
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Supplemental Information: GEN2: A

Generative Prediction-Correction Framework

for Long-time Emulations of Spatially-Resolved

Climate Extremes

Mengze Wang1†, Benedikt Barthel Sorensen1†,
Themistoklis P. Sapsis1*

1*Department of Mechanical Engineering, Massachusetts Institute of
Technology, Street, Cambridge, 02139, MA, USA.

*Corresponding author(s). E-mail(s): sapsis@mit.edu;
†These authors contributed equally to this work.

1



047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092

Supplementary Methods
1. Stochastic Emulator

2. Machine Learned Debiasing

3. Data Post-processing and Evaluation Metrics

Supplementary Notes

Supplementary Figures
1. Linearity of PCA coefficients as functions of the global mean temper-

ature.

2. Raw Wheeler-Kiladis spectrum of zonal wind.

3. Machine-learning correction of the bias in quantiles.

4. Machine-learning correction of the bias in two-point correlations.

Supplementary Tables
1. RMSE of single-point statistics of U , V .

2. RMSE of single-point statistics of T , Q.

3. RMSE of two-point correlation of U , V .

4. RMSE of two-point correlation of T , Q.

2



093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

Supplementary Methods

1 Stochastic Emulator

Here we describe in detail the first part of our climate modeling framework, the lin-
ear stochastic emulation. In summary, the emulator takes as input a time series of the
global mean temperature Tg(t) and outputs a time series of the local state of the cli-
mate u(x, t) = [u1, u2, u3, u4]

⊤ = [U(x, t), V (x, t), T (x, t), Q(x, t)]⊤ where U, V, T,Q
are the zonal and meridional wind speeds, temperature and humidity respectively and
the spatial dimensions x = (θ, φ) are the longitude and latitude, θ ∈ [−π/2, π, 2] and
φ ∈ [0, 2π). The time step size of t is three hours for ERA5 dataset and one day for
the CMIP6 MPI model. Consistent with the formulation of modern climate models –
and to reduce the data to a manageable size – our model operates at a fixed altitude,
and thus the spatial dimension is 2D. We focus here exclusively on the near-surface
climate, but our model could be directly applied to any altitude.

Stated succinctly, our approach consider a principal component analysis (PCA)
of the climate data u(x, t) =

∑
j aj(t)ϕj(x) and attempts to model the temporal

coefficients aj(t) for a given spatial basis ϕj(x). Our emulator is therefore built on
three fundamental assumptions:

1. The PCA basis ϕj(x) computed from the climate during a sufficiently long
time period (e.g. historical and SSP5-8.5 scenario) remains an efficient basis for
describing other future climate change scenarios;

2. The seasonal mean and variance of the coefficients aj(t) vary linearly with global
mean temperature.

3. The statistics of daily fluctuations, given the season, are independent of the year
and the climate change scenarios.

The construction of the emulator can be divided into two distinct steps: dimensionality
reduction and stochastic modeling of PCA time series. The emulator is then nudged
towards the observation data to facilitate machine-learning-based debiasing. We now
describe each of these steps in detail.

1.1 Dimensionality Reduction

First we describe how the spatial PCA basis ϕj(x), which provides the structure for
our emulator, is computed. Given a dataset consisting of N years, we extract the
climatological mean ū(x, t), defined as phase-average of u on the same calendar day
(e.g. Jan 1st),

ū(x, t) =
1

N

N−1∑
n=0

u(x, t+ nT ), 1 ≤ t ≤ T. (1)

, where the period T is one year. When the emulator is trained on the daily maximum
data from the MPI model, the climatological mean (1) only quantifies the seasonal
cycle. For the three-hourly ERA5 data, ū accounts for not only the seasonal variation
but also the diurnal cycles. To obtain the scaling of each state variable, we compute
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the global-and-time-averaged standard deviation,

σg,k =

[
1

T S

∫ T

0

∫
S

(uk(x, t)− ūk(x, t))
2
cos θdθdφdt

]1/2

. (2)

The notations T and S are the duration of training window and the Earth’s surface,
respectively. The data are then centered to have zero climatological mean and scaled
by the global standard deviation,

u′
k(x, t) = (uk(x, t)− ūk(x, t)) /σg,k. (3)

Now that each component of q′k has the same order of magnitude, we construct its
spatial covariance function,

Rjk(x,x
∗) =

1

T

∫ T

0

u′
j(x, t)u

′
k(x

∗, t)dt, j, k = 1, 2, 3, 4. (4)

The PCA modes are acquired by solving the eigenvalue problem,∫
S

∑
k

Rjk(x,x
∗)ϕk(x

∗) cos θdθdφ = λϕj(x), j = 1, 2, 3, 4, (5)

