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1 Neural network architectures

The CoNFiLD-geo framework is constructed through a synergistic integration of two complementary neural
networks: the Conditional Neural Field (CNF) and the Latent Di!usion Model (LDM). The architectural
and training details of both components are elaborated in the following subsections

1.1 Conditional neural field architecture

The schematic of the neural field with full-projection conditioning is illustrated in Fig. S1. The sinusoidal
representation network (SIREN; lower box) [1] is modulated in a layer-wise manner by a dedicated modu-
lation network. The SIREN receives spatial coordinates X as input and predicts the physical field ! at the
corresponding spatial locations. The modulation network (upper box) takes as input a learnable latent vec-
tor L, which serves as a concise encoding of the underlying field. It consists of a series of linear layers that
project the latent vector to each hidden layer of the SIREN, enabling consistent and expressive modulation
throughout the network.
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Fig. S1 Conditional neural field architecture. The upper box is the modulation network. The lower box shows the SIREN
base network.

1.2 Latent di!usion model architecture

We implement the improved U-Net architecture [2] as the denoising backbone in our di!usion model. It
predicts the corresponding noise component ωω given a noisy latent image zω at di!usion timestep ω . As
illustrated in Fig. S2, the U-Net is composed of hierarchical residual blocks interconnected via skip concate-
nations. The residual block contains two convolutional layers with group normalization and SiLU activation.
Within each block, the intermediate tensor is modulated by the embedded di!usion timestep, enabling
noise level conditioning throughout the network. Multi-head spatial attention blocks are incorporated at
the lower-resolution stages to enhance the learning of fine-scale representations.

1.3 CoNFiLD-geo hyperparameters

The neural network and training hyperparameters of CoNFiLD-geo for the three cases are summerized in
Table S1. The CNF is trained in a distributed manner across five NVIDIA RTX 4090 GPUs, while the
LDM is trained on a single NVIDIA RTX 4090. Note that the hyperparameter ε0, which controls the
frequency bandwidth of the SIREN, varies across the three cases. Its value is selected via empirical tuning to
accommodate the spatiotemporal complexity of each scenario. We adopt an alternating training strategy for
the CNF, in which the latent vectors are updated on a per-batch basis with the CNF parameters held fixed,
followed by updating the CNF parameters while keeping the latent vectors temporarily frozen. Moreover, we
assign di!erent learning rates to the CNF and the latent vectors, with the latter set to be ten times larger.
This setting helps mitigate overfitting in the CNF and promotes stable convergence during training [3].
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Fig. S2 U-Net architecture of the LDM. PE denotes positional embedding. MLP stands for multi-layer perceptron. Down and
Up refer to downsampling and upsampling operations, respectively. The residual block and the multi-head spatial attention
block are depicted in the lower left and lower right panels, respectively.

Table S1 Hyperparameters of CoNFiLD-geo. The U-Net channel configuration specifies the number of feature channels in the
residual blocks across six stages of the network.

Case 2D synthetic reservoir 3D Sleipner reservoir 3D stratigraphically complex reservoir

CNF

Latent size (Nl) 256 256 384

Hidden layer size 128

Number of hidden layers 5

SIREN ω0 5 15 20

Batch size 600 300 250

Training epochs 5000

Latent learning rate 1→10→3

Network learning rate 1→ 10→4

LDM

U-Net channels [64,64,128,128,256,256]

Latent image size (Nt →Nl) 64→ 256 128→ 256 128→ 384

Batch size 8 32 16

Noise schedule Cosine

Di!usion steps 1000

Learning rate 5→ 10→5
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2 Numerical model setup

In this section, we present the auxiliary constitutive relationships that complete the closed form of the
governing equations. Detailed configurations of the numerical experiments are also provided. All simulations
are performed using the ECO2N module of the finite-volume simulator TOUGH3 [4] on an Intel i9-13900K
CPU workstation.

2.1 Constitutive relationships of subsurface multiphase flow

In a multiphase flow system, the capillary pressure Pc(→ 0) measures the pressure di!erence between two
fluid phases that arises due to the interfacial tension between the fluid phases,

Pc = Pw ↑ Pnw, (1)

where Pw is the pressure of the wetting phase (e.g., the aqueous brine phase) and Pnw is the pressure of the
non-wetting phase (e.g., the gaseous CO2 phase). The van Genuchten [5] capillary pressure relationship is
used in this work,

Pc = ↑P0

(
(S→)↑ 1

ω ↑ 1
)1↑ε

, (2)

subject to the restriction,
↑Pmax → Pc → 0, (3)

where S→ = (Sl ↑ Slr)/(1 ↑ Slr) is the e!ective saturation, Slr is the irreducible water saturation, Pmax is
the maximum capillary pressure, P0 is the entry capillary pressure, and ϑ is the exponential constant.

Relative permeability quantifies the e!ective permeability of a given fluid phase in a multiphase porous
medium, normalized by its permeability under single-phase flow conditions. The Corey’s [6] relationship is
chosen to characterize the CO2-brine system,

kr,l = Ŝ4, (4)

kr,g = (1 ↑ Ŝ)2(1 ↑ Ŝ2), (5)

where Ŝ = (Sl ↑ Slr)/(1 ↑ Slr ↑ Sgr) is the e!ective saturation and Sgr is the residual gaseous saturation.
The above constitutive relationships, together with the governing mass conservation law, form a closed

system of partial di!erential equations (PDEs) that can be solved numerically using methods such as the
finite volume method. The specific values of the constitutive parameters for the three cases are detailed in
Table S2.

Table S2 Constitutive parameter values.

Capillary pressure parameters Value

ε 0.254
Slr 0.1
P0 19,600 Pa
Pmax 12,500 Pa

Relative permeability parameters Value

Slr 0.1
Sgr 0.01

2.2 Case 1: CO2 drainage in heterogeneous reservoirs

Case 1 simulates the migration of CO2 in a synthetic heterogeneous 2D reservoir. A horizontal saline aquifer
spanning 640 ↓ 640 m2 is discretized using a 64 ↓ 64 uniform grid. The initial in-situ pore pressure is
12 MPa with a constant temperature of 45 ↓C. The salinity of the aquifer is assumed to be 15% by weight.
The porosity has a constant value of 0.2. No-flux boundary conditions are imposed at the top and bottom
boundaries. A constant CO2 injection rate of 0.45 kg/s is prescribed at the left boundary, while the right
boundary is set to maintain constant hydraulic pressure and saturation. The simulation spans 500 days and
consists of 64 time steps. Detailed model setup is also list in Table S3.
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Table S3 Numerical setup for Case 1.

