

Additional File 1:
Supplementary Material

**European Perspectives on Pre-hospital Interagency
Collaboration During Terrorist Incidents:
A Focus Group Study**

Dana Raub, Michael Bentele, Yohan Robinson

Table of Content

Supplementary Information: Methods	3
Supplementary Information: Results	6
In-Depth Examination: Interagency Collaboration Within Zones of Higher Risk	7
In-Depth Examination: Zoning Concepts	12
In-Depth Examination: The “Human Factor”	16
Supplementary References.....	21
Supplementary Figures	23
Appendix: Interview Protocol.....	27

1 **Supplementary Information: Methods**

2

3 Recruitment Process

4 For recruitment purposes, a study information brochure providing detailed information about
5 the project and data handling was distributed through multiple channels, including social
6 media platforms and the authors' professional networks. Additional professionals in the
7 domains of tactical, disaster, and pre-hospital emergency medicine were identified through an
8 exploration of current literature. To ensure broad international representation, invitations
9 were sent to emergency medical services (EMS) bases across Europe and distributed within
10 professional medical and law enforcement associations, i.e., Europol and their ATLAS
11 network for special intervention units.

12 After expressing interest through an online survey, each individual was then assigned to one
13 interview group and informed by the principal investigator via a standardised e-mail,
14 respectively. The comprehensive list of participants' names and provided personal
15 information was only accessible to the principal investigator.

16 Along with the confirmed interview schedule, participants finally received a Participant
17 Information Sheet outlining again the study's procedures and including a form for each
18 participant's written informed consent.

19 Of 84 eligible individuals who had initially expressed their interest to participate through the
20 online form, four withdrew – one due to lack of monetary compensation and three due to time
21 constraints. Of 80 individuals who were then assigned to an interview group, 16 did not
22 attend the final interview and could not be rescheduled – eight due to time constraints and

23 eight without any further information or correspondence with the principal investigator
24 (Figure S1).

25

26 Interview Design and Process

27 All interview sessions were held via video conference (Zoom Workplace Pro, version 6.2.6
28 [41824]; Zoom Video Communications, Inc.) and conducted by the principal investigator
29 (female physician, at the time of the interviews anaesthesiology/critical care resident with
30 pre-hospital experience and MSc student for disaster medicine).

31 During a brief introduction, the timeline of the interview session was explained. Additionally,
32 participants were given the opportunity to introduce themselves. Personal introduction was
33 not compulsory, and every participant could choose to remain anonymous or use a
34 pseudonym.

35 Embedded polls were anonymous, and poll results were shared with the interview group as
36 part of the discussion.

37 Interviews were conducted in English, with a maximum duration of two hours. The full
38 interview structure is presented in Appendix 1.

39

40 Data Handling and Analysis

41 Every interview session was audio-recorded. The recording was started only after participants
42 had introduced themselves, and participants were notified. Immediately after the respective
43 session, each audio recording was transcribed, and all potentially identifiable information
44 regarding participants (e.g., names and cities/regions) was removed from transcripts.

45 Using the anonymised transcripts, content analysis was performed using deductive and
46 inductive coding. Analysis was done using the MAXQDA software (Analytics Pro 24,
47 Release 24.5.1, VERBI GmbH Berlin, Germany).
48 Deductive coding was applied for an a priori defined set of codes. These codes reflected
49 challenges in interagency mass casualty incident (MCI) management as perceived in personal
50 experience and reported in scientific literature.(1-5) The final list of codes was subject to
51 coauthor consensus. Deductive codes included “Command”, “Communication”, “Critical
52 Decisions Initial Phase”, “Hot Zone Care”, “Evacuation”, “Provider Safety”, “Spatial
53 Planning”, “Interagency Understanding”, and “Most Urgent”.
54 Inductive codes were introduced for all additional content that arose from the dynamics of the
55 interview whenever they were considered relevant for the scope of this study by the authors.

56 **Supplementary Information: Results**

57

58 **Coding Process**

59 In total, 749 interview sections were matched with deductive codes: 49 with “Command”,
60 133 with “Communication”, 106 with “Critical Decisions Initial Phase”, 160 with “Hot Zone
61 Care”, 96 with “Evacuation”, 58 with “Provider Safety”, 45 with “Spatial Planning”, 57 with
62 “Interagency Understanding”, and 45 with “Most Urgent”.

