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Supplementary Note 1
Detailed inclusion and exclusion criteria
Inclusion criteria were: (a) histopathologically confirmed rectal adenocarcinoma; (b) availability of both pre-treatment MRI scans (including T2WI, T1WIC, and DWI-ADC sequences) acquired within 1 week before neoadjuvant chemoradiotherapy initiation and pre-treatment biopsy whole slide image (WSI) with haematoxylin and eosin (H&E) staining; (c) tumour lower edge located <15 cm from the anal verge (assessed by MRI); (d) clinical tumour staging of cT3-T4 with any nodal status (cNany) or any cT with positive nodal status (cN+), absence of distant metastases  (assessed by MRI); (e) total mesorectal excision performed after neoadjuvant chemoradiotherapy; and (f) maximum tumour diameter ≥1 cm.
Exclusion criteria included: (a) concurrent malignant tumours or previous anticancer treatment history; (b) incomplete neoadjuvant chemoradiotherapy or absence of radical surgery; (c) missing MRI data or insufficient image quality; (d) poor WSI image quality, characterized by noticeable artifacts, noise, distortion, contaminants, or uneven staining; (e) time interval >2 weeks between MRI examination and tissue biopsy; (f) failed MRI image registration or incomplete sequences; and (g) missing or incomplete clinical follow-up data.



Supplementary Note 2 (Details of data collection and processing)
MRI image acquisition and processing
All patients underwent multiparametric MRI examinations 1-2 weeks before treatment initiation. Imaging was performed using 1.5T or 3.0T scanners from multiple vendors, including GE Healthcare and SIEMENS Healthineers. Standardised imaging protocols were employed across all centres (detailed parameters provided in Table S1), with each patient receiving T2-weighted imaging (T2WI), T1-weighted imaging with contrast enhancement (T1WIC), and diffusion-weighted imaging with apparent diffusion coefficient maps (DWI-ADC) sequences. All images were acquired in DICOM format and converted to NIfTI format using the SimpleITK library.
For tumour segmentation and registration, the training subset (n=486) was manually annotated by two experienced radiologists who consensually delineated tumour regions of interest (ROIs) on T2WI sequences using ITK-SNAP software. All annotations were reviewed by a senior radiologist with over 10 years of experience in rectal cancer imaging. An nnU-Net1 model was trained on this annotated subset and subsequently applied for automatic segmentation of the remaining T2WI images. Manual registration techniques were employed to identify corresponding maximum tumour cross-sections in T1WIC and ADC sequences.
Image pre-processing and format conversion comprised four sequential steps: (1) image dimensions were standardized to 224×224 pixels using cubic interpolation to preserve image quality; (2) intensity normalization linearly scaled pixel values to the 0–1 range; (3) single-channel medical images were replicated three times along the channel dimension to generate 224×224×3 tensor format, matching RGB input requirements of pretrained deep learning models; and (4) tensor dimensions were rearranged to (channel, height, width) format.
MRI data augmentation strategies during training included: intensity standardization to ensure pixel value distribution consistency; random horizontal flipping (50% probability) to simulate patient positioning variations; random rotation transformations (50% probability, ±15° range) to increase geometric diversity; and random zero-value masking (30% probability) to enhance model tolerance to image artifacts—validation and testing phases employed only intensity standardization and dimension adjustment.
Pathological image acquisition and processing
All pathological specimens were derived from endoscopic biopsy tissues obtained before treatment and processed with standard haematoxylin and eosin (H&E) staining to create histological slides. 
WSI specimens were digitised at 40× magnification using the CLAM2 framework for automated analysis. Automatic foreground segmentation initially converted original RGB images to HSV colour space, utilising saturation channel thresholding (threshold=0.2) to identify H&E-stained tissue regions. Subsequently, morphological opening and closing operations were applied to remove noise and fill small gaps, followed by area-based filtering (>500 pixels) to eliminate artefacts.
Patch extraction within identified tissue regions employed a sliding window approach to extract 256×256pixel non-overlapping patches. Each patient was randomly sampled for 10,000 patches to ensure representative coverage. ImageNet-pretrained ResNet-50 served as the feature extraction backbone, generating 2048-dimensional feature vectors with L2 normalisation.
Clinical data acquisition and processing
Patient clinical data included comprehensive clinicopathological information (age, sex, pre-treatment CEA，pre-treatment CA19-9) and follow-up records for overall survival (OS) and disease-free survival (DFS) assessment. Additionally, we collected available clinical text data, including medical histories, radiology reports, pathology reports, and colonoscopy findings.
Clinical text processing involved systematic pre-processing of raw clinical reports through text structurization to remove formatting redundancies. Unstructured text was decomposed into five semantic components: medical history triad module (chief complaint, present illness history, past medical history); imaging report module (initial MR findings and diagnosis); endoscopic report module (colonoscopy descriptions and conclusions); pathological report module (biopsy observations and diagnoses); and structured data module (age, gender, CEA, CA19-9).
Two text data augmentation techniques were implemented during training: random sentence deletion with 50% probability to simulate incomplete clinical reporting scenarios, and random sentence reordering with 50% probability to enhance model adaptability to textual structure variations. All text was processed using pretrained BERT tokenisers with a maximum sequence length of 512 tokens.
Missing value handling employed domain knowledge-driven imputation strategies: text fields were populated with semantically explicit default identifiers when missing, while structured variables were filled with empty strings. This approach maintained data integrity while minimising systematic bias.