Domain size Number of mesh Simulation time Number of time steps CO2 injection rate

640 m→ 640 m 64→ 64 500 days 64 0.45 kg/s

The reservoir is characterized by random log-normal permeability fields to represent a wide range of
geological heterogeneity. The distribution has a mean of ln(100) (corresponding to a geometric mean of 100
mD) and a standard deviation of 1.0. An isotropic correlation length of 80 m is assumed along the horizontal
directions. A total of 2,000 permeability field realizations are obtained using the Gaussian covariance model
of the open-source geostatistical Python package GSTools [7].

2.3 Case 2: field-scale CO2 sequestration at the Sleipner site

In Case 2, we present a realistic GCS scenario based on an actual field-scale project to demonstrate the
capability of CoNFiLD-geo in addressing practical geo-engineering problems. This case study serves as a
representative testbed for evaluating the framework’s performance under realistic geological complexity and
operational constraints. This subsection provides an overview of the Sleipner GCS project in Norway and
details the setup of the numerical model.

Since October 1996, Statoil and its Sleipner partners have been injecting CO2 — separated from natural
gas extracted at the Sleipner field — into the Utsira Formation, a saline aquifer located at a depth of
1012 m below sea level [8]. The Utsira Formation primarily consists of highly porous, very permeable, and
weakly consolidated sandstones, located at depths ranging from approximately 800 m to 1100 m. Around
the injection site, the stratigraphy comprises nine sandstone units, designated Utsira L1 (the lowermost) to
Utsira L9 (the uppermost), each separated by low-permeability shale layers (Fig. S3). Shale layers separating
L1 through L8 are relatively thin (↔ 1 m), while the shale between L8 and L9 is significantly thicker
(↔ 7 m). Overlying L9 is a thick shale formation with very low permeability, serving e!ectively as a caprock.
Therefore, L9 forms a relatively isolated hydrological system from surrounding sandstone units, making it
a favorable candidate for studying CO2 migration within the reservoir.

Injection well

Utsira L9

Shale

Shale caprock

L1

L8

Fig. S3 The Sleipner simulation model comprising all nine sandstone layers. The red line indicates the CO2 injection well.
The target layer used in this study, Utsira L9, is vertically isolated by low-permeability shale layers. Modified from [9].

We select Utsira L9 from the Sleipner 2019 Benchmark Model [9] as the target reservoir for simula-
tion (Fig. S3). In the horizontal plane, the reservoir extends 3.2 km in the x-direction and 5.9 km in the
y-direction. The reservoir topography (i.e., thickness) is interpreted from geophysical survey data, with an
average thickness of approximately 50 m. The reservoir depth ranges from ↑854 m to ↑770 m. The lateral
resolution of the model grid is set to 50 ↓ 50 m, balancing the need to resolve fine-scale characteristics of
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the CO2 plume against the computational tractability. As the horizontal extent of the domain is signifi-
cantly larger than its vertical thickness, vertical CO2 plume dynamics are expected to have minimal impact.
Accordingly, the model employs a single-layer grid in the vertical direction to reduce computational com-
plexity while retaining the essential features of lateral migration. Despite employing only a single grid layer
in the vertical direction, the injected CO2 exhibits complex migration behavior as gravity is accounted for
in the simulation. This complexity results from the interplay between buoyancy and lateral driving forces
(e.g., viscous and capillary forces), compounded by the structural undulations of the reservoir. The perfo-
rated injection well is consistent with the actual project configuration. The injection rate is set to a constant
value of 32 kg/s, equivalent to a storage capacity of 1 Mt/year, closely matching the target capacity of the
reference site. Impermeable boundary conditions are applied at the top and bottom, reflecting the sealing
e!ect of overlying and underlying shale formations. Constant hydraulic boundary conditions are imposed
on the lateral sides to emulate connectivity with an infinite-acting aquifer. An injection period of 10 years
is considered, which is discretized into 128 time steps. Detailed model setup is also summarized in Table S4.

Table S4 Numerical setup for Case 2.

Lateral domain size Number of mesh Simulation time Number of time steps CO2 injection rate

3.2 km→ 5.9 km 64→ 118→ 1 10 years 128 32 kg/s

An in-situ pressure of 9 MPa is prescribed based on the reservoir depth, and pressure equilibrium is
established through a preliminary simulation phase prior to injection. The reservoir temperature is constant
at 32 ↓C. The salinity of the pore water is 33500 ppm [10]. The Utsira sandstone has a high porosity
of 0.36 [9]. Permeability is modeled as a spatial random field based on the Gaussian covariance model.
Permeability values are sampled from a log-normal distribution with a logarithmic mean of ln 1000 and a
standard deviation of 0.4. The correlation lengths are set to 500 m and 1000 m in the x and y directions,
respectively

2.4 Case 3: CO2 injection and brine production in stratigraphically complex

reservoirs

Case 3 represents an extension of Case 2 toward increased geological and operational complexity, with
stochastically generated reservoir structures and the simultaneous modeling of CO2 injection and brine
production. While the reservoir shares the same lateral extent as Case 2, its vertical depth and thickness
are stochastically defined using geostatistical tools to account for structural uncertainty. Specifically, the
reservoir depth is modeled as a Gaussian random field with a mean of ↑800 m and a standard deviation of
200 m. Similarly, the thickness is modeled as a Gaussian random field with a mean of 30 m and a standard
deviation of 60 m. The isotropic correlation lengths for depth and thickness are set to 400 m and 500 m,
respectively. The relatively large correlation length for thickness ensures that no negative values occur,
even though the standard deviation exceeds the mean. To better characterize the structural complexity of
stratigraphically heterogeneous reservoirs, the model domain is discretized using an unstructured triangular
mesh, allowing enhanced fidelity in representing complex reservoir geometry. Note that the unstructured
mesh can be naturally handled by CNF, whereas traditional convolution-based methods are limited to
structured grids. The domain is discretized into 7,720 triangular elements, which o!er adequate spatial
resolution to resolve the dynamic behavior of CO2 in the reservoir. In Case 3, a closed hydrological system is
assumed. To maintain safe reservoir pressure, an additional brine production well is introduced. The bottom-
hole pressure (BHP) of the production well is controlled at 9.5 MPa for e!ective pressure management. The
model setup is also listed in Table S5. Porosity and permeability are assumed to be constant at 0.36 and
2000 mD, respectively. All other in-situ conditions are identical to those in Case 2.

Table S5 Numerical setup for Case 3.

Lateral domain size Number of mesh Simulation time Number of time steps CO2 injection rate Production BHP

3.2 km→ 5.9 km 7720 10 years 128 32 kg/s 9.5 MPa
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3 Data restoration from incomplete observations

In this section, we demonstrate the capability of CoNFiLD-geo to perform data restoration, that is, to
recover the complete field of interest from incomplete or missing observations. We consider two scenarios:
(i) spatially occluded CO2 plume monitoring data, and (ii) permeability fields with missing regions, as
detailed in the following subsections. For simplicity, we adopt Case 1 as a representative test case. More
complex scenarios can be seamlessly accommodated within the CoNFiLD-geo framework without requiring
any structural modifications.

