 166.60, 132.54, 130.46, 129.38, 127.97 (t, J_{C-D} = 24.0Hz), 60.91, 14.30; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₉H₉D₂O₂ 153.0879, found: 153.0886.

4-(Phenyl-4-*d***)morpholine (29)**⁹. The representative procedure was followed using 4-(4-chlorophenyl)morpholine (46.34 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 10 : 1) yielded **29** (29.6 mg, 90 %) as a colorless oil. 99 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.29 (d, J = 8.5 Hz, 2H), 6.92 (d, J = 8.5 Hz, 2H), 3.87 – 3.85 (m, 4H), 3.16 – 3.15 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 151.23, 129.04, 119.75 (t, J_{C-D} = 24.5 Hz), 115.67, 66.91, 49.34; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₀H₁₃DNO 165.1133, found: 165.1130.

Benzonitrile-4-d (30)¹⁰. The representative procedure was followed using 4-chlorobenzonitrile (27.51 mg, 0.20 mmol) and D₂O (18 μ L, 1.0 mmol). Isolation by

column chromatography (*n*-hexane : EtOAc = 20 : 1) yielded **30** (16.9 mg, 81 %) as a colorless oil. 90 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (**500 MHz, CDCl3**) δ 7.67 (d, J = 8.0 Hz, 2H), 7.61 (d, J = 8.0 Hz, 0.1H), 7.48 (d, J = 8.0 Hz, 2H); ¹³C NMR (**125 MHz, CDCl3**) δ 132.64 (t, J_{C-D} = 24.5 Hz), 132.13, 128.98, 118.83, 112.43; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₇H₅DN 105.0558, found: 105.0564.

N,*N*-dimethylaniline-4-*d* (31)¹¹. The representative procedure was followed using 4-chloro-*N*,*N*-dimethylaniline (31.13 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 50 : 1) yielded 31 (21.7 mg, 89 %) as a colorless oil. 99 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.24 (m, 2H), 6.75 (m, 2H), 2.94 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 150.58, 128.92, 116.63, 112.64, 40.62; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₈H₁₁DN 123.1027, found: 123.1020.

1-(Methylsulfonyl)benzene-4-*d* (32)¹⁰. The representative procedure was followed using 1-chloro-4-(methylsulfonyl)benzene (38.13 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 50 : 1) yielded 32 (27.4 mg, 87 %) as an orange oil. 96 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, J = 7.5 Hz, 2H), 7.51 (d, J = 7.5 Hz, 2H), 3.00 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 140.38, 133.37 (t, J_{C-D} = 24.5 Hz), 129.20, 127.26, 44.42; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₇H₈DO₂S 158.0381, found: 158.0384.

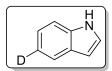
N-(**Phenyl-4**-*d*)acetamide (33)¹¹. The representative procedure was followed using *N*-(4-chlorophenyl)acetamide (33.92 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 5 : 1) yielded **33** (22.3 mg, 82 %) as a white solid. 99 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.51 (br, 0.89H), 7.42 (d, J = 7.5 Hz, 2H), 7.23 (t, J = 7.5 Hz, 2H), 2.09 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.49, 137.89, 128.80, 123.98 (t, J_{C-D} = 24.0 Hz), 119.92, 24.50; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₈H₉DNO 137.0820, found: 137.0816.

N-(Phenyl-4-*d*)benzamide (34)¹¹. The representative procedure was followed using *N*-(4-chlorophenyl)benzamide (46.34 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 5 : 1) yielded 34 (33.7 mg, 85 %) as a white solid. 90 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.26 (s, 1H), 7.97 (m, 2H), 7.79 (d, J = 8.0 Hz, 2H), 7.58 (t, J = 8.0 Hz, 1H), 7.52 (t, J = 8.0 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.10 (t, J = 8.0 Hz, 0.1H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 166.06, 139.67, 135.50, 132.03, 129.02 (t, J_{C-D} = 25.0 Hz), 128.99, 128.87, 128.15, 120.85; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₃H₁₁DNO 199.0976, found: 199.0970.

N-(Phenyl-2-*d*)benzamide (35). The representative procedure was followed using *N*-(2-chlorophenyl)benzamide (46.34 mg, 0.20 mmol) and D_2O (18 μL , 1.0 mmol).

Isolation by column chromatography (*n*-hexane : EtOAc = 5 : 1) yielded **35** (31.7 mg, 80 %) as a white solid. 99 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (**500 MHz, DMSO-***d*₆) δ 10.25 (s, 1H), 7.98 – 7.96 (m, 2H), 7.71 – 7.79 (m, 1H), 7.61 – 7.58 (m, 1H), 7.55 – 7.52 (m, 2H), 7.38 – 7.35 (m, 2H), 7.12 – 7.09 (m, 1H); ¹³C NMR (**125 MHz, DMSO-***d*₆) δ 166.02, 139.58, 135.47, 131.97, 129.04, 128.94, 128.82, 128.11, 124.09, 120.81, 120.55 (t, $J_{C-D} = 25.0 \text{ Hz}$); **HRMS** (ESI) m/z ([M+H]⁺) Calcd. for C₁₃H₁₁DNO 199.0976, found: 199.0979.

Phenyl-2-*d* benzoate (36). The representative procedure was followed using 2-chlorophenyl benzoate (46.53 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 5 : 1) yielded 36 (35.5 mg, 89 %) as a white solid. More than 99% Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 8.21 – 8.19 (m, 2H), 7.62 – 7.59 (m, 1H), 7.50 – 7.47 (m, 2H), 7.43 – 7.39 (m, 2H), 7.27 – 7.23 (m, 1H), 7.22 – 7.20 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 165.07, 150.88, 133.48, 130.08, 129.54, 129.40, 129.30, 128.49, 125.79, 121.63, 121.37 (t, J_{C-D} = 25.0 Hz); HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₃H₁₀DO₂ 200.0816, found: 200.0821.

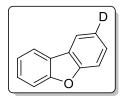

$$\begin{bmatrix} D & H \\ N & O \end{bmatrix}$$

Benzo[*d*]oxazol-2(3*H*)-one-5-*d* (37). The representative procedure was followed using 5-chlorobenzo[*d*]oxazol-2(3*H*)-one (33.91 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 5 : 1) yielded 37 (18.7 mg, 69 %) as a white solid. 99 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, DMSO-*d*₆) δ 11.84 (s, 1H), 7.32 – 7.27 (m, 1H), 7.16 – 7.09 (m, 2H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 154.70, 142.57, 132.15, 128.21, 121.97, 111.26,

110.10 (t, $J_{C-D} = 22.0 \text{ Hz}$); **HRMS** (ESI) m/z ([M+H]⁺) Calcd. for C₇H₅DNO₂ 137.0456, found: 137.0454.

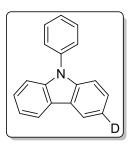
1-Methyl-1*H*-indole-5-*d* (38)¹². The representative procedure was followed using 5-chloro-1-methyl-1*H*-indole (33.12 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 30 : 1) yielded 38 (23.8 mg, 90 %) as a green-yellow liquid. More than 99 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.56 – 7.54 (m, 1H), 7.25 – 7.23 (m, 1H), 7.15 – 7.13 (m, 1H), 6.96 (d, J = 7.0 Hz, 1H), 6.41 (d, J = 7.0 Hz, 1H), 3.70 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 136.65, 128.72, 128.42, 121.33, 120.70, 118.94 (t, J_{C-D} = 24.5Hz), 109.12, 100.84, 32.76; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₉H₉DN 133.0871, found: 133.0877.

1*H*-Indole-4-*d* (39)¹². The representative procedure was followed using 4-chloro-1*H*-indole (30.32 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 20 : 1) yielded 39 (16.5 mg, 70 %) as a yellow oil. 85 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.81 (br, 0.92H), 7.56 (d, J = 8.0 Hz, 0.15H), 7.22 (d, J = 8.0 Hz, 1H), 7.12 – 7.09 (m, 1H), 7.04 – 7.03 (m, 1H), 7.01 – 6.99 (m, 1H), 6.45 – 6.44 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 135.68, 127.66, 124.11, 121.90, 120.66, 120.37 (t, $J_{C-D} = 25.5$ Hz), 119.74, 119.62; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₈H₇DN 119.0714, found: 119.0723.



1*H***-Indole-5-***d* **(40)**¹². The representative procedure was followed using 5-chloro-1*H*-indole (30.32 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 20 : 1) yielded **40** (17.0 mg, 72 %) as a yellow oil. 87 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.83 (br, 0.93H), 7.56 (s, 1H) 7.23 (d, J = 8.0 Hz, 1H), 7.10 (d, J = 8.0 Hz, 1H), 7.05 – 7.04 (m, 0.13H), 7.02 – 7.00 (m, 1H), 6.55 – 6.54 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 135.69, 127.64, 124.10, 121.64 (t, $J_{C-D} = 25.0$ Hz), 120.67, 119.04, 110.88, 102.52; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₈H₇DN 119.0714, found: 119.0721.

tert-Butyl 1*H*-indole-1-carboxylate-4-*d* (41)¹². The representative procedure was followed using *tert*-butyl 4-chloro-1*H*-indole-1-carboxylate (50.34 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 20 : 1) yielded 41 (31.4 mg, 72 %) as a yellow oil. More than 99 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 8.08 – 8.06 (m, 1H), 7.52 (d, J = 4.0 Hz, 1H) 7.24 (t, J = 8.0 Hz, 1H), 7.15 (d, J = 8.0 Hz, 1H), 6.50 (d, J = 4.0 Hz, 1H), 1.60 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 149.81, 135.17, 130.46, 125.87, 124.15, 122.48, 120.61 (t, $J_{C-D} = 24.0$ Hz), 115.13, 107.21, 83.61, 28.21; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₃H₁₅DNO₂ 219.1238, found: 219.1239.


3-Methoxypyridine-6-d (42)¹². The representative procedure was followed using 2-

chloro-5-methoxypyridine (28.71 mg, 0.20 mmol) and D₂O (18 μ L, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 20 : 1) yielded **42** (14.7 mg, 67 %) as a yellow oil. 99 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 8.35 (s, 1H), 7.27 – 7.20 (m, 2H), 3.87 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.67, 141.77 (t, J_{C-D} = 27.5 Hz), 137.56, 123.63, 120.42, 55.47; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₆H₇DNO 111.0663, found: 111.0667.

Dibenzo[*b,d*]furan-2-*d* (43)¹³. The representative procedure was followed using 2-chlorodibenzo[*b,d*]furan (40.53 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 100 : 1) yielded 43 (31.1 mg, 92 %) as a white solid. 97 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.94 – 7.92 (m, 2H), 7.56 (d, J = 8.5 Hz, 2H), 7.45 – 7.42 (m, 2H), 7.32 (t, J = 8.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 156.14, 127.08, 126.97, 124.19, 122.64, 122.36 (t, J_{C-D} = 24.5 Hz), 120.60, 120.49, 111.62; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₂H₈DO 170.0711, found: 170.0710.

9*H*-Thioxanthen-9-one-2-*d* (44). The representative procedure was followed using 2-chloro-9*H*-thioxanthen-9-one (49.34 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : DCM = 1:1) yielded 44 (38.4 mg, 90 %) as a white solid. 90 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 8.63 – 8.61 (m, 2H), 7.63 – 7.56 (m, 4H), 7.50 – 7.46 (m, 1.1H); ¹³C NMR (125 MHz, CDCl₃) δ 179.92, 137.23, 132.22, 132.12, 129.82, 129.71, 129.18, 126.26, 125.98 (t, J_{C-D} = 25.5 Hz), 125.94; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₃H₈DOS 214.0431, found: 214.0427.

9-Phenyl-9*H***-carbazole-3-***d* **(45)¹⁴. The representative procedure was followed using 3-chloro-9-phenyl-9***H***-carbazole (55.55 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (***n***-hexane : EtOAc = 200 : 1) yielded 45** (23.3 mg, 90 %) as a white solid. More than 99% Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 8.11 – 8.10 (m, 2H), 7.51 – 7.50 (m, 4H), 7.36 – 7.35 (m, 5H), 7.25 – 7.22 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 140.86, 137.67, 129.77, 127.34, 127.06, 125.87, 125.76, 123.32, 120.24, 120.13, 119.86, 119.59 (t, $J_{C-D} = 24.0 \text{ Hz}$), 109.70; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₈H₁₃DN 245.1184, found: 245.1180.

Phen-4-*d***-ol** (46)⁶. The representative procedure was followed using 4-iodophenol (43.99 mg, 0.20 mmol) and D₂O (36 μL, 2.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 50 : 1) yielded 46 (17.5 mg, 92 %) as a white solid. 85 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.22 (d, J = 8.0 Hz, 2H), 6.92 (t, J = 8.0 Hz, 0.15H), 6.83 (d, J = 8.0 Hz, 2H), 5.76 – 5.71 (br, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 155.29, 129.54, 120.79, 120.52 (t, J_{C-D} = 25.5 Hz), 115.32; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₆H₆DO 96.0554, found: 96.0559.

Phen-2-*d***-ol** (47). The representative procedure was followed using 2-iodophenol (43.99 mg, 0.20 mmol) and D₂O (36 μL, 2.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 50 : 1) yielded 47 (17.7 mg, 93 %) as a white solid. More than 99 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.24 – 7.21 (m, 2H), 6.94 – 6.90 (m, 1H), 6.84 – 6.82 (m, 1H), 5.67 (br, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 155.32, 129.63, 129.54, 120.75, 115.33, 115.06 (t, J_{C-D} = 24.0 Hz); HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₆H₆DO 96.0554, found: 96.0552.

Methyl 4-hydroxybenzoate-3-*d* (48). The representative procedure was followed using methyl 4-hydroxy-3-iodobenzoate (55.61 mg, 0.20 mmol) and D₂O (36 μL, 2.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 5 : 1) yielded 48 (26.6 mg, 87 %) as a colorless liquid. More than 99% Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.88 – 7. 86 (m, 2H), 6.83 – 6.81 (m, 1H), 6.73 (s, 1H), 3.82 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 167.58, 160.40, 131.93, 131.84, 122.09, 115.31, 115.05 (t, $J_{C-D} = 24.5$ Hz), 52.09; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₈H₈DO₃ 154.0609, found: 154.0616.

3-Hydroxybenzaldehyde-2-*d* (**49**). The representative procedure was followed using 2-bromo-3-hydroxybenzaldehyde (40.00 mg, 0.20 mmol) and D₂O (36 μL, 2.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 20 : 1) yielded **49** (20.9 mg, 85 %) as a colorless oil. 99 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (**500 MHz, CDCl₃)** δ 9.96 (s, 1H), 7.46 – 7.41 (m, 2H), 7.13 (m, 1H), 5.79 (s, 1H); ¹³C NMR (**125 MHz, CDCl₃)** δ 192.27, 156.38, 137.81, 130.35, 123.35,

122.01, 114.77; **HRMS** (ESI) m/z ([M+H]⁺) Calcd. for C₇H₆DO₂ 124.0503, found: 124.0500.

4-Chlorophen-2-*d***-ol** (**50**). The representative procedure was followed using 4-chloro-2-iodophenol (50.69 mg, 0.20 mmol) and D₂O (36 μL, 2.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 5 : 1) yielded **50** (23.3 mg, 90 %) as a yellow liquid. More than 99% Deuterium incorporation was determined by 1 H NMR. 1 H NMR (**500 MHz, CDCl₃)** δ 7.19 – 7.18 (m, 2H), 6.78 – 6.76 (m, 1H), 5.14 (br, 1H); 13 C NMR (**125 MHz, CDCl₃)** δ 154.28, 129.48, 129.40, 125.48, 116.72, 116.45 (t, J_{C-D} = 24.5 Hz); **HRMS** (ESI) m/z ([M+H]⁺) Calcd. for C₆H₅DClO 130.0164, found: 130.0170.

4-Bromophen-2-*d***-ol** (**51**). The representative procedure was followed using 4-bromo-2-iodophenol (59.78 mg, 0.20 mmol) and D₂O (36 μL, 2.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 5 : 1) yielded **51** (21.9 mg, 63 %) as a pink liquid. More than 99% Deuterium incorporation was determined by 1 H NMR. 1 H NMR (**500** MHz, CDCl₃) δ 7.27 – 7.24 (m, 2H), 6.66 – 6.64 (m, 1H), 5.01 (br, 1H); 13 C NMR (**125** MHz, CDCl₃) δ 154.57, 132.44, 132.36, 117.19, 116.92 (t, J_{C-D} = 24.0 Hz), 112.84; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₆H₅DBrO 173.9659, found: 173.9663.

Phen-2,4,6-d₃-ol (52)¹⁵. The representative procedure was followed using 2,4,6-triiodophenol (94.36 mg, 0.20 mmol) and D₂O (108 μ L, 6.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 5 : 1) yielded 52 (13.6 mg, 70 %) as yellow liquid.

Series of deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.16 (s, 2H), 6.85 (t, J = 7.5 Hz, 0.11H), 6.76 (d, J = 7.5 Hz, 0.15H) 5.18 (br, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 155.35, 129.42, 120.71, 120.45 (t, J_{C-D} = 25.0 Hz), 115.28, 115.00 (t, J_{C-D} = 25.0 Hz); HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₆H₄D₃O 98.0680, found: 98.0693.

$$NH_2$$

Benzen-4-*d*-amine (53)⁶. The representative procedure was followed using 4-chloroaniline (25.52 mg, 0.20 mmol) and D₂O (36 μL, 2.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 5 : 1) yielded **53** (16.3 mg, 87 %) as a white solid. 80 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.17 – 7.14 (m, 2H), 6.76 (t, J = 7.0 Hz, 0.2H), 6.70 – 6.68 (m, 2H), 3.61 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 146.27, 129.26, 129.14, 118.29 (t, J_{C-D} = 24.5 Hz), 115.08; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₆H₇DN 95.0714, found: 95.0711.

$$D \longrightarrow NH_2$$

Benzen-3-*d*-amine (54). The representative procedure was followed using 3-chloroaniline (25.52 mg, 0.20 mmol) and D₂O (36 μL, 2.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 5 : 1) yielded 54 (15.4 mg, 82 %) as a white solid. 74 % Deuterium incorporation was determined by 1 H NMR. 1 H NMR (500 MHz, CDCl₃) δ 7.15 (t, J = 7.5 Hz, 1.26H), 6.75 (d, J = 7.5 Hz, 1H), 6.69 – 6.67 (m, 2H), 3.44 (s, 2H); 13 C NMR (125 MHz, CDCl₃) δ 146.30, 129.23, 128.95 (t, $J_{C-D} = 23.5$ Hz), 118.40, 115.07, 114.97; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₆H₇DN 95.0714, found: 95.0720.

$$NH_2$$

Benzen-2-*d*-amine (55)⁶. The representative procedure was followed using 2-chloroaniline (25.52 mg, 0.20 mmol) and D₂O (36 μL, 2.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 5 : 1) yielded 55 (16.5 mg, 88 %) as a white solid. More than 99 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.10 – 7.06 (m, 2H), 6.68 (t, J= 7.0 Hz, 1H), 6.66 – 6.60 (m, 1H), 3.37 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 146.26, 129.24, 129.14, 118.53, 115.09, 114.80 (t, J_{C-D} = 24.0 Hz); HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₆H₇DN 95.0714, found: 95.0715.

Naphthalen-1-*d*-2-amine (56). The representative procedure was followed using 1-chloronaphthalen-2-amine (35.41 mg, 0.20 mmol) and D₂O (36 μL, 2.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 5 : 1) yielded **56** (20.4 mg, 71 %) as a white solid. 75 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.67 (d, J = 8.0 Hz, 1H), 7.64 (d, J = 8.0 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.37 – 7.33 (m, 1H), 7.23 – 7.19 (m, 1H), 6.96 – 6.95 (m, 0.25H), 6.91 (d, J = 8.0 Hz, 1H), 3.76 (br, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 144.05, 134.89, 129.14, 127.95, 127.67, 126.29, 125.76, 122.42, 118.19, 108.56, 108.25 (t, J_{C-D} = 24.0 Hz); **HRMS** (ESI) m/z ([M+H]⁺) Calcd. for C₁₀H₉DN 145.0871, found: 145.0879.

$$H_2N$$
 D NH_2

Benzene-2-*d*-1,4-diamine (57). The representative procedure was followed using 2-chlorobenzene-1,4-diamine (28.41 mg, 0.20 mmol) and D_2O (36 μL , 2.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 1 : 1) yielded 57 (19.4 mg,

89 %) as a white solid. 54 % Deuterium incorporation was determined by ${}^{1}H$ NMR. ${}^{1}H$ NMR (500 MHz, CDCl₃) δ 6.92 (t, J = 8.0 Hz, 1H), 6.12 – 6.10 (m, 2H), 6.01 (t, J = 8.0 Hz, 0.46H), 3.45 (br, 4H); ${}^{13}C$ NMR (125 MHz, CDCl₃) δ 147.45, 130.11, 105.92, 101.90; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₆H₈DN₂ 110.0823, found: 110.0830.

$$\begin{bmatrix} NH_2 \\ D \end{bmatrix}$$

4-Chlorobenzen-2-*d***-amine (58)**. The representative procedure was followed using 4-chloro-2-iodoaniline (50.69 mg, 0.20 mmol) and D₂O (36 μL, 2.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 5 : 1) yielded **58** (18.2 mg, 71 %) as a yellow liquid. More than 99% Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.03 – 7.00 (m, 2H), 6.53 – 6.51 (m, 1H), 3.48 (br, 2H); 13 C NMR (125 MHz, CDCl₃) δ 144.85, 129.06, 128.97, 123.11, 116.20, 115.91 (t, $J_{C-D} = 24.0 \text{ Hz}$); HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₆H₆DClN 129.0324, found: 129.0321.

$$\begin{bmatrix} NH_2 \\ D \end{bmatrix}$$

4-Bromobenzen-2-*d***-amine (59)**. The representative procedure was followed using 4-bromo-2-iodoaniline (59.58 mg, 0.20 mmol) and D₂O (36 μL, 2.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 5 : 1) yielded **59** (25.6 mg, 74 %) as a colorless liquid. More than 99% Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.16 – 7.14 (m, 2H), 6.48 – 6.46 (m, 1H), 3.48 (br, 2H); 13 C NMR (125 MHz, CDCl₃) δ 145.31, 131.94, 131.85, 116.66, 116.38 (t, J_{C-D} = 24.0 Hz), 110.12; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₆H₆DBrN 172.9819, found: 172.9826.

Benzen-2,6-*d***2-amine** (**60**)¹⁶. The representative procedure was followed using 2,6-dichloroaniline (32.41 mg, 0.20 mmol) and D₂O (72 μL, 4.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 5 : 1) yielded **60** (13.9 mg, 73 %) as an orange liquid. 93% Deuterium incorporation was determined by ¹H NMR. ¹H NMR (**500 MHz, CDCl₃**) δ 7.08 (d, J = 7.5 Hz, 2H), 6.68 (t, J = 7.5 Hz, 1H), 6.61 (d, J = 7.5 Hz, 0.15H), 3.54 (br, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 146.19, 129.13, 118.51, 115.07, 114.79 (t, J_{C-D} = 24.0 Hz); HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₆H₆D₂N 96.0777, found: 96.0785.

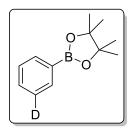
$$D$$
 NH_2
 D

2,6-*d***2-4-Methylaniline** (**61**)¹⁷. The representative procedure was followed using 2,6-dichloro-4-methylaniline (35.21 mg, 0.20 mmol) and D₂O (72 μL, 4.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 5 : 1) yielded **61** (16.4 mg, 75 %) as an orange liquid. 96% Deuterium incorporation was determined by ¹H NMR. ¹H NMR (**500 MHz, CDCl₃)** δ 6.88 (s, 2H), 6.52 (d, J = 8.5 Hz, 0.08H), 3.36 (br, 2H), 2.16 (s, 3H); ¹³C NMR (**125 MHz, CDCl₃)** δ 143.63, 129.58, 127.71, 115.21, 114.93 (t, J_{C-D} = 23.5 Hz), 20.41; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₇H₈D₂N 110.0933, found: 110.0932.

4,6-*d***2-2-Methylaniline (62)**. The representative procedure was followed using 2,4-dichloro-6-methylaniline (35.21 mg, 0.20 mmol) and D₂O (72 μ L, 4.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 5 : 1) yielded **62** (14.8 mg, 68 %) as an orange liquid. 92% Deuterium incorporation was determined by ¹H NMR. ¹H NMR

(500 MHz, CDCl₃) δ 6.97 – 6.98 (m, 2H), 6.65 – 6.59 (m, 0.13H), 3.50 (br, 2H), 2.09 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 144.43, 130.27, 126.68, 122.26, 118.56, 118.30 (t, J = 24.5 Hz), 114.86, 114.58 (t, J_{C-D} = 24.5 Hz), 17.29; **HRMS** (ESI) m/z ([M+H]⁺) Calcd. for C₇H₈D₂N 110.0933, found: 110.0943.

$$D$$
 NH_2
 D


Benzen-2,4,6-*d***3-amine** (**63**)¹⁵. The representative procedure was followed using 2,4,6-trichloroaniline (39.29 mg, 0.20 mmol) and D₂O (108 μL, 6.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 5 : 1) yielded **63** (15.5 mg, 87 %) as yellow liquid. Series of deuterium incorporation was determined by ¹H NMR. ¹H NMR (**500 MHz, CDCl3**) δ 7.14 (s, 2H), 6.75 (t, J = 7.5 Hz, 0.13H), 6.67 (d, J = 7.5 Hz, 0.21H) 3.62 (br, 2H); ¹³C NMR (125 MHz, CDCl3) δ 146.20, 129.00, 118.47, 118.20 (t, $J_{C-D} = 25.0$ Hz), 115.04, 114.76 (t, $J_{C-D} = 24.0$ Hz); HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₆H₅D₃N 97.0840, found: 97.0847.

2-(2-Fluorophenyl-4-*d***)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane** (64). The representative procedure was followed using 2-(4-chloro-2-fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (51.32 mg, 0.20 mmol) and D₂O (36 μL, 2.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 50 : 1) yielded **64** (37.0 mg, 83 %) as colorless liquid. 99% Deuterium incorporation was determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (t, J = 7.0 Hz, 1H), 7.06 (d, J = 7.0 Hz, 1H), 6.95 (d, J = 7.0 Hz, 1H), 1.29 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 167.17 (d, J = 249.0 Hz), 136.80 (d, J = 8.0 Hz), 132.91 (t, J_{C-D} = 28.0 Hz), 123.44 (d, J = 3.0 Hz), 115.12

(d, J = 24.0 Hz), 83.86, 24.79; ¹⁹**F NMR (301 MHz, CDCl₃) \delta** -102.626; **HRMS** (ESI) m/z ([M+H]⁺) Calcd. for C₁₂H₁₆DBFO₂ 224.1363, found: 224.1359.