Supplementary Note 3
Technical details of feature extraction
The feature extraction component of the IMPACT model comprises three modality-specific networks: (1) MRI Image Feature Extraction Module: Three parallel ResNet503 branches were employed to process and encode visual features from maximum tumour cross-sections across T2WI, T1WIC, and ADC sequences. Each branch initially performed denoising and intensity normalisation on input slices, followed by uniform scaling to 224×224 pixels to ensure compatibility with ResNet50 input requirements. The processed images were subsequently fed into sequence-specific ResNet50 convolutional encoders. The network architecture comprised an initial 7×7 convolutional layer, a max-pooling layer, and four residual modules. Feature maps of dimensions 2048×7×7 were extracted directly from the fourth residual module output, preserving rich spatial semantic information while enabling flattening or global pooling for subsequent fusion requirements. The 2048×7×7 feature maps from all three branches were concatenated along the channel dimension and subjected to channel-level fusion, yielding unified 2048×7×7 MRI features. The IMPACT imaging feature extraction component utilised a pre-trained network based on MRI image-supervised survival tasks. (2) Pathological Image Feature Extraction Module: The pathological foundation model UNI4 was employed for patch processing and visual feature encoding. A total of 10,000 randomly selected patches per patient were input into the UNI model. Subsequently, the pre-trained UNI image encoder performed feature extraction to generate pathological feature vectors. A gated attention survival network conducted feature selection, identifying the top 512 highest-scoring features from the network output as input for the histopathological biopsy modality, with feature dimensions of 512×512. The IMPACT pathological feature selection component utilised a pre-trained network based on biopsy pathological image-supervised survival tasks. (3) Text Feature Extraction Module: Four unstructured text components (medical history triad, imaging reports, colonoscopy reports, pathology reports) were individually processed through four BERT5 encoders, each generating 512×768 token feature tensors that preserved fine-grained linguistic contextual information while maintaining long-sequence modelling capabilities. Concurrently, four structured clinical indicators (age, sex, CEA, CA19-9) were embedded as 1×768 tokens through independent linear mapping layers to maintain dimensional consistency with BERT outputs. During the text feature fusion stage, the four BERT outputs were initially concatenated along the channel dimension and compressed to 512×768 through a 1×1 convolution layer (with BatchNorm and ReLU activation). Subsequently, the compressed unstructured text features were concatenated with the four structured tokens along the sequence dimension, forming a 516×768 fusion sequence. Finally, this sequence was processed through a multi-head self-attention layer for global interaction and weighted fusion, with sequence length uniformly compressed to 512 via 1×1 convolution, yielding the final integrated text feature tensor of 512×768 dimensions that preserved rich textual semantic information while seamlessly incorporating structured clinical indicators for downstream prediction.