63 Assessing additional interview content, 210 interview segments were assigned inductive
64 codes. The latter comprised “Training” (60), “Politics/Stakeholders” (33), “Additional
65 Challenges” (23), “Uniformity” (22), “Learning Lessons” (19), “Resource Allocation” (18),
66 “Triage” (17), “Interfacing with Hospitals” (13), and “Technical Solutions” (5).

67 During the coding process, subcategories were introduced for all codes with large volumes of
68 matching instances.

69 **In-Depth Examination: Interagency Collaboration Within Zones of Higher
70 Risk**

71 As outlined in the main manuscript, 64% of participants reported to primarily rely on law
72 enforcement for casualty care inside the hot zone according to local protocols, with the
73 majority relying specifically on special forces.
74 Personal preferences of participants mostly coincided with these findings favouring the police
75 (59% [36/61]), although regular police officers were favoured over special forces in this
76 subgroup (56% [20/36] vs. 25% [9/36], see Figure S2), and 19% (7/36) personally preferred
77 police medical staff (e.g., special forces medics and embedded physicians) for casualty care.
78 Overall, the number of participants preferring casualty care being provided by tactically
79 trained non-police medical staff (21% [13/61]) and bystanders (13% [8/61]) was slightly
80 higher than those relying on these entities in their protocols (15% [9/61] and 5% [3/61]),
81 respectively.
82 Concepts involving specifically trained, non-police resources to enter zones of higher risk
83 alongside law enforcement exist in multiple European countries, albeit some are limited to
84 metropolitan areas, such as the Equipos Médicos de Apoyo a Entorno Táctico (EMAETs) in
85 Spain.(6) Many deploy tactically trained fire services personnel, e.g. the Casualty Extraction
86 Teams in Belgium, the Dutch Quick Response Teams, the Groupe d'Extraction in France,
87 and the Danish Særlig Indsats I Kritiske Situationer (SIKS) teams.(7-10) Reasons for
88 choosing fire services personnel may include those listed in the main discussion. Other
89 concepts allow for tactically trained EMS personnel, e.g. the Tactical Emergency Medical
90 Services (TEMS) teams that have long been an established component in tactical operations
91 in Denmark and Finland.(11,12) In the United Kingdom, the Hazardous Area Response
92 Teams (HART), the Special Operations Response Team (SORT), and the London-based
93 Tactical Response Unit fulfil comparable roles.(13) Similar concepts have been introduced

94 after previous incidents in the United States of America.(14,15) As stated before, the main
95 purpose of such teams is to evacuate casualties from zones of higher risk and provide
96 stabilisation measures. For visualisation of European countries represented in this study that
97 currently deploy specifically trained interagency teams in zones of higher risk, please refer to
98 Figure 5 (main manuscript).

99 While interview participants were largely in favour of such interagency concepts, critical
100 voices need to be recognised. Although absolute safety cannot be guaranteed even to teams in
101 the supposedly safe perimeter and personal risk awareness should be promoted to all
102 providers, members of interagency teams potentially carry higher risk when entering the
103 warm zone. It has been underlined that tactically trained non-police providers typically don't
104 hold the same tactical competencies as special forces medics.(16) They may thus be deployed
105 exclusively to the warm zone for distinct tasks, as is currently standard practice in most
106 countries with such concepts. Notably, interview participants averse to interagency teams
107 exclusively worked in regions where such teams were non-existent. This coincides with an
108 observation suggesting a lack of exposure to tactical training being associated with a lower
109 readiness to enter zones of potentially higher risk.(17) Tactical training programmes led to
110 medical providers being more comfortable with responding to a tactical incident. It is thus
111 possible that critical voices stem from limited familiarity or experience with such scenarios.

112 Participants noted that shifting the responsibility for casualty care, at least within the warm
113 zone, from police officers to non-police medical providers may allow these officers again to
114 focus on their primary objective – threat elimination:

115 “The problem we [police] experienced throughout the few years we have been
116 training our people in TCCC [Tactical Combat Casualty Care] now is that the focus is

117 coming a lot on saving [providing medical care to] people by policemen, and that is
118 not our primary objective.”