2-(3-Methoxyphenyl-4-*d***)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane** (65). The representative procedure was followed using 2-(4-chloro-3-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (53.71 mg, 0.20 mmol) and D₂O (36 μL, 2.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 20 : 1) yielded **65** (41.8 mg, 89 %) as orange liquid. 87% Deuterium incorporation was determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.32 (m, 1H), 7.25 – 7.20 (m, 2H), 6.94 – 6.91 (m, 0.13H), 3.75 (s, 3H), 1.29 (s, 12H); ¹³C NMR (125 MHz, CDCl₃) δ 158.96, 128.78, 127.12, 118.72, 117.51 (t, J_{C-D} = 23.0 Hz), 83.76, 55.16, 24.81; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₃H₁₉DBO₃ 236.1563, found: 236.1561.

4,4,5,5-Tetramethyl-2-(phenyl-2-*d***)-1,3,2-dioxaborolane** (66)¹⁸. The representative procedure was followed using 2-(2-chlorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (47.70 mg, 0.20 mmol) and D₂O (36 μL, 2.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 50 : 1) yielded **66** (36.9 mg, 90 %) as yellow liquid. More than 99% Deuterium incorporation was determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 7.5 Hz, 1H), 7.37 (t, J = 7.5 Hz, 1H), 7.30 – 7.27 (m, 2H), 1.27 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 134.70, 134.41 (t, J_{C-D} = 24.0 Hz), 131.22, 127.68, 127.56, 83.73, 24.84; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₂H₁₇DBO₂ 206.1457, found: 206.1451.

4,4,5,5-Tetramethyl-2-(phenyl-3-*d***)-1,3,2-dioxaborolane** (**67**)¹⁸. The representative procedure was followed using 2-(3-chlorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (47.70 mg, 0.20 mmol) and D₂O (36 μL, 2.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 50 : 1) yielded **67** (35.7 mg, 87 %) as yellow liquid. 89% Deuterium incorporation was determined by ¹H NMR. ¹H NMR (**400 MHz, CDCl₃**) δ 7.75 – 7.73 (m, 2H), 7.39 – 7.37 (m, 1H), 7.29 (t, J = 7.5 Hz, 1.11H), 1.27 (s, 12H); ¹³C NMR (**100 MHz, CDCl₃**) δ 134.72, 134.60, 131.22, 131.12, 127.68, 127.38 (t, J_{C-D} = 24.0 Hz), 83.73, 24.85; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₂H₁₇DBO₂ 206.1457, found: 206.1462.

4,4,5,5-Tetramethyl-2-(phenyl-4-*d***)-1,3,2-dioxaborolane** (**68**)¹⁸. The representative procedure was followed using 2-(4-chlorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (47.70 mg, 0.20 mmol) and D₂O (36 μL, 2.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 20 : 1) yielded **68** (37.7 mg, 92 %) as a colorless liquid. More than 99 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (**500 MHz, CDCl₃**) δ 7.74 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 1.27 (s, 12H); ¹³C NMR (**125 MHz, CDCl₃**) δ 134.69, 130.94 (t, J_{C-D} = 30.0 Hz), 127.57, 83.73, 24.84; **HRMS** (ESI) m/z ([M+H]⁺) Calcd. for C₁₂H₁₇DBO₂ 206.1457, found: 206.1454.

5,5-Dimethyl-2-(phenyl-4-*d***)-1,3,2-dioxaborinane (69)**. The representative procedure was followed using 2-(4-chlorophenyl)-5,5-dimethyl-1,3,2-dioxaborinane (44.90 mg, 0.20 mmol) and D₂O (36 μ L, 2.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 50 : 1) yielded **69** (31.0 mg, 81 %) as yellow liquid. More than 99% Deuterium incorporation was determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.0 Hz, 1H), 3.69 (s, 4H), 0.95 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 133.79, 130.34 (t, J_{C-D} = 24.0 Hz), 127.55, 127.44, 72.28, 31.86, 21.88; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₁H₁₅DBO₂ 192.1301, found: 192.1307.

4,4,5,5-Tetramethyl-2-(3-(trifluoromethyl)phenyl-4-d)-1,3,2-dioxaborolane **(70)**. The representative procedure followed using 2-(4-chloro-3was (trifluoromethyl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (61.30 mg, 0.20 mmol) and D₂O (36 μL, 2.0 mmol). Isolation by column chromatography (n-hexane : EtOAc = 50 : 1) yielded 70 (33.3 mg, 61 %) as colorless liquid. More than 99% Deuterium incorporation was determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1H), 7.90 (d, J = 7.5 Hz, 1H), 7.41 (d, J = 7.5 Hz, 1H), 1.29 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 137.97, 131.33 (q, J = 3.5 Hz), 129.90 (q, J = 40.0 Hz), 127.89, 124.27 (q, J = 240.0 Hz), 84.26, 24.85; ¹⁹F NMR (301 MHz, CDCl₃) δ -62.607; HRMS (ESI) m/z ($[M+H]^+$) Calcd. for $C_{13}H_{16}DBF_3O_2$ 274.1331, found: 274.1340.

4,4,5,5-Tetramethyl-2-(phenyl-2,4-*d***2)-1,3,2-dioxaborolane (71)**. The representative procedure was followed using 2-(2,4-dichlorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (54.59 mg, 0.20 mmol) and D₂O (72 μL, 4.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 50 : 1) yielded **71** (35.9 mg, 87 %) as colorless liquid. More than 99% Deuterium incorporation was determined by ¹H NMR. ¹H NMR (**400 MHz, CDCl₃**) δ 7.73 (t, J = 7.5 Hz, 1H), 7.30 – 7.28 (m, 2H), 1.27 (s, 12H); ¹³C NMR (**100 MHz, CDCl₃**) δ 134.70, 134.41 (t, J_{C-D} = 24.0 Hz), 130.90 (t, J_{C-D} = 24.0 Hz), 127.57, 127.45, 83.74, 24.85; **HRMS** (ESI) m/z ([M+H]⁺) Calcd. for C₁₂H₁₆D₂BO₂ 207.1520, found: 207.1521.

4,4,5,5-Tetramethyl-2-(phenyl-3,4-*d***2)-1,3,2-dioxaborolane** (**72**). The representative procedure was followed using 2-(3,4-dichlorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (54.59 mg, 0.20 mmol) and D₂O (72 μL, 4.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 50 : 1) yielded **72** (31.7 mg, 77 %) as colorless liquid. 98% Deuterium incorporation was determined by ¹H NMR. ¹H NMR (**400 MHz, CDCl₃**) δ 7.75 – 7.73 (m, 2H), 7.28 (d, J = 7.5 Hz, 1.06H), 1.27 (s, 12H); ¹³C NMR (**100 MHz, CDCl₃**) δ 134.72, 134.60, 130.81 (t, J_{C-D} = 24.0 Hz), 127.56, 127.28 (t, J_{C-D} = 24.0 Hz), 83.73, 24.85; **HRMS** (ESI) m/z ([M+H]⁺) Calcd. for C₁₂H₁₆D₂BO₂ 207.1520, found: 207.1525.

4,4,5,5-Tetramethyl-2-(phenyl-2,4,6-*d*₃**)-1,3,2-dioxaborolane** (73). The representative procedure was followed using 4,4,5,5-tetramethyl-2-(2,4,6-trichlorophenyl)-1,3,2-dioxaborolane (61.48 mg, 0.20 mmol) and D₂O (108 μL, 6.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 50 : 1) yielded 73 (29.4 mg, 71 %) as colorless liquid. Series of deuterium incorporation was determined by 1 H NMR (400 MHz, CDCl₃) δ 7.29 (s, 2H), 1.27 (s, 12H); 13 C NMR (100 MHz, CDCl₃) δ 127.46, 121.22, 83.74, 24.85; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₂H₁₅D₃BO₂ 208.1583, found: 208.1580.

$$\begin{bmatrix}
O \\
N \\
H
\end{bmatrix}
O^{i}Pr$$

Isopropyl (phenyl-3-*d*)carbamate (74). The representative procedure was followed using isopropyl (3-chlorophenyl)carbamate (42.73 mg, 0.20 mmol) and D₂O (36 μL, 2.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 20 : 1) yielded 74 (30.6 mg, 85 %) as a white solid. 80 % Deuterium incorporation was determined by 1 H NMR. 1 H NMR (500 MHz, CDCl₃) δ 7.39 – 7.38 (m, 2H), 7.30 – 7.27 (m, 1.20H), 7.05 – 7.03 (m, 1H), 6.68 (s, 1H), 1.29 (s, 6H); 13 C NMR (125 MHz, CDCl₃) δ 153.21, 138.06, 128.94, 128.66 (t, J_{C-D} = 24.5 Hz), 123.14, 123.03, 118.51, 68.63, 22.04; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₀H₁₃DNO₂ 181.1082, found: 181.1089.

Ethyl 2-methyl-2-(phenoxy-4-*d***)propanoate** (75)¹⁹. The representative procedure was followed using ethyl 2-(4-chlorophenoxy)-2-methylpropanoate (48.54 mg, 0.20 mmol)

and D₂O (36 µL, 2.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 50 : 1) yielded **75** (31.4 mg, 75 %) as a colorless oil. 99 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.24 (d, J = 8.5 Hz, 2H), 6.85 (d, J = 8.5 Hz, 2H), 4.24 (q, J = 7.5 Hz, 2H), 1.60 (s, 6H), 1.24 (t, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 174.32, 155.38, 128.99, 121.77 (t, J_{C-D} = 24.5 Hz), 119.05, 78.99, 61.37, 25.35, 14.04; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₂H₁₆DO₃ 210.1235, found: 210.1234.

2-(4-(benzoyl-4-d)phenoxy)-2-methylpropanoate The Isopropyl **(76)** followed representative procedure was using isopropyl 2-(4-(4chlorobenzoyl)phenoxy)-2-methylpropanoate (72.17 mg, 0.20 mmol) and D₂O (36 μL, 2.0 mmol). Isolation by column chromatography (n-hexane : EtOAc = 20 : 1) yielded 76 (45.2 mg, 69 %) as a white solid. More than 99 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.76 (t, J = 9.0 Hz, 4H), 7.47 (d, J = 9.0 Hz, 2H), 6.87 (d, J = 9.0 Hz, 2H), 5.09 (sept, J = 8.0 Hz, 1H), 1.66 (s, 6H),1.21 (d, J = 8.0 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 195.48, 173.11, 159.49, 138.10, 132.00, 131.60 (t, $J_{C-D} = 24.0 \text{ Hz}$), 130.55, 129.68, 128.03, 117.11, 79.32, 69.26, 25.33, 21.48; **HRMS** (ESI) m/z ([M+H]⁺) Calcd. for C₂₀H₂₂DO₄ 328.1654, found: 328.1659.

3-Methyl-2-(phenyl-4-*d***)-1,3-thiazinan-4-one 1,1-dioxide (77)**. The representative procedure was followed using 2-(4-chlorophenyl)-3-methyl-1,3-thiazinan-4-one 1,1-

dioxide (54.75 mg, 0.20 mmol) and D₂O (36 μ L, 2.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 1 : 1) yielded **77** (37.5 mg, 78 %) as a white solid. 99 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.42 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 5.22 (s, 1H), 3.29 – 3.25 (m, 1H), 3.12 – 3.04 (m, 3H), 2.90 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 166.11, 130.12 (t, J_{C-D} = 24.5 Hz), 130.08, 129.15, 128.04, 80.57, 43.24, 36.20, 30.52; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₁H₁₃DNO₃S 241.0752, found: 241.0757.

Phenyl-2-*d* 5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoate (78). The representative procedure was followed using 2-chlorophenyl 5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoate (72.18 mg, 0.20 mmol) and D₂O (36 μL, 2.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 5 : 1) yielded **78** (40.6 mg, 62 %) as a white solid. 99% Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.25 – 7.22 (m, 2H), 7.10 – 7.07 (m, 1H), 6.93 – 6.88 (m, 2H) 6.56 – 6.52 (m, 2H), 3.87 – 3.85 (m, 2H), 2.20 (s, 3H), 2.08 (s, 3H), 1.78 – 1.77 (m, 4H), 1.26 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 176.16, 156.80, 150.91, 136.33, 130.27, 129.24, 129.14, 125.52, 123.51, 121.42, 121.16 (t, $J_{C-D} = 25.0$ Hz), 120.69, 111.88, 67.69, 42.31, 37.08, 25.20, 25.06, 21.31, 15.71; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₂₁H₂₆DO₃ 328.2017, found: 328.2020.

Phenyl-2-d (S)-2-(6-methoxynaphthalen-2-yl)propanoate (79). The representative procedure was followed using 2-chlorophenyl (S)-2-(6-methoxynaphthalen-2-yl)propanoate (68.16 mg, 0.20 mmol) and D₂O (36 μ L, 2.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 5 : 1) yielded **79** (43.0 mg, 70 %) as a white solid.

99% Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.89 – 7.82 (m, 3H), 7.63 – 7.61 (m, 1H), 7.42 – 7.39 (m, 2H), 7.29 – 7.23 (m, 3H), 7.12 – 7.10 (m, 1H), 4.20 (q, J= 7.0 Hz, 1H), 3.97 (s, 3H), 1.81 (d, J= 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.01, 157.66, 150.72, 135.06, 133.74, 129.21, 129.18, 129.08, 128.90, 127.27, 126.03, 126.00, 125.60, 121.28, 121.00 (t, J_{C-D} = 25.0 Hz), 118.99, 105.55, 55.12, 45.46, 18.41; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₂₀H₁₈DO₃ 308.1391, found: 308.1400.

Phenyl-2-*d* 4-(*N*,*N*-dipropylsulfamoyl)benzoate (80). The representative procedure was followed using 2-chlorophenyl 4-(*N*,*N*-dipropylsulfamoyl)benzoate (79.18 mg, 0.20 mmol) and D₂O (36 μL, 2.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 5 : 1) yielded 80 (47.8 mg, 66 %) as a white solid. 99% Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 8.22 – 8.20 (m, 2H), 7.85 – 7.84 (m, 2H), 7.35 – 7.32 (m, 2H), 7.20 – 7.17 (m, 1H), 7.13 – 7.11 (m, 1H), 3.05 – 3.02 (m, 4H), 1.49 – 1.44 (m, 4H), 0.80 – 0.77 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 163.64, 150.45, 144.74, 132.70, 130.60, 129.41, 129.31, 126.99, 126.03, 121.31, 121.05 (t, J_{C-D} = 25.0 Hz), 49.80, 21.78, 11.00; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₉H₂₃DNO₄S 363.1483, found: 363.1488.

Anthracene-9-d (81)². The representative procedure was followed using 9-chloroanthracene (42.54 mg, 0.20 mmol) and D₂O (18 μ L, 1.0 mmol). Isolation by column chromatography (*n*-hexane) yielded 81 (30.8 mg, 86 %) as a colorless oil. 99%

Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 8.33 (s, 1H), 7.91 (q, J = 3.5 Hz, 4H), 7.37 (q, J = 3.5 Hz, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 131.65, 131.58, 128.14, 128.09, 126.17, 125.83 (t, J_{C-D} = 24.0 Hz), 125.31; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₄H₁₀D 180.0918, found: 180.0921.

Anthracene-9,10- d_2 (82). The representative procedure was followed using 9,10-dichloroanthracene (49.2 mg, 0.20 mmol) and D₂O (36 μL, 2.0 mmol). Isolation by column chromatography (n-hexane) yielded 82 (29.2 mg, 81 %) as a colorless oil. 86% Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 8.33 (s, 0.28H), 7.91 (q, J = 3.5 Hz, 4H), 7.37 (q, J = 3.5 Hz, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 131.65, 131.57, 128.14, 128.09, 126.17, 125.81 (t, J_{C-D} = 24.0 Hz), 125.30; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₄H₉D₂ 181.0981, found: 181.0990.

2,3-Dihydrobenzofuran-6-*d* **(83)**. The representative procedure was followed using 6-chloro-2,3-dihydrobenzofuran (30.92 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 50 : 1) yielded **83** (18.9 mg, 78 %) as a colorless oil. 99 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR **(500 MHz, CDCl₃)** δ 7.21 – 7.20 (m, 1H), 7.12 (d, J = 8.5 Hz, 1H), 6.58 (d, J = 8.5 Hz, 1H), 4.49 (t, J = 9.0 Hz, 2H), 3.12 (t, J = 9.0 Hz, 2H); ¹³C NMR **(125 MHz, CDCl₃)** δ 159.23, 130.65, 129.42, 127.83, 112.01, 110.81, 71.52, 29.63; **HRMS** (ESI) m/z ([M+H]⁺) Calcd. for C₈H₈DO 122.0711, found: 122.0715.

1,3-Dimethoxybenzene-4-*d* (**84**)⁴. The representative procedure was followed using 1-chloro-2,4-dimethoxybenzene (34.52 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 50 : 1) yielded **84** (17.8 mg, 64 %) as a colorless oil. 99 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (**500 MHz, CDCl₃**) δ 7.33 (d, J = 9.0 Hz, 1H), 6.41 (d, J = 2.5 Hz, 1H), 6.32 (dd, J = 2.5Hz, 2.5 Hz, 1H), 3.79 (s, 3H), 3.72 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 160.21, 156.52, 133.12, 105.87, 102.43, 99.97, 56.12, 55.54; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₈H₁₀DO₂ 140.0816, found: 140.0821.

2-Phenylthiophene-5-*d* **(85)**. The representative procedure was followed using 2-chloro-5-phenylthiophene (38.94 mg, 0.20 mmol) and D₂O (18 μ L, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 50 : 1) yielded **85** (26.1 mg, 81 %) as a colorless oil. 95 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR **(500 MHz, CDCl₃)** δ 7.54 – 7.52 (m, 2H), 7.29 (t, *J* = 7.5 Hz, 2H), 7.22 (d, *J* = 3.5 Hz, 1H), 7.19 (t, *J* = 7.5 Hz, 1.05H), 6.99 (d, *J* = 3.5Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 144.31, 134.39, 128.85, 127.81, 127.42, 125.93, 124.80, 124.57 (t, *J*_{C-D} = 24.5 Hz), 123.04; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₀H₈DS 162.0482, found: 162.0485.

1-Phenyl-1*H*-pyrazole-4-*d* (86). The representative procedure was followed using 4-chloro-1-phenyl-1*H*-pyrazole (35.72 mg, 0.20 mmol) and D₂O (18 μ L, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 50 : 1) yielded 86 (23.8 mg, 82 %) as a colorless oil. More than 99 % Deuterium incorporation was determined by

¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.84 (s, 1H), 7.65 – 7.61 (m, 3H), 7.37 (t, J = 7.5 Hz, 2H), 7.20 (t, J = 7.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 140.94, 140.18, 129.37, 126.61, 126.39, 119.17, 107.37 (t, J_{C-D} = 21.0 Hz); HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₉H₈DN₂ 146.0823, found: 146.0821.

4-Hydroxy-3-methoxybenzaldehyde-5-*d* **(87)**. The representative procedure was followed using 3-chloro-4-hydroxy-5-methoxybenzaldehyde (37.32 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 10 : 1) yielded 87 (24.2 mg, 79 %) as a white solid. 88 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 9.76 (s, 0.72H), 7.36 (s, 2H), 6.98 – 6.96 (m, 0.12H), 6.15 (s, 1H), 3.90 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 190.85, 151.61, 147.12, 129.88, 127.40, 114.35, 114.10 (t, J_{C-D} = 25.0 Hz), 108.74, 56.12; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₈H₈DO₃ 154.0609, found: 154.0611.

9-Methoxy-7*H***-furo[3,2-***g***]chromen-7-one-4-***d* **(88). The representative procedure was followed using 4-chloro-9-methoxy-7***H***-furo[3,2-***g***]chromen-7-one (50.13 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (***n***-hexane : EtOAc = 100 : 1) yielded 88** (29.5 mg, 68 %) as a white solid. 90 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.77 (d, *J* = 4.7 Hz, 1H), 7.69 (d, *J* = 1.3 Hz, 1H), 7.35 (s, 0.1H), 6.82 (d, *J* = 1.3 Hz, 1H), 6.37 (d, *J* = 4.7 Hz, 1H), 4.30 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 160.39, 147.70, 146.60, 144.24, 142.99, 132.77, 126.00, 116.39, 114.71, 112.88, 112.59 (t, *J*_{C-D} = 25.5 Hz), 106.66, 61.29; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₂H₈DO₄ 218.0558, found:

5-((3,5-Dimethylphenoxy-4-*d***)methyl)oxazolidin-2-one (89)**. The representative procedure was followed using 5-((4-chloro-3,5-dimethylphenoxy)methyl)oxazolidin-2-one (51.14 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 1 : 1) yielded **89** (27.6 mg, 62 %) as a white solid. 99 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 6.65 (s, 2H), 6.11 (s, 1H), 4.97 – 4.92 (m, 1H), 4.10 – 4.09 (m, 2H), 3.76 (t, J = 8.5 Hz, 1H), 3.61 – 3.58 (m, 1H), 2.34 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 159.49, 155.89, 137.32, 127.16, 114.63, 74.13, 68.22, 42.65, 20.88; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₂H₁₅DNO₃ 223.1187, found: 223.1190.

Ethyl (*S*)-2-(6-methoxynaphthalen-2-yl-5-*d*)propanoate (90). The representative procedure was followed using ethyl (*S*)-2-(5-chloro-6-methoxynaphthalen-2-yl)propanoate (58.55 mg, 0.20 mmol) and D₂O (18 μL, 1.0 mmol). Isolation by column chromatography (*n*-hexane : EtOAc = 1 : 1) yielded 90 (37.9 mg, 73 %) as a white solid. 99 % Deuterium incorporation was determined by ¹H NMR. ¹H NMR (500 MHz, CDCl₃) δ 7.60 (t, J = 9.0 Hz, 3H), 7.32 (d, J = 6.5 Hz, 1H), 7.04 (d, J = 9.0 Hz, 1H), 4.08 – 4.00 (m, 2H), 3.80 (s, 3H), 3.74 (q, J = 7.0 Hz, 1H), 1.48 (d, J = 7.5 Hz, 3H), 1.11 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 174.62, 157.52, 135.80, 133.55, 129.20, 128.88, 126.99, 126.19, 125.85, 118.88, 105.24 (t, $J_{C-D} = 24.0$ Hz), 60.68, 55.24, 45.45, 18.57, 14.09; HRMS (ESI) m/z ([M+H]⁺) Calcd. for C₁₆H₁₈DO₃ 260.1391, found: 260.1394.

5. General procedure for the synthesis of aryl chlorides

Synthesis of aryl chlorides *via* Jiao chlorination: ²⁰ Aromatic compound (0.5 mmol) and NCS (79.8 mg, 0.6 mmol) were dissolved in CHCl₃ (2 mL). DMSO (7 μL, 0.1 mmol) was added to the solution under air at 25 °C and the mixture were stirred for the required time. After concentrating in vacuum, the residue was purified by chromatography on silica gel to afford the chlorinated product.

Synthesis of chloro-substituted esters:²¹ In a 50 mL round-bottomed flask fitted with a magnetic stir bar, a mixture of 2-chlorophenol (0.5 mmol), corresponding acid (0.5 mmol), and DMAP (10 mol%) was dissolved in CH₂Cl₂. The mixture was placed in an ice bath and stirred for 10 min before DCC (0.5 mmol) was added. The mixture was allowed to stir at room temperature for 16 h. The solid precipitate was filtered and washed twice with CH₂Cl₂. The combined organic layers were washed with water, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the corresponding products.

6. Mechanistic studies

1. Kinetic analysis experiment²²:

1.1 Ordered in catalyst

To a 10 mL Schlenk tube was added sequentially NiCl₂·DME (4.0, 5.0, 6.0, 7.5 mol%), 2,9-dimethyl-1,10-phenanthroline (7.5 mol%), Zn powder (40.0 mg, 0.60 mmol). The vessel was evacuated and filled with argon (three times), DMA (0.50 mL) was added *via* syringe and the mixture was stirred at room temperature for 10 min. The deuterated water (1.0 mmol) was added, followed by the addition of chloride 1 (0.20 mmol) in one portion. DMA (0.50 mL) was subsequently added *via* syringe. The resulting solution was stirred for 5 h at room temperature. Over the course of the reaction a GC-MS analysis was acquired every half-an-hour. The 1,3,5-trimethoxybenzene as an internal standard to afford GC-MS yield.

Supplementary Table 1. Order with respect to NiCl2DME

		•	
	(NiCl ₂ ·DME) / mol%	Δ [2a] Δ t ⁻¹ / 10 ⁻⁴ s ⁻¹	$\ln(\Delta[2a] \Delta t^{-1} / 10^{-4} s^{-1})$
-	4.0	0.4433	-0.8135
	5.0	0.4478	-0.8034
	6.0	0.4528	-0.7923
	7.5	0.4539	-0.7899

1.2 Ordered in 1

To a 10 mL Schlenk tube was added sequentially NiCl₂·DME (5.0 mol%), 2,9-dimethyl-1,10-phenanthroline (6.0 mol%), Zn powder (40.0 mg, 0.60 mmol). The vessel was evacuated and filled with argon (three times), DMA (0.50 mL) was added *via* syringe and the mixture was stirred at room temperature for 10 min. The deuterated water (1.0 mmol) was added, followed by the addition of chloride **1** (0.10, 0.15, 0.20, 0.30 mmol) in one portion. DMA (0.50 mL) was subsequently added *via* syringe. The

resulting solution was stirred for 5 h at room temperature. Over the course of the reaction a GC-MS analysis was acquired every half-an-hour. The 1,3,5-trimethoxybenzene as an internal standard to afford GC-MS yield.

Supplementary Table 2. Order with respect to 1a

1 / mmol	Δ [2a] Δ t ⁻¹ / 10 ⁻⁴ s ⁻¹	$ln(\Delta[2a] \Delta t^{-1} / 10^{-4} s^{-1})$
0.1	0.4712	-0.7525
0.15	0.4854	-0.7228
0.2	0.4757	-0.7430
0.3	0.4779	-0.7384

1.3 Ordered in D₂O

To a 10 mL Schlenk tube was added sequentially NiCl₂·DME (5.0 mol%), 2,9-dimethyl-1,10-phenanthroline (6.0 mol%), Zn powder (40.0 mg, 0.60 mmol). The vessel was evacuated and filled with argon (three times), DMA (0.50 mL) was added *via* syringe and the mixture was stirred at room temperature for 10 min. The deuterated water (0.6, 1.0, 1.6, 2.0 mmol) was added, followed by the addition of chloride 1 (0.20 mmol) in one portion. DMA (0.50 mL) was subsequently added *via* syringe. The resulting solution was stirred for 5 h at room temperature. Over the course of the reaction a GC-MS analysis was acquired every half-an-hour. The 1,3,5-trimethoxybenzene as an internal standard to afford GC-MS yield.

Supplementary Table 3. Order with respect to D₂O

11	1	
D ₂ O / mmol	Δ [2a] Δ t ⁻¹ / 10 ⁻⁴ s ⁻¹	$\ln(\Delta[2a] \Delta t^{-1} / 10^{-4} s^{-1})$
0.6	0.3617	-1.0169
1.0	0.4557	-0.7859
1.6	0.4307	-0.8423
2.0	0.4266	-0.8519

1.4 Reaction profile

To a 10 mL Schlenk tube was added sequentially NiCl₂·DME (5.0 mol%), 2,9-dimethyl-1,10-phenanthroline (6.0 mol%), Zn powder (40.0 mg, 0.60 mmol). The vessel was evacuated and filled with argon (three times), DMA (0.50 mL) was added *via* syringe and the mixture was stirred at room temperature for 10 min. The deuterated water (20.0 mg, 1.0 mmol) was added, followed by the addition of chloride 1 (0.20 mmol) in one portion. DMA (0.50 mL) was subsequently added *via* syringe. The resulting solution was stirred for 5 h at room temperature. Over the course of the reaction a GC-MS analysis was acquired every half-an-hour. The 1,3,5-trimethoxybenzene as an internal standard to afford GC-MS yield.