This set of equations has multiple solutions (λ(i),ϕ(i)), i = 1, 2, 3, . . ., which are the
PCA eigenvalues and mode shapes, respectively. Without loss of generality we rank
the eigenpairs such that the eigenvalues, which represent variance, satisfy λ1 > λ2 >
. . . > λI . The temporal PCA coefficients which govern the time dependence of the
spatial PCA modes are found by projecting the normalized fluctuation field onto ϕ(i),

ai(t) =

∫
S

∑
k

u′
k(x, t)ϕ

(i)
k (x) cos θdθdφ. (6)

The state of the climate can then be expressed as superposition of PCA modes,

uk(x, t) = ūk(x, t) + σg,k

I∑
i=1

ai(t)ϕ
(i)
k (x). (7)

When the number of PCA modes I is equal to the number of grid points or the
number of snapshots, whichever is smaller, we recover the full field, and any smaller
value of I represents a truncation. In this work, we always retain 500 PCA modes,
which represent 79.6% of the total variance of 1979-2018 ERA5 data and 78.2% of
1950-2100 MPI data. To reiterate, we assume that the climatological mean ūk(x, t),

global standard deviation σg,k, and PCA mode shapes ϕ
(i)
k are unchanged with time

4
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or future scenarios. As a result, we focus purely on modeling ai(t), and the emulated
state is written as,

q̂k(x, t) = ūk(x, t) + σg,k

500∑
i=1

âi(t)ϕ
(i)
k (x). (8)

Here the notations with ·̂ are emulated quantities.

1.2 Stochastic emulator of PCA time series

1.2.1 Seasonal Decomposition

Our goal is to construct a time series of âi(t) that statistically resembles the reference
data ai(t). Although we have removed the climatological mean, the statistics of ai(t)
still exhibit seasonal variation that is important to take into account. Therefore, we
divide ai(t) into four seasons as,i(t) – of approximately equal length – and model them
separately where the additional subscript s = 1, 2, 3, 4 represents winter (Dec-Feb),
spring (Mar-May), summer (Jun-Aug) and autumn (Sep-Nov). The number of days
in each season is 90, 92, 92, and 91 respectively.

1.2.2 Formulation and Estimation of Model Parameters

We postulate a decomposition of the time series of PCA coefficients,

âs,i(t) = µ̂s,i (Ts,g) + σ̂s,i (Ts,g) η̂s,i(t), (9)

which is a superposition of the seasonal mean µ̂s,i and fluctuations parameterized
through an envelope of the seasonal variance σ̂2

s,i. The seasonal mean and variance
are assumed to be functions of the global mean temperature Ts,g, defined as the
seasonal average of the daily Tg. The time-dependent daily fluctuations in each season
are modelled as autoregressive Gaussian processes η̂s,i(t). We will now discuss the
formulation and computation of each of these terms in detail.
Linear Regression of Seasonal Mean and Variance. For each season s and each
mode i, in the nth year, we compute the Ts,g as well as the seasonal mean µs,i and
variance σ2

s,i of the PCA coefficients of the reference data as,i(t). Note that for each

s, i, and n, the mean µs,i and variance σ2
s,i are constants – we generally omit explicit

notation of the year n to avoid notational clutter. Grouping these values by season
s and mode i allows us to perform a linear regression using {µs,i(n), Ts,g(n)} and
{σ2

s,i(n), Ts,g(n)}

µ̂s,i(Ts,g) = p̂s,i,0 + p̂s,i,1Ts,g

σ̂2
s,i(Ts,g) = q̂s,i,0 + q̂s,i,1Ts,g, (10)

an assumption which is justified by the linear trends which have been observed in data
by a number of sources [1, 2] and illustrated in figure 1.
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Time Lagged Cross-Mode Covariance. After extracting the linear trends of the
seasonal mean and standard deviation in response to the global mean temperature,
we remove these trends from the true PCA coefficients, resulting in the residuals
ηs,i = (as,i − µ̂s,i) /σ̂s,i. To accurately capture the spatio-temporal dynamics, our
model must reflect not only the contemporaneous correlations between different modes,
e.g. ηs,1(t) and ηs,2(t), but also their correlations across time. To this end, we define
the time-lagged cross-mode covariance,

Σs(m) =
1

Ts

∫
Ts

ηs(t)η
⊤
s (t+m∆t)dt, m = 0, 1, . . .M, (11)

where ηs = [ηs,1, ηs,2, . . . , ηs,m]⊤ is the vector of fluctuations of each PCA mode,
M∆t is maximum time lag considered, and Ts represents the set of time indices
corresponding to season s across all training years.