119 Simultaneously, allowing trained medical personnel to provide earlier medical care to
120 casualties, as opposed to restricting them to standby roles in the cold zone until the scene is
121 fully secured or casualties are finally evacuated by other means, was seen as a potential
122 method to reduce the risk of moral injury among medical providers. Allowing providers to
123 focus on their trained role reportedly decreased the risk of psychological trauma.(18,19) This
124 observation may also be applicable to concepts allowing police officers to focus on police
125 tasks instead of casualty care. Moreover, tasking individuals with responsibilities traditionally
126 handled by other entities increased the risk of feeling abandoned by their institution and thus
127 developing a sense of hostility towards authorities.(18) This, in turn, heightened individuals’
128 susceptibility to post-traumatic distress.(20) Similar observations have been made for feelings
129 of guilt, e.g., due to not being able to fulfil one’s professional role or task.(21)

130 Concurrently, previous research confirms the participants’ notion that interagency teams to
131 enter the warm zone should not be formed ad hoc, since operating in zones of higher risk
132 demands specialised skills and expertise.(22,23)

133 It has been reported that specialised non-police tactical teams not only collaborated
134 efficiently with law enforcement but raised the general awareness and preparedness for
135 tactical incidents among regular providers as well.(12,23)

136 As an alternative to non-police medical providers entering the warm zone, some countries are
137 currently deploying tactically trained physicians as part of police special forces units, such as
138 the French unit “Recherche, Assistance, Intervention, Dissuasion” (RAID).(24) These
139 specific resources are trained to enter and operate within the hot zone. They have repeatedly
140 proven their operational efficiency and expertise, most notably in the Bataclan attack in Paris,
141 France, when roughly 100 casualties were triaged and all live casualties were evacuated

142 within 30 minutes of entering, while the attack was still ongoing.(25) However, it needs to be
143 highlighted that such highly specialised resources, like most special forces units, typically
144 reside in centralised locations and may only arrive with significant delay.

145 As one participant summarised their thoughts:

146 “Ideally, I think you'd have a system that had all of these things to try to shrink the hot
147 zone, get people in, but if you can't do that, then get casualties out. And if you can't do
148 that, then get appropriately trained specialist medical people who work within the
149 police force under their command and to make the decisions.”

150

151 Given that regular police officers are often the first on scene and to enter zones of higher risk,
152 their level of medical training was briefly discussed in the interviews. Interviewees noted
153 some variation in competencies across countries. Most reported police officers in their
154 respective home countries to be trained in basic life-saving measures such as placing patients
155 in recovery position, opening an airway, and applying tourniquets. Others described more
156 advanced training programmes, including Tactical Combat Casualty Care (TCCC) or Tactical
157 Emergency Casualty Care (TECC). A recurring concern among participants was the overall
158 low frequency of medical training for regular police officers, particularly given their likely
159 role as first responders in tactical incidents.

160 In contrast, special forces medics were reported to possess advanced-level medical skills,
161 including the use of airway devices, performing thoracic decompression, and establishing
162 intravenous or intraosseous access. However, as stated in the main discussion, special forces
163 medics' roles were often misconceived, and it was reported that regular providers are usually
164 not fully aware of their capabilities. Thus, it will be crucial for all responders to better

165 understand their interagency counterparts' level of training, in order to avoid a duplication of
166 on-scene efforts.

167 **In-Depth Examination: Zoning Concepts**

168 Polled about current zoning protocols in their represented regions, 72% (44/61) of
169 participants reported to work with a three-zone concept (red, yellow, green / hot, warm, cold).
170 10% (6/61) operated under a four-zone concept, allowing for further distinction of the warm
171 zone into orange (allowing for medical interventions to be performed by police) and yellow
172 (allowing for EMS personnel).(26) One interview participant elaborated on this concept:

173 “The problem is [...] that even police should not work [perform medical
174 interventions] in a red zone but only do the basic measures. And so the area where
175 police might work because it's already warm and it's no direct threat anymore, we call
176 it orange, to clarify that's definitely still not a place for rescue services. And then
177 yellow is the zone where, still, police is in control, but that's the area where we can
178 discuss if it's reasonable, especially if we trained that in advance, to send in rescue
179 personnel. The problem is that [...] warm zones are usually kind of nebulous. So, you
180 don't know what it is, and therefore we try to differentiate it with orange. [...] Yellow,
181 that's where EMS could work.”