Supplementary Table 3. Reaction profile

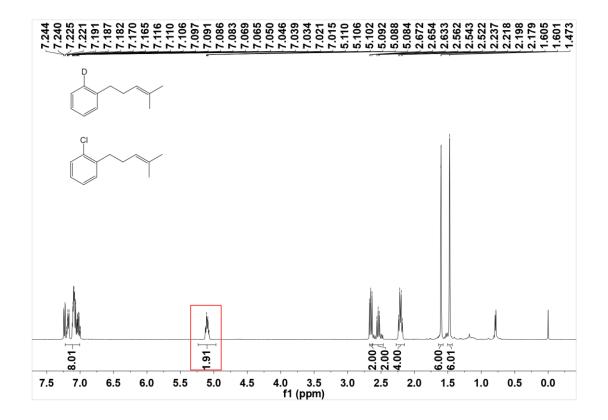
Time / min	GC-MS yield of 1 / %	GC-MS yield of 2 / %
30	96	4
60	83	17
90	71	28
120	56	44
150	29	71
180	18	81
210	1	99
240	0	99

2. Radical experiments:

2.1 Synthesis of 1-chloro-2-(4-methylpent-3-en-1-yl)benzene:

According to the reference²³, to a solution of acid (1.0 equiv.) in anhydrous THF (0.5 M) at -78 °C was added a 1 M solution of BH₃·THF in THF (1.2 equiv.) dropwise.

After stirring at -78 °C for 1 h, the reaction temperature was raised to 0 °C and the reaction was monitored by TLC. Upon completion, the reaction was quenched with excess MeOH. All volatiles were removed under reduced pressure and the residue was purified by flash column chromatography to afford **S1** as colorless oil.


According to the reference²⁴, to a mixture of pyridinium chlorochromate (PCC) (2.55 g, 11.8 mmol) and dichloromethane (50 mL), the corresponding alcohol **S1** was added. The resulting mixture was stirred for 1 h under room temperature, when TLC analysis indicated the disappearance of the starting material. The mixture was filtered over silica gel under vacuum, washing with dichloromethane. The solvent was totally removed under reduced pressure, resulting in a yellow oil, which was purified by column chromatography on silica-gel column to obtain the aldehyde **S2** as colorless oil.

According to the reference²⁵, a Wittig reaction was conducted to give the final substrates. The phosphonium salt (4.8 mmol, 1.6 equiv) was suspended in THF (9.0 mL) under N₂ and cooled in an ice bath. A solution of "BuLi (3.0 mmol, 1.0 equiv) was added, and the reaction was stirred at 0 °C for 30 min. Then, the aldehyde **S2** was added to the flask, and the reaction was stirred at room temperature for 1 h. After this time, 15 mL of H₂O was added, and the reaction mixture was extracted with EtOAc (3 x 15 mL). The organic phase was then washed with brine and dried with Na₂SO₄, and the EtOAc was evaporated under reduced pressure. Purification to remove triphenylphosphine oxide by flash column chromatography yielded the final aryl halide containing the pendant alkene.

2.2 Radical trapping experiment:

To a 10 mL Schlenk tube was added sequentially NiCl₂·DME (4.41 mg, 0.02 mmol), 2,9-dimethyl-1,10-phenanthroline (5.50 mg, 0.02 mmol), Zn powder (40.0 mg, 0.6 mmol). The vessel was evacuated and filled with argon (three times), DMA (0.50 mL)

was added *via* syringe and the mixture was stirred at room temperature for 10 min. The deuterated water (1.0-2.0 mmol) was added, followed by the addition of aryl chloride (0.2 mmol) in one portion. DMA (0.50 mL) was subsequently added *via* syringe. The resulting solution was stirred for 12 h at room temperature. After this time, the crude reaction mixture was diluted with ethyl acetate (10 mL) and washed with water $(2.0 \text{ mL} \times 3)$. The organic layer was dried over Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography to get the mixture of aryl chloride and deuterated product. NMR test shown that, there is no cyclization product can be detected in the reaction. The peak in $^1\text{H-NMR}$ 5.10 (q, J = 2.0 Hz, 1.91 H) showed no cyclization product can be detected. Suggested that no aryl radical generated in this condition.

3. Reactions with various reductants:

To a 10 mL Schlenk tube was added sequentially NiCl₂·DME (2.20 mg, 0.010 mmol), 2,9-dimethyl-1,10-phenanthroline (2.50 mg, 0.012 mmol), reductant (3.0 equiv., 0.6 mmol). The vessel was evacuated and filled with argon (three times), DMA (0.50 mL) was added *via* syringe and the mixture was stirred at room temperature for 10 min. The deuterated water (20.0 mg, 1.0 mmol, 5.0 equiv.) was added, followed by the addition of 1-chloro-3,5-dimethoxybenzene (34.52 mg, 0.20 mmol) in one portion. DMA (0.50 mL) was subsequently added *via* syringe. The resulting solution was stirred for 12 h at room temperature. After this time, the crude reaction mixture was diluted with ethyl acetate (10 mL) and washed with water (2.0 mL × 3). A 0.2 mL of solution was collected, diluted with ethyl acetate (1.0 mL), and analyzed by GC. The yield was determined versus the internal standard (1,3,5-trimethoxybenzene), the D-incorporation was determined by GC-MS fragment peak.

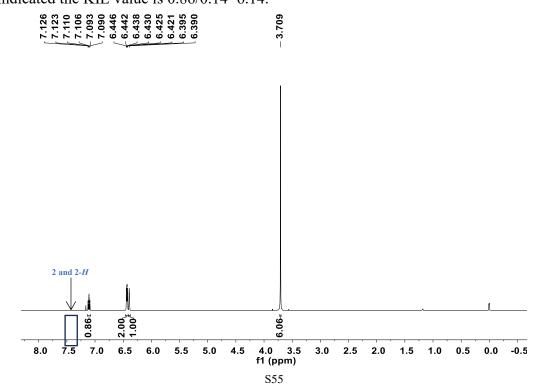
4. Organozinc intermediate experiment:

To a 10 mL Schlenk tube was added sequentially NiCl₂·DME (2.20 mg, 0.010 mmol), 2,9-dimethyl-1,10-phenanthroline (2.50 mg, 0.012 mmol), zinc powder (40.0 mg, 0.6 mmol). The vessel was evacuated and filled with argon (three times), DMA (0.50 mL) was added *via* syringe and the mixture was stirred at room temperature for 10 min. The 1-chloro-3,5-dimethoxybenzene (34.52 mg, 0.20 mmol) in one portion. DMA (0.50 mL) was subsequently added *via* syringe. The resulting solution was stirred for 1 h at room temperature. After this time, deuterated water (20.0 mg, 1.0 mmol, 5.0 equiv.) was added under argon protect condition, and then stirred for 2 min. The crude reaction mixture was diluted with ethyl acetate (10 mL) and washed with water (2.0 mL × 3). A 0.2 mL of solution was collected, diluted with ethyl acetate (1.0 mL), and analyzed by GC. The yield was determined versus the internal standard (1,3,5-trimethoxybenzene). The result showed that trace target substrate 2 was detected, suggesting that no organozinc intermediate was involved in this reaction.

5. Sequential Negishi experiment²⁶:

To a 10 mL Schlenk tube was added sequentially NiCl₂·DME (2.20 mg, 0.01 mmol), 2,9-dimethyl-1,10-phenanthroline (2.80 mg, 0.01 mmol), Zn powder (40.0 mg, 0.6 mmol). The vessel was evacuated and filled with argon (three times), DMA (0.50 mL) was added *via* syringe and the mixture was stirred at room temperature for 10 min. The deuterated water (20.0 mg, 1.0 mmol) was added, followed by the addition of 1-chloro-3,5-dimethoxybenzene (34.52 mg, 0.20 mmol) in one portion. DMA (0.50 mL) was

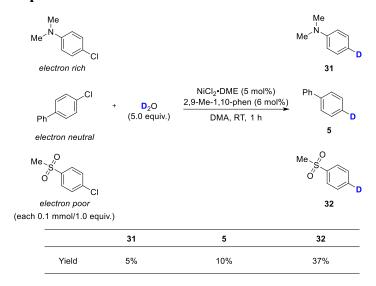
subsequently added *via* syringe. The resulting solution was stirred for 12 h at room temperature. After this time, the mixture was filtered, and the liquid was collected. To a reaction tube equipped with a stir bar was added PdCl₂(dppf) (4.4 mg, 0.02 mmol) and aryl iodide **96** (27.0 mg, 0.1 mmol). The vessel was evacuated and filled with argon (three times), THF (0.5 mL) and above obtained liquid was added, the mixture was stirred at 60 °C for 2 h, diluted with ethyl acetate (10 mL), washed with H₂O and brine, and dried over anhydrous Na₂SO₄. A 0.2 mL of solution was collected, diluted with ethyl acetate (1.0 mL), and analyzed by GC-MS. The result showed that no target substrate **96** detected, further suggesting that no organic-zinc intermediate was involved in this reaction.


6. Hydrogen reduction experiment²⁷:

To a 10 mL Schlenk tube was added sequentially NiCl₂·DME (2.20 mg, 0.010 mmol), 2,9-dimethyl-1,10-phenanthroline (2.50 mg, 0.012 mmol), zinc powder (40.0 mg, 0.6 mmol). The vessel was evacuated and filled with H₂ (three times). DMA (0.50 mL) was added *via* syringe and the mixture was stirred at room temperature for 10 min. The 1-chloro-3,5-dimethoxybenzene (34.52 mg, 0.20 mmol) in one portion. DMA (0.50 mL) was subsequently added *via* syringe. The resulting solution was stirred for 12 h at room temperature. After this time, the crude reaction mixture was diluted with ethyl acetate (10 mL) and washed with water (2.0 mL × 3). A 0.2 mL of solution was collected, diluted with ethyl acetate (1.0 mL), and analyzed by GC-MS. The result showed that no target product 2 was formed.

7. Kinetic isotope effect experiments:

7.1 Competitive kinetic isotope effect experiments²⁸:


To a 10 mL Schlenk tube was added sequentially NiCl₂DME (2.20 mg, 0.01 mmol), 2,9-dimethyl-1,10-phenanthroline (2.80 mg, 0.01 mmol), Zn powder (40.0 mg, 0.6 mmol). The vessel was evacuated and filled with argon (three times), DMA (0.50 mL) was added *via* syringe and the mixture was stirred at room temperature for 10 min. The deuterated water (10.0 mg, 0.5 mmol) and water (9.0 mg, 0.5 mmol) was added, followed by the addition of 1-chloro-3,5-dimethoxybenzene (34.52 mg, 0.20 mmol) in one portion. DMA (0.50 mL) was subsequently added *via* syringe. The resulting solution was stirred for 12 h at room temperature. After this time, the crude reaction mixture was diluted with ethyl acetate (10 mL) and washed with water (2.0 mL × 3). The organic layer was dried over Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography. The KIE value was calculated according to the analysis of purified crude ¹H NMR: 14% deuterium incorporation was detected in 2, indicated the KIE value is 0.86/0.14=6.14.

7.2 parallel kinetic isotope effect experiments²⁹:

To a 10 mL Schlenk tube was added sequentially NiCl₂·DME (2.20 mg, 0.01 mmol), 2,9-dimethyl-1,10-phenanthroline (2.80 mg, 0.01 mmol), Zn powder (40.0 mg, 0.6 mmol). The vessel was evacuated and filled with argon (three times), DMA (0.50 mL) was added *via* syringe and the mixture was stirred at room temperature for 10 min. The deuterated water (20.0 mg, 1.0 mmol) or water (18.0 mg, 1.0 mmol) was added, followed by the addition of 1-chloro-3,5-dimethoxybenzene (34.52 mg, 0.20 mmol) in one portion. DMA (0.50 mL) was subsequently added *via* syringe. The resulting solution was stirred for 1.5 h at room temperature. After this time, the crude reaction mixture was diluted with ethyl acetate (10 mL) and washed with water (2.0 mL × 3). 1,3,5-Trimethoxybenzene (33.6 mg, 0.2 mmol) was added as internal standard to afford GC-MS yield. The GC-MS yield of **2** is 30%. The KIE value is 1.03, revealing that C–D bond formation is not the rate-determining step.

8. Competitive experiments:

To a 10 mL Schlenk tube was added sequentially NiCl₂·DME (3.30 mg, 0.015 mmol), 2,9-dimethyl-1,10-phenanthroline (3.75 mg, 0.018 mmol), zinc powder (58.5 mg, 0.9 mmol). The vessel was evacuated and filled with argon (three times). DMA (0.50 mL) was added *via* syringe and the mixture was stirred at room temperature for 10 min. The deuterated water (30.0 mg, 1.5 mmol, 5.0 equiv.) was added, followed by the addition of three aryl chlorides (each of 0.1 mmol, 1.0 equiv.) in one portion. DMA (0.50 mL) was subsequently added *via* syringe. The resulting solution was stirred for 1 h at room temperature. After this time, the crude reaction mixture was diluted with ethyl acetate (10 mL) and washed with water (2.0 mL × 3). A 0.2 mL of solution was collected, diluted with ethyl acetate (1.0 mL), and analyzed by GC-MS. The yields were determined versus the internal standard (1,3,5-trimethoxybenzene).

9. Experiments with deuterated solvents:

Entry	Solvent-D	Yield	D-inc.
1	acetone-d ₆	45%	55%
2	CDCI ₃	0%	0%
3	CH ₃ CN-d ₃	23%	42%
4	CH ₃ OH-d ₄	84%	92%
5	DMSO-d ₆	82%	70%
6	DMF-d ₇	87%	72%
7	DMA-d ₉	76%	94%
8	DMA- d_9 + H ₂ O (10.0 equiv.)	99%	<1%

To a 10 mL Schlenk tube was added sequentially NiCl₂ DME (2.20 mg, 0.010 mmol), 2,9-dimethyl-1,10-phenanthroline (2.50 mg, 0.012 mmol), zinc powder (40.0 mg, 0.6 mmol). The vessel was evacuated and filled with argon (three times), Solvent-D (0.5 mL) was added *via* syringe and the mixture was stirred at room temperature for 10 min, followed by the addition of 1-chloro-3,5-dimethoxybenzene (34.52 mg, 0.20 mmol) in one portion. The resulting solution was stirred for 12 h at room temperature. After this time, the crude reaction mixture was diluted with ethyl acetate (10 mL) and washed with water (2.0 mL × 3). A 0.2 mL of solution was collected, diluted with ethyl acetate (1.0 mL), and analyzed by GC-MS. The yield was determined versus the internal standard (1,3,5-trimethoxybenzene), the D-incorporation was determined by ¹H NMR.

10. Experiments for Ni(I) and Ni(0) catalysis:

10.1 Preparation of Ni(phen)2:

This compound was prepared according to the literature procedure.³⁰ In an argon-filled glove box, to a 50 mL round bottom flask equipped with a magnetic stir bar was

added Ni(cod)₂ (27.5 mg, 0.1 mmol), 2,9-dimethyl-1,10-phenanthroline (41.7 mg, 0.2 mmol), and dry THF (5 mL). It was sealed and removed from the glove box. The reaction mixture was stirred at 60 °C for 12 h. The reaction mixture turned from a pale-yellow suspension to an inky purple solution. The reaction mixture was filtered through celite, and the celite was washed with THF in glove box. The filtrate was concentrated in vacuum to afford Ni(phen)₂ as an air-sensitive dark solid (33.3 mg, 70% yield).

Note: The complex is sensitive to air and moisture in the solid state and is unstable in solution at ambient temperature.

10.2 Preparation of Ni(phen)₂Cl:

This compound was prepared according to the literature procedure.³⁰ In an argonfilled glove box, to a 50 mL round bottom flask equipped with a magnetic stir bar was added Ni(cod)₂ (54.8 mg, 0.2 mmol), 2,9-dimethyl-1,10-phenanthroline (72.0 mg, 0.2 mmol), and dry CH₃CN (10 mL). The reaction mixture was stirred for 12 h, and it was changed from a pale-yellow suspension to an inky purple solution. AgCl (28.6 mg, 1.0 equiv) was added. The reaction solution immediately turned from dark purple to deep blue. The reaction mixture was stirred for 1 h before being filtered through celite. The celite was washed with THF glove box, and the filtrate was concentrated in vacuum to afford a gray solid. It was treated with dry THF, and the insoluble powder was removed by filtration. The solvent was removed in vacuum to afford Ni(phen)₂Cl as an air sensitive gray solid (56.1 mg, 55% yield).

Note: The complex is sensitive to air and moisture in the solid state and is unstable in solution at ambient temperature.

10.3 Stoichiometric reactions of 1 and deuterium water with Ni(phen)₂ or Ni(phen)₂Cl

The reaction was conducted in an Ar-filled glovebox. To a reaction tube equipped with a stir bar was added Ni(phen)₂ (47.4 mg, 0.1 mmol) or Ni(phen)₂Cl (50.9 mg, 0.1 mmol). A solution of 1-chloro-3,5-dimethoxybenzene 1 (17.2 mg, 0.1 mmol) and deuterium water (9 μL, 0.5 mmol) in DMA (1.0 mL) was added. The reaction tube was sealed and removed from the glove box, and the reaction mixture was stirred at room temperature for 12 h. Diluted with ethyl acetate (10 mL), washed with H₂O and brine, and dried over anhydrous Na₂SO₄. A 0.2 mL of solution was collected, diluted with ethyl acetate (1.0 mL), and analyzed by GC-MS. The yield was determined versus the internal standard (1,3,5-trimethoxybenzene).

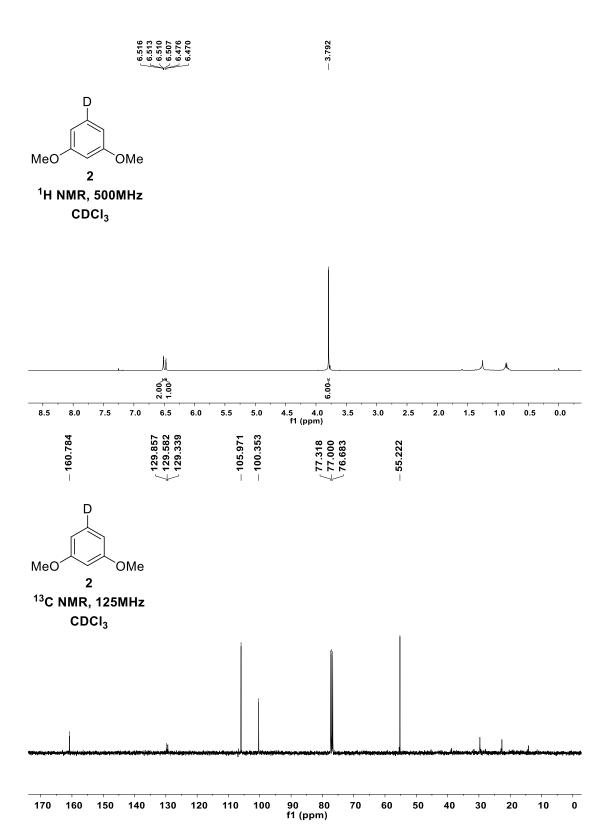
11. Transformation of Ni⁰ species

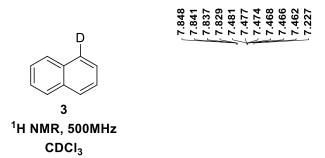
To a 10 mL Schlenk tube was added sequentially Ni(cod)₂ (55.0 mg, 0.20 mmol), 2,9-dimethyl-1,10-phenanthroline (50.0 mg, 0.24 mmol). The vessel was evacuated and filled with argon (three times), DMA (0.50 mL) was added *via* syringe and the mixture was stirred at room temperature for 10 min. The deuterated water (20.0 mg, 1.0 mmol) was added, followed by the addition of 1-chloro-3,5-dimethoxybenzene 1 (34.4 mg, 0.2

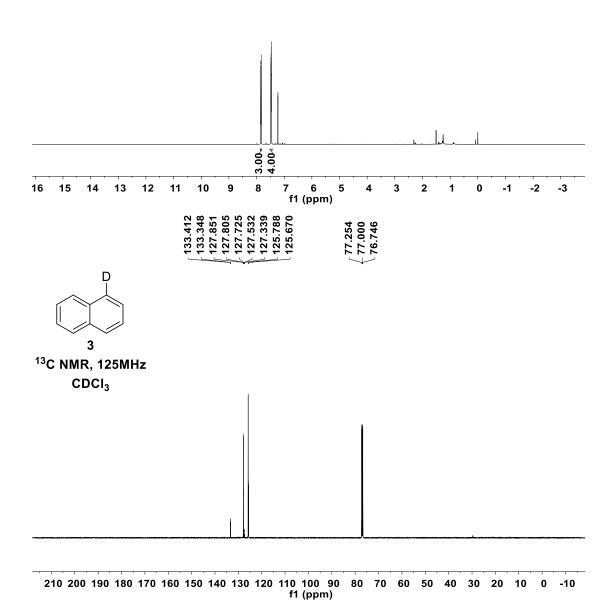
mmol) in one portion. DMA (0.50 mL) was subsequently added *via* syringe. The resulting solution was stirred for 12 h at room temperature. After this time, the crude reaction mixture was diluted with ethyl acetate (10 mL) and washed with water (2.0 mL × 3). A 0.2 mL of solution was collected, diluted with ethyl acetate (1.0 mL), and analyzed by GC-MS. The result showed that trace target product **2** was detected.

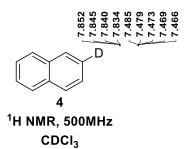
12. Catalytic reactions with Ni^{II} complex

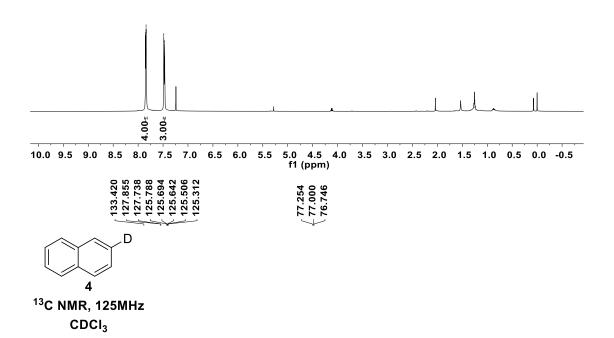
12.1 Preparation of Ar-Ni^{II}(2,9-di-Me-1,10-phen)Cl:

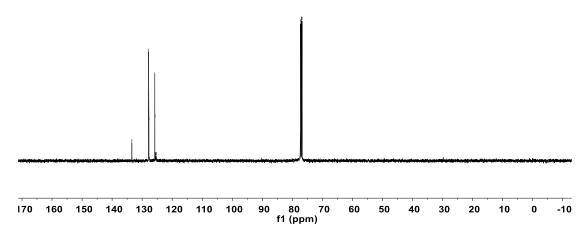

This compound was prepared according to the literature procedure.³¹ In a nitrogen-filled glove box, Ni(cod)₂ (550 mg, 2 mmol), 2,9-dimethyl-1,10-phenanthroline (499.8 mg, 2.4 mmol), and THF (40 mL) were added to a dry round bottom flask. The resulting mixture was then stirred at RT for 20 h. After this time, 1-chloro-3,5-dimethoxybenzene (414 mg, 2.4 mmol) was added, and reaction was stirred in the glovebox at RT for 2 h. The resulting solution was concentrated in vacuo, and the resulting dark blue solid was triturated with pentanes to remove residual cyclooctadiene and aryl halide to afford complex in 35% yield.

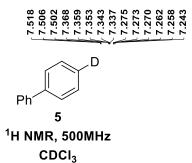

Note: The complex is sensitive to air and moisture in the solid state and is unstable in solution at ambient temperature.

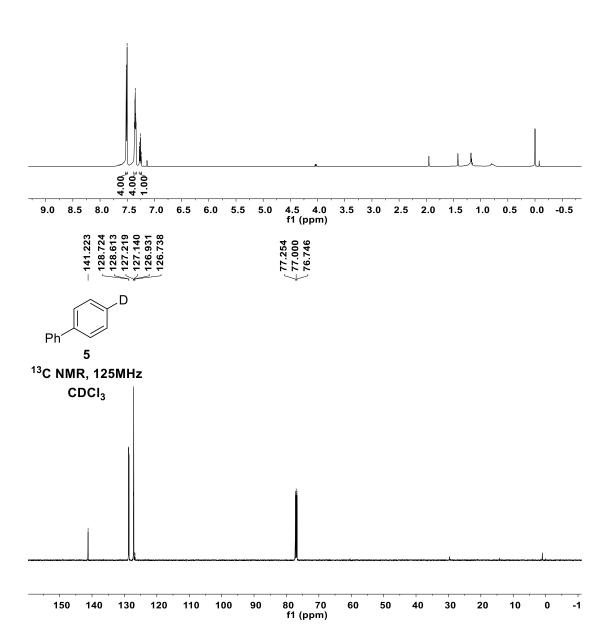

12.2 Stoichiometric reactions of 1 and deuterium water with Ar–Ni^{II}(2,9-di-Me-1,10-phen)Cl

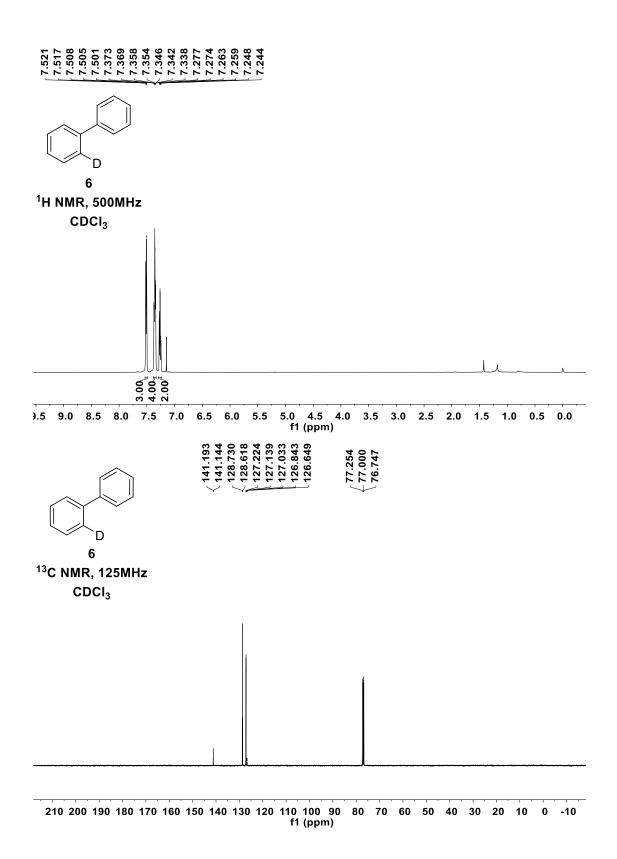

In an argon-filled glove box, prepare two 10 mL Schlenk tube, both of them added Ar–Ni^{II}(2,9-di-Me-1,10-phen)Cl (4.4 mg, 0.01 mmol), and one of tube added the additional of zinc powder (20.0 mg, 6.0 mmol). DMA (0.50 mL) was added in two tubes *via* syringe and the mixture was stirred at room temperature for 10 min. The deuterated water (20.0 mg, 1.0 mmol) and 1-chloro-3,5-dimethoxybenzene 1 (34.4 mg, 0.2 mmol) was added in two tubes. DMA (0.50 mL) was subsequently added *via* syringe. The resulting solution was stirred for 12 h at room temperature. After this time, the crude reaction mixture was diluted with ethyl acetate (10 mL) and washed with water (2.0 mL × 3). A 0.2 mL of solution was collected, diluted with ethyl acetate (1.0 mL), and analyzed by GC-MS. The yield was determined versus the internal standard (1,3,5-trimethoxybenzene), the D-incorporation was determined by ¹H NMR.