Now we want to model the observed fluctuations ηs,i(t) as a multivariate Gaussian
process η̂s,i(t), which has the same covariance matrix Σs(m) as ηs,i(t). To further
simplify our notation, the subscript s will be omitted. Mathematically, we seek to
construct an autoregressive model of order M ,

η̂(t) = Ψ̂1η̂(t−∆t) + Ψ̂2η̂(t− 2∆t) + · · ·+ Ψ̂M η̂(t−M∆t) + ϵ(t) (12)

where the noise term is a multivariate Gaussian random vector ϵ ∼ N (0, R̂). The
unknown matrices Ψ̂1, Ψ̂2, . . . , Ψ̂M , R̂ are solved such that the simulated process (12)
satisfy the given covariance matrices with different time lags Σ(0),Σ(1), . . .Σ(M∆t).
By multiplying both sides of (12) by η̂(t− i∆t) and averaging in time, we can derive
a set of equations, the so-called Yule-Walker equations,

Σ(0) Σ⊤(1) · · · Σ⊤(M − 1)
Σ(1) Σ(0) · · · Σ⊤(M − 2)
...

...
. . .

...
Σ(M − 1) Σ(M − 2) · · · Σ(0)



Ψ̂⊤

1

Ψ̂⊤
2
...

Ψ̂⊤
M

 =


Σ(1)
Σ(2)
...

Σ(M)

 . (13)

which may be readily solved for the Ψ̂j [3]. The corresponding noise covariance is then
given by

R̂ = Σ(0)−
M∑

m=1

Ψ̂mΣ(m). (14)

After solving equations (13,14), the matrices Ψ̂1, Ψ̂2, . . . , Ψ̂M , R̂ are substituted
into the autoregressive model (12) to simulate the daily fluctuations. The complete
procedures for running the emulator are summarized in Algorithm 1.

1.3 Nudging the Stochastic Emulator

The stochastic emulator introduced previously was designed to capture the second-
order statistics of the leading PCA modes. While this emulator has demonstrated
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Algorithm 1 Stochastic emulator of global climate.

Input: Temporal evolution of global mean temperature Tg(t)
Output: Emulated statistics of climate variables

Step 1: Emulate seasonal mean and variance;
• Compute seasonal global mean temperature Ts,g for each season s;
• For each mode i, predict the seasonal mean µ̂s,i(Ts,g) and variance σ̂2

s,i(Ts,g).
Step 2: Generate stochastic daily fluctuations;

• At every time step t, sample a Gaussian random vector ϵ ∼ N (0, R̂);
• Compute the vector autoregressive process η̂(t) according to equation (12).

Step 3: Construct time series of spatial fields;
• Combine seasonal mean and variance with daily fluctuations to obtain âi(t);
• Multiply PCA coefficients by their mode shapes and superpose all the modes;
• Denormalize by σg and ū to compute U, V, T,Q in physical space (8).

Step 4: Estimate statistics of interest;
• Average the spatial fields of U, V, T,Q over window to calculate statistics;
• If needed, input Tg(t) from a different ensemble member, repeat steps 1-3 and

average over multiple members.

effectiveness in representing the conditional Gaussian distribution of certain variables,
such as temperature [4], it inherently struggles to reproduce the non-Gaussian charac-
teristics of climate data, including extreme events associated with higher-order PCA
modes. A common approach to addressing this limitation involves using machine-
learning models to debias the emulator. However, due to the stochastic nature of
the emulated spatiotemporal data, instantaneous matches with reference data are not
achievable. For instance, an emulated wind speed field on January 1st, 2025, would
significantly differ from the corresponding ground truth dataset, whether sourced from
ERA5 or CMIP6. Ideally, an infinite ensemble of realizations could be produced by the
emulator, enabling selection of instances closest to reference observations for training
a debiasing model. However, this method is impractical. A more realistic alternative
is the nudging approach [5–8], where the emulator is forced by the deviation from
the reference data to produce a time series of fields that approximately maintain the
emulator’s statistical characteristics while closely aligning with the observed ground
truth. Herein we interpret how to nudge the stochastic emulator. In the following, we
detail how to implement nudging within the stochastic emulator framework.

Recall the formulation of the emulator (8,9),

âs,i(t) = µ̂s,i (Ts,g) + σ̂s,i (Ts,g) η̂s,i(t) (15)

q̂k(x, t) = ūk(x, t) + σg,k

500∑
i=1

âi(t)ϕ
(i)
k (x). (16)

The only stochastic component is the time series of daily fluctuations η̂s,i. All other
parts are deterministic and constructed to align with the reference data. Therefore we
focus on nudging η̂s,i, given the true fluctuations ηs,i. Hereafter we omit any subscripts
to simplify the notation.