182 2% (1/61) stated that they used a different (unspecified) concept, while 8% (5/61) reportedly
183 did not have a fixed zoning protocol, and 8% (5/61) were unsure about the protocol in use at
184 the time of the interview (see Figure S3A).

185 Polled about their personal preference, 57% (35/61) of participants favoured a three-zone
186 concept, while 30% (18/61) preferred a four-zone concept. However, some participants had
187 not been familiar with the concept of four zones before the interviews, which could introduce
188 bias. 10% (6/61) stated to prefer a different (unspecified) concept (see Figure S3B). Inquiring
189 about the nature of their preference, the majority of these latter six participants described a
190 two-zone concept (hot and cold zone only). Presuming body armour and adequate training of

191 providers to assess scene safety and inherent risk, they stated that a simplified zoning concept
192 might allow for earlier evacuation of casualties from the hot zone and easing the burden of
193 commanders. Concurrently, such an approach might also render zoning decisions more
194 objective, and thus, decrease the risk of delays and misunderstandings among on-scene
195 responders. However, it has been stressed repeatedly that adequate and regular training of
196 specific medical providers, with a focus on behavioural competencies, would be a
197 prerequisite if a two-zone concept was to be introduced. Such approaches may include the
198 deployment of interagency teams with rigorous tactical training.

199 While the definition of a true hot zone demands a high level of expertise and repeated re-
200 evaluation, data suggest that a direct threat to life often lasts no longer than 15 minutes.(27)

201 The risk of secondary attacks necessitates careful attention, but the actual risk may be smaller
202 than commonly perceived.(15,28)

203 If adequate training levels were not accomplished, interviewees feared a two zone-concept
204 would bear the risk of further aggravating delays regarding casualty evacuation, since
205 providers would likely wait for the hot zone to dissolve entirely:

206 “I feel like if, at the moment [with the current state of training and risk decision
207 modelling], we only had hot and cold, people would be delayed for longer going in.
208 But ultimately, if a hot zone really is a hot zone, and that's only in case of a direct
209 threat, and everyone is adequately trained to take their own risk benefit decisions as
210 they arrive, then I think it would probably be easier than trying to dynamically change
211 more layers of hot, warm, cold. I think no one's head is going to cope with that.”

212 “My [...] experience is mainly focused around high CBRN [chemical, biological,
213 radiological, nuclear] threats. And we don't talk about warm zones anymore. They're
214 cold or they're hot, and you're either in full protective equipment or you're not. And I
215 think some of that thinking has to probably move into the tactical space because

216 whenever you ask someone 'is there a threat?', it depends on them and their
217 capabilities and where they are in the chain of command. And I think you'll always
218 get a different answer. So, it's either you're safe or you are at risk. And as long as
219 medical providers and people attending incidents understand that and train for it and
220 are prepared to understand that [...] risk is dynamic and can change, [...] I think that
221 would help."

222 Ideally, participants stated that protected entry/exit points should be established between
223 zones of different risk levels.

224 These observations suggest that the effectiveness of simplified zoning concepts is contingent
225 upon adequate and routine training of providers. On the other hand, providers with less
226 training or experience may benefit from more sophisticated zoning models. This, in turn,
227 requires commanders to be sufficiently trained in establishing and complying with zoning
228 models. Simultaneously, the success of zoning concepts relies on a timely flow of
229 information between responding services. This could incorporate shared visual presentation
230 of the respective areas via digital applications.

231 As highlighted above and in the main manuscript, a particularly considerable finding of this
232 study was the discrepancy between the implicitness of threat zones during the interviews and
233 the observed failure to implement and communicate zoning models on scene in past
234 incidents:

235 "It is a theoretical concept to say, 'we have a hot zone, we have something called
236 semi-secure zone, and we have a secure zone'. But this is usually not a reality. I've
237 never found a police officer, in no training exercise and no real scenario, who had an
238 answer when I asked where the zones were. No one could ever tell me. But what they
239 can tell you is if [...] it is secure right now, right here."

240 Thus, it was stressed repeatedly that any model necessitates adequate training of all providers
241 designated to apply it. This was reportedly not standard practice in some regions across
242 Europe.

243 **In-Depth Examination: The “Human Factor”**

244 As highlighted in the main manuscript, discussions revolved around a complex of topics
245 summarised here as “the human factor”, i.e. behavioural competencies and interagency
246 understanding.