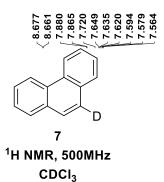

7. NMR Spectra

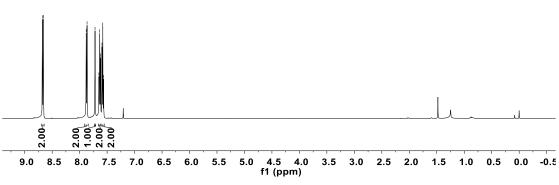


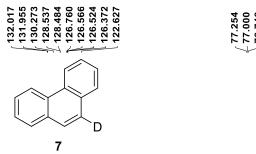


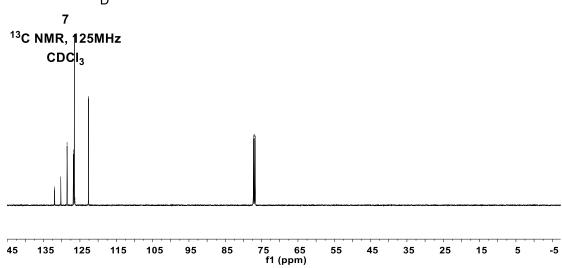


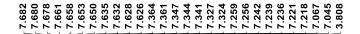


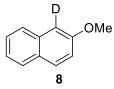


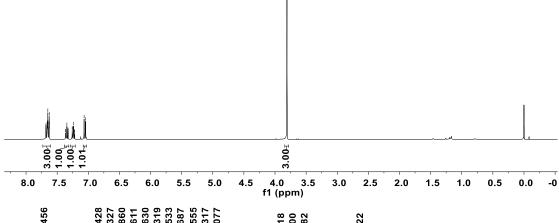


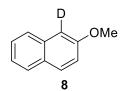


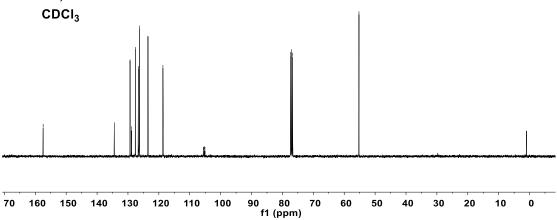


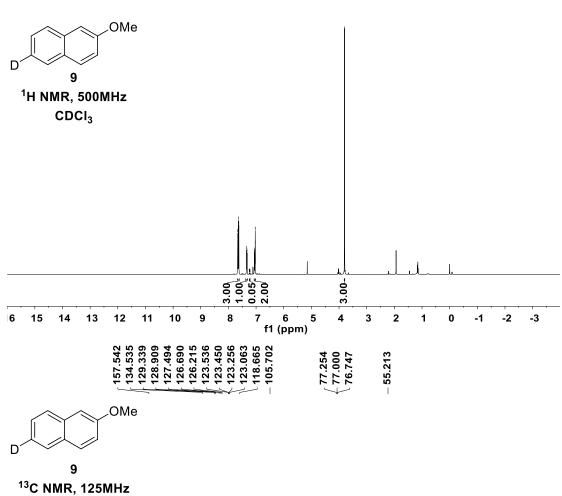


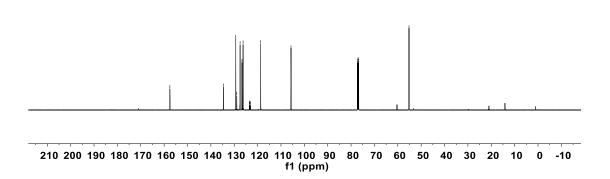




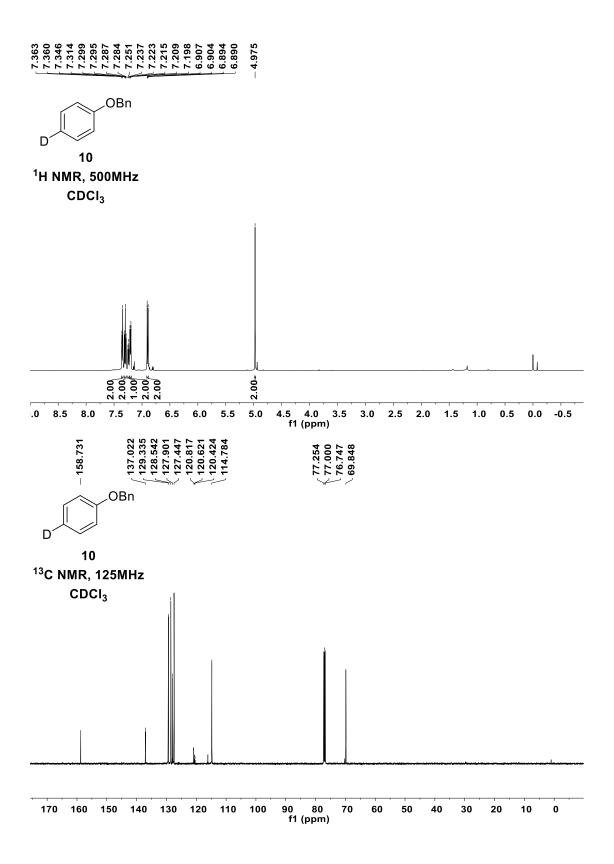


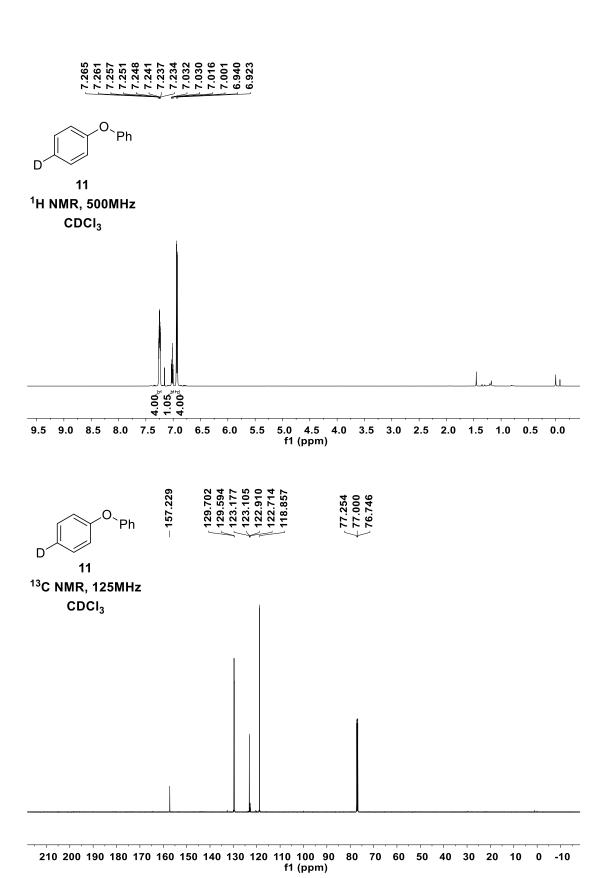

¹H NMR, 500MHz CDCl₃

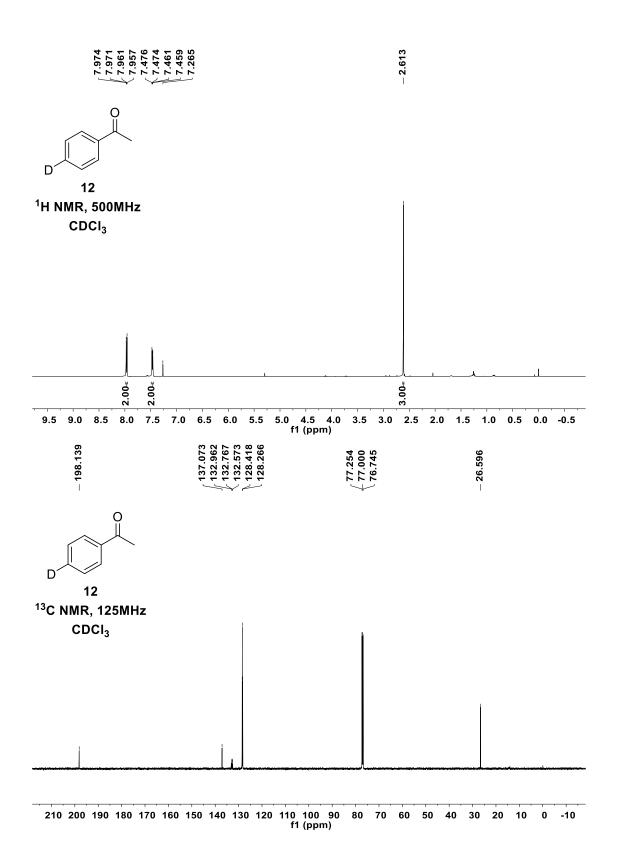

134.428 129.327 129.327 128.860 126.319 126.319 118.687 105.555 105.555 118.687 105.077 105.7318 777.318 777.318 76.682