3.1 Spatially occluded CO2 plume monitoring data

CO2 plume monitoring data obtained from time-lapse seismic surveys may su!er from spatial incompleteness
due to subsurface occlusions or acquisition-related issues such as equipment malfunction [11]. Such data
loss can hinder accurate interpretation and prediction, necessitating reliable data restoration techniques.
We showcase the novel application of CoNFiLD-geo to simultaneously infer the unknown permeability field
and restore the complete CO2 plume dynamics from spatially occluded plume monitoring data.

With the reference data shown in Fig.S4a, the damaged monitoring data is defined as removing a cen-
tral subregion of the CO2 saturation field (Fig.S4b). This degradation is mathematically formulated as a
spatiotemporal masking operation. Fig. S4c presents three representative examples of the generated per-
meability fields along with their corresponding CO2 saturation snapshots. CoNFiLD-geo can consistently
restore the complex spatiotemporal CO2 migration patterns within the occluded region, integrating smoothly
with the surrounding observed data without noticeable discrepancies at the interfaces (Fig.S4c). The overall
reconstructed CO2 saturation fields appear physically plausible and closely match the reference, as further
corroborated by the Structural Similarity Index Measure (SSIM) evaluation metric (Fig.S4e). Along the pro-
filing line (dash-dot lines indicated in Fig.S4b), the variation in reconstructed saturation generally follows the
reference trend, with slight discrepancies and elevated uncertainties within the occluded region (Fig.S4f,g).
Moreover, CoNFiLD-geo is capable of inversely inferring the underlying permeability fields from the incom-
plete CO2 saturation monitoring data. The high-permeability pathways are reasonably well captured by the
model (Fig.S4c), showing a general agreement with the reference subsurface structure (Fig.S4d).

3.2 Permeability fields with missing region

For field-scale GCS projects, petrophysical properties, such as permeability, may be entirely unknown in
certain regions due to the absence of geological surveys or the loss of historical subsurface data. This
lack of information is common in areas with limited exploration, inaccessible terrains, or incomplete data
archives, posing significant challenges for accurate reservoir characterization and predictive modeling. In such
contexts, CoNFiLD-geo o!ers a promising solution for inferring missing information based on incomplete
observations.

Take the same parameter-solution pair from testing set as reference data (Fig.S5a), we deliberately
remove a central subregion of the permeability field and treat it as completely unknown (Fig.S5b). This
spatially masked region serves as the conditioning input for CoNFiLD-geo, which aims to infer the miss-
ing permeability values and generate the corresponding spatiotemporal evolution of the CO2 saturation
field. The restored full permeability fields closely resemble the reference (Fig.S5c), with the mean proba-
bilistic density function (PDF) of the generated samples aligning well with that of the reference (Fig.S5d).
In addition, the permeability values along the profiling lines (dash-dot lines indicated in Fig. S5b) exhibit
a generally consistent trend with the reference, suggesting that the model reasonably captures the spatial
variation within the unknown region (Fig.S5f,g). The increase in uncertainty from the periphery to the cen-
ter of the masked region (Fig.S5f,g) arises from stronger spatial covariance with the surrounding known
geological information. Consequently, the uncertainty is lower near the boundaries and becomes more pro-
nounced toward the center, where the influence of known data diminishes. The simultaneously predicted
CO2 plumes share similar overall spatiotemporal patterns with the reference, particularly in capturing the
major fingering structures along the highly permeable pathway (Fig.S5a,c). The SSIM metric is initially
high and gradually decreases over time as the CO2 plume evolves and becomes more complex. Nevertheless,
it remains consistently above 0.6 throughout the simulation, indicating reliable reconstruction performance
(Fig.S5e).

In summary, the proposed CoNFiLD-geo framework enables flexible data restoration from either
parameter or solution space via zero-shot conditional generation, with the ability to quantify associated
uncertainties. This capability paves the way for broader applications in real-world subsurface modeling and
monitoring tasks, particularly in scenarios involving damaged or missing data.
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Fig. S4 Data restoration under spatially occluded CO2 plume monitoring data. (a) Reference permeability field and corre-
sponding CO2 saturation trajectory with snapshots at 30, 100, 200, 300, and 500 days. (b) Spatially occluded CO2 plume
observations used as conditional inputs for CoNFiLD-geo. (c) Three representative generated permeability fields and their
corresponding CO2 saturation dynamics. (d) Probabilistic density function (PDF) plot of the reference permeability field the
sample-mean generated permeability fields. (e) Temporal variation of SSIM for CO2 saturation, with shaded regions indicating
standard deviation. (f) CO2 saturation profile along the purple dash-dot line at 300 days (see panel b), with shaded regions
denoting uncertainty. (g) Same as (f) but at 500 days.
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Fig. S5 Data restoration under permeability with missing region. (a) Reference permeability field and corresponding CO2

saturation trajectory with snapshots at 30, 100, 200, 300, and 500 days. (b) Permeability field with a missing central region
used as conditional inputs for CoNFiLD-geo. (c) Three representative generated permeability fields and their corresponding
CO2 saturation dynamics. (d) PDF plot of the reference permeability field the sample-mean generated permeability fields. (e)
Temporal variation of SSIM for CO2 saturation, with shaded regions indicating standard deviation. (f) Permeability profile
along the purple dash-dot line on the left-hand side (see panel b), with shaded regions denoting uncertainty. (g) Same as (f)
but on the right-hand side.
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4 Comparison with deterministic forward models

CoNFiLD-geo, by virtue of its probabilistic nature, serves as a generative modeling framework that approx-
imates the conditional distribution of the target field given partial observations or inputs. In contrast,
deterministic models yield only single-point predictions and inherently lack the capacity to characterize
uncertainty. In the context of GCS, numerous studies have explored deep learning-based surrogate models
as deterministic forward solvers to replace computationally expensive numerical simulations. In this section,
we compare CoNFiLD-geo with the well-established U-FNO [12] surrogate model to demonstrate CoNFiLD-
geo’s capability for forward modeling with quantified uncertainty. This feature is particularly important in
practical scenarios, where full knowledge of input parameters is often unavailable or subject to significant
uncertainty.

4.1 Baseline U-FNO model

We adopt U-FNO [12], a U-Net enhanced Fourier Neural Operator (FNO) network, as our baseline deter-
ministic model. U-FNO integrates the global modeling capabilities of neural operators with the local feature
extraction strengths of Convolutional Neural Networks (CNNs), and has demonstrated superior performance
over vanilla FNO [13] and CNNs in geological carbon sequestration tasks [12, 14].

