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S1 Training details

S1.1 Pretraining setup

All 3D models were initialized from pretrained weights obtained on the the HOMO-LUMO gap
prediction task. estimating the HOMO-LUMO energy gap. Hydrogen atoms were excluded from
all molecular structures during both training and evaluation to reduce model complexity and
computational cost.

PaiNN, DimeNet++, eSCN, and GemNet were pretrained by us on the full PCQM4Mv2 dataset,
which contains DFT-calculated orbital properties for approximately 3.8 million molecules. UniMol+
was initialized from the official PCQM4Mv2 checkpoint released by the authors.

S1.2 Evaluation protocol

To select optimal hyperparameters and model checkpoints, we used the validation set from the pro-
posed VColors-3D benchmark. The validation set was also used for early stopping and to adjust the
learning rate (ReduceLROnPlateau). To ensure fair comparison, all models—including different archi-
tectures and conformer settings—were trained on identical data splits and corresponding molecular
conformations.

S1.3 Finetuning setup

The models were originally trained to predict HOMO-LUMO gap. To finetune on the VColors-3D,
we replace the regression head with a randomly initialized one. We then explore two strategies: 1)
finetuning the model with a randomly initialized regression head end-to-end and 2) pretraining the
regression head with a frozen backbone and then training the whole model end-to-end. We call these
two setups “random” and “staged”.



While most models showed comparable performance under both protocols, the staged approach
was crucial for UniMol+, enabling a more stable training process and improved final performance.
This effect was consistent across all conformer types.

S1.4 Training Hyperparameters

Table S1: Key hyperparameters for the models used in this study. For the 3D models (PaiNN,
DimeNet++, eSCN, GemNet), we report parameters for the OneCycleLR scheduler. An alternative
ReduceLROnPlateau scheduler was also tested. For Chemprop, we report the hyperparameters from
our best-performing configuration.

Chemprop PaiNN DimeNet++ eSCN GemNet UniMol+
Training Hyperparameters
Optimizer Adam AdamW AdamW AdamW AdamW Adam
Batch Size 128 32 64 32 32 6
Loss Function MSE MAE (L1) MAE (L1) MAE (L1) MAE (L1) UniMol+ loss
LR Scheduler Cyclical OneCycleLR  OneCycleLR. ~ OneCycleLR  OneCycleLR  Polynomial Decay
Max LR 1.0x1073  50x107% 1.0 x 1073 1.0x 1073 1.0 x 1073 8.0x107°
Epochs 300 450 450 450 450 —
Total Steps — — — — — 300,000
Warmup 20 epochs  30% of steps  30% of steps ~ 30% of steps  30% of steps 30,000 steps
EMA Decay — — — — — 0.999
Model Architecture

Layers 5 (depth) 3 6 8 4 6
Hidden size 482 128 128 128/256 256 768
Cutoff (A) — 5.0 5.0 8.0 12.0 —
Attention Heads — — — — — 48

The main hyperparameters for training the models on absorption maximum wavelength prediction
are detailed in Table S1. All models were trained with zero weight decay.

For the multi-target setup, we adopted the same hyperparameters but with key modifications to
address the different prediction tasks. To handle the prediction of quantum yield (a value between
0 and 1), we applied a logit transform to the target values before calculating the loss. This trans-
formation, defined as logit(p) = log(ﬁ), maps the target to the range of real numbers, which is
better suited for regression. To ensure numerical stability, the quantum yield values were clamped
within the range [3 x 1075,0.999 + 1 x 10’5] prior to transformation. In addition, we introduce loss
weight coeflicients. The coefficients were set to [1,1,10] for the absorption wavelength, the emission
wavelength, and the quantum yield, respectively, to align the quantum yield loss values with the
absorption and emission loss values.