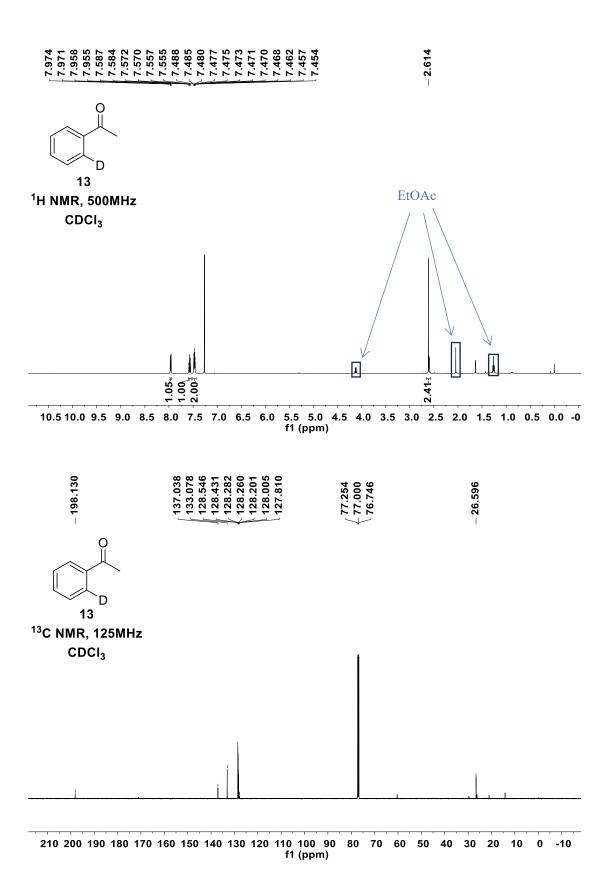


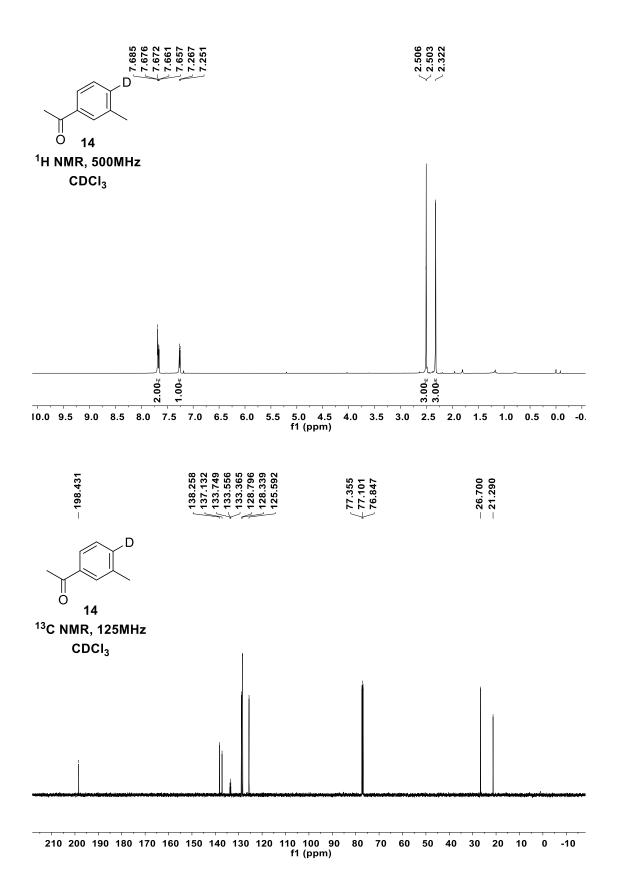
¹³C NMR, 125MHz

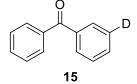


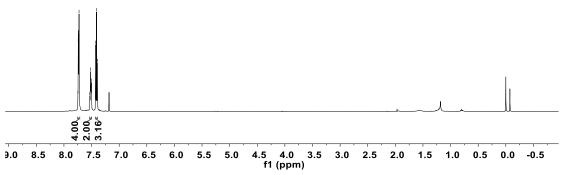


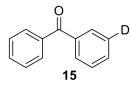


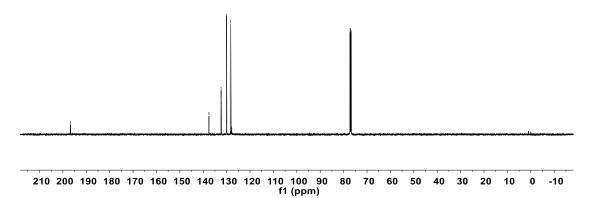


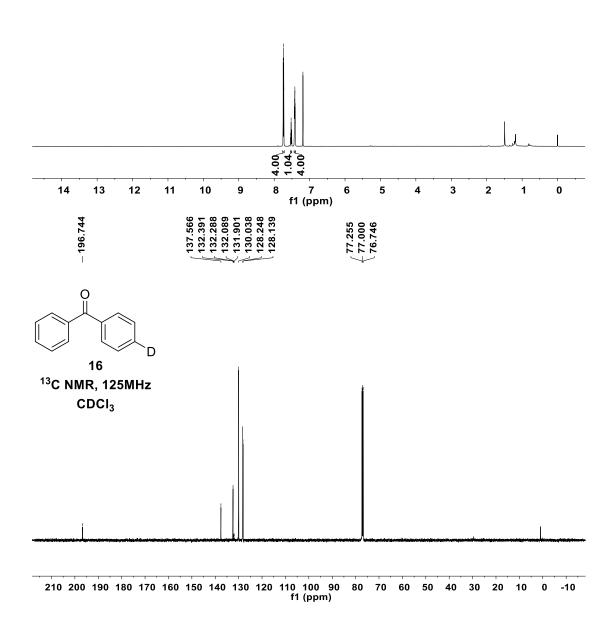

CDCI₃

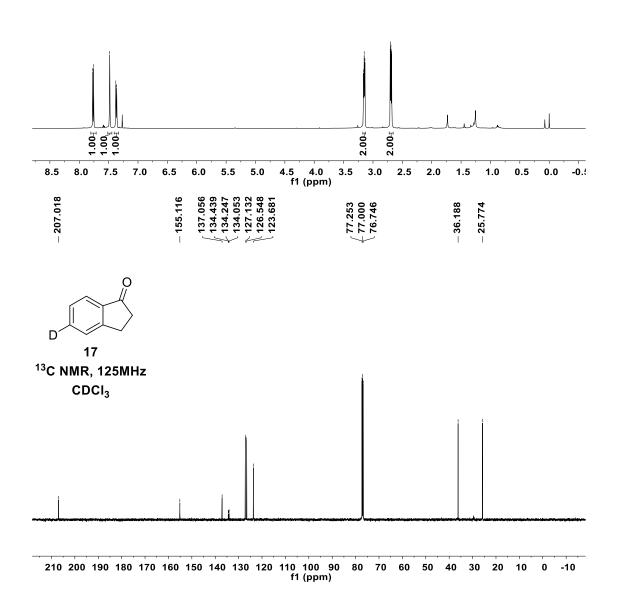


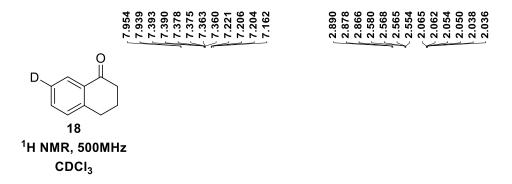


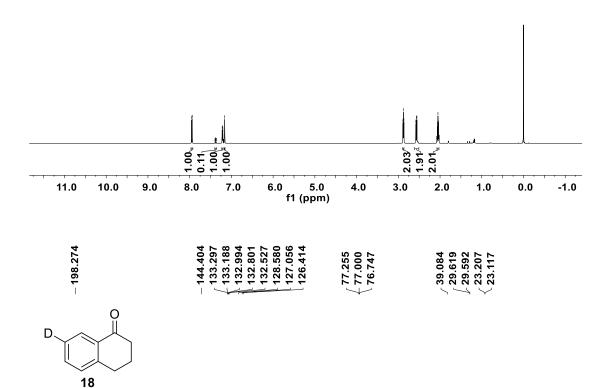


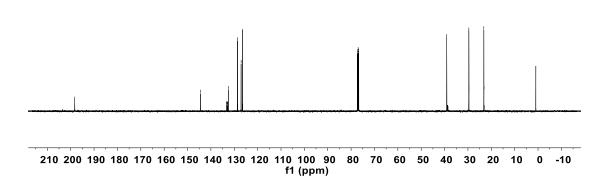

¹H NMR, 500MHz CDCI₃

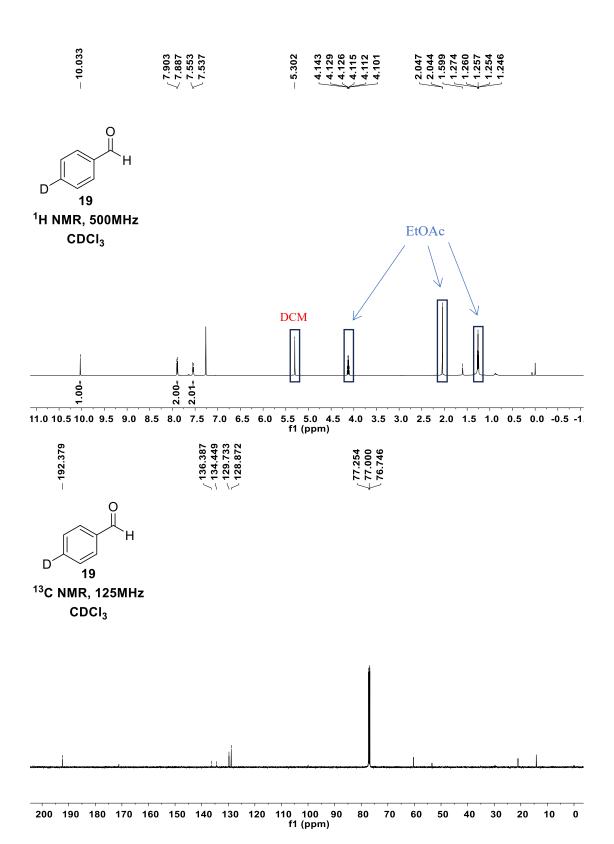

137.569 132.386 132.279 130.033 129.927 128.246 128.246 128.159

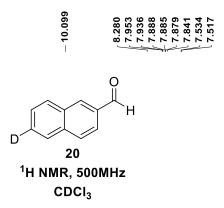

¹³C NMR, 125MHz CDCI₃

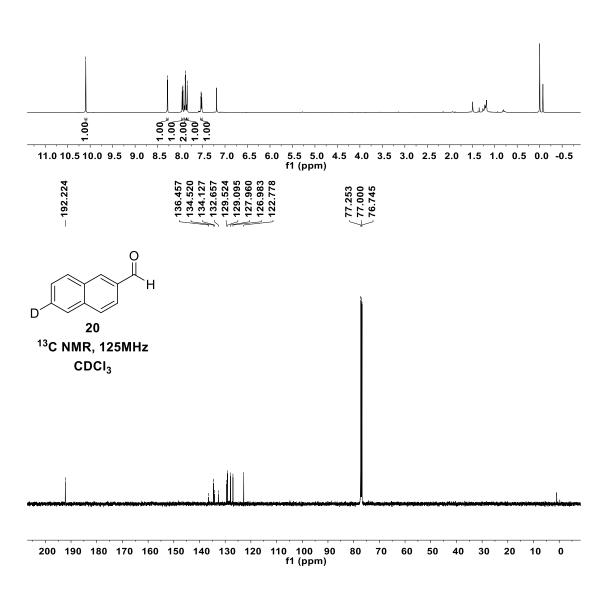


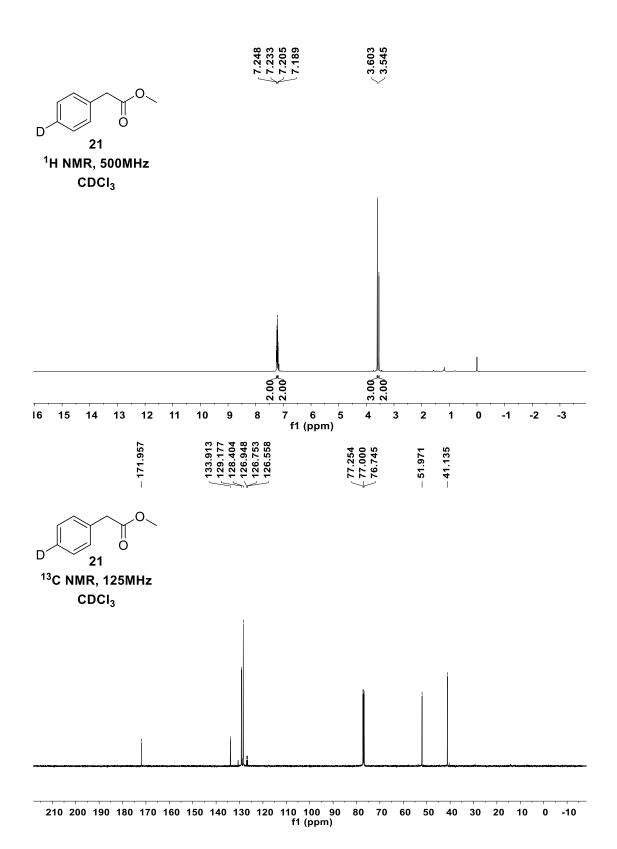

7.747 7.744 7.731 7.728 7.523 7.523 7.432 7.424 7.424 7.424 7.416

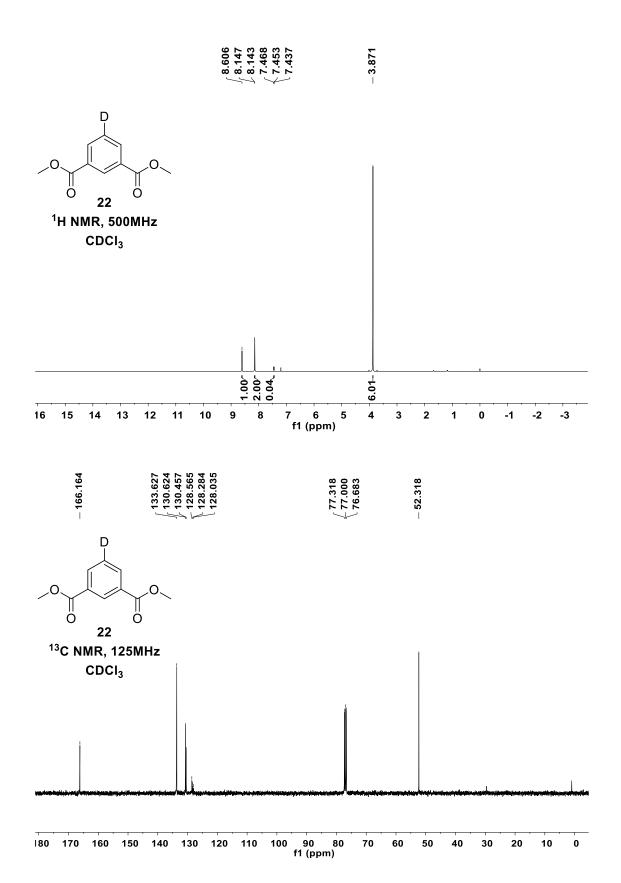


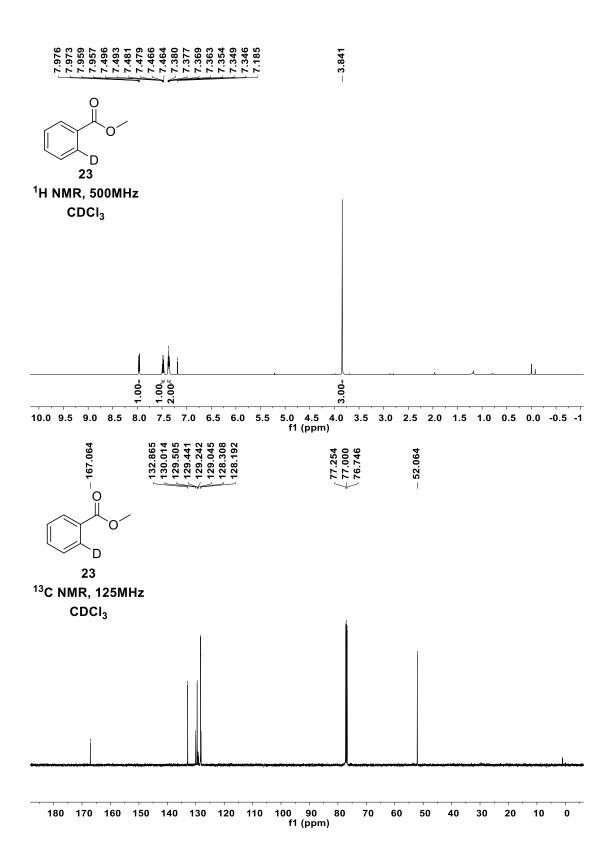


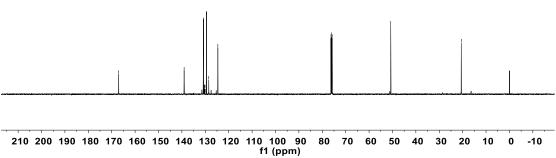


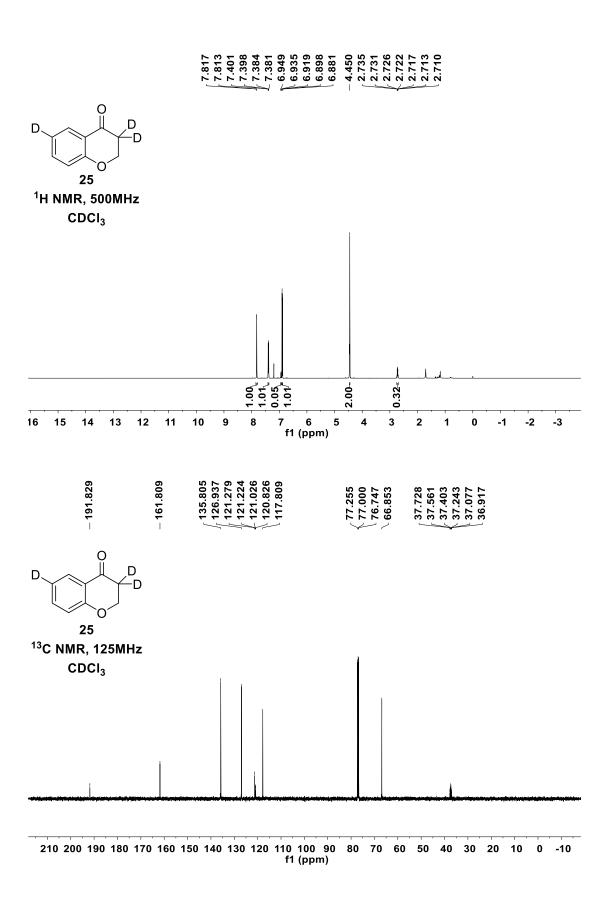


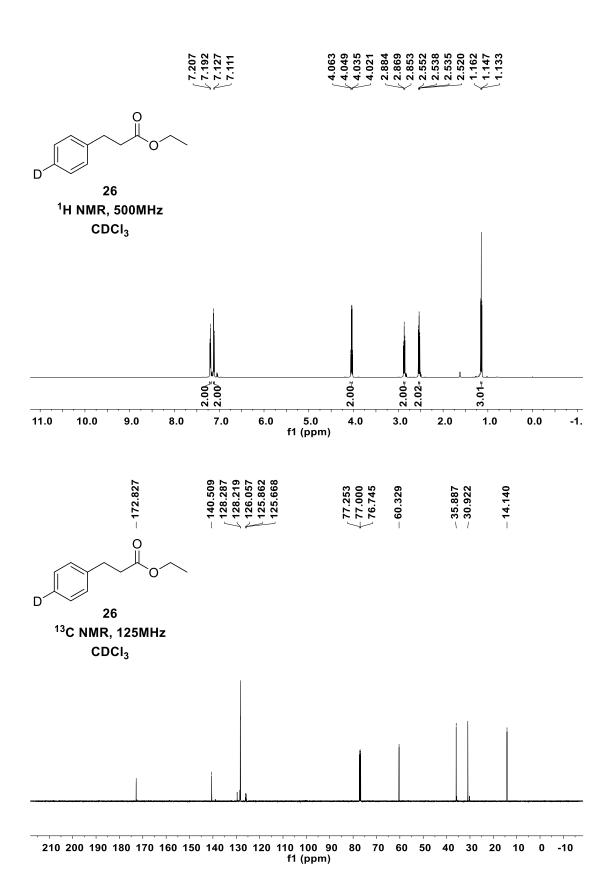


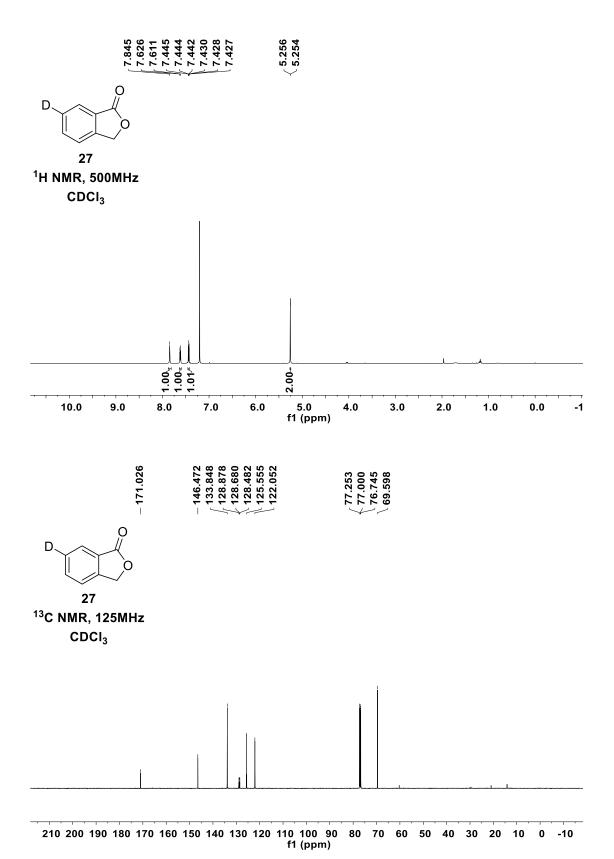

¹³C NMR, 125MHz CDCI₃

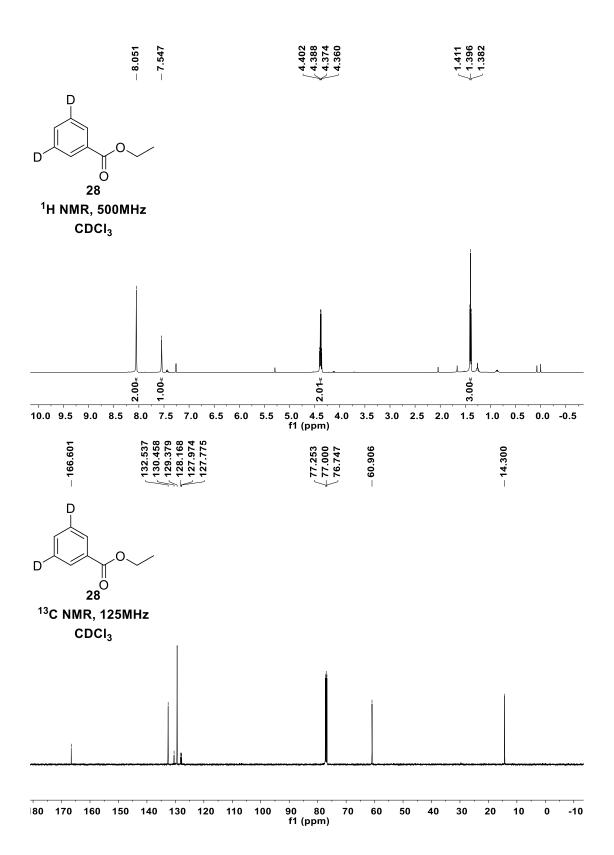


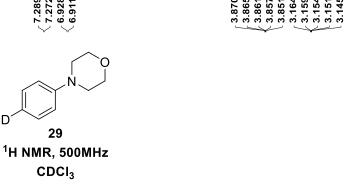


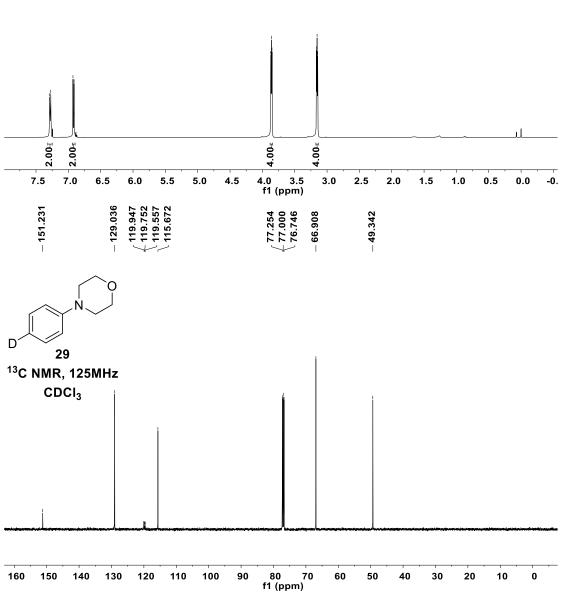


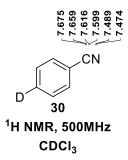


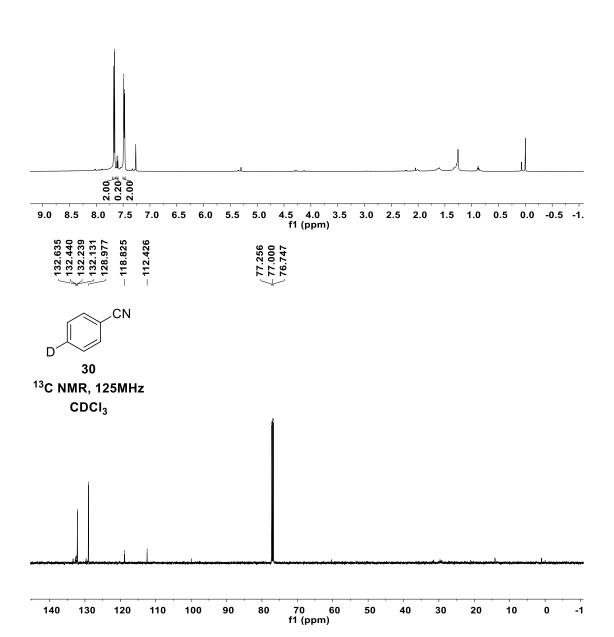


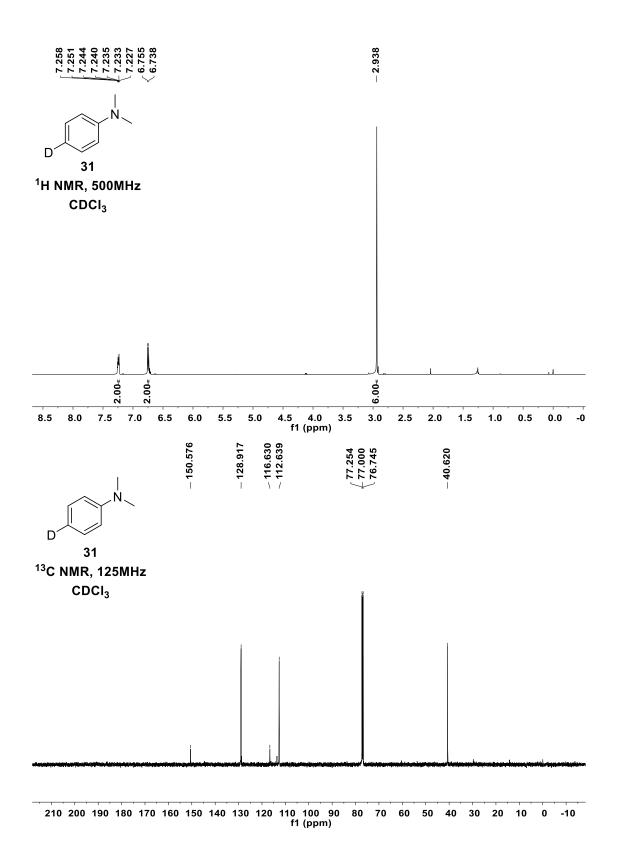


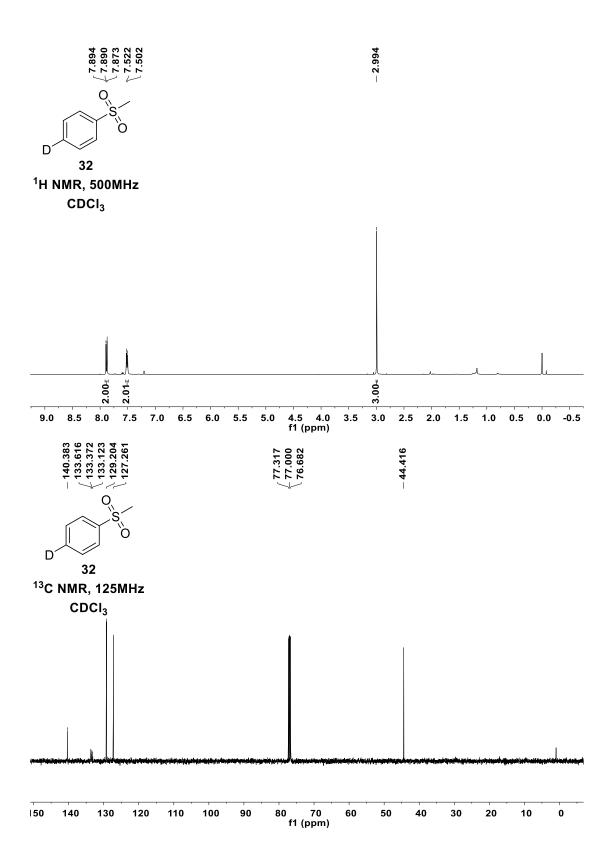


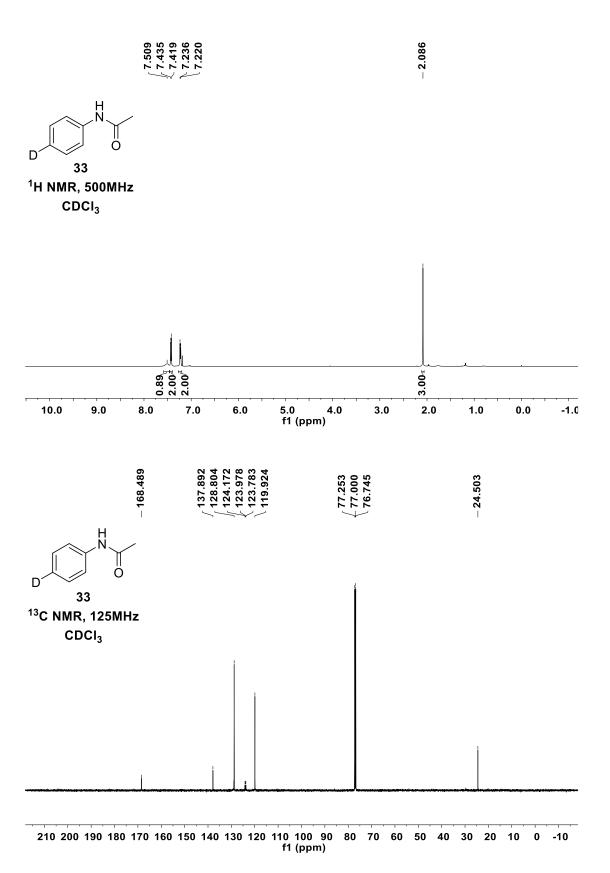


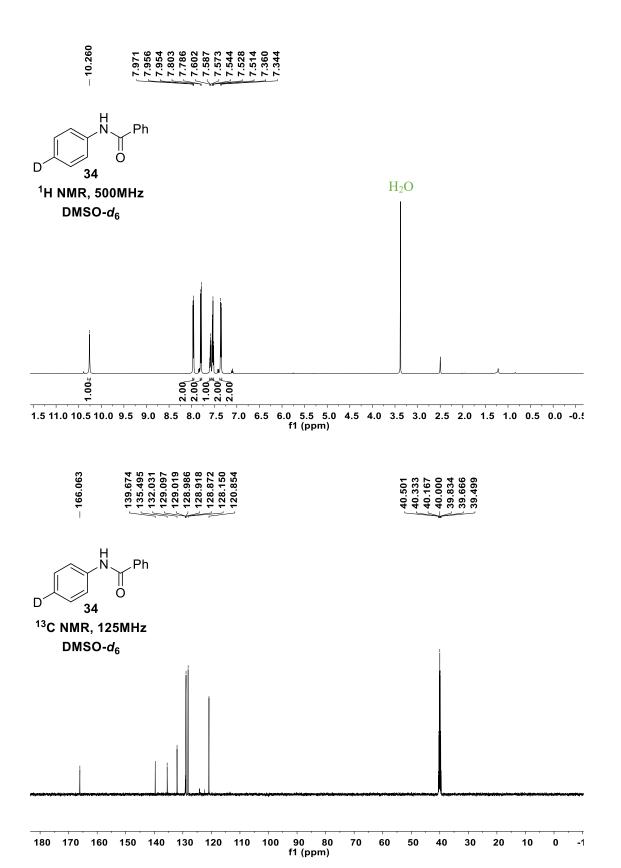


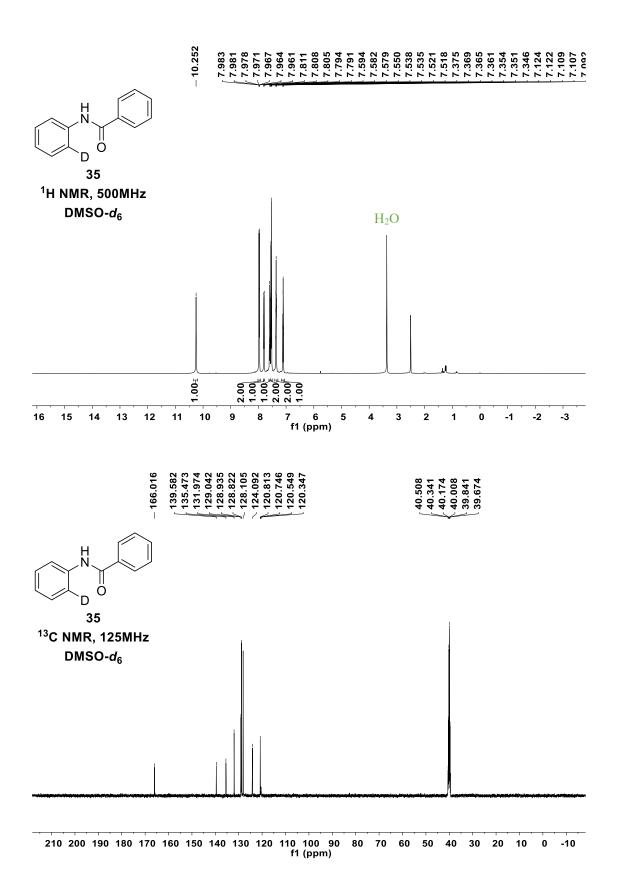


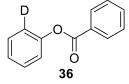


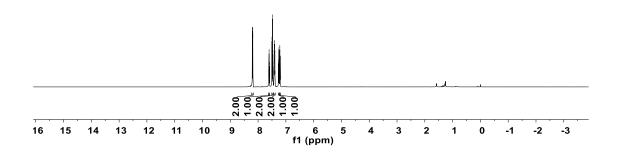


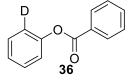


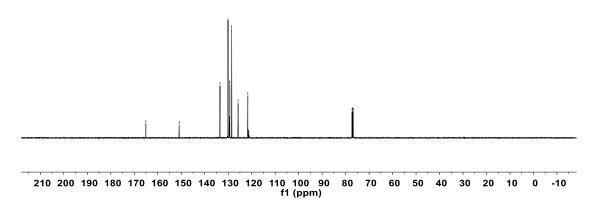


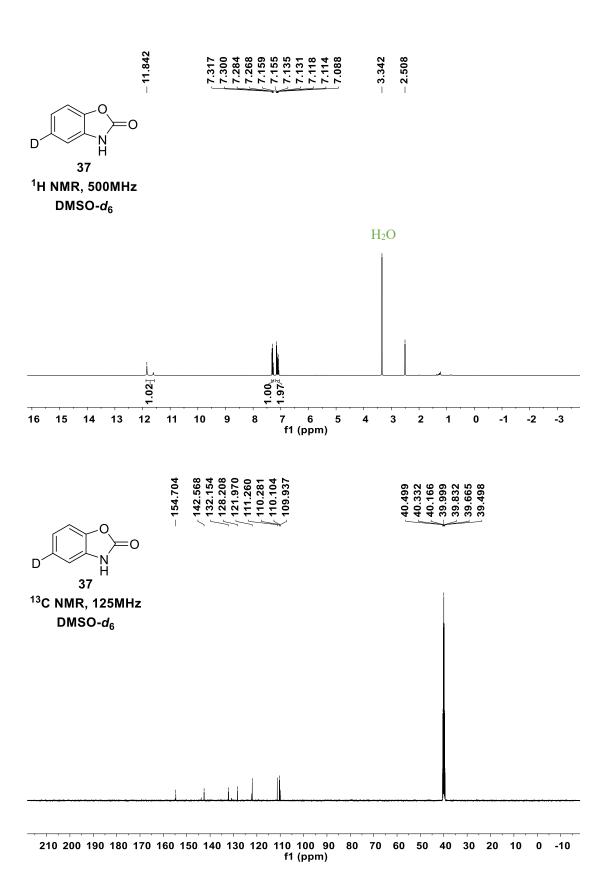


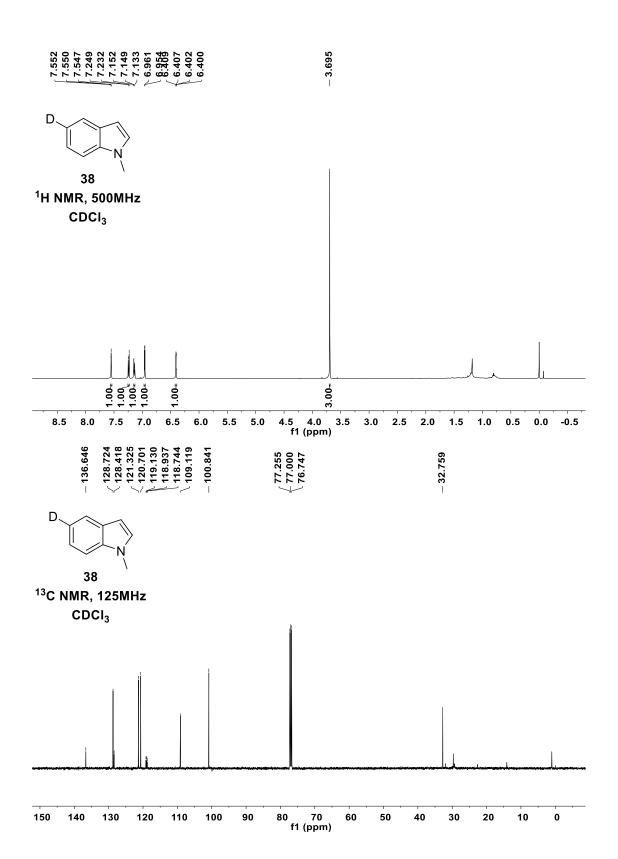


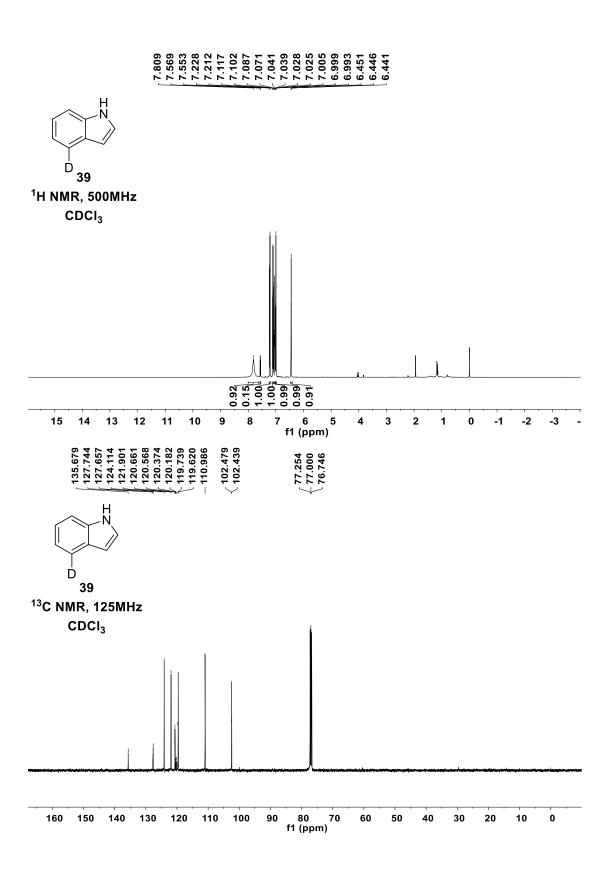



8.207 8.204 8.194 8.195 8.187 7.618 7.603 7.603 7.603 7.603 7.495 7.496 7.495 7.496 7.495