The deterministic model learns a functional mapping from the parameter space to the solution space,
i.e., Gϑ : M ↗ RNd↔Nm ↘≃ U ↗ RNd↔Nt↔Nu . A U-FNO network Gϑ with I Fourier layers and J U-Fourier
layers is formulated as,

Gϑ = Q ⇐ ϖ(KJ + UJ + WJ) ⇐ ... ⇐ ϖ(K1 + U1 + W1)︸ ︷︷ ︸
U↑Fourier layers

⇐ ϖ(KI + WI) ⇐ ... ⇐ ϖ(K1 + W1)︸ ︷︷ ︸
Fourier layers

⇐P, (6)

where P and Q denote the linear lifting and projecting operator, respectively. In each intermediate layer,
K denotes the kernel integral operator, U represents a U-Net CNN operator, W is a linear operator, and ϖ
is a nonlinear activation function. The kernel integral operator applied on layer input function vl is defined
by,

(
K (vl)

)
(x) :=

∫
ϱ(x, y)vl(y)dy, (7)

and is parameterized in the Fourier space [13],

(
K (vl)

)
(x) = F↑1

(
R · F (vl)

)
(x), (8)

where F and F↑1 represents the Fourier transformation and its inverse, respectively, and R is the Fourier
transform of a periodic function ϱ.

Table S6 U-FNO model architecture. The Padding layer is used to
accommodate the non-periodic boundaries. The first two channels of the
output tensor denote the spatial grids along the x and y directions,
respectively, the third channel denotes time dimension, the last channel
denotes the feature dimension. The input features include the permeability
field and the time step information.

Name Layer Output shape

Input - (64, 64, 64, 2)
Padding Padding (72, 72, 72, 2)
Lifting Linear (72, 72, 72, 36)
Fourier 1 Fourier3d/Conv1d/Add/ReLu (72, 72, 72, 36)
Fourier 2 Fourier3d/Conv1d/Add/ReLu (72, 72, 72, 36)
Fourier 3 Fourier3d/Conv1d/Add/ReLu (72, 72, 72, 36)
U-Fourier 1 Fourier3d/Conv1d/UNet3d/Add/ReLu (72, 72, 72, 36)
U-Fourier 2 Fourier3d/Conv1d/UNet3d/Add/ReLu (72, 72, 72, 36)
U-Fourier 3 Fourier3d/Conv1d/UNet3d/Add/ReLu (72, 72, 72, 36)
Projection 1 Linear (72, 72, 72, 128)
Projection 2 Linear (72, 72, 72, 1)
De-padding - (64, 64, 64, 1)
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In this section, we utilize U-FNO as a data-driven surrogate model to approximate the spatiotemporal
reservoir responses using the corresponding geological parameters. The input to U-FNO consists of the
geological parameters concatenated with broadcasted time step scalars. The target output comprises Nu

state variables at Nt time steps. In practice, we train Nu identical neural networks from scratch for each
state variable, as proposed in Wen et al [12]. Since U-FNO is constrained to structured data formats due to
its reliance on convolution operations, we train it on the first 2D case. The detailed architecture of U-FNO
is illustrated in Table S6.

U-FNO is trained as a forward deterministic mapping using full observations of M . Following the
approach of Huang et al [15], during the testing stage, U-FNO is tasked with predicting U given either a
low-resolution M or sparse measurements of M , in a manner consistent with CoNFiLD-geo. We present
the comparison results in the following two subsections.

4.2 Forward modeling with low-resolution permeability

We begin with predicting the CO2 saturation based on low-resolution permeability. Results for pressure
are expected to exhibit analogous trends and are therefore omitted for brevity. This synthetic test case
reflects practical scenarios where permeability information is only coarsely available — for example, as
interpreted from sparse monitoring wells or derived through spatial averaging. As illustrated in Fig. S6a and
b, CoNFiLD-geo consistently produces results that closely match the reference solutions, whereas U-FNO
exhibits significant performance degradation as input resolution decreases, occasionally generating artifacts
even at early time steps. It is noteworthy that, beyond predicting CO2 saturation, CoNFiLD-geo is also
capable of generating high-resolution permeability fields inferred from low-resolution inputs. This enhanced
flexibility stems from the unified treatment of inverse and forward modeling within a single generative
framework. The generated high-resolution permeability fields more closely resemble the reference fields as
the input resolution increases, as expected (Fig S6c). CoNFiLD-geo can fully recover the reference field using
only a 16 ↓ 16 resolution input, highlighting its robustness to severely under-resolved inputs (Fig S6c). The
SSIM and root mean square error (RMSE) metrics for CO2 saturation over time are presented in Fig. S6d
and e. While U-FNO yields only single-point predictions, CoNFiLD-geo produces ensembles that not only
align more closely with reference data but also enable explicit uncertainty quantification. CoNFiLD-geo
outperforms U-FNO at most time steps, and notably achieves superior performance across the entire time
horizon when the input resolution is as low as 16↓16. Overall, CoNFiLD-geo demonstrates clear advantages
over U-FNO in terms of robustness to coarse inputs, unified forward and inverse modeling capability, and
the ability to quantify predictive uncertainty.

4.3 Forward modeling with sparse measurements of permeability

We further evaluate the forward prediction performance of both models under sparse observations of the
permeability field. In Fig. S7, we present the results for cases where only a small fraction of the permeability
values are known, specifically 0.05%, 1%, and 3% of the total number of grid cells. CoNFiLD-geo can simul-
taneously recover the full permeability field as well as the spatiotemporal dynamics of the corresponding
CO2 saturation (Fig. S7a,b), o!ering a flexible forward and inverse modeling capability in a unified frame-
work. Nevertheless, U-FNO fails to generate accurate predictions under sparse observations, yielding overly
smoothed and physically implausible plume migration patterns (Fig. S7a,b). The PDF plots demonstrate
that CoNFiLD-geo can produce decent estimation of the full permeability field using only 3% probed data,
highlighting its robustness under extremely sparse observation conditions (Fig. S7c). The error metrics fur-
ther showcase the superior forward prediction accuracy of CoNFiLD-geo compared to U-FNO (Fig. S7d,e).
These results underscore the advantage of probabilistic modeling over deterministic approaches in han-
dling realistic GCS scenarios, as it enables uncertainty quantification and robust inference under sparse or
low-resolution observations, which are inherent capabilities of the proposed CoNFiLD-geo framework.