S2 Additional experiments
Table S2: Impact of regression-head initialization on dft implicit-

solvent conformers. Columns show Train/Test MAE (nm) for
Random vs. Pretrained heads

Random Pretrained
Model
Train MAE | Test MAE |  Train MAE | Test MAE |

DimeNet++ 3.522 25.062 2.848 18.457
ESCN 2.651 21.949 2.419 22.147
GemNet 1.790 20.640 1.785 21.316
Unimol+ 5.447 22.019 5.491 18.358
UniProp 1.771 19.682 1.788 17.744




S2.1 Impact of Regression Head Initialization

We found that the effectiveness of head pretraining depends on the expressivity of the regression
head.

UniMol+, for example, utilizes a simple regression heads that is composed of two linear layers
with GELU activation and layer normalization. UniMol+-based models consistently benefited from
head pretraining, particularly when trained with lower-quality input geometries.

In contrast, GemNet’s default regression head consists of an initial dense layer followed by mul-
tiple residual layers. Despite its expressive capacity, this configuration leads to overfitting when the
backbone is frozen: the model achieves ~5 nm MAE on the training set, but ~30 nm on validation
and test sets. This suggests that decoder expressiveness can harm generalization in transfer settings.

Less expressive regression heads used in models like DimeNet++, PaiNN, and eSCN demonstrated
more stable behavior, but gained less from head pretraining. We hypothesize that this is due to their
inability to leverage pretrained features.

Together, these findings highlight that the benefit of head pretraining depends on a balance
between capacity and regularization. Pretrained heads are most helpful when the decoder is expressive
enough to benefit from pretrained features, but not so complex as to overfit in low-data or frozen-
backbone regimes.

S2.2 Combined Cross-Validation Results

Table S3: Consolidated cross-validation MAE metrics.
Model Target Fold 1 Fold 2 Fold3 Fold4 Fold5 Mean Val Loss

Single Target
UniProp absorption  15.797 (29.077)  15.899  14.528 15.217  14.962 15.280 (17.936)
Chemprop  absorption  26.034 (41.780) 22.109 19.118 20.475 20.970 21.741 (24.890)

Multitarget
absorption  15.282 (29.806)  14.258 14.871 16.251 17.192 15.570 (18.475)
UniProp emission 20.334 17.863 20.250 19.709 21.314 19.894
PLQY 0.165 0.159 0.162 0.147 0.146 0.155
absorption  21.938 (86.900)  20.144 21.621 22.550 23.787 22.008 (25.000)
Chemprop emission 29.567 26.022 28.741 27.595 29.904 28.366
PLQY 0.184 0.175 0.177 0.158 0.176 0.174

This section reports full five-fold cross-validation metrics for the best 2D baseline and for
our proposed UniProp model. We first train both models in a single-task setting to predict only
the peak absorption wavelength. We then train them in a multitask setting in which, for each
chromophore—solvent pair, the models jointly predict the peak absorption wavelength, the peak emis-
sion wavelength, and the photoluminescence quantum yield (PLQY). For Fold 1, we report two
MAE values due to the betaine dye36 issue described in Section 3.3. The italicized MAE is computed
on the full fold. The non-italicized MAE is computed on the same fold after excluding the ~ 200
samples in which the chromophore is betaine dye36.

S2.3 Conformer calculation times

In this section, we provide details on time it takes to calculate optimized geometries using different
levels of quantum theory.

Table S4: CPU times for conformer calculations using different methods. Times
are in seconds, minutes and hours.

Method Mean Median Max Total time

Orca Solvent 1493.98 s (24.90 min)  373.20 s (6.22 min)  6554.51 min  10940.93 h
Orca Vacuum  1127.32 s (18.79 min)  342.13 s (5.70 min  1939.08 min 4301.04 h
XTB Vacuum 27.54 s (0.46 min) 9.01 s (0.15 min) 25.32 min 118.65 h




S2.4 Training curves

In this section, we provide full training plot for the solvent-aware variants of 3D GNNs. Each row
corresponds to a single model. The left subplot in each row depicts training loss, whereas the right

subplot depicts the validation loss. In each subplot, we provide three curves, corresponding to different
conformation types.
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Fig. S1: Training curves for the solvent-aware variants of 3D GNNs. The y-axis is log-scaled.
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