7
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The nudged emulator, denoted as ν, is designed to follow the dynamics of the
free-running emulator η̂, while driven by the deviation from the reference data,

ν̇ = ˙̂η − 1

τ
(ν − η) . (17)

The relaxation time scale τ is a constant that is independent from the season or the
PCA mode. Equation (17) has a closed-form solution,

ν(t) = ν(0)e−t/τ +

∫ t

0

e−(t−s)/τ

(
˙̂η(s) +

1

τ
η(s)

)
ds. (18)

The time derivative term ˙̂η is approximated using the first-order Euler scheme and
computed from the free-running emulator data. Combining the nudged time series of
daily fluctuations ν with seasonal mean and variance, we obtain the complete nudged
PCA time series and the spatiotemporal fields,

âνs,i(t) = µ̂s,i (Ts,g) + σ̂s,i (Ts,g) ν̂s,i(t) (19)

q̂νk(x, t) = ūk(x, t) + σg,k

500∑
i=1

âνi (t)ϕ
(i)
k (x). (20)

The interpretation of nudging and the selection of τ have been thoroughly discussed
in [9]. Briefly speaking, the relaxation timescale τ serves to separate the time scales
between slow and fast dynamics. The feedback term in equation (17) drives the slow
dynamics of ν towards the reference trajectory η in the state space, while allowing
the fast dynamics of ν to freely evolve. Thus, when pairs of the nudged and reference
data are used for training a machine-learning model, we are essentially learning a map
that corrects the fast features of the imperfect emulator and improve the performance
on extreme events. In our case, the relaxation timescale is set as τ = 6hrs, consistent
with previous work [10]. Minor adjustments of τ , such as to 3 or 12 hours, do not
significantly alter the results.

The feedback term in (17), although driving the nudged emulator towards the
reference, introduces artificial dissipation not present in the free-running emulator.
Such an effect leads to a distribution of nu and q̂ν that is slightly different from the
free-running emulator. In order for a neural network trained on the nudged dataset to
generalize to unseen free-running emulator data, this discrepancy must be remedied.
To this end, we rescale the nudged solution q̂ν in each season so that its mean and
variance match those of the free-running emulator q̂ at each grid point.

2 Machine Learned Debiasing

2.1 Conditional Score-based Diffusion model

Here we describe the training strategy and network architecture used in the ML
correction step of our model. Our model relies on the framework introduced by

8
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Barthel Sorensen et al. [10], which aims to learn a deterministic map from the nudged
trajectory to the reference trajectory,

u = F (q̂ν) . (21)

In practice, such a mapping is not necessarily deterministic. There could exist multiple
reference state u that are close to the same nudged state q̂ν . Therefore, we generalize
this framework by learning a conditional probability distribution function,

p(u | q̂ν). (22)

If the mapping is actually deterministic, the conditional probability distribution will
collapse to a Dirac delta function δ(u − F (q̂ν)). Once the conditional PDF (22) is
learned, we can provide the free-running emulation q̂ as the conditional information
to generate debiased estimations of the state variables û,

û(x, t) ∼ Gθ,2 [q̂(x, t)] (23)

Although learning and sampling high-dimensional PDFs were long considered
intractable, these tasks have recently become practical thanks to advances in deep gen-
erative models. In this study, we adopt conditional score-based diffusion model [11, 12]
that has been demonstrated effective for geophysical datasets [13]. Other frameworks,
such as flow matching [14] and stochastic interpolant [15], could likewise address the
debiasing problem considered here. The choice of the generative model is beyond the
scope of this work and will be investigated in the future.

Our implementation of score-based diffusion model follows that of Bischoff and
Deck [13]. To simplify the notation, we will use q to represent the nudged emulation
q̂ν . The diffusion model consists of a forward diffusion process, which maps the data
distribution to normal distribution, and a reverse denoising process that transforms
Gaussian noise to a sample or image of the climate state. Specifically, given an initial
condition u(t = 0) ∼ pdata(u|q) drawn from the training data, the forward diffusion
process is defined by the stochastic differential equation (SDE),

du = g(t)dW, (24)

where the diffusion coefficient g(t) is a non-negative prescribed function and W is a
Wienner process. Note that the diffusion time t is within [0, 1] and should be distin-
guished from the physical time t. At any time t, the solution to the SDE (24) is a
“noised” image u(t), which follows a normal distribution conditioned on u(0),

u(t) ∼ N
(
u(0), σ2(t)

)
= p(u(t)|u(0)), (25)

where the variance σ2(t) depends on g(t),

σ2(t) =

∫ t

0

g2(t′)dt′. (26)