4.4 Forward modeling with fully observed permeability

We also include results under the condition of full permeability field availability, although such a setting
is rarely attainable in realistic GCS scenarios. It is observed that CoNFiLD-geo is capable of generating
decent permeability fields and consistent accurate CO2 saturation dynamics compared to the reference
(Fig. S8a,b). In this fully observed setting, the performance of CoNFiLD-geo and U-FNO is largely com-
parable (Fig. S8b,c). Based on the error metrics (Fig. S8d,e), CoNFiLD-geo shows slightly lower accuracy
than U-FNO, particularly at later time steps. We argue that this trade-o! is acceptable, as CoNFiLD-geo
o!ers additional capabilities beyond deterministic prediction — most notably, the ability to handle partial
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observations and to quantify uncertainties. These advantages are critical in realistic GCS scenarios where
full knowledge of input parameters is rarely available.

It should be noted that the CoNFiLD-geo framework could be further enhanced by incorporating physics-
informed sampling strategies [15–17]. Importantly, the incorporation of PDE constraints is confined to the
sampling stage, preserving the zero-shot conditional generation capability of CoNFiLD-geo without requiring
additional training. In such a case, the generated parameter–solution pairs would inherently satisfy the
constraints imposed by the governing PDEs, thereby enabling the model to surpass deterministic approaches
in terms of physical consistency and realism. This direction will be the focus of our future research.
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Fig. S6 Comparison of forward modeling performance between CoNFiLD-geo and U-FNO under coarsely estimated perme-
ability fields. (a) The reference high-resolution permeability field and CO2 saturation trajectory, with snapshots taken at 30,
100, 200, 300, and 500 days. (b) From bottom to top, the resolution of the conditioning low-resolution permeability increases
from 4→ 4 to 16→ 16. For each resolution, the first row shows the CoNFiLD-geo inferred permeability and the corresponding
CO2 saturation snapshots; the second row displays the low-resolution permeability input (used as both the input to U-FNO and
the conditioning guidance for CoNFiLD-geo), along with the CO2 saturation predicted by U-FNO. (c) PDF plots comparing
the reference permeability and the CoNFiLD-geo inferred permeability under varying conditioning resolutions. (d) Temporal
variation of SSIM for CO2 saturation predicted by CoNFiLD-geo and U-FNO at varying input resolutions. The shaded regions
denote the standard deviation. (e) Temporal variation of RMSE for CO2 saturation predicted by CoNFiLD-geo and U-FNO
at varying input resolutions. The shaded regions denote the standard deviation.
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Fig. S7 Comparison of forward modeling performance between CoNFiLD-geo and U-FNO under sparsely observed perme-
ability fields. (a) The reference full permeability field and CO2 saturation trajectory, with snapshots taken at 30, 100, 200, 300,
and 500 days. (b) From bottom to top, the known fraction of the full permeability increases from 0.05% to 3%. For each level
of sparsity, the first row shows the CoNFiLD-geo reconstructed permeability and the corresponding CO2 saturation snapshots;
the second row displays the sparsely observed permeability input (used as both the input to U-FNO and the conditioning
guidance for CoNFiLD-geo), along with the CO2 saturation predicted by U-FNO. (c) PDF plots comparing the reference per-
meability and the CoNFiLD-geo inferred permeability under di!erent levels of observation sparsity. (d) Temporal variation
of SSIM for CO2 saturation predicted by CoNFiLD-geo and U-FNO across varying observation sparsity. The shaded regions
denote the standard deviation. (e) Temporal variation of RMSE for CO2 saturation predicted by CoNFiLD-geo and U-FNO
across varying observation sparsity. The shaded regions denote the standard deviation.
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Fig. S8 Comparison of forward modeling performance between CoNFiLD-geo and U-FNO under fully observed permeability
fields. (a) The reference full permeability field and CO2 saturation trajectory, with snapshots taken at 30, 100, 200, 300, and
500 days. (b) Three demonstrating generated permeability fields and their CO2 saturation dynamics of CoNFiLD-geo. (c) U-
FNO’s predicted CO2 saturation snapshots. (d) Temporal variation of SSIM for CO2 saturation predicted by CoNFiLD-geo
and U-FNO. The shaded regions denote the standard deviation. (e) Temporal variation of RMSE for CO2 saturation predicted
by CoNFiLD-geo and U-FNO. The shaded regions denote the standard deviation.
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5 Dimension reduction using Proper Orthogonal Decomposition

(POD)

The proposed CoNFiLD-geo framework consists of two primary components: a dimensionality reduction
module (CNF) and a probabilistic modeling module (LDM). Owing to its modular design, each component
can be flexibly replaced with alternative techniques depending on the specific application or domain require-
ments. In our previous work, we have evaluated the performance of LDM against other generative models
such as variational autoencoders (VAEs) and generative adversarial networks (GANs) [18].

For the dimensionality reduction module, a variety of alternatives exist. Classical methods such as Proper
Orthogonal Decomposition (POD) [19] approximate system states using a fixed set of orthogonal basis
functions weighted by projection coe”cients. Learning-based approaches, including convolutional neural
networks (CNNs) [20] and graph neural networks (GNNs) [21], have also been widely adopted for surrogate
modeling. CNNs are e!ective on structured grids but are limited to regular spatial domains, while GNNs
can operate on unstructured meshes but typically produce node-specific outputs and lack the ability to
query continuous spatial locations.

Among these methods, POD is particularly relevant as a comparator due to its structural similarity to
CNF — both reconstruct fields as combinations of basis functions and instance-dependent coe”cients. In
the subsequent analysis, we therefore adopt POD as the primary baseline to assess CNF’s performance in
representing complex spatiotemporal variability.

5.1 Formulation of POD

In CNF, the SIREN can be interpreted as a set of basis functions, while the latent vector L encodes
the instance-specific coe”cients. The modulation process e!ectively resembles a functional multiplication
between the basis and the coe”cients, resulting in the reconstructed field of interest. This formulation is
conceptually analogous to Proper Orthogonal Decomposition (POD) [22], where a system state is approx-
imated by a weighted sum of orthogonal spatial modes. Unlike POD, however, the basis functions in CNF
are not fixed or orthogonal but are implicitly parameterized by the neural network, allowing for enhanced
representational flexibility.

To obtain the basis functions (modes), we first stack the snapshots of Ns samples as,

!
↗ = [!1(x, t1),!1(x, t2), ...,!Ns(x, tNt)] ↗ RNh↔Na , (9)

where Nh = Nd ↓ N! is the full dimension size, Na = Ns ↓ Nt is the total number of spatiotemporal
snapshots, and Nh < Na in our case. To reduce the model, a low-rank approximation with rank Nl ⇒ Nh

needs to be sought for the full-order space, S = span{!1(x, t1),!1(x, t2), ...,!Ns(x, tNt)} ⇑ RNh .
The POD leverages the singular value decomposition (SVD) of !