Supplementary Note4 
Data allocation strategy for single-modality models
To maximise data utilisation and enable comprehensive model comparison, patients who were excluded from multimodal analysis due to incomplete data were allocated to the corresponding single-modality model development. Specifically, patients with only MRI data (meeting all other inclusion criteria) were included in MRI-only model training, and patients with only pathology data were included in pathology-only model training. This strategy allowed for robust ablation studies and fair comparison between single-modality and multimodal approaches while maintaining strict quality control for each modality.
Single-modality and dual-modality model training architecture
For systematic ablation analysis, single-modality and dual-modality models were constructed following a consistent architectural framework. Each single-modality model comprised three sequential components: (1) modality-specific data processing modules for standardisation and pre-processing; (2) dedicated feature extraction networks (ResNet50 for MRI, UNI foundation model for pathology, BERT encoders for clinical text); and (3) survival prediction layers that processed extracted features to generate individual risk scores for overall survival and disease-free survival prediction.
Similarly, the dual-modality Integrated MRI and Pathology (IMP) model combined MRI and pathological features through intermediate fusion mechanisms before feeding into the survival prediction layers. These ablation models served dual purposes: providing systematic comparison baselines for evaluating multimodal fusion effectiveness and generating pretrained feature extraction weights for the complete trimodal IMPACT framework.
The feature extraction components trained in single-modality and dual-modality models were subsequently utilised as pretrained initialisation weights for corresponding modality-specific encoders in the trimodal IMPACT framework. This transfer learning approach ensured optimal feature representation learning for each modality while facilitating stable convergence during trimodal fusion training, thereby enhancing the overall performance and training efficiency of the complete multimodal system.


Supplementary Note 5
[bookmark: _Hlk203060243]Technical details of multimodal fusion architecture
Following initial feature extraction, this study employed a cross-attention-based multimodal fusion strategy to effectively integrate MRI imaging features, pathological biopsy image features, and clinical text report features, thereby fully exploiting complementary information across modalities. The Feature Fusion module demonstrates this multimodal information integration process. In brief, MRI image features were first fused with histopathological biopsy image features to obtain patients’ comprehensive image-level characteristics. Subsequently, these integrated image features were combined with clinical text features to generate comprehensive tri-modal fused features. Finally, the fused multimodal features were processed through a survival classification head for final prediction, enabling survival outcome prediction for patients following neoadjuvant therapy.
The Feature Fusion module specifically delineates the effective integration of multimodal data through initial dimensional alignment and standardisation of features across different modalities. Imaging features underwent linear transformation from 2048 to 512 dimensions, while pathological features remained at 512 dimensions. The subsequently fused image features were linearly transformed from 512 to 768 dimensions to maintain consistency with the 768-dimensional text features. This fusion module comprises two key architectural components: Bidirectional Multimodal Attention Blocks and Self-Attention Blocks6.
The Bidirectional multimodal attention block serves as the core component for cross-modal information interaction. Within the initial two encoder layers, four distinct attention mechanisms are computed simultaneously: intra-modal self-attention for each modality learns internal semantic associations within respective features. In contrast, inter-modal bidirectional cross-modal attention specifically captures complementary information and semantic correspondences between different modalities. Each attention mechanism undergoes appropriate scaling, normalisation, and regularisation processing. Results from self-attention and cross-attention are ultimately integrated through average fusion, ensuring the model maintains both intra-modal semantic integrity and inter-modal interaction effectiveness.
Following processing by the initial two Bidirectional multimodal attention blocks, the Self-attention blocks assume functionality. The system concatenates fused features from both modalities, forming unified feature representations containing intra-modal information and cross-modal interaction information. Self-attention blocks are designed to enhance further global semantic understanding based on already-fused multimodal features. The subsequent four layers employ standard Transformer Self-attention blocks for processing. Each block comprises multi-head self-attention, residual connections, layer normalisation, and feed-forward networks, specifically responsible for modelling long-range dependencies within fused features, deepening associations between features at different positions, and enhancing feature abstraction levels and discriminative capabilities through multi-layer non-linear transformations.
Building upon the comprehensive utilisation of these two modules, IMPACT initially employs two Bidirectional multimodal attention blocks and four Self-attention blocks to fuse MRI image features with pathological biopsy image features, ensuring comprehensive interaction and fusion of image information. Subsequently, based on integrated image features, an additional two Bidirectional multimodal attention blocks and four Self-attention blocks effectively combine image information with textual data, thereby obtaining comprehensive multimodal feature representations.
The IMPACT design, through this multi-level interaction and fusion approach, maximally exploits radiological MRI and pathological biopsy image information while integrating this information with clinical text reports, ensuring deep interaction and information sharing across different modalities. This design not only effectively enhances feature representation capabilities but also provides comprehensive feature support for final survival outcome prediction, thereby improving model predictive performance.