247 Improved interagency understanding was identified as the most substantial factor in
248 promoting provider safety on scene. Subsequently, discussions revealed multiple potential
249 sources of error.

250 As discussed in the main manuscript, delayed flow of information between responding
251 services may lead to compromised provider safety:

252 “By the time they [police] have moved, we [EMS] have not worked out where they're
253 going, and we're two or three steps behind their decision-making process all the time.”

254 Participants also reported that misguided information was caused by differences in
255 terminology between responders. Lack of uniformity of response protocols, including
256 regional differences in some participating countries, further exacerbated this issue.

257 Moreover, participants observed that law enforcement officers and medical personnel
258 responded to tactical incidents with thoroughly different perspectives and priorities of action.

259 One paramedic stated:

260 “It's really difficult for us to actually create an understanding that we need to attend to
261 these patients. Our experience is that the police will be extremely focused on their job
262 [neutralising a perpetrator] [...]. So, it is a dilemma.”

263 By contrast, a special forces operator described their perspective as follows:

264 “I would just like to focus on finding the threat. And that's why I would never take
265 care of organising something else if I know there is someone that is actively shooting

266 [...] because it's like a bleeding patient: If you don't stop the bleeding, it doesn't
267 matter how much blood you put inside. [...] You have to stop the bleeding. And the
268 same thing works for us when we have a problem with an active shooter."

269 A different law enforcement officer highlighted that the presence of medical personnel could
270 add another level of complexity to on-scene police work:

271 "From the police perspective, you don't need any additional persons on site, including
272 the emergency service. [...] Sometimes the main problem is that you have to protect
273 people from themselves."

274 Such perceptions may hold particularly true for medical providers without adequate training
275 for situational awareness and risk assessment. While participants from countries deploying
276 specialised interagency teams into zones of higher risk described situational awareness
277 training for these providers, such trainings are largely uncommon in countries that
278 exclusively stage medical personnel in the cold zone. Differences in risk assessment surfaced
279 most prominently in the following statements of police officers:

280 "If you are not in police training, that [identifying potential threats] is usually a
281 problem. You don't know what to look for. Usually, you look at the face of people.
282 We look at the hands of people. It's just a different way to approach the red zone."

283 "Our point of view is pretty simple. Anyone who has not been identified as friendly is
284 dangerous and will be treated as dangerous."

285 Discrepancies in risk awareness and the inherent necessity for additional security resources,
286 i.e., to protect providers or prevent them from entering higher-risk zones, reportedly carried
287 the risk of impeding the overall management of an incident.

288 Training providers in these competencies would likely help them adopt a more flexible
289 mindset when dealing with dynamic situations. More importantly, it could enhance their

290 ability to recognise potential threats early, even in seemingly routine cases. The relevance of
291 independent risk assessment competencies was further underscored by statements indicating
292 that full provider safety cannot be expected at any stage of a tactical incident, even when the
293 police are present.

294 Participants repeatedly described the urgent necessity to learn about other responding
295 agencies' protocols and competencies. In fact, many participants described that this had been
296 their motivating factor to sign up for the interview project.

297 When invited to pose questions to their interagency counterparts, participants raised the
298 following themes:

- 299 • Which expectations do police commanders and officers have of medical personnel on
300 scene, and vice versa?
- 301 • How do the police decide who will be in command?
- 302 • How do the police expect interagency communication to work?
- 303 • Where should medical personnel and equipment be positioned during different stages
304 of the response?
- 305 • How do police officers define zones?
- 306 • What are the key factors that shape police decisions?
- 307 • What are the police's capabilities on scene, both tactically and medically?
- 308 • Do the police acknowledge the presence and task of medical personnel on scene?
- 309 • Is there more that the police should do in terms of medical interventions?
- 310 • Should the police assign more resources to casualty care during an ongoing threat?
- 311 • How much do regular medical providers know about medical competencies within the
312 police and special forces, and how can both entities complement each other better?

313 At the time of the interviews, most participants reported a relative lack of opportunities for
314 interagency education and training, leading to frustration about current response practices.

315 The diversity of mindsets approaching a complex tactical incident was appreciated as a
316 resource:

317 "I think when pulling all of the agencies together to create something, everybody has
318 a part in it. Everybody takes ownership and leadership."