↗ for dimension reduction,

!
↗ = P”QT , (10)

with P ↗ RNh↔Nh and Q ↗ RNa↔Na being orthogonal matrices, and ” = diag{ϖ1, ϖ2, ..., ϖNh} containing
the singular values. The column space of P spans the full-order space S. Let P̃ ↗ RNh↔Nl denote the first
Nl columns of P , representing the reduced set of orthogonal bases in the the lower-dimensional subspace.
Then, for a new testing snapshot !

test

i , the corresponding coe”cients used to reconstruct the field are given
by P̃ T

!
test

i , with the reconstruction error quantified by ⇓!test

i ↑ P̃ P̃ T
!

test

i ⇓2.

5.2 Comparison between CNF and POD

We take Case 1 as a benchmark case due to its simplicity and ease of implementation. It is worth noting
that the performance gap between CNF and POD is expected to widen in Cases 2 and 3, which involve
more complex spatiotemporal patterns. For a fair comparison, both CNF and POD are trained on the same
training dataset and evaluated on the same testing dataset.

Fig. S9 presents the results of reconstructing a testing trajectory using CNF and POD. Panels (a) and
(b) illustrate the reconstruction outcomes when the reduced dimensionality is set to be the same for both
methods, i.e., NPOD

l = NCNF

l = 256. The contour maps indicate that the CNF-reconstructed fields exhibit a
closer agreement with the reference solution. In contrast, POD shows noticeable residual errors, particularly
in the saturation variable (Fig. S9a). This is further validated in Fig. S9b, where the RMSE of POD is several
orders of magnitude higher than that of CNF. In particular, the saturation RMSE increases monotonically
over time, indicating cumulative reconstruction error. The poor performance of POD in this case is primarily
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attributed to its limited ability to capture transient dynamics. Since POD constructs a fixed set of global
basis functions via linear decomposition, it inherently lacks the flexibility to adapt to time-varying features,
particularly in systems exhibiting nonlinear or nonstationary behavior. As a result, the method tends to
underrepresent evolving patterns, especially during the plume development stages, where strong transients
dominate the solution structure. In contrast, CNF leverages learnable, instance-specific representations,
enabling it to better accommodate localized and time-dependent variations. The variation of reconstruction
error (summed over all three channels) shows that POD requires more than 2048 dimensions to achieve
an accuracy comparable to that of CNF (Fig. S9c). However, such high-dimensional latent representations
impose a substantial computational burden, rendering them impractical for downstream modeling with
LDM. The envelope of POD RMSE variation further indicates that POD remains a suboptimal choice for
model reduction when considering both reconstruction fidelity and computational e”ciency (Fig. S9c).

a

b c

Fig. S9 Testing trajectory performance for CNF and POD. (a) Contour plots of permeability, saturation, and pressure at
three selected time steps. The first row shows the reference solution, followed by reconstructions from CNF and POD in the
second and third rows, respectively. The fourth and fifth rows present the corresponding residual errors for CNF and POD.
(b) Temporal evolution of RMSE for CNF and POD across the three variables. (c) POD reconstruction RMSE as a function
of the number of retained modes.
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6 Pressure generation results

We have presented the results for pressure in this section. The contours of the generated pressure fields,
along with the corresponding evaluating metrics, are elaborated in the following subsections for the three
cases. These results serve as a complementary visualization to the main text.

6.1 Case 1: CO2 drainage in heterogeneous reservoirs

For the 2D CO2 drainage case, the pressure field exhibits relatively minor temporal variation compared to
the transient dynamics of the saturation field. The pressure is elevated near the left-side injection boundary
and decreases toward the right-side outflow boundary, forming a transitional gradient that aligns with the
dominant direction of CO2 migration (Fig. S10a,b). Notably, the spatial distribution of pressure is influenced
by the underlying heterogeneous permeability field. CoNFiLD-geo can basically infer the pressure fields from
low-resolution CO2 plume monitoring data, with the 16 ↓ 16 resolution scenario yielding the most accurate
results (Fig. S10a). As the observation resolution increases, the similarity between the generated and the
reference pressure field improves, and the associate uncertainty correspondingly decreases (Fig. S10c). These
findings are in agreement with the saturation results discussed in the main text.

The generated pressure field under sparse well observations are illustrated in Fig. S10b and d. As the
number of observation well increases, the generated fields manifest improved agreement with the reference
(Fig. S10b). Correspondingly, the standard deviation of SSIM decreases (Fig. S10d), reflecting reduced
uncertainty in the predictions, which also aligns with the conclusions drawn in the main text.

These results demonstrate that CoNFiLD-geo is capable of accurately generating state variables such
as pressure, enabling future extensions of the framework to more complex multiphysics coupling scenarios,
including thermal, mechanical and chemical fields. From the contour visualizations, minor ripple-like artifacts
can be observed, which stem from the fixed frequency spectrum of the SIREN. Although these artifacts
have limited influence on the overall pressure field patterns, they could potentially be mitigated through
careful tuning of the activation constant ε0.
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Fig. S10 Pressure generation results for Case 1. (a) Reference and generated pressure fields at 30, 100, 200, 300, and 500 days
under di!erent CO2 resolution conditions. (b) Reference and generated pressure fields with varying numbers of monitoring
wells. (c) SSIM of pressure predictions under di!erent CO2 resolution conditions; shaded regions indicate standard deviation.
(d) SSIM of pressure predictions under varying numbers of monitoring wells; shaded regions indicate standard deviation.
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6.2 Case 2: field-scale CO2 sequestration at the Sleipner site

For the field-scale Sleipner case, elevated pressure accumulates around the injection well due to injection-
induced over-pressurization (see reference contours in Fig. S11a). Over time, this overpressure gradually
decreases as the e!ect spreads through the open boundaries, and the system transitions into a relatively
stable di!usive regime. The spatial distribution of pressure is significantly a!ected by the realistic strati-
graphic complexity and the heterogeneity of the permeability field. Among the three monitoring strategies,
CO2 plume monitoring yields the most accurate inference results, followed by the scenario with 18 monitor-
ing wells. The case with only 6 monitoring wells exhibits the lowest accuracy and the highest uncertainty, as
indicated by the broader shaded region in the RMSE plot (Fig. S11a,b). Despite these di!erences, CoNFiLD-
geo demonstrates reliable capability in generating spatiotemporal pressure dynamics that align well with
the reference, highlighting its robustness in modeling state variable evolution under various monitoring con-
ditions. This is further substantiated by the RMSE metric, which remains consistently below 2 ↓ 104 Pa
(Fig. S11b), representing a relative error of less than 0.25% with respect to the reference pressure magnitude
of approximately 9 ↓ 106 Pa.