Supplementary Note 6
IMPACT model visualisation methods
To explore the interpretability of the IMPACT multimodal model, we conducted visualisation analyses of both MRI and pathological image components. For the MRI component, we applied Gradient-weighted Class Activation Mapping (Grad-CAM) to generate attention heatmaps that highlight regions of importance for prognostic prediction. The Grad-CAM technique produces colour-coded heatmaps where red and yellow regions indicate areas of higher importance, while green and blue regions demonstrate relatively lower importance.
For the pathological component, we constructed WSI-based attention heatmaps by computing the relative importance of different image patches across the entire tissue section. The visualisation approach included generating overall WSI attention heatmaps and identifying the top image patches with the highest attention weights for detailed analysis.
To quantitatively evaluate the clinical relevance of model attention, we normalised attention scores for each slide to a range of 0-1 and established thresholds to categorise patches into three groups: high attention (>0.7), moderate attention (0.3-0.7), and low attention (<0.3). For validation of the model’s focus on clinically relevant regions, we randomly selected 20 patients from each risk group and extracted their top 15 highest-weighted patches for independent pathologist evaluation. Pathologists were asked to identify patches containing tumour cells and assess the histological characteristics of the high-magnification regions.
The attention heatmap analysis methodology enabled systematic evaluation of the model’s decision-making process by visualising which anatomical and pathological features contributed most significantly to survival predictions. This approach allowed for assessment of whether the model’s attention patterns aligned with clinically relevant tumour characteristics and provided insights into the biological basis of the prognostic predictions.
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[bookmark: _Hlk202891518][bookmark: _Hlk203661086]Supplementary Table 1 | MRI scanning parameters for different centres
	Centre
	Scanner
	Sequence
	Parameters

	
	
	
	TR (ms)
	TE (ms)
	FOV (mm)
	Matrix
	NEX
	 Section Thickness
/Gap (mm)

	 The Sixth Affiliated Hospital of Sun Yat-sen University
	GE, MR 750
3.0T
	Oblique Axial T2WI
	5694
	110
	180
	288/256
	4
	3.0/0.3

	
	
	Oblique Axial DWI (b=800 s/mm2)
	2800
	60
	340
	128/128
	6
	4.0/0.5

	
	
	Oblique Axial T1WIC
	560
	9.1
	220
	320/256
	2
	3.0/0.3

	
	GE, Optima MR 360
1.5T
	Oblique Axial T2WI
	4294
	108
	240
	288/256
	4
	3.0/0.5

	
	
	Oblique Axial DWI (b=800 s/mm2)
	4550
	92.6
	400
	192/192
	4
	3.0/0.5

	
	
	Oblique Axial T1WIC
	419
	13.5
	240
	320/224
	2
	3.0/0.5

	Fudan University Shanghai Cancer Centre
	GE, Signa HDxt
3.0T
	Oblique Axial T2WI
	3300
	112
	200
	384/224
	4
	3.0/0.4

	
	
	Oblique Axial DWI (b=800 s/mm2)
	2800
	67
	390
	128/128
	6
	6.0/0.5

	
	
	Oblique Axial T1WIC
	230
	2.4
	390
	288/256
	1
	8.0/1.0

	
	SIEMENS, Skyra
3.0T
	Oblique Axial T2WI
	1500
	100
	230
	320/320
	2
	5.0/NA

	
	
	Oblique Axial DWI (b=800 s/mm2)
	4900
	60
	200
	140/126
	  2
	5.5/0.5

	
	
	Oblique Axial T1WIC
	3.56
	1.39
	350
	384/384
	1
	4.5/NA


MRI acquisition parameters across two medical centres using multiple scanner platforms (GE and Siemens, 1.5T and 3.0T). All centres employed a consistent oblique axial imaging protocol, including T2-weighted imaging, diffusion-weighted imaging with apparent diffusion coefficient (ADC) maps automatically calculated from DWI sequences using b-values of 0 and 800 s/mm², and contrast-enhanced T1-weighted imaging. Parameter variations reflect a multi-vendor environment while maintaining clinically acceptable ranges for diagnostic consistency. TR=repetition time. TE=echo time. FOV=field of view. NEX=number of excitations. T2WI=T2-weighted imaging. DWI=diffusion-weighted imaging. ADC=apparent diffusion coefficient. T1WIC=T1-weighted imaging with contrast enhancement.