9
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The marginal distribution of u(t) after integrating out u(0) is defined as pt(u(t)|q),
which is generally non-Gaussian. The diffusion coefficient g(t) is chosen such that at
t = 1, the variance σ2(t = 1) has much larger magnitude than the original u(t = 0).
Therefore, u(t = 0) has lost all memory of initial condition, and

p(u(1)|u(0)) = p(u(1)) = N (0, σ2(1)). (27)

According to Anderson’s theorem [16], the reverse of equation (24) is also a diffusion
process, running backward in time and governed by the following SDE,

du = −g2(t)s(u,q, t)dt+ g(t)dW, (28)

where W is a reverse-time Wienner process, and s(u, t) is the conditional score,

s(u,q, t) = ∇u log pt(u(t)|q). (29)

If we have access to the score for all t, we can derive the reverse diffusion process,
simulate it from t = 1 to t = 0, and generate samples that follow the data distribu-
tion. To this end, we approximate the score by a neural network, sθ(u,q, t), which is
obtained by minimizing the score-matching loss or Fisher’s divergence,

LSM (θ) :=
1

2
Et∼U(0,1)
u(t),q∼pt(u(t)|q)

[
σ2(t) ∥∇u log pt (u|q)− sθ(u,q, t)∥22

]
, (30)

where U(0, 1) stands for a uniform distribution from 0 to 1. However, the loss function
(30) cannot be directly optimized, since the true conditional score ∇u log pt (u|q) is
unknown. Taking advantage of the Gaussian property of the forward diffusion process
(25,27), [11] showed that LSM is equal to the following loss up to an additive term,

L(θ) := 1

2
Et∼U(0,1)
u(0),q∼p(u0|q)
u(t)∼p(u(t)|u(0))

[
σ2(t) ∥∇u log pt (u(t)|u(0))− sθ(u,q, t)∥22

]
. (31)

This expression only involves ∇u log pt (u(t)|u(0)) which can be computed analytically
from the forward diffusion process.

Once the conditional score is learned through training, it can be substituted into
the backward SDE (equation 28) to generate a debiased sample. The backward SDE
is simulated using Euler-Maruyama scheme. The complete procedures of training and
sampling are summarized in Algorithm 2.

2.2 Network Architecture and Training Parameters

Before feeding the emulation and reference data into the diffusion model, we remove the
true climatological mean and scale each variable (U, V, T,Q) by twice its own globally-
averaged standard deviation. In other words, we focus on correcting the fluctuation
fields provided by the emulator, and each variable is scaled to the same order of

10
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Algorithm 2 Conditional score-based diffusion model.

Training
Input: Reference data and nudged emulation {ui,qi} ∼ p(u|q)
repeat

u(0),q ∼ p(u|q)
t ∼ U(0, 1)
u(t) ∼ p(u(t)|u(0)
Take gradient descent step on∇θ

[
σ2(t) ∥∇u log pt (u(t)|u(0))− sθ(u,q, t)∥22

]
until converged
Output: Trained neural network sθ(u,q, t).

End

Sampling
Input: Snapshot of emulated state q
u(1) ∼ N (0, σ2(1))
for t = 1 to 0 do

Evaluate sθ(u(t),q, t)
u(t−∆t) = u(t) + g2(t)sθ(u,q, t)∆t− g(t)

(
W(t)−W(t−∆t)

)
t← t−∆t

end for
Output: Debiased snapshot û = u(t = 0)

End

magnitude. Regarding the diffusion coefficient g(t) in equation (24), we adopt the
“variance-exploding” schedule,

g(t) = σmin

(
σmax

σmin

)t
√

2 log

(
σmax

σmin

)
, (32)

where σmin = 0.01 and σmax is chosen as the maximum 2-norm distance between any
two snapshots of u.

The neural network architecture we adopted is a U-Net [13, 17], denoted as

sθ(u,q, t) = U(X, t;θ). (33)

The first input X is a tensor of size (N1, N2, Cin), where (N1, N2) are longitude and
latitude dimensions, and Cin is the number of channels. In our case, Cin = 8, including
(U, V, T,Q) from the nudged emulation and reference data, respectively. The output
of our U-Net is another tensor of size (N1, N2, Cout). The number of output channels
is Cout = 4. The U-Net architecture consists of

1. A lifting layer which increases the number of channels form Cin to 32;
2. Three downsampling convolutional layers, each of which reduces the spatial

dimension and increase the number of channels by a factor of 2;
3. Eight residual blocks [18] to promote continuity in the latent space;

11
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4. Three nearest neighbor up sampling layer and convolution layers which mirror the
downsampling operations;

5. A Final projection layer that decreases the number of channels to Cout.

3 Data Post-processing and Evaluation Metrics

This section provides detailed definitions and calculation methods for all statistics
and metrics presented in the main figures. Given that the climatological mean ū(x, t)
(equation 1) is assumed known, our analysis focuses on evaluating the statistics of the
fluctuation fields, u−ū. This approach enables a clearer comparison between reference
statistics and GEN2 prediction. In the following subsections, the fluctuations from the
climatological mean, u− ū, will be simply written as u for notational convenience.