Reference

CO2 plume monitoring

6 monitoring wells

18 monitoring wells

t = 2.5 5.0 7.5 10.0 years
a

b

Fig. S11 Pressure generation results for Case 2. (a) Reference and generated pressure fields at 2.5, 5, 7.5 and 10 years under
three monitoring strategies (conditions): CO2 plume monitoring, 6 monitoring wells, and 18 monitoring wells. (b) Temporal
variation of RMSE for the three conditions, with shaded areas indicating the standard deviation across generated samples.
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6.3 Case 3: CO2 injection and brine production in stratigraphically complex

reservoirs

The third case simulates the co-existence of CO2 injection and brine production within a closed hydrological
system featuring stratigraphically complex reservoir geometry. The pressure is high near the injection well
and relatively low near the production well (Fig. S12a). Owing to the closed boundary conditions, the overall
level of over-pressurization is higher than that observed in Case 2. The spatial distribution of pressure is
primarily governed by the reservoir geometry (i.e., depth and thickness). Again, the spatiotemporal dynamics
of pressure is stable compared to that of saturation, as the system has reached a quasi-steady seepage
state. Fig. S12b presents the pressure contours generated by CoNFiLD-geo under di!erent monitoring
strategies. All monitoring strategies yield results that align well with the reference, except for the CO2 plume
monitoring strategy, which shows noticeable deviations. The RMSE evaluation metric plotted in Fig. S12c
also shows that this strategy produces the highest error and the largest standard deviation, indicating both
lower similarity to the reference and increased uncertainty in the predicted fields. These findings suggest
that relying solely on CO2 plume monitoring may be suboptimal for pressure inference in stratigraphically
complex reservoirs. Overall, CoNFoLD-geo is able to conditionally generate decent pressure fields, especially
when geoseismic survey data and sparse well measurements are available. For all monitoring strategies except
CO2 plume monitoring, the RMSE remains consistently below 1 ↓ 105 Pa (Fig. S12c), which is significantly
lower than the reference pressure magnitude of around 11 ↓ 106 Pa and corresponds to a relative error of
less than 1%.

t = 2 6 10 years

Sparse well + CO2 plume monitoring

Sparse well + Geological seismic survey

CO2 plume monitoring + Geological seismic survey

Reference

a

Sparse well

CO2 plume monitoring

Geological seismic survey

t = 2 6 10 years t = 2 6 10 years
b

c

Fig. S12 Pressure generation results for Case 3. (a) Reference pressure fields at 2, 6 and 10 years. (b) Generated pressure
fields under various monitoring strategies. (c) Temporal variation of RMSE for the six monitoring strategies, with shaded areas
indicating the standard deviation across generated samples.
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7 Additional conditional generation results

In the main text, we presented only one randomly selected sample from the generated ensemble of 10
for brevity. In this section, we provide additional visualizations from di!erent generated samples at more
time steps to facilitate further evaluation by the reader. We have also included the results of regularly
placed monitoring wells for Case 1. Moreover, in the main text, only the multi-source monitoring results
are presented for the scenario involving CO2 injection and brine production in stratigraphically complex
reservoirs. For completeness, the results under single-source monitoring conditions are provided in the third
subsection, while the corresponding pressure results have already been presented in the previous section.

7.1 Case 1: CO2 drainage in heterogeneous reservoirs

When monitoring wells are arranged in a regular grid-like pattern, the corresponding conditional generation
results are presented in Fig. S13 and S14. The generated permeability and saturation fields show improved
agreement with the reference as the number of well measurements increases, accompanied by a reduction
in uncertainty. As expected, the inferred permeability fields are more accurate when direct observations of
permeability values are available.

Additional conditional generation results for 16 ↓ 16-resolution CO2 plume observations and 20 sparse
well measurements (with probed permeability) are shown in Fig. S15. When low-resolution CO2 plume
data are available, the inferred saturation fields closely match the reference, as the direct observations
in the associated functional space e!ectively guide the generation. The uncertainty is minimal, evidenced
by the high similarity among the three generated samples. Although the predicted pressure fields capture
the global distribution well, the local details are comparatively less accurate than those of the saturation
results. The generated permeability fields basically capture the structural patterns of the reference, e!ec-
tively distinguishing between high- and low-permeability regions. The variations among the results reflect
the uncertainty associated with the inferred permeability fields (Fig. S15a). When sparse well measurements
are available, the reconstructed saturation fields generally resemble the global pattern of the reference, with
minor discrepancies near the plume front. The pressure fields appear more consistent with the reference, as
they exhibit smoother variations that are easier to characterize. The inferred permeability fields align well
with the reference, as the direct permeability probes at sparse well locations provide critical information
that enables the model to approximate the underlying heterogeneity (Fig. S15b).

7.2 Case 2: field-scale CO2 sequestration at the Sleipner site

Fig. S16 presents the additional generation results at finer time steps conditioned on 18 monitoring wells.
Both the saturation and pressure fields successfully reproduce the reference data, showcasing the model’s
excellent capability to reconstruct high-dimensional state variables from extremely sparse observations.
The strong similarity among the generated samples indicates a low level of uncertainty in the inferred
solutions. The inferred permeability fields also show close match with the reference, with both highly and
lowly permeable regions accurately captured by the model. Regions lacking observation wells, such as the
peripheral zones of the permeability field, exhibit increased variation/uncertainty, as expected.

7.3 Case 3: CO2 injection and brine production in stratigraphically complex

reservoirs

Fig. S17 complements Fig. 5 in the main text by providing results under single-source monitoring conditions.
From a visual perspective, direct observation of the CO2 plume yields the most accurate saturation results. In
contrast, the saturation fields conditioned on “sparse well” and “geological seismic survey” data exhibit some
deviations near the plume edge. The inferred reservoir geometry (depth and thickness) closely matches the
reference when geological seismic survey data are available, as they serve as informative conditioning data,
albeit with inherent noise. The remaining two types of conditional information deliver inferior performance.
In particular, the CO2 plume monitoring tends to produce an over-smoothed representation of the reservoir
stratigraphy.