[bookmark: _Hlk204711442]Supplementary Table 2 | Performance of GIRS for survival prediction across different datasets
	
	Dataset
	C-index
	HR
	p value
	N (Low/High)

	OS
	Training
	0.652 (0.605–0.703)
	2.0 (1.3–3.2)
	0.002
	493 (385/108)

	
	Internal Test
	0.712 (0.604–0.799)
	3.6 (1.5–9.0)
	0.003
	116 (87/29)

	
	External Test  
	0.617 (0.533–0.696)
	2.1 (1.1–3.8)
	0.020
	143 (65/78)

	DFS
	Training
	0.630 (0.587–0.674)
	1.8 (1.34–2.64) 
	<0.001
	493 (385/108)

	
	Internal Test
	0.697 (0.619–0.766)
	3.1 (1.7–5.5)
	<0.001
	116 (87/29)

	
	External Test
	0.598 (0.523–0.672)
	1.9 (1.1–3.3)
	0.018
	143 (65/78)


Data are presented as C-index (95% CI), HR (95% CI), p value, and patient distribution. HR values were calculated by comparing high-risk versus low-risk groups based on GIRS classification. p values were determined using the log-rank test. N (Low/High) represents the number of patients in low-risk and high-risk groups, respectively. C-index=concordance index. HR=hazard ratio. GIRS=Guideline-based Imaging Risk Score. OS=overall survival. DFS=disease-free survival.
[bookmark: _Hlk204711724][bookmark: _Hlk201853205]
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Supplementary Fig. 1 | Kaplan-Meier survival analysis of patients stratified by GIRS. (A, C, E) OS curves for training sets, internal test sets, and external test sets, respectively. (B, D, F) DFS curves for training sets, internal test sets, and external test sets, respectively. Patients were stratified into low-risk (blue line, 0–2 points) and high-risk (red line, 3–4 points) groups based on the GIRS system. p values were calculated using the log-rank test. Numbers at risk are shown below each survival curve at different time points. OS=overall survival. DFS=disease-free survival. HR=hazard ratio.
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Supplementary Fig. 2 | Ablation study comparing survival prediction performance across different modal combinations in the IMPACT framework. Kaplan-Meier survival curves for OS and DFS across the internal test set (n=116) and the external test set (n=143). (A-D) MRI model; (E-H) Pathology model; (I-L) Text model; (M-P) IMP model. Patients were stratified into low-risk (blue) and high-risk (red) groups based on median risk scores from respective models. Statistical significance was assessed using the log-rank test. Numbers at risk are displayed below each survival curve. MRI=pelvic MRI (single-modal model); Pathology=pathological biopsy WSI (single-modal model); Text=clinical information (single-modal model); IMP=Integrated MRI and Pathology (dual-modal model); HR=hazard ratio; OS=overall survival; DFS=disease-free survival.



[image: ]
Supplementary Fig. 3 | Pathological component attention analysis results. (A–C) Box plots showing attention ratio distributions for high-risk and low-risk patient groups. Attention thresholds were defined based on normalised attention scores (0–1 range): (A) high attention (>0.7), (B) low attention (<0.3), and (C) medium attention (0.3–0.7). Box plots show median values, interquartile ranges, and individual data points. Statistical comparisons were performed using unpaired t-tests between risk groups.
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Time (Months)
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At risk 88 82 70 51 16 5 0
Censored O 4 8 25 54 04 68
Events O 2 10 12 18 19 20
high
At risk 55 42 33 24 11 0 0
Censored O 3 4 7 17 28 28
Events O 10 18 24 27 27 27
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Log-rank test p=p.004
HR: 2.4 (95% ClI: 1.B-4.3)
% 25 50 75 100 125 150
Time (Months)
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HR: 2.6 (95% ClI: 1.2-5.4)
% 25 50 75 100 125 150
Time (Months)
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Events 0 5 7 8 8 8 8
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Log-rank test p=0.003
HR: 2.4 (95% ClI: 1.3-4.3)
% 25 50 75 100 125 150
Time (Months)
low
At risk 58 50 45 26 4 0 0
Censored O 3 4 19 39 43 43
Events O 5 9 13 15 15 15
high
At risk 85 53 45 32 11 4 0
Censored O 2 4 12 32 39 42
Events O 30 36 41 42 42 43
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Log-rank test p<0.001
HR: 2.7 (95% ClI: 1.6-4.5)
% 25 50 75 100 125 150
Time (Months)
low
At risk 88 72 65 40 12 4 0
Censored O 2 5 25 51 59 62
Events O 14 18 23 25 25 26
high
At risk 55 31 25 18 3 0 0
Censored O 3 3 §) 20 23 23
Events O 21 27 31 32 32 32
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