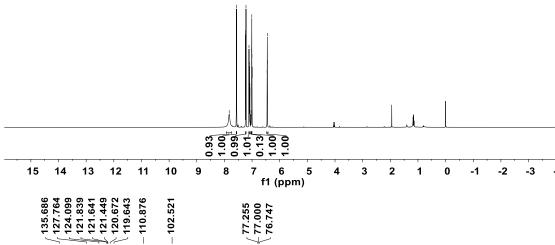

¹H NMR, 500MHz CDCl₃



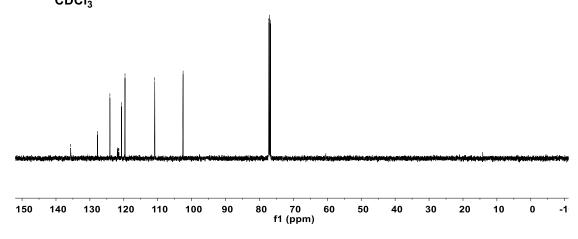


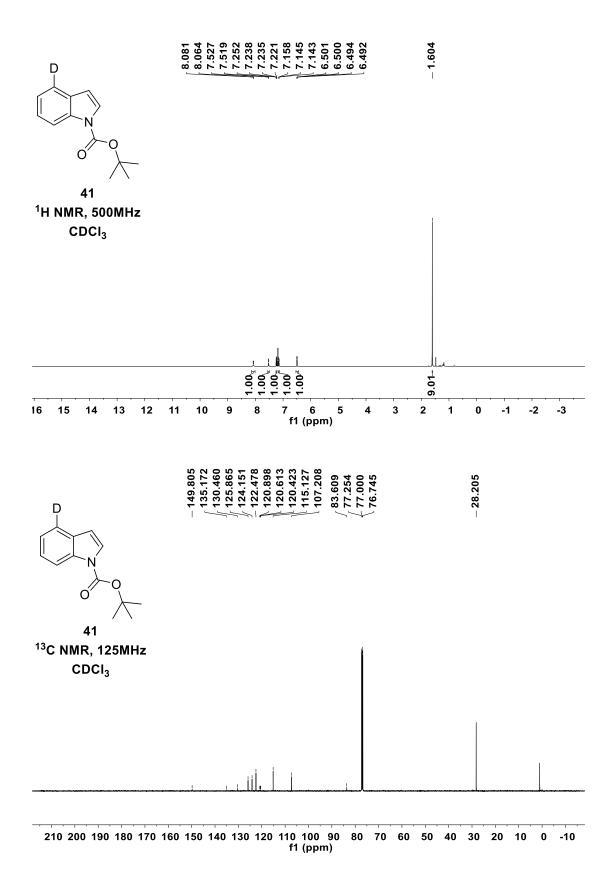


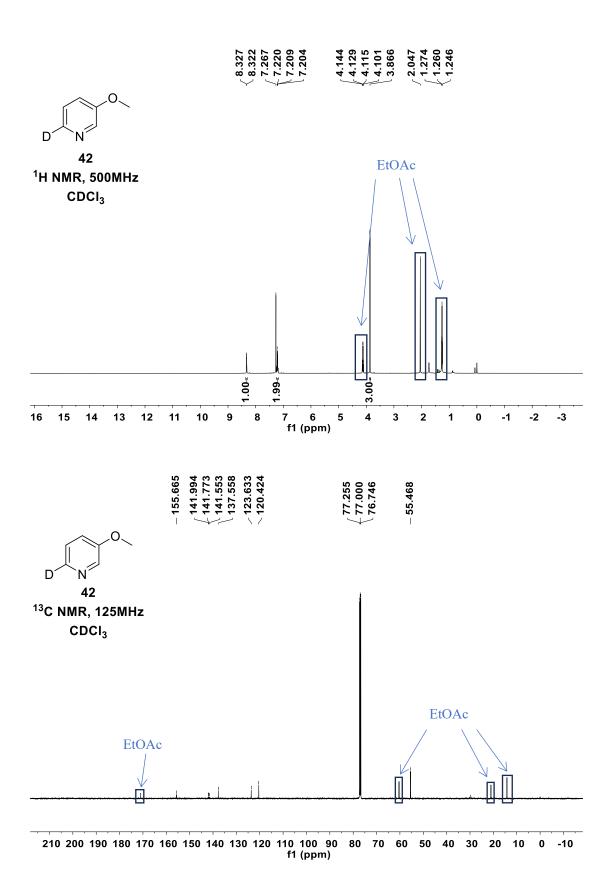
 $^{13}\mathrm{C}$ NMR, 125MHz CDCI_3

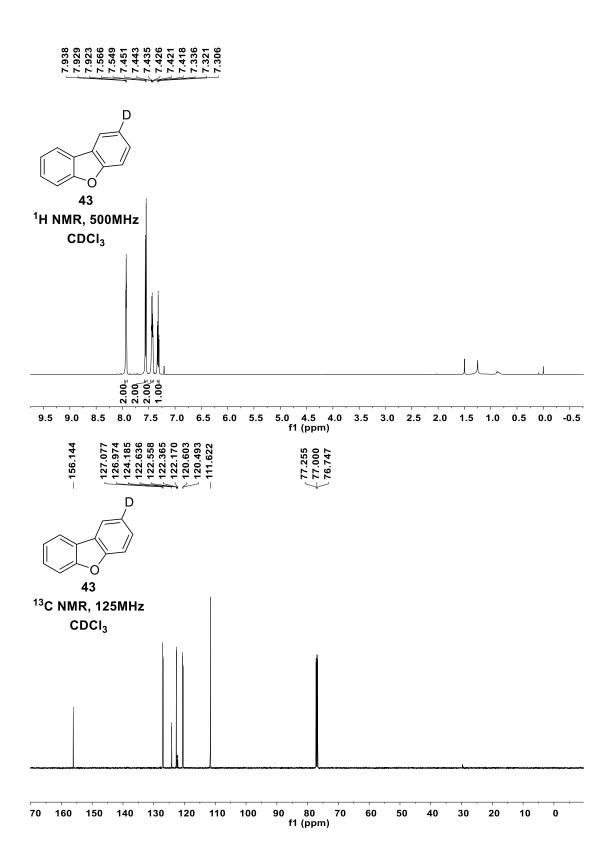


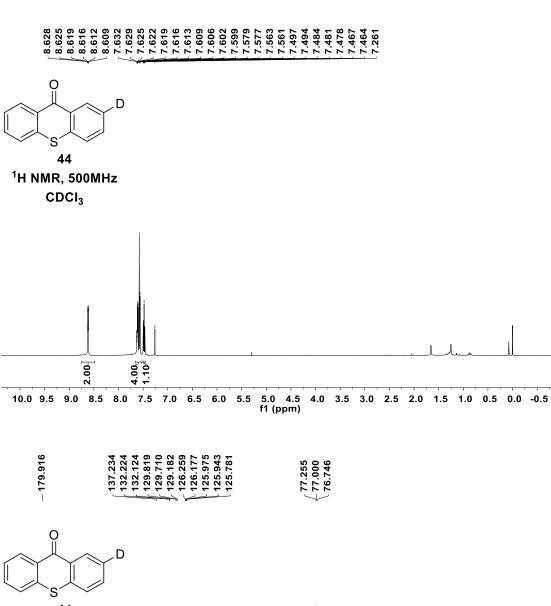
40

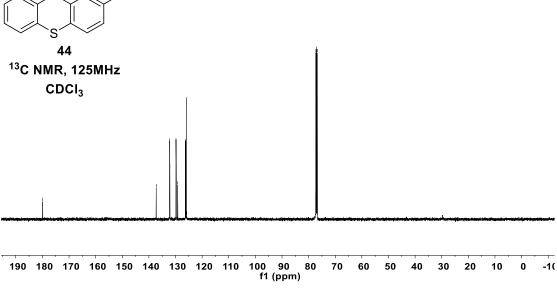

¹H NMR, 500MHz CDCl₃

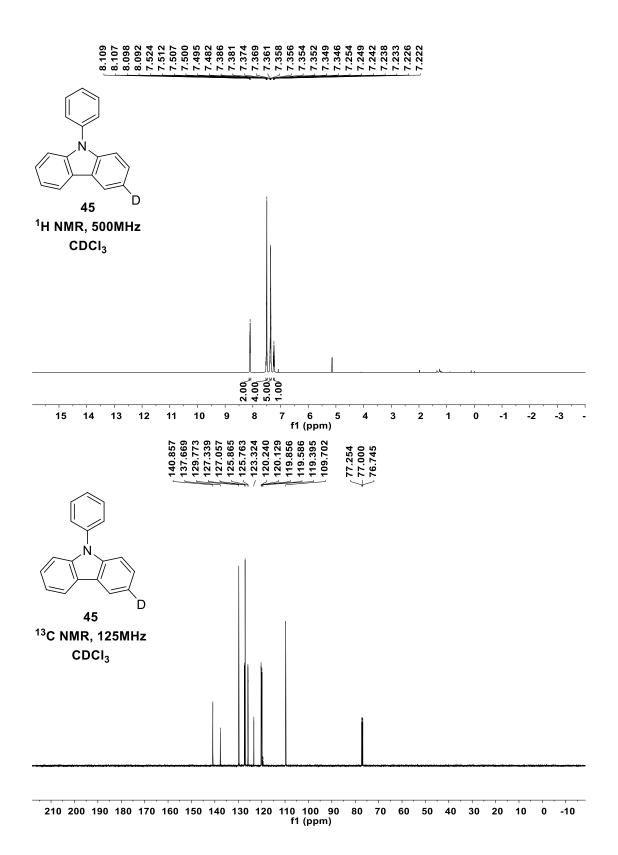


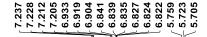

H

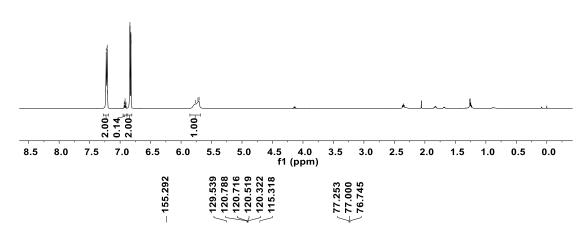

40

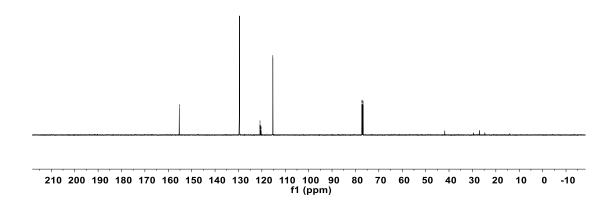

 $^{13}\mathrm{C}$ NMR, 125MHz $^{\mathrm{CDCI}_3}$



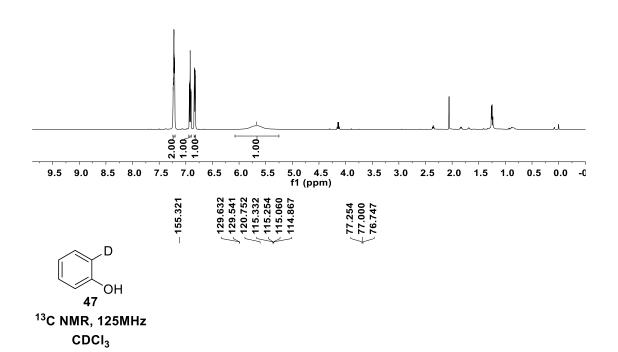


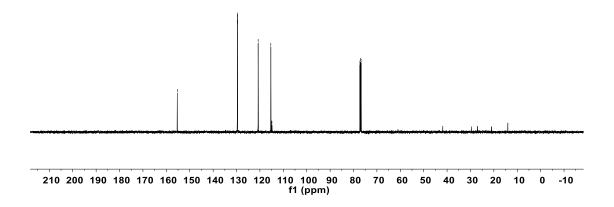


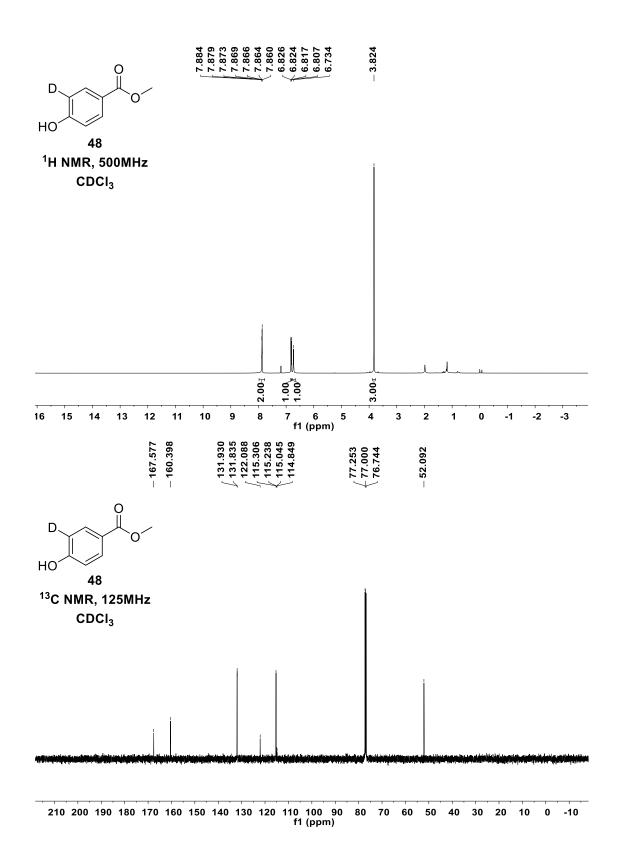


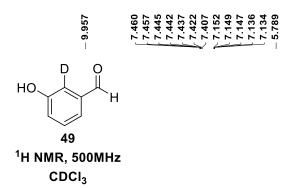

46

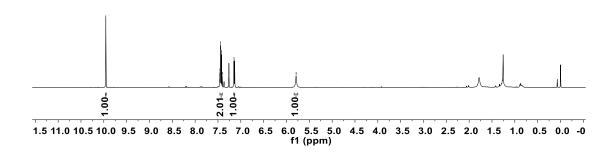
¹H NMR, 500MHz CDCI₃

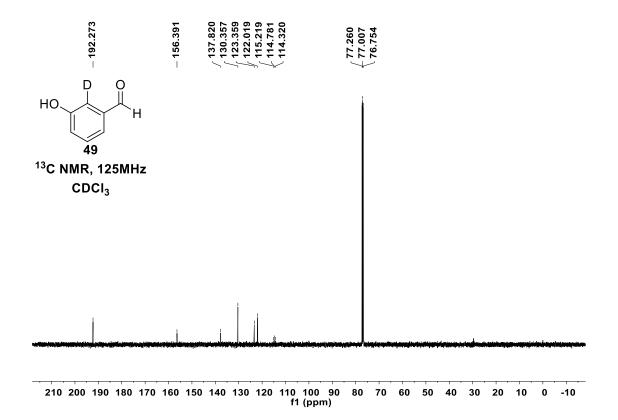

46

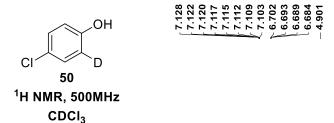

 $^{13}\mathrm{C}$ NMR, 125MHz $\mathrm{CDCI_3}$

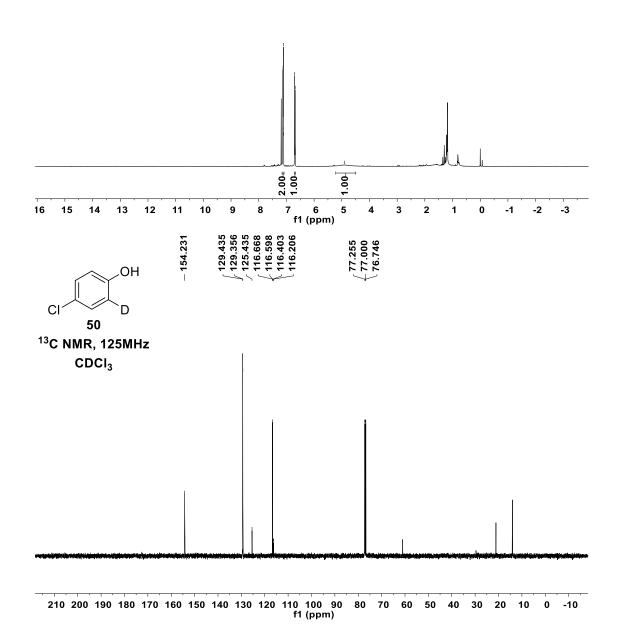


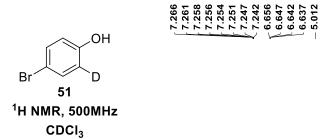


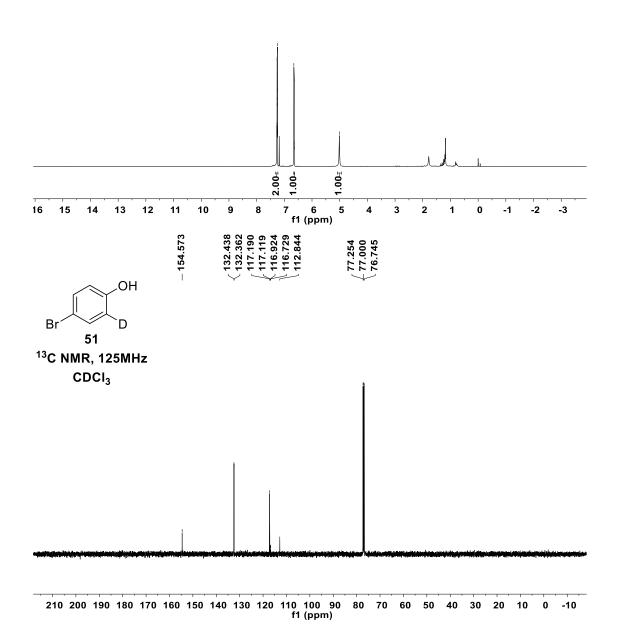

¹H NMR, 500MHz CDCl₃

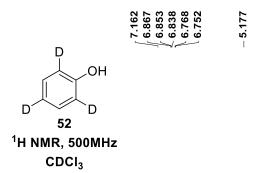


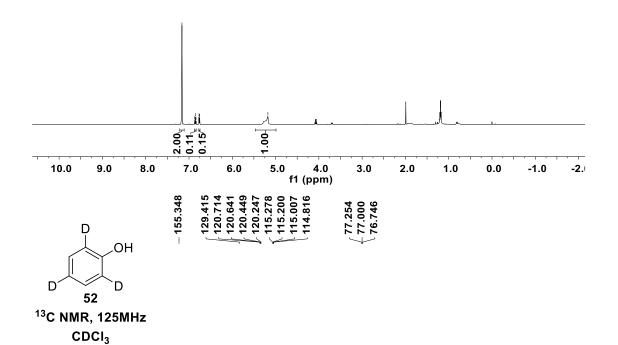


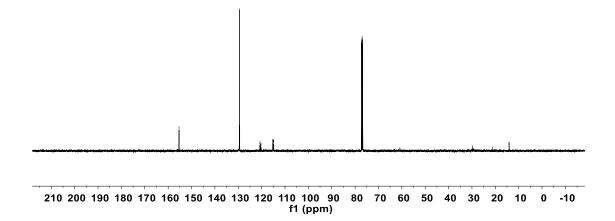


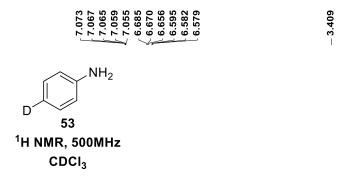


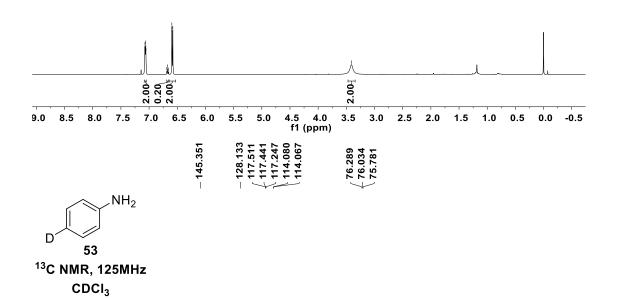


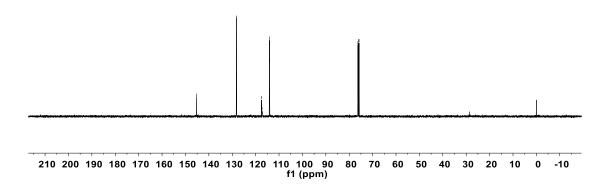


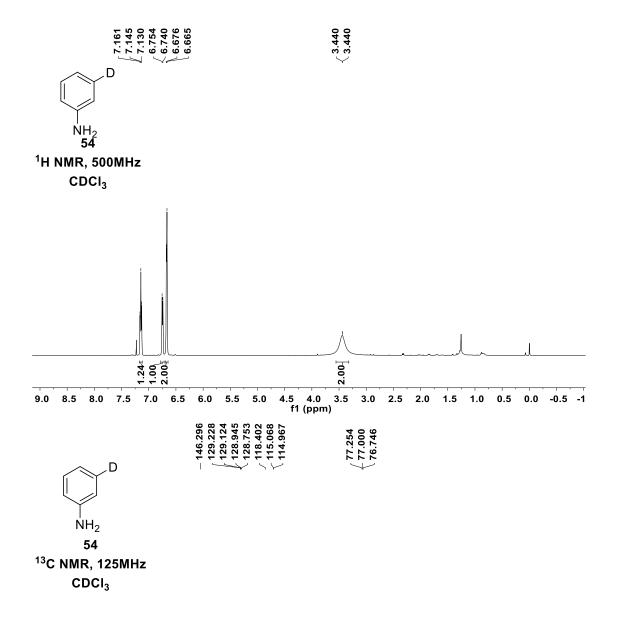


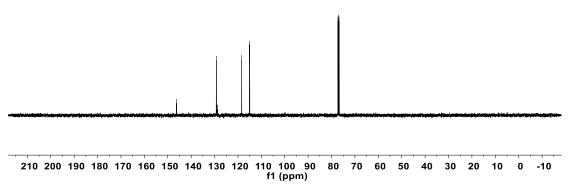


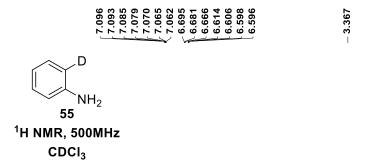


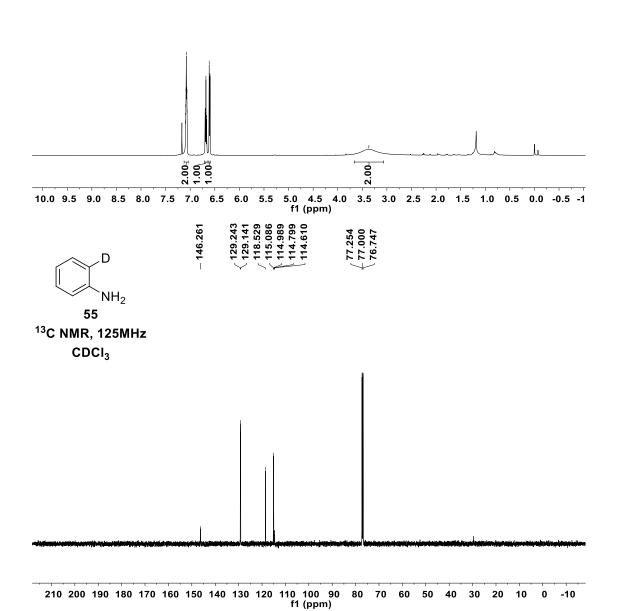


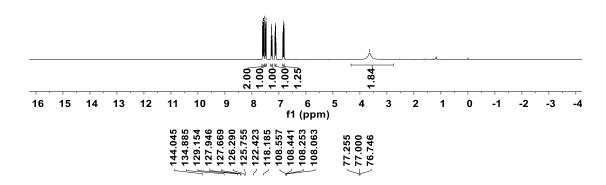


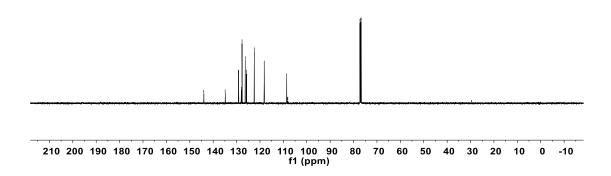


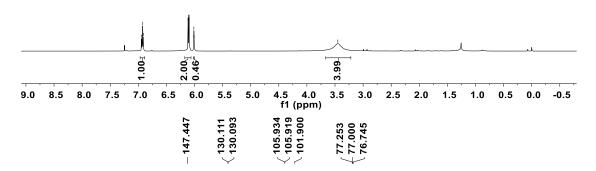




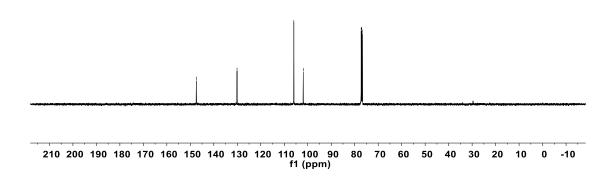


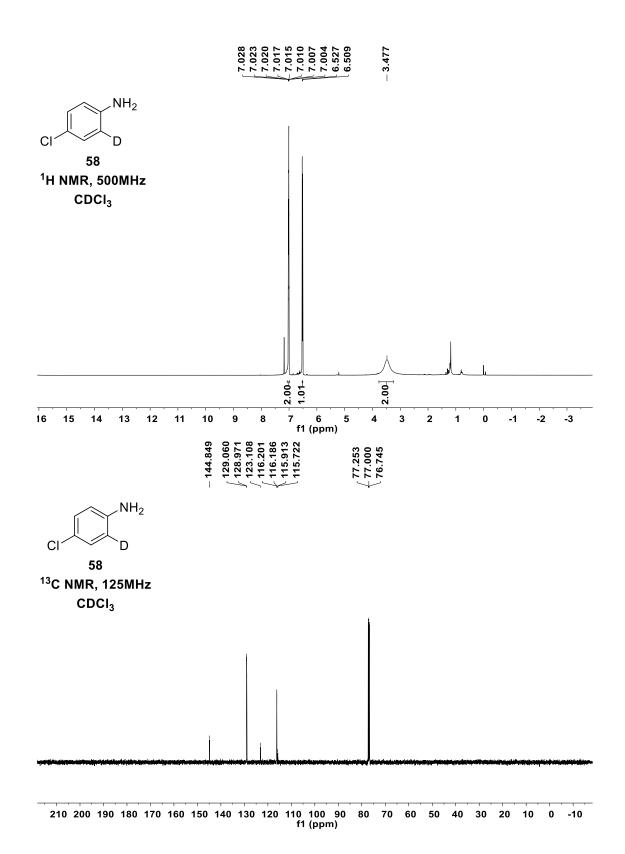




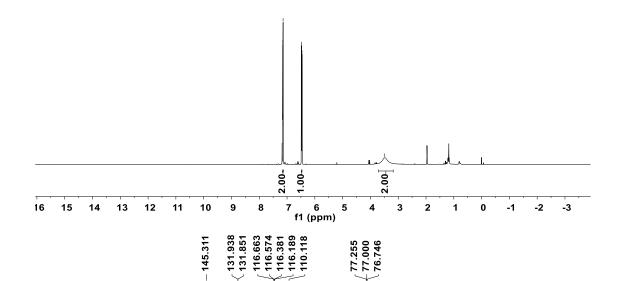


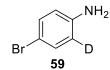
¹H NMR, 500MHz CDCl₃

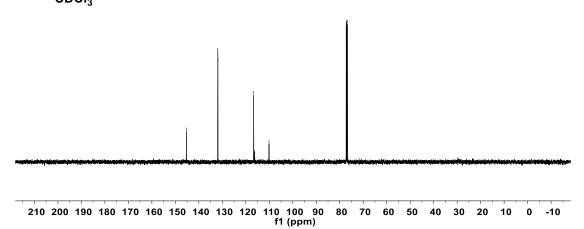


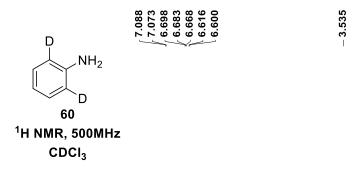

 $^{13}\mathrm{C}$ NMR, 125MHz $^{\mathrm{CDCI}_3}$

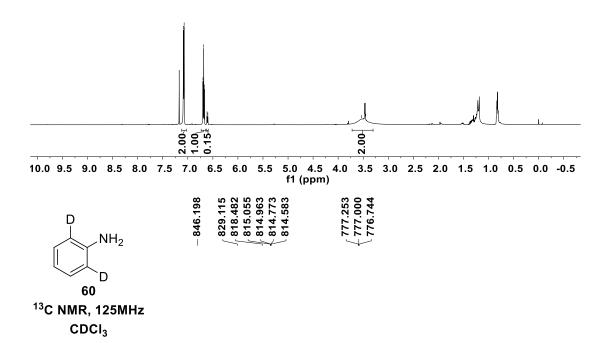


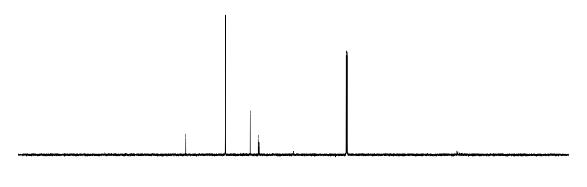

 $^{13}\mathrm{C}$ NMR, 125MHz $^{\mathrm{CDCI_{3}}}$



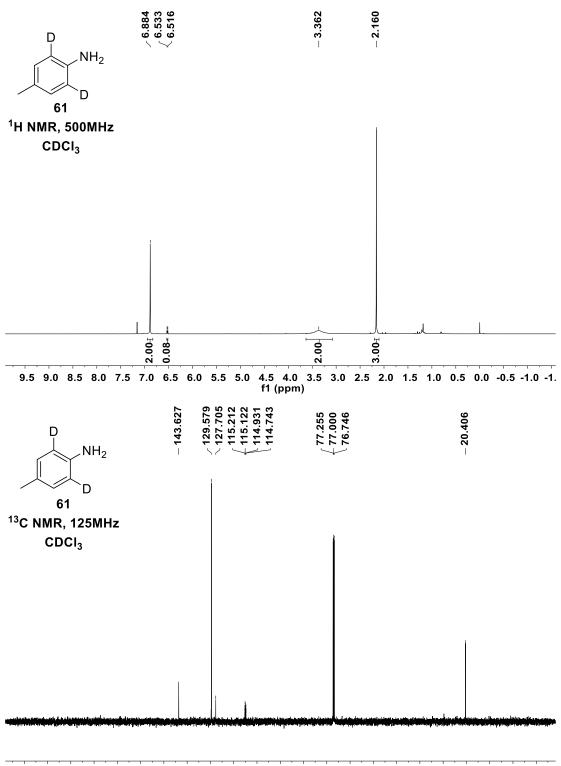


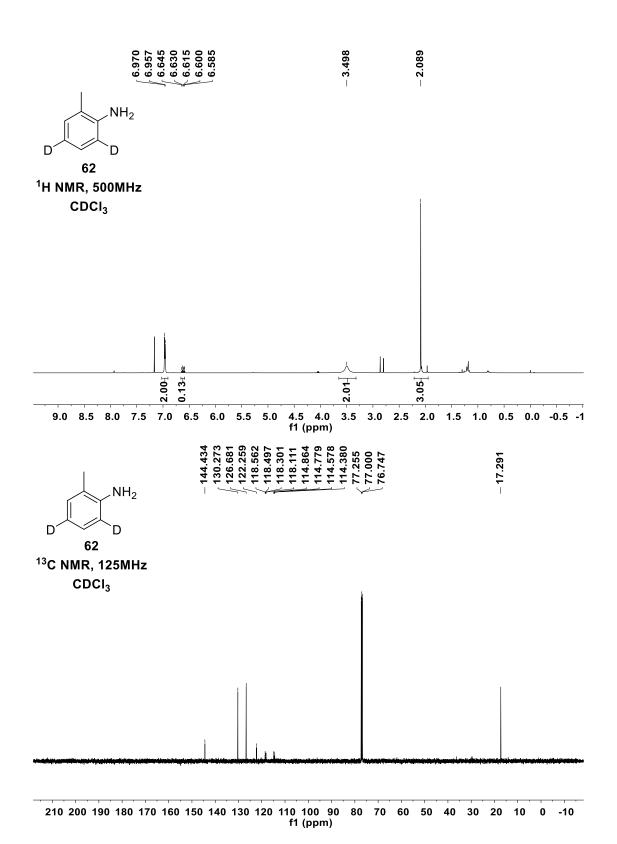

¹H NMR, 500MHz CDCl₃

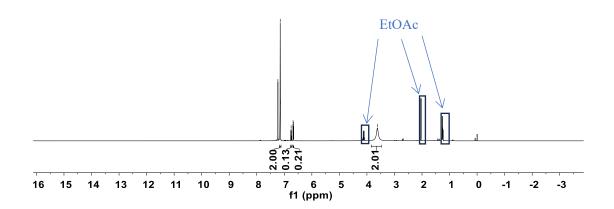


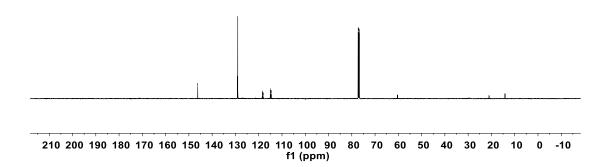


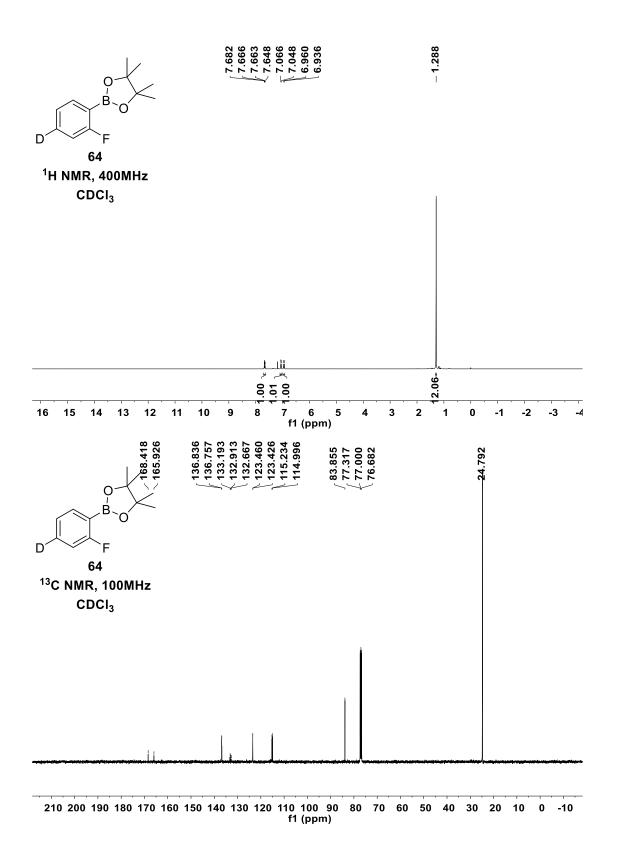
¹³C NMR, 125MHz CDCI₃

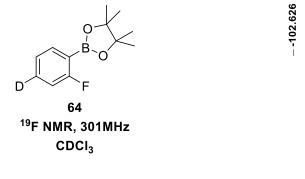


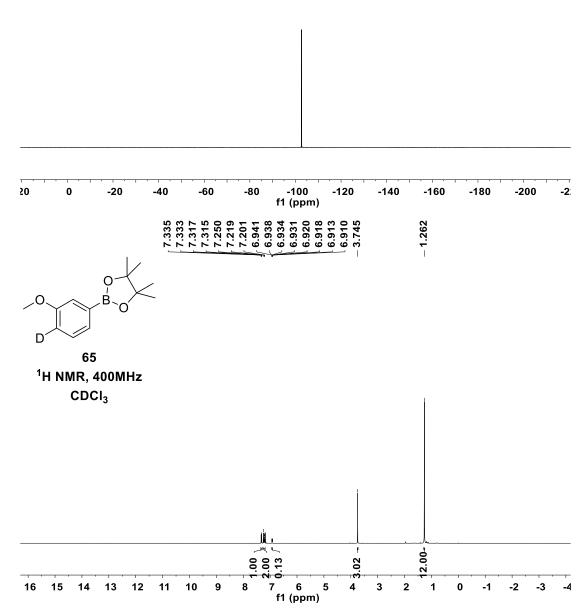


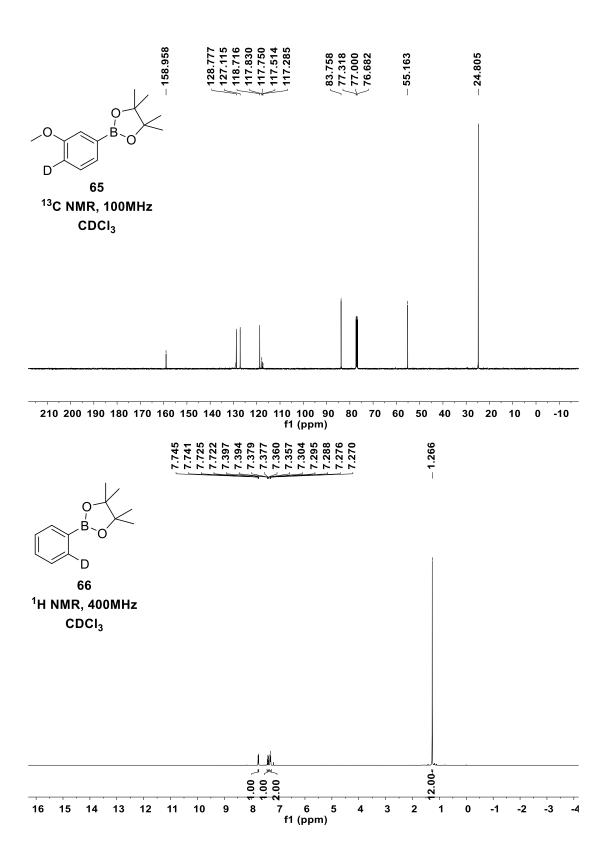

910 900 890 880 870 860 850 840 830 820 810 800 790 780 770 760 750 740 730 720 710 700 690 f1 (ppm)