Fig. S18 provides additional generation results conditioned on both CO2 plume monitoring and geological
seismic survey data, as this combined monitoring strategy yields the most balanced and reliable outputs
across di!erent state variables. The generated geomodel and reservoir responses under this conditioning
scenario are in good accordance with the reference data, with minor inter-sample variations suggesting low
uncertainty. This highlights CoNFiLD-geo’s e!ectiveness in inverse modeling of geological heterogeneity and
flow behavior.
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Fig. S13 Conditional generation results under regularly placed monitoring wells for Case 1. Monitoring wells provide obser-
vational data on pressure and saturation. (a) Reference and generated permeability fields, along with saturation dynamics at
30, 100, 200, 300, and 500 days. The monitoring well configurations (indicated by red crosses) are displayed in the first col-
umn. (b) SSIM of permeability as a function of the number of monitoring wells. Error bars indicate the standard deviation.
(c) Temporal variation of SSIM for saturation under di!erent numbers of monitoring wells, with shaded areas denoting the
standard deviation.
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Fig. S14 Conditional generation results under regularly placed monitoring wells for Case 1. Monitoring wells provide obser-
vational data on pressure, saturation, and permeability. (a) Reference and generated permeability fields, along with saturation
dynamics at 30, 100, 200, 300, and 500 days. The monitoring well configurations (indicated by red triangles) are displayed in
the first column. (b) SSIM of permeability as a function of the number of monitoring wells. Error bars indicate the standard
deviation. (c) Temporal variation of SSIM for saturation under di!erent numbers of monitoring wells, with shaded areas denot-
ing the standard deviation.
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Fig. S15 Additional generation results at finer time steps for Case 1. The reference and the three randomly selected samples
are shown. (a) Condition: 16 → 16 CO2 plume monitoring data. (b) Condition: 20 sparse monitoring wells with permeability,
pressure and saturation probed.
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Fig. S16 Additional generation results at finer time steps for Case 2 under the condition of 18 sparse monitoring wells. From
top to bottom, the reference and the three randomly selected samples from the generated ensemble are displayed.
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Fig. S17 Conditional generation results under single-source monitoring data. From top to bottom: the reference, results
conditioned on sparse well data, results from CO2 plume monitoring, and results from geological seismic survey.
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Fig. S18 Additional generation results at finer time steps for Case 3 conditioned on multi-source monitoring data consisting
of 5% noisy CO2 plume observations and geological seismic survey data. From top to bottom, the reference and the three
randomly selected samples from the generated ensemble are displayed.
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8 Unconditional generation results

A remarkable feature of CoNFiLD-geo is its ability to perform unconditional generation, in addition to
the conditional generation explored so far. Unconditional generation requires no external observations to
guide the process, allowing the model to rapidly synthesize physically plausible geomodels and corre-
sponding reservoir responses in a fully data-driven manner. This capability e!ectively functions as a fast
numerical emulator, enabling e”cient preliminary uncertainty analysis, prior ensemble construction, and
reservoir screening. These applications are also instrumental for pre-operational planning, risk assessment,
and strategy development in GCS projects.

8.1 Case 1: CO2 drainage in heterogeneous reservoirs

Fig. S19 shows the generated 4 samples starting for di!erent Gaussian white noise. The unconditionally
generated samples demonstrate a wide range of geological heterogeneity in the permeability fields, reflecting
the model’s ability to capture diverse subsurface scenarios. Meanwhile, the resulting saturation and pres-
sure fields consistently exhibit physically coherent patterns, indicating the model’s strong generalization
capability and adherence to physical processes. Notably, the CO2 plume migration predominantly follows
the highly permeable pathways, in accordance with the transport mechanisms characteristic of subsurface
multiphase flow systems.

8.2 Case 2: field-scale CO2 sequestration at the Sleipner site

As shown in Fig. S20, CoNFiLD-geo explores a wide spectrum of permeability realizations. The generated
saturation and pressure fields, while exhibiting some overall similarity, are locally influenced by the spa-
tial heterogeneity of permeability. Their global patterns, however, are primarily governed by the complex
stratigraphic structure of the reservoir. The generated parameter-solution pairs reveal physically plausible
behaviors. For example, in Sample #2, the presence of a low-permeability region (blue) near the injection
well limits the plume’s expansion, resulting in significant overpressure buildup.

8.3 Case 3: CO2 injection and brine production in stratigraphically complex

reservoirs

Unconditional generated reservoirs and the corresponding reservoir responses are presented in Fig. S21.
CoNFiLD-geo is capable of synthesizing multifarious reservoirs characterized by stratigraphic complexity
and distinct geological features. The generated reservoir pairs also conform to the governing physical prin-
ciples of subsurface multiphase flow. For instance, supercritical CO2 preferentially accumulates at shallower
depths (shown in green), as its buoyancy drives it to rise above denser formation fluids. In addition, thicker
reservoirs o!er greater storage capacity, which helps confine the plume and results in a more compact spatial
distribution. These physical behaviors are e!ectively captured by CoNFiLD-geo.

In summary, the above unconditional generation results demonstrate that CoNFiLD-geo can e”ciently
synthesize diverse and physically consistent geomodels along with their corresponding dynamic responses,
without relying on external observations. The generated results capture key subsurface flow behaviors, high-
lighting the model’s strong generalization and physical awareness. Future research will explore integrating
physics-informed sampling to further enhance the physical consistency of generated outputs.
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Fig. S19 Unconditional generation results for Case 1 over a 500-day period. From top to bottom, four generated samples are
shown, each initiated from a di!erent Gaussian white noise input.
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Fig. S20 Unconditional generation results for Case 2 over a 10-year period. From top to bottom, four generated samples are
shown, each initiated from a di!erent Gaussian white noise input.
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Fig. S21 Unconditional generation results for Case 3 over a 10-year period. From top to bottom, four generated samples are
shown, each initiated from a di!erent Gaussian white noise input.
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9 Computational time

Table S7 presents the computational cost of CoNFiLD-geo under conditional and unconditional set-
tings, alongside the corresponding cost of traditional numerical simulation. As a fast numerical emulator,
CoNFiLD-geo is able to unconditionally generate a geomodel and its corresponding reservoir responses in
approximately 20 seconds, which is substantially less than the time required by conventional numerical sim-
ulation. For conditional generation, the time cost varies depending on observational information and model
complexity, ranging from 48 to 192 seconds for the three representative cases, which remains within an
acceptable and e”cient computational range. It should be noted that CoNFiLD-geo directly generates pos-
terior samples via zero-shot generation, in contrast to traditional gradient-based or gradient-free methods
that progressively approximate the posterior through iterative calls to a surrogate model or a numerical
simulator. In addition, CoNFiLD-geo can generate samples in batch mode, facilitating the fast evaluation
of uncertainties. The computational cost of numerical simulation is significantly higher, ranging from 5 to
30 minutes depending on the complexity of the case. Hence, CoNFiLD-geo opens a new pathway toward
the real-time uncertainty quantification of GCS using generative AI.

Table S7 Computational time of CoNFiLD-geo for
unconditional generation, conditional generation and
numerical simulation. The reported conditional
generation time corresponds to the following scenarios: (i)
20 sparse well measurements for Case 1; (ii) 18 sparse well
measurements for Case 2; (iii) 18 sparse well
measurements for Case 3.

Case 1 Case 2 Case 3

Unconditional generation (s) 22 19 20
Conditional generation (s) 62 48 192
Numerical simulation (min) 5 18 30
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