319 However, many countries reportedly experience a void of standardised interagency concepts
320 and education that may be needed to leverage the benefits. According to participants, this
321 void extends beyond the immediate pre-hospital scene and includes the intersection with in-
322 hospital management.

323

324

325

326

327

328

329 **“It would be great to start working together before the problem arises,**

330 **as we do in the Emergency Department.**

331 **If a patient with a heart attack arrives,**

332 **you don’t just start training when he comes in.”**

333

334 – Interview Participant from Italy –

335 **Supplementary References**

- 336 1. De Cauwer H, Barten D, Willems M, Van der Mieren G, Somville F. Communication
337 failure in the prehospital response to major terrorist attacks: lessons learned and future
338 directions. *Eur J Trauma Emerg Surg.* 2023;49(4):1741-50.
- 339 2. Hansen PM, Mikkelsen S, Rehn M. Communication in Sudden-Onset Major
340 Incidents: Patterns and Challenges-Scoping Review. *Disaster Med Public Health Prep.*
341 2023;17:e482.
- 342 3. Park CL, Langlois M, Smith ER, Pepper M, Christian MD, Davies GE, et al. How to
343 stop the dying, as well as the killing, in a terrorist attack. *BMJ.* 2020;368:m298.
- 344 4. Rimstad R, Sollid SJ. A retrospective observational study of medical incident
345 command and decision-making in the 2011 Oslo bombing. *Int J Emerg Med.* 2015;8:4.
- 346 5. Wurmb T, Franke A, Schorscher N, Kowalzik B, Helm M, Bohnen R, et al.
347 Emergency response to terrorist attacks: results of the federal-conducted evaluation process
348 in Germany. *Eur J Trauma Emerg Surg.* 2020;46(4):725-30.
- 349 6. Roca G, Martin L, Borraz D, Serrano L, Lynam B. A Spanish Intentional Mass-
350 Casualty Incidents Medical Response Model: Delphi Consensus. *J Spec Oper Med.*
351 2020;20(4):95-9.
- 352 7. Terrorismus: Polizei und Feuerwehr trainieren gemeinsam: Directorate-General Civil
353 Security; 2017 [Available from: <https://civieleveiligheid.be/de/presse/terrorismus-polizei-und-feuerwehr-trainieren-gemeinsam-0>].
- 355 8. Kox J, van Duin M, de Haan A, Landsman J, van den Dikkenberg R, Wijkhuijs V.
356 Leeronderzoek Rotterdam: Brandweeroptreden en multidisciplinaire samenwerking bij
357 extreem geweld (28-9-'23). Nederlands Instituut Publieke Veiligheid; 2024.
- 358 9. Le Groupe d'Extraction - GREX: Sapeurs-Pompiers du Bas-Rhin; [Available from:
359 <https://www.sis67.alsace/fr/le-groupe-dextraction-grex>].
- 360 10. Mattsson M, Ramm C, Marten D. Erkenntnisse aus der Amoktat im Kopenhagener
361 Einkaufszentrum "Field's". Vorbereitungen der Feuerwehr der dänischen Hauptstadt auf
362 Polizeilagen. *Brandschutz/Deutsche Feuerwehrzeitung.* 2023(77):688-92.
- 363 11. Hansen PM, Mikkelsen S, Alstrom H, Damm-Hejmdal A, Rehn M, Berlac PA. The
364 Field's mass shooting: emergency medical services response. *Scand J Trauma Resusc Emerg
365 Med.* 2023;31(1):71.
- 366 12. Hallikainen J, Lund V. A National Model for Tactical Emergency Medical Support in
367 Finland. *Prehospital and Disaster Medicine.* 2019;34(s1):s13-s.
- 368 13. Emergency Preparedness: NHS East Midlands Ambulance Service; [Available from:
369 <https://www.emas.nhs.uk/your-service/emergency-preparedness>].
- 370 14. Autrey AW, Hick JL, Bramer K, Berndt J, Bundt J. 3 Echo: concept of operations for
371 early care and evacuation of victims of mass violence. *Prehosp Disaster Med.*
372 2014;29(4):421-8.
- 373 15. Kue R, Kearney B. Transitioning to warm zone operations. Boston EMS makes
374 operational changes after the Boston Marathon bombing. *Jems.* 2014;Suppl:22-6.
- 375 16. Bobko JP, Sinha M, Chen D, Patterson S, Baldridge T, Eby M, et al