3.1 Single-point and two-point statistics

Without loss of generality, we use the zonal wind speed U(x, t) as an example. To
evaluate the statistics of U at location x, we perform a time average (e.g. from 1979
to 2018 for ERA5 dataset). If we have Nt time steps available, the mean and standard
deviation are computed as,

µU (x, tj) =
1

Nt

Nt∑
j=1

U(x, tj) and σU (x) =

√√√√ 1

Nt − 1

Nt∑
j=1

(U(x, tj)− µU (x, tj))
2
.

(34)
To obtain the unbiased skewness, we first compute

sU (x) =
1
Nt

∑Nt

j=1 (U(x, tj)− µU (x, tj))
3(

1
Nt

∑Nt

j=1 (U(x, tj)− µU (x, tj))
2
)3/2

, (35)

which is then substituted into

s0U (x) =

√
Nt(Nt − 1)

Nt − 2
sU (x). (36)

The calculation of unbiased kurtosis also consists of two steps:

kU (x) =
1
Nt

∑Nt

j=1 (U(x, tj)− µU (x, tj))
4(

1
Nt

∑Nt

j=1 (U(x, tj)− µU (x, tj))
2
)2 , (37)

k0U (x) =
Nt − 1

(Nt − 2)(Nt − 3)
((Nt + 1)kU (x)− 3(Nt − 1) + 3) . (38)

12
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At the same location x, the correlation coefficient between two variables U and V
are defined as,

ρ(U, V ) =
cov (U(x, t), V (x, t))

cov (U(x, t), U(x, t)) cov (V (x, t), V (x, t))
, (39)

where cov (U(x, t), V (x, t)) is the time-averaged covariance between U and V .
The two-point correlation coefficient of U is defined as,

ρ(U(x0), U(x)) =
cov (U(x0, t), U(x, t))

cov (U(x0, t), U(x0, t)) cov (U(x, t), U(x, t))
. (40)

The anchor point x0 is selected as major cities (e.g. Boston, Hong Kong) in figure 3,
6 and in section ??.

The global root-mean-square error (RMSE) of an arbitrary statistic Q (e.g. in
figure 5 and table 3,4) is defined as,

RMSE(Q) =
[
1

S

∫
S

(
Q̂(θ, φ, t)−Q(θ, φ, t)

)2

cos θdθdφ

]1/2
, (41)

where Q̂ is the GEN2 prediction and Q is the reference statistics.

3.2 Wheeler-Kiladis spectrum

The Wheeler-Kiladis spectrum is computed following the procedure described in
Wheeler and Kiladis [19], Kiladis et al. [20]. Given data as a function of longitude, lat-
itude, and time [(θ, ϕ, t) the latitude range is first truncated to ϕ ∈ [−15◦, 15◦]. Then
for each latitude ϕj , and time tj the Fourier spectrum is computed in the azimuthal
direction θ giving rise to a azimuthal wavenumber m. Then for each ϕj and mj the
time series of data is split into a series of overlapping segments. Following [19, 20] we
set the length of each segment to 96 days and the overlap to 65 days. Each segment
is then detrended using a linear fit and Fourier transformed in time - giving a tempo-
ral frequency f . After averaging over all latitudes and all temporal segments, the raw
Wheeler-Kiladis spectra are shown in figure 2.

Due to the strong “redness” of the spectra, detailed features corresponding to the
equatorial waves are obscured. To better identify the ridges of the spectra, we first
apply a 1-2-1 filter ten times to obtain a much smoother “background” spectra. Then
the raw spectra in figure 2 are divided by the background [19]. The results, as shown
in figure 2(c) of the main manuscript, more clearly show the spectral peaks that
correspond to different types of equatorial waves. Note that the spectra in our results
should not be directly compared against the plots in [19]. The reason is that their
analysis was based on the long-wave radiation data, which are proxy for cloudiness,
whereas our analysis focuses on near-surface zonal wind speed.
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Supplementary Notes

To illustrate the debiasing capabilities of the ML correction step, we show in figure 3
the bias in the 97.5% quantile, predicted with or without ML correction. As explained
at the beginning of Appendix 3, the statistics are evaluated for the fluctuation fields.
Before applying ML correction (middle column), the error of the conditional Gaussian
emulator is already moderately accurate. For example, the error of T at most locations
is within 3K, and the highest error is within 3K. The ML model (right column)
consistently reduces the error of all the state variables at almost all the locations. A
more quantitative comparison is provided in table 1,2. The bias in standard deviation,
quantile, skewness, and kurtosis are all significantly reduced by ML correction.