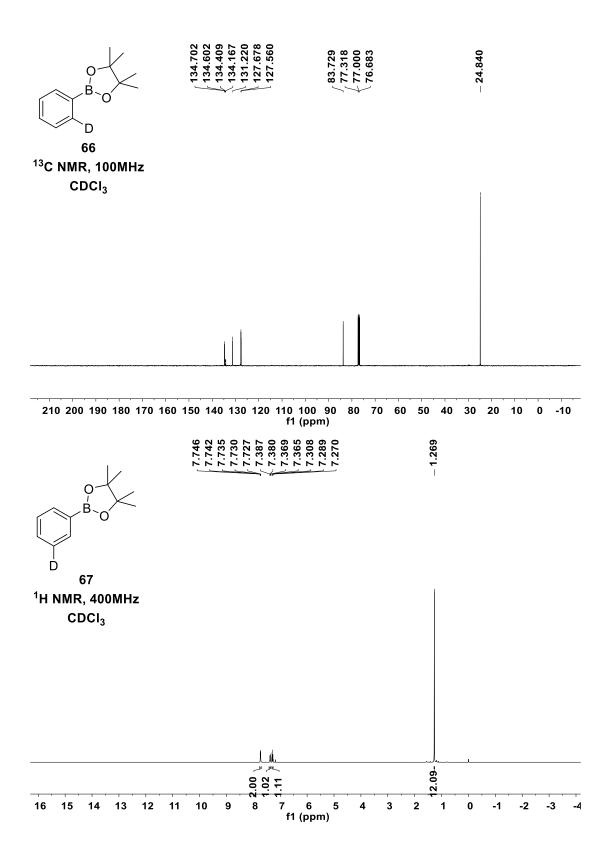


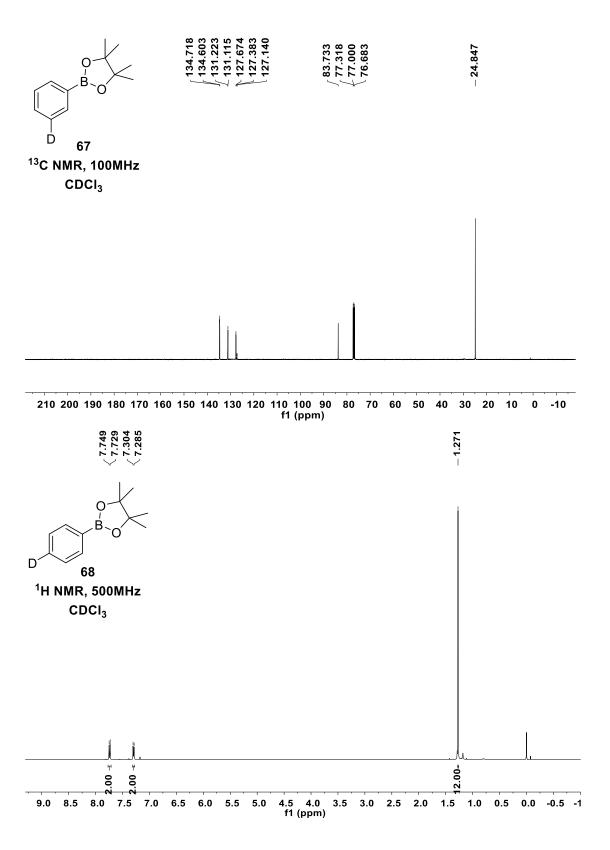

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

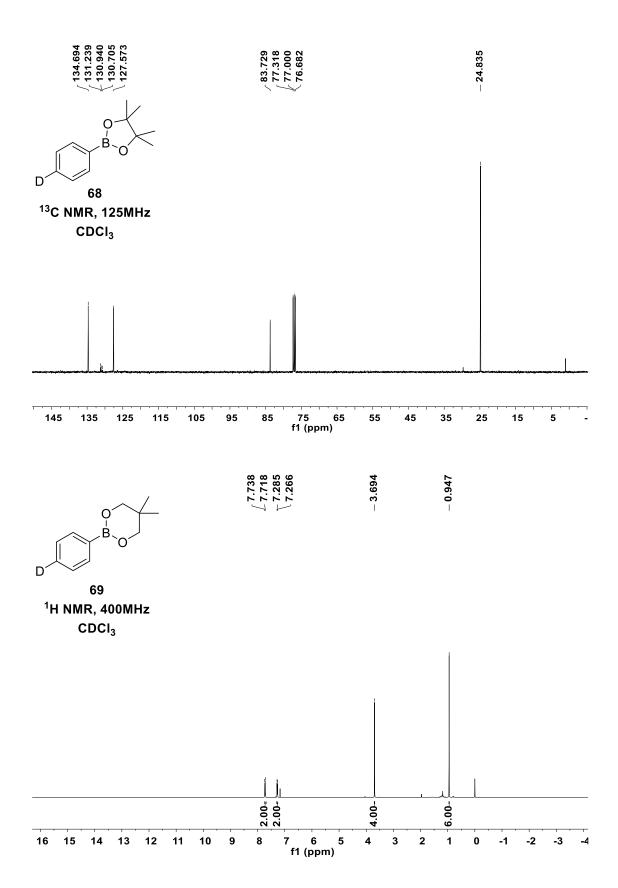


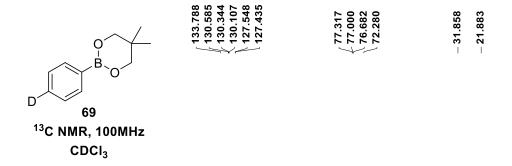


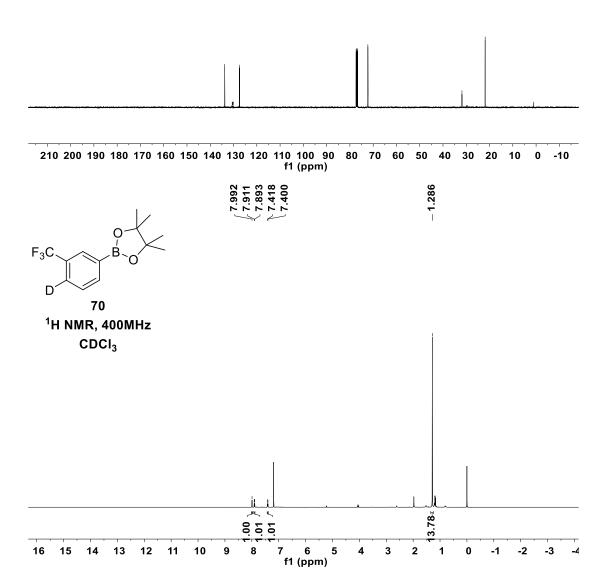


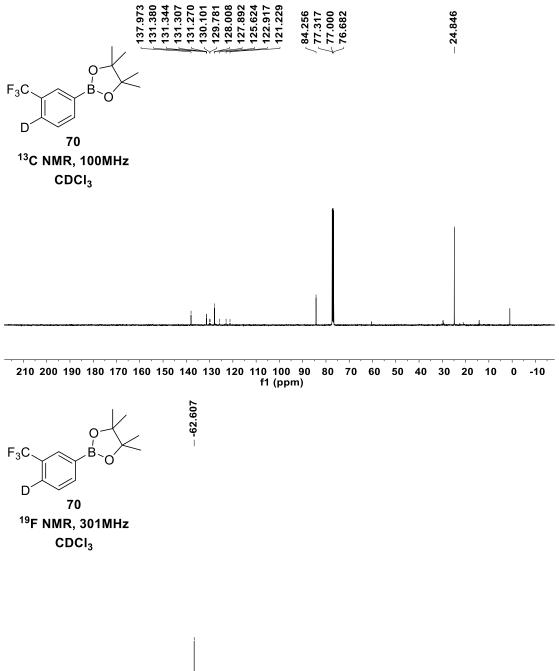


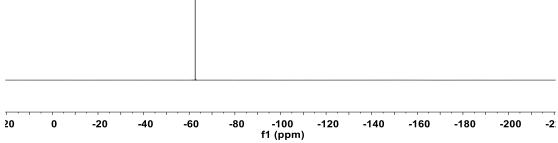


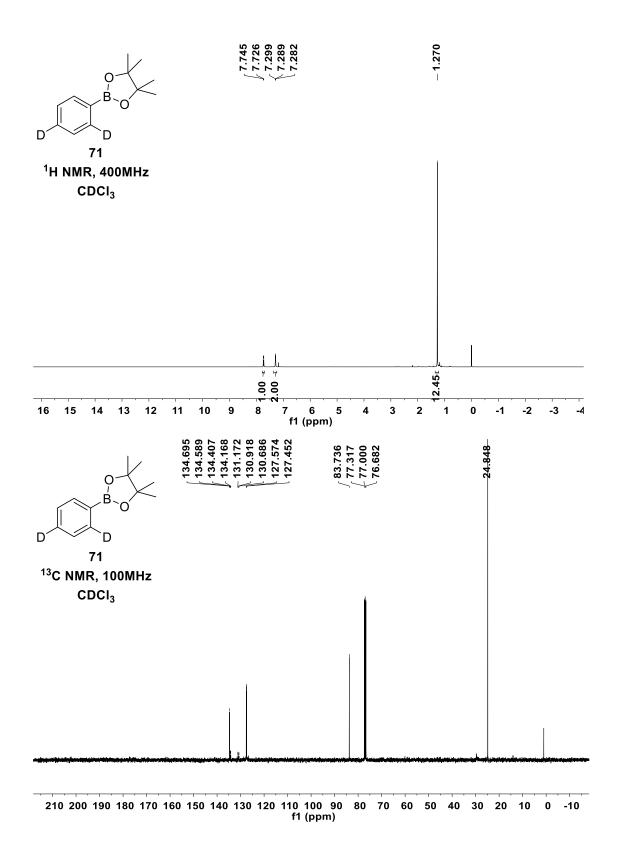


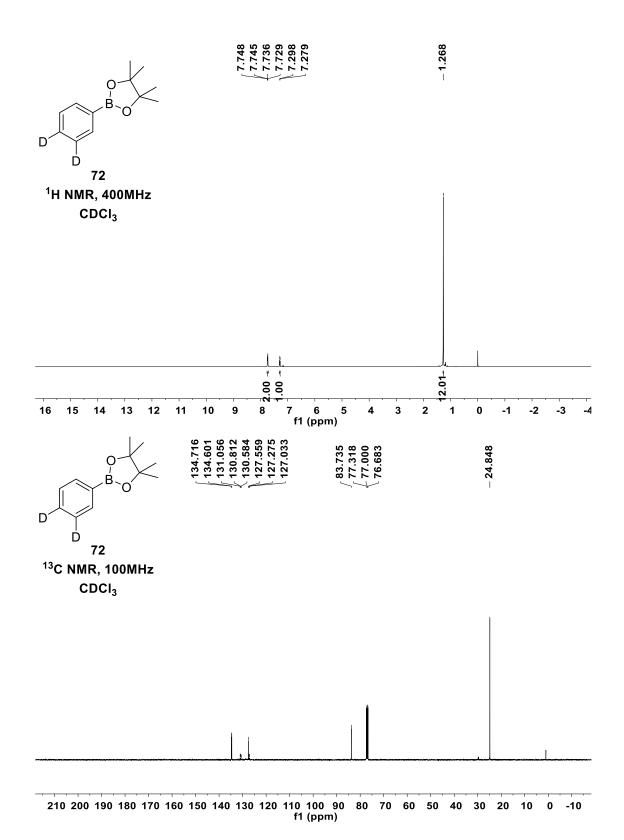


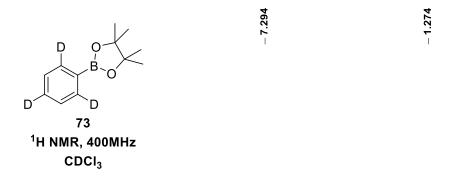


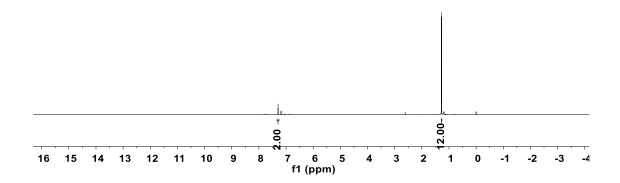


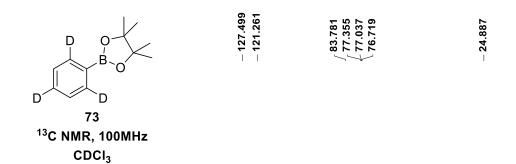


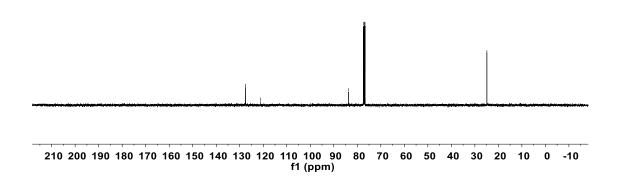


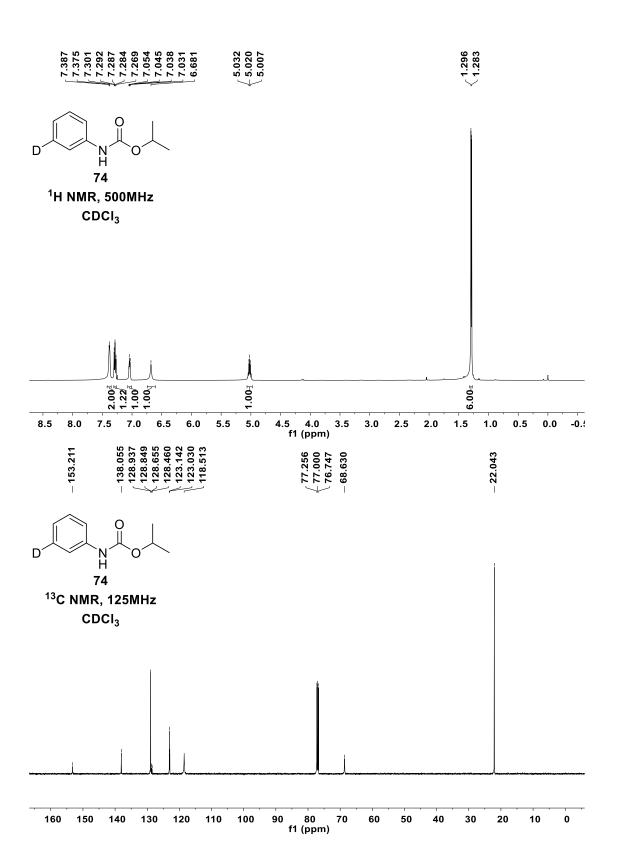


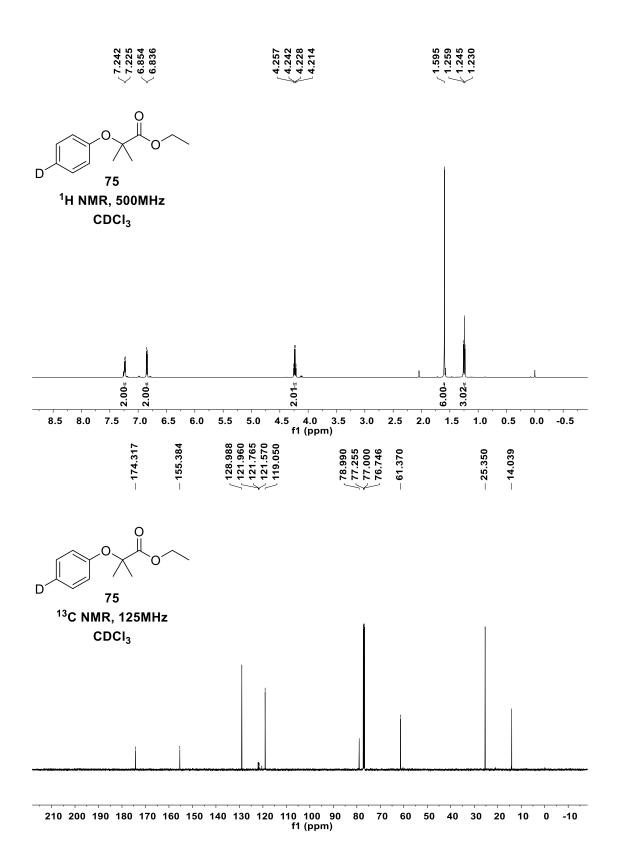


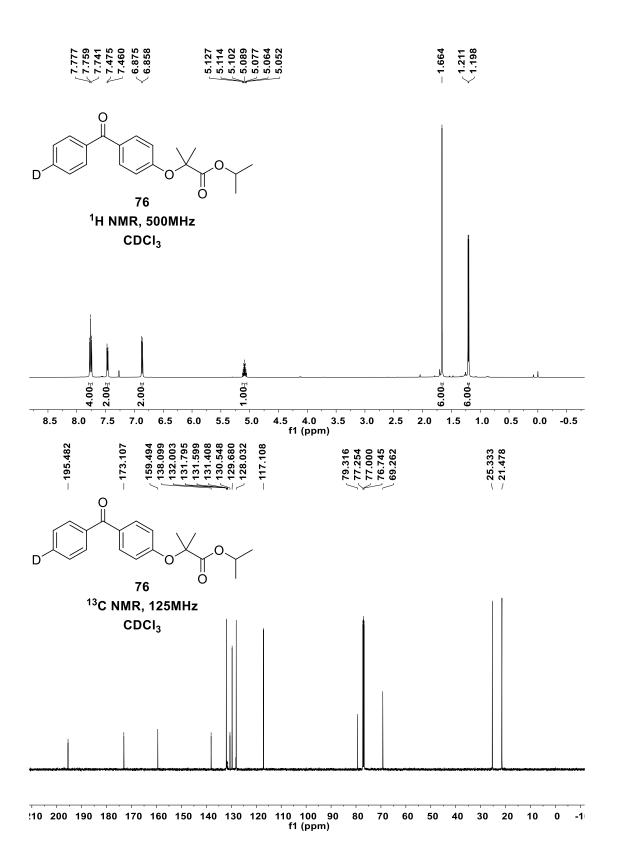


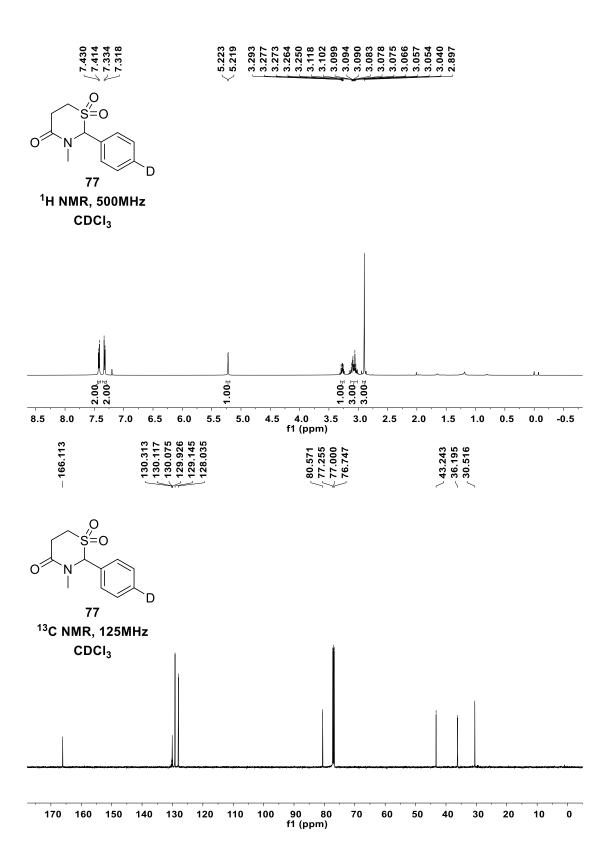


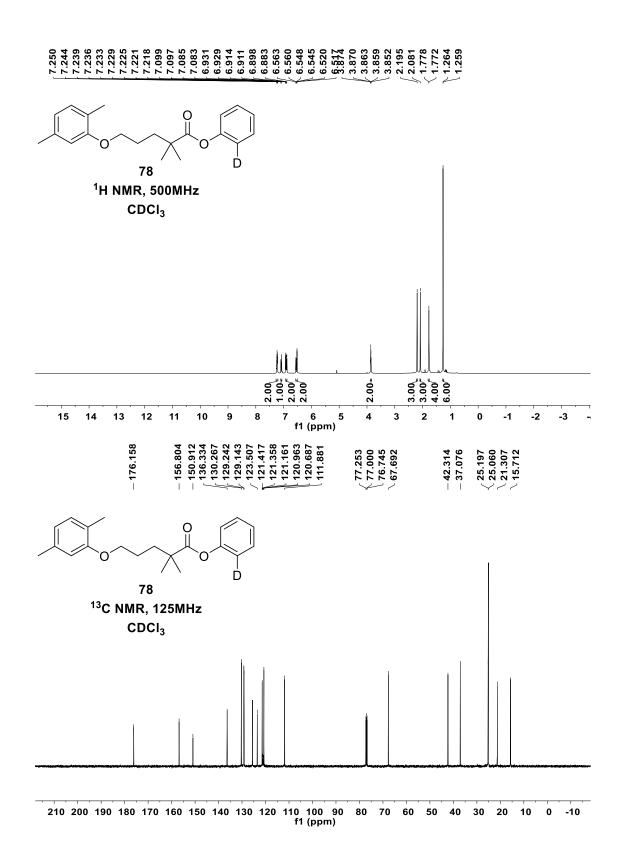


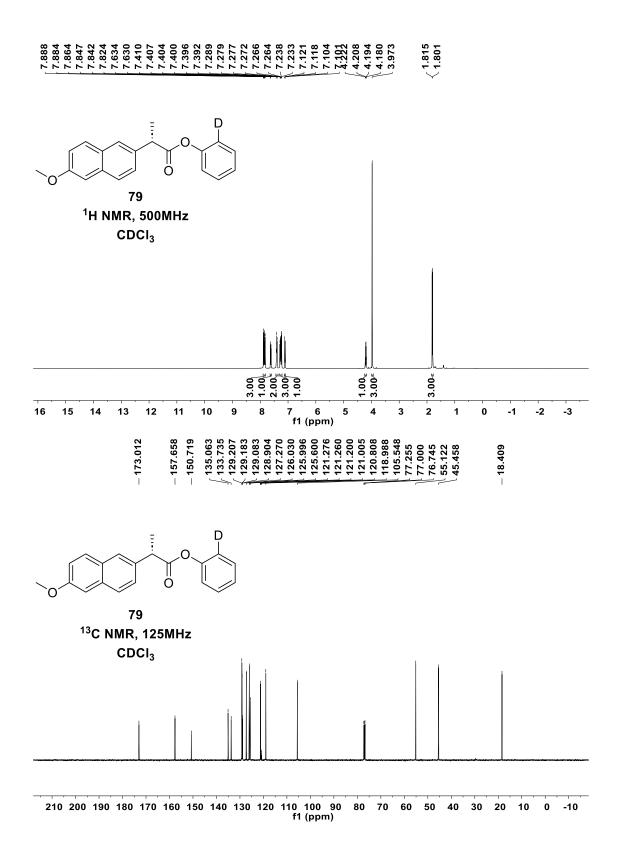


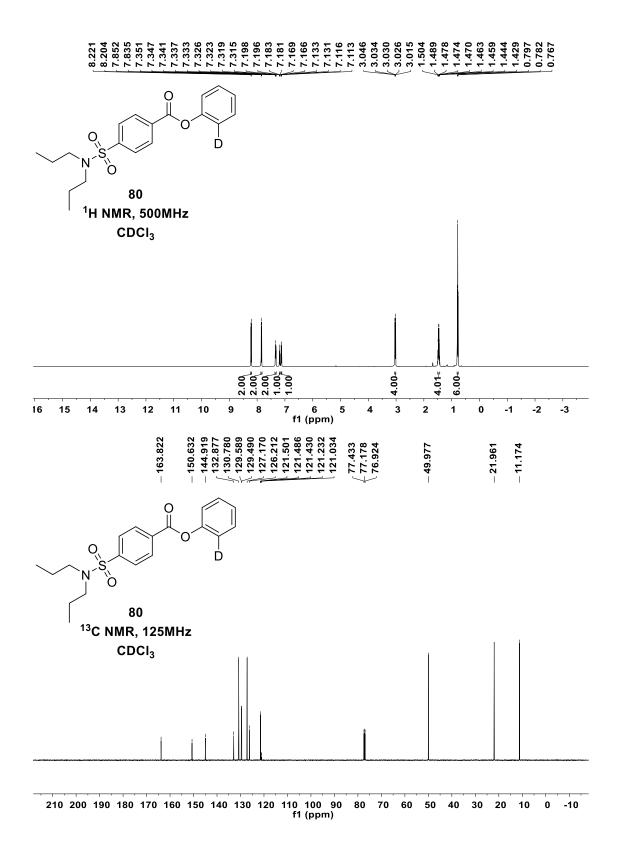


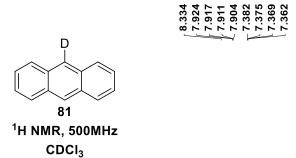


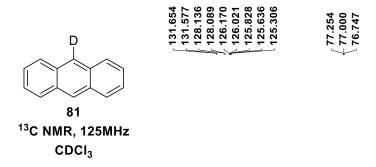


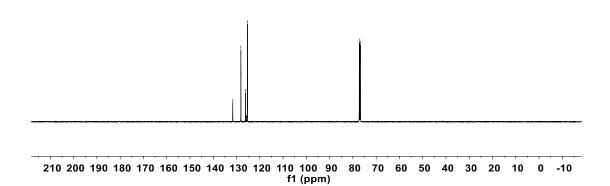


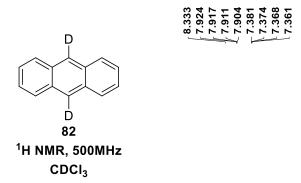


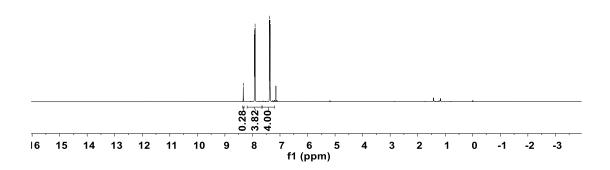


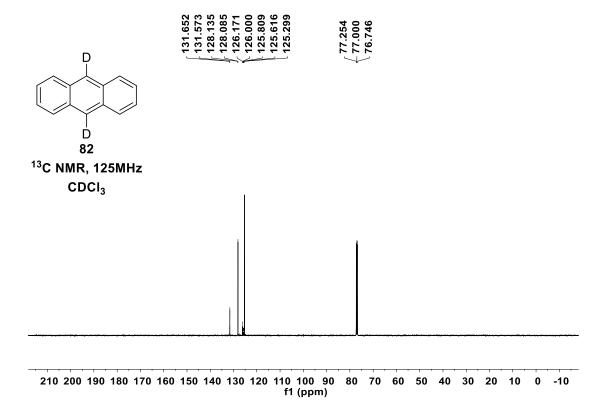


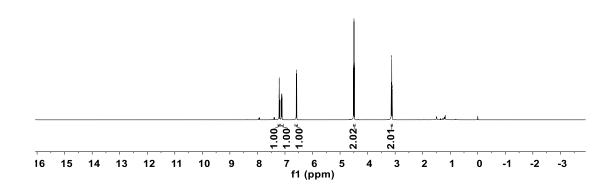


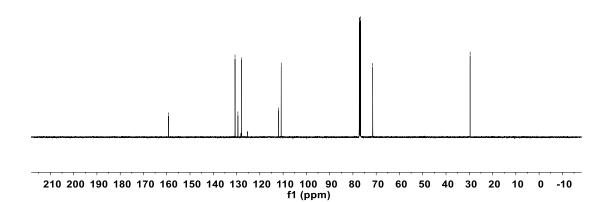


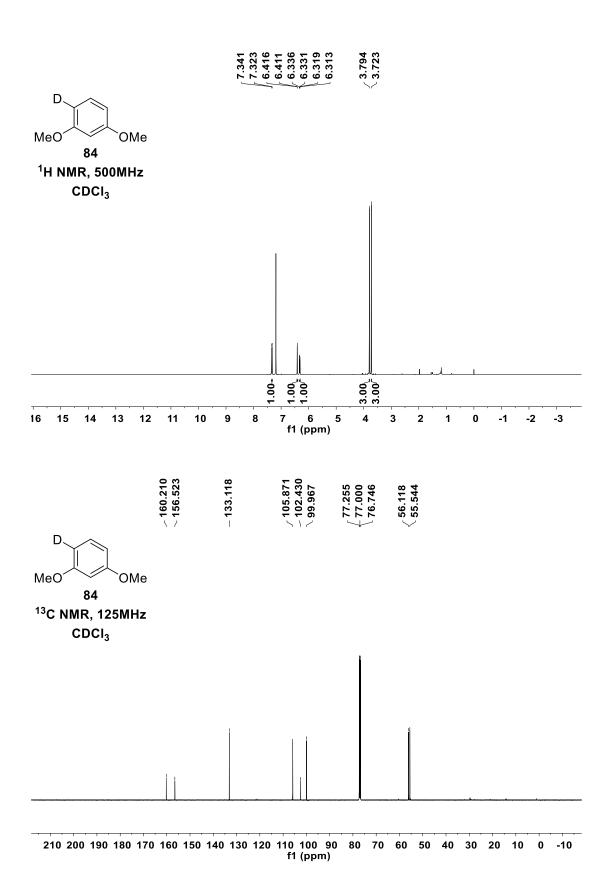


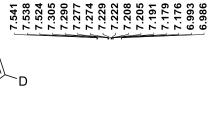


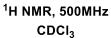


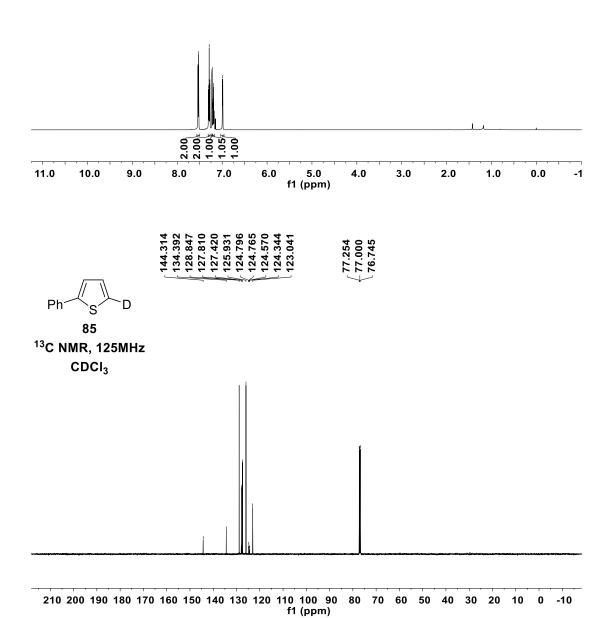


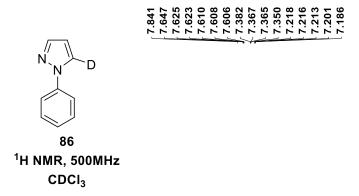


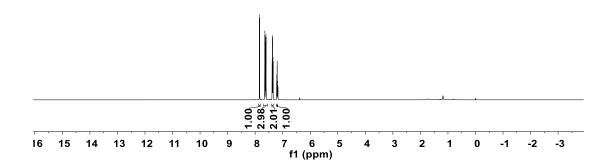


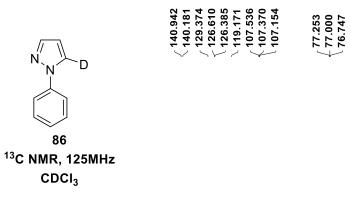


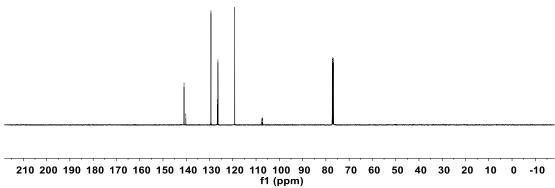


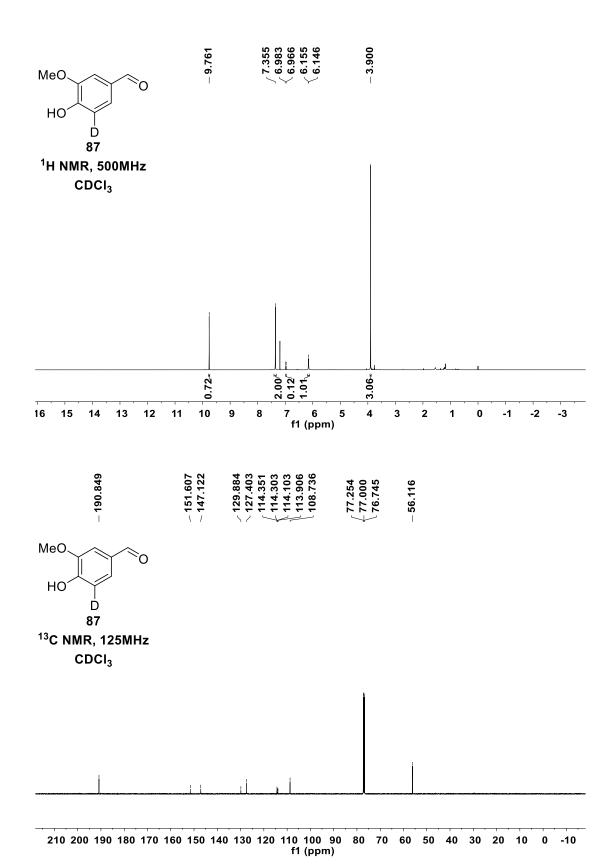

 $^{13}\mathrm{C}$ NMR, 125MHz CDCl_3

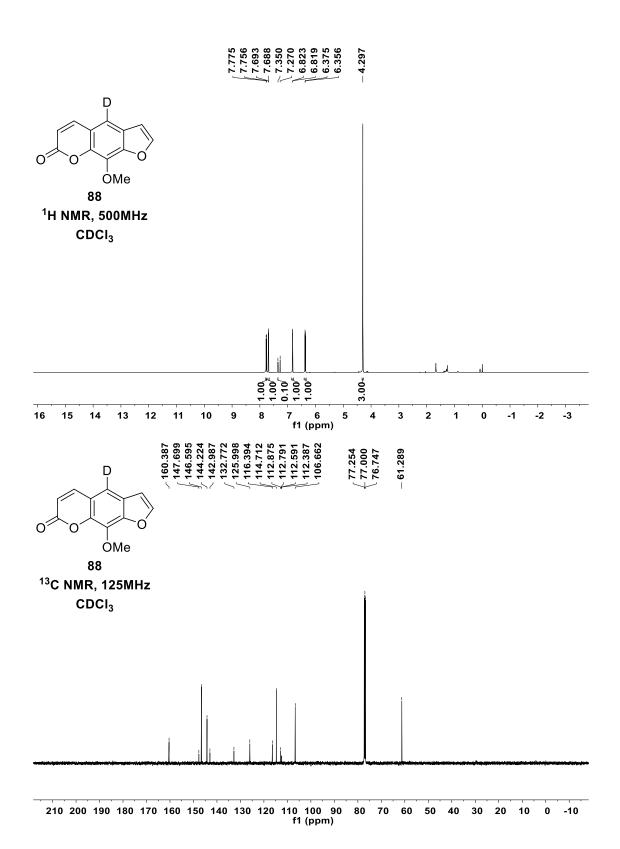


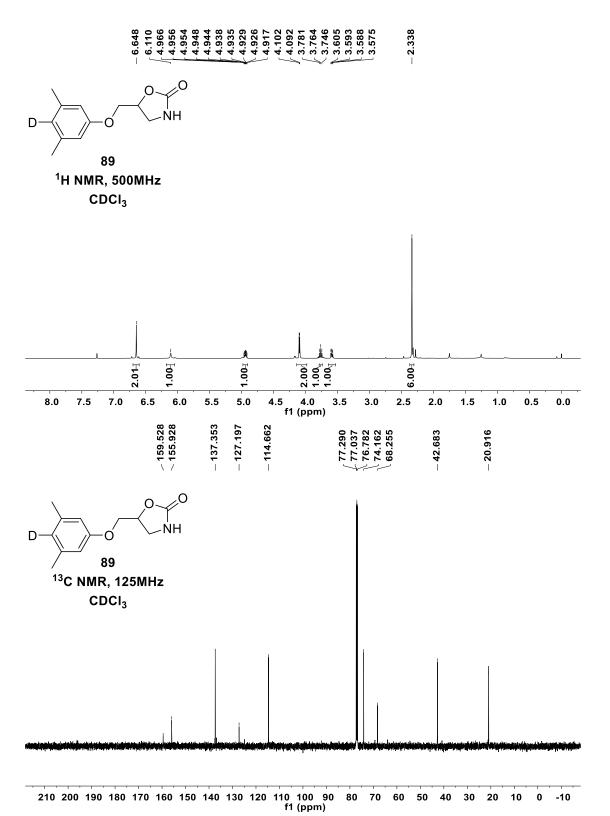


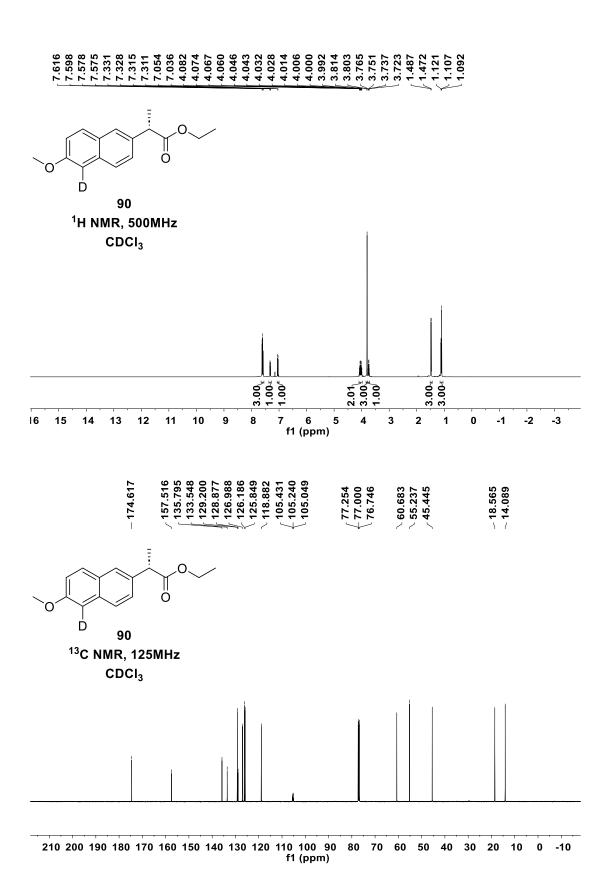












S151

8. References

- 1. Kuriyama, M. et al. Deuterodechlorination of aryl/heteroaryl chlorides catalyzed by a palladium/unsymmetrical NHC system. *J. Org. Chem.* **81**, 8934–8946 (2016).
- 2. Lu, L., Li, H., Zheng, Y., Bu, F. & Lei, A. Facile and economical electrochemical dehalogenative deuteration of (hetero)aryl halides. *CCS Chem.* **3**, 2669–2675 (2021).
- 3. Singh, B., Ahmed, J., Biswas, A., Paira, R. Mandal, S. K. Reduced phenalenyl in catalytic dehalogenative deuteration and hydrodehalogenation of aryl halides *J. Org. Chem.* **86**, 7242–7255 (2021).
- 4. Berger, S. & Diehl, B.W. K. Correlation between deuterium isotope effects and ¹³C-NMR chemical shifts in substituted benzenes. *Tetrahedron Lett.* **28**, 1243–1246 (1987).
- 5. Kameo, H. et al. Palladium-borane cooperation: evidence for an anionic pathway and its application to catalytic hydro-/deutero-dechlorination. *Angew. Chem. Int. Ed.* **58**, 18783–18787 (2019).
- 6. Liu, C., Han, S., Li, M., Chong, X. & Zhang, B. Electrocatalytic deuteration of halides with D₂O as the deuterium source over a copper nanowire arrays cathode. *Angew. Chem. Int. Ed.* **59**, 18527–18531 (2020).
- 7. Yang, L., Zhang, C.-P. Additive-free visible-light-mediated hydro-/deuterodediazoniation of arenediazonium tetrafluoroborates in THF/THF-d₈ Asian J. Org. Chem. **10**, 2157–2160 (2021).
- 8. Yan, B. et al. Catalyst-free reductive hydrogenation or deuteration of aryl-heteroatom bonds induced by light. *Org. Chem. Front.* **8**, 5244–5249 (2021).
- 9. Wang, X. et al. General and practical potassium methoxide/disilane-mediated dehalogenative deuteration of (hetero)arylhalides. *J. Am. Chem. Soc.* **140**, 10970–10974 (2018).
- 10. Lang, Y., Peng, X., Li, C.-J. & Zeng, H. Photoinduced catalyst-free deborylation–deuteration of arylboronic acids with D₂O. *Green Chem.* **22**, 6323–6327 (2020).
- 11. Zhao, D., Petzold, R., Yan, J., Muri, D. & Ritter, T. Tritiation of aryl thianthrenium salts with a molecular palladium catalyst. *Nature* **600**, 444–449 (2021).