The bias reduction in two-point correlations are shown in figure 4. We select Lagos
and Tehran for visualization, because the bias of the conditional Gaussian emulator
is more pronounced at these two locations. Top panels in figure 4 are the bias of the
conditional Gaussian emulator, without ML correction. Bottom panels are the bias of
GEN2 prediction.

Table 3 and 4 summarize the error of two-point correlations at more locations,
selected from different regions and climate over the world. At most locations, the
conditional Gaussian emulator already achieves an accurate prediction, with RMSE
lower than 0.03. After applying ML correction, the errors are significantly reduced
at all the locations considered. These results demonstrate the robustness of the ML
correction.
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Supplementary Figures

Supplementary Fig 1 Linearity of PCA coefficients as functions of the global mean
temperature. Jun-Aug mean of (a) the first and (b) second PCA coefficients in each year of MPI
dataset, from 1950 to 2100, plotted versus the global mean temperature. Red dots: true seasonal mean
obtained from the historical and SSP5-8.5 scenario. Green dots: SSP1-2.6 scenario. Black dashed line:
linear regression; Solid line: machine-learned function.

Supplementary Fig 2 Raw Wheeler-Kiladis spectrum of zonal wind. Spectra are computed
using 1979-2018 ERA5 reference data and GEN2 prediction. These spectra are normalized by the
“background power” to obtain the spectra in figure 2(c) of the main manuscript.
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Supplementary Fig 3 Machine-learning correction of the bias in quantiles. Left column:
97.5% quantile of zonal wind, meridional wind, temperature, computed from reference data. Middle
column: bias of conditional Gaussian emulation. Right column: bias of “GEN2” approach.

16



737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782

Supplementary Fig 4 Machine-learning correction of the bias in two-point correlations.
Bias in two-point correlations of zonal wind and temperature, centered at Lagos and Tehran. Contour
plots represent bias relative to reference ERA5 data. Panels labeled “Gauss. Emul.” correspond to
predictions of the conditional Gaussian emulator only (no ML correction) and “GEN2” represents
the full model prediction (with ML correction) .
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Supplementary Tables

Statistics RMSE of U stats RMSE of V stats
Em. GEN2 Change Em. GEN2 Change

Std 0.43 0.15 -65% 0.47 0.13 -73%
97.5% quantile 1.14 0.46 -60% 0.99 0.33 -66%

Skewness 0.41 0.19 -53% 0.27 0.14 -48%
Kurtosis 0.84 0.57 -33% 0.68 0.46 -33%

Supplementary Table 1 RMSE of single-point statistics of U ,
V . RMSE is defined as equation (41). Columns labeled as “Em.” are the
RMSE of the prediction of conditional Gaussian emulator, and “GEN2”
is the full-model prediction. “Change” columns are the relative error
change from conditional Gassuain emulator to GEN2, more precisely,
(RMSE(GEN2)− RMSE(Em.))/RMSE(Em.).