- 12. Zhou, Z.-Z., Zhao, J.-H., Gou, X.-Y., Chen, X.-M. & Liang, Y.-M. Visible-light-mediated hydrodehalogenation and Br/D exchange of inactivated aryl and alkyl halides with a palladium complex. *Org. Chem. Front.* **6**, 1649–1654 (2019).
- 13. Wang, Z.-Y. et al. Palladium-catalyzed deuteration of arylketone oxime ethers. *Angew. Chem. Int. Ed.* **63**, e202319773 (2024).
- 14. Yang, Y., Gao, X., Zeng, X., Han, J. & Xu, B. Hydrogen-bond-donor solvents enable catalyst-free (radio)-halogenation and deuteration of organoborons. *Chem. Eur. J.* **27**, 1297–1300 (2021).
- 15. Fischer, O., Hubert, A., Heinrich, M. R. Shifted selectivity in protonation enables the mild deuteration of arenes through catalytic amounts of bronsted acids in deuterated methanol. *J. Org. Chem.* **85**, 11856–11866 (2020).
- 16. Huang, S.-H., Keith, J. M., Hall, M. B. & Richmond, G. M. Ortho-metalation dynamics and ligand fluxionality in the conversion of $Os_3(CO)_{10}(dppm)$ to $HOs_3(CO)_8[\mu\text{-PhP}(C_6H_4-\mu_2,\eta^1)CH_2PPh_2]$: experimental and DFT evidence for the participation of agostic C–H and π -aryl intermediates at an intact triosmium cluster. *Organometallics* **29**, 4041–4057 (2010).

- 17. Liu, W. et al. Mesoionic carbene–iridium complex catalyzed ortho-selective hydrogen isotope exchange of anilines with high functional group tolerance. *Org. Lett.* **22**, 2210–2214 (2020).
- 18. Zhang, H.-H., Bonnesen, P. V. & Hong, K. Palladium-catalyzed Br/D exchange of arenes: selective deuterium incorporation with versatile functional group tolerance and high efficiency. *Org. Chem. Front.* **2**, 1071–1075 (2015).
- 19. Dong, J. et al. Arylboronic acid deborylation deuteration via synergistic thiol, Lewis Base, and photoredox catalysis. *Org. Lett.* **24**, 2064–2068 (2022).
- 20. Song, S. et al. DMSO-catalysed late-stage chlorination of (hetero)arenes. *Nat. Catal.* **3**, 107–115 (2020).
- 21. Rai, P., Maji, K., Jana, S. K., Maji, B. Intermolecular dearomative [4 + 2] cycloaddition of naphthalenes *via* visible-light energy-transfer-catalysis. *Chem. Sci.* **13**, 12503–12510 (2022).
- 22. Fang, Y., Rogge, T., Ackermann, L., Wang, S.-Y., Ji, S.-J. Nickel-catalyzed reductive thiolation and selenylation of unactivated alkyl bromides. *Nat. Commun.* **9**, 2240–2249 (2018).
- 23. Falk, E., Gasser, V. C. M. Morandi, B. Synthesis of N-alkyl anilines from arenes *via* iron-promoted aromatic C–H amination. *Org. Lett.* **23**, 1422–1426 (2021).
- 24. Xu, G. et al. Synthesis and bioactivities of novel piperazine-containing 1,5-Diphenyl-2-penten-1-one analogues from natural product lead. *Bioorg. Med. Chem. Lett.* **26**, 1849–1853 (2016).
- 25. Pierson, C. N. & Hartwig, J. F. Mapping the mechanisms of oxidative addition in cross-coupling reactions catalysed by phosphine-ligated Ni(0). *Nat. Chem.* **16**, 930–937 (2024).
- 26. Liu, Q. et al. Revealing a second transmetalation step in the Negishi coupling and its competition with reductive elimination: improvement in the interpretation of the mechanism of biaryl syntheses. *J. Am. Chem. Soc.* **131**, 10201–10210 (2009).
- 27. Sakai, M. et al. Metallic nickel-catalyzed reduction of aryl halides with zinc powder and ethanol. *B. Chem. Soc. Jpn.* **65**, 1739–1740 (1992).
- 28. Lin, C., Zhang, J., Zhang, Z., Chong, Q., Meng, F. Cobalt-catalyzed diastereo- and enantioselective reductive coupling of cyclobutenes and aldehydes through umpolung reactivity. *Chem. Sci.* doi: https://doi.org/10.1039/d5sc03755g.
- 29. Zhang, J. et al. Mechanochemical nickel-catalyzed dechlorination-deuteration of aryl chlorides via piezoelectric-promoted Ar–Zn–X intermediates. *ACS Catal.* **15**, 14794–14804 (2025).
- 30. He, R.-D. et al. Reductive alkylation of alkenyl acetates with alkyl bromides by nickel catalysis. *Angew. Chem. Int. Ed.* **61**, e202114556 (2022).
- 31. Biswas, S., Weix, D. J. Mechanism and selectivity in nickel-catalyzed cross-electrophile coupling of aryl halides with alkyl halides. *J. Am. Chem. Soc.* **135**, 16192–16197 (2013).