Statistics RMSE of T stats RMSE of Q stats
Em. GEN2 Change Em. GEN2 Change

Std 0.23 0.10 -56% 0.19 0.05 -72%
97.5% quantile 0.67 0.35 -48% 0.46 0.17 -63%

Skewness 0.34 0.20 -42% 0.50 0.27 -47%
Kurtosis 0.89 0.68 -24% 1.78 1.38 -23%

Supplementary Table 2 Same as table 1, but for temperature T and
Q.
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Anchor point x0 RMSE of ρ(U(x0), U(x)) RMSE of ρ(V (x0), V (x))
City Lon(E) Lat(N) Em. GEN2 Change Em. GEN2 Change
Boston -71.1 42.4 0.016 0.009 -43% 0.018 0.008 -53%
Los Angeles -118.2 34.1 0.028 0.011 -62% 0.026 0.009 -67%
Chicago -87.6 41.9 0.020 0.008 -59% 0.017 0.008 -54%
Houston -95.4 29.8 0.020 0.009 -57% 0.017 0.009 -48%
Kansas City -94.6 39.1 0.022 0.008 -64% 0.017 0.008 -51%
London -0.1 51.5 0.018 0.009 -50% 0.019 0.008 -60%
Anchorage -149.9 61.2 0.019 0.012 -36% 0.021 0.009 -58%
Paris 2.4 48.9 0.019 0.009 -53% 0.019 0.008 -57%
Athens 23.7 38.0 0.024 0.010 -57% 0.022 0.009 -60%
Moscow 37.6 55.8 0.024 0.010 -58% 0.022 0.008 -66%
Stockholm 18.1 59.3 0.022 0.010 -57% 0.020 0.008 -61%
Tokyo 139.7 35.7 0.017 0.008 -51% 0.017 0.009 -48%
Hong Kong 114.2 22.3 0.026 0.009 -64% 0.025 0.009 -65%
New Delhi 77.1 28.6 0.028 0.010 -64% 0.028 0.010 -65%
Tehran 51.4 35.7 0.030 0.011 -63% 0.034 0.010 -70%
Astana 71.5 51.2 0.022 0.009 -60% 0.022 0.009 -60%
Cairo 31.2 30.0 0.029 0.009 -70% 0.027 0.008 -69%
Cape Town 18.4 -33.9 0.018 0.009 -50% 0.022 0.009 -60%
Lagos 3.4 6.5 0.043 0.015 -65% 0.040 0.009 -78%
Kisangani 25.2 0.1 0.047 0.015 -69% 0.036 0.009 -76%
Mombasa 39.7 -4.0 0.041 0.018 -55% 0.038 0.010 -74%
Sydney 151.2 -33.9 0.020 0.009 -56% 0.020 0.008 -58%
Braśılia -47.9 -15.8 0.029 0.012 -58% 0.044 0.010 -78%
Bogota -74.1 4.7 0.054 0.023 -57% 0.034 0.017 -49%
Buenos Aires -58.4 -34.6 0.020 0.009 -55% 0.019 0.009 -54%

Supplementary Table 3 RMSE of two-point correlation of U , V . Columns labeled as
“Em.” are the RMSE of the prediction of conditional Gaussian emulator, and “GEN2” is the
full-model prediction. “Change” columns are the relative error change from conditional
Gassuain emulator to GEN2, more precisely, (RMSE(GEN2)− RMSE(Em.))/RMSE(Em.).
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Anchor point x0 RMSE of ρ(T (x0), T (x)) RMSE of ρ(Q(x0), Q(x))
City Lon(E) Lat(N) Em. GEN2 Change Em. GEN2 Change
Boston -71.1 42.4 0.017 0.012 -30% 0.016 0.009 -43%
Los Angeles -118.2 34.1 0.021 0.011 -48% 0.022 0.010 -54%
Chicago -87.6 41.9 0.014 0.010 -29% 0.017 0.009 -46%
Houston -95.4 29.8 0.019 0.014 -28% 0.015 0.008 -47%
Kansas City -94.6 39.1 0.014 0.010 -30% 0.016 0.009 -45%
London -0.1 51.5 0.023 0.010 -55% 0.022 0.011 -49%
Anchorage -149.9 61.2 0.026 0.013 -48% 0.026 0.014 -48%
Paris 2.4 48.9 0.023 0.010 -54% 0.023 0.012 -47%
Athens 23.7 38.0 0.018 0.012 -35% 0.023 0.009 -60%
Moscow 37.6 55.8 0.017 0.011 -36% 0.021 0.010 -51%
Stockholm 18.1 59.3 0.021 0.010 -53% 0.021 0.011 -49%
Tokyo 139.7 35.7 0.019 0.011 -40% 0.015 0.009 -39%
Hong Kong 114.2 22.3 0.023 0.014 -41% 0.020 0.011 -46%
New Delhi 77.1 28.6 0.031 0.018 -43% 0.022 0.011 -47%
Tehran 51.4 35.7 0.030 0.018 -42% 0.033 0.010 -68%
Astana 71.5 51.2 0.017 0.011 -32% 0.026 0.011 -59%
Cairo 31.2 30.0 0.031 0.014 -55% 0.027 0.008 -69%
Cape Town 18.4 -33.9 0.022 0.012 -45% 0.022 0.010 -55%
Lagos 3.4 6.5 0.094 0.018 -81% 0.034 0.013 -63%
Kisangani 25.2 0.1 0.072 0.015 -79% 0.046 0.011 -77%
Mombasa 39.7 -4.0 0.100 0.023 -77% 0.059 0.015 -75%
Sydney 151.2 -33.9 0.025 0.012 -52% 0.021 0.010 -53%
Braśılia -47.9 -15.8 0.042 0.013 -68% 0.030 0.012 -62%
Bogota -74.1 4.7 0.092 0.026 -71% 0.054 0.025 -53%
Buenos Aires -58.4 -34.6 0.019 0.012 -38% 0.017 0.010 -42%

Supplementary Table 4 Same as table 3, but for temperature T and humidity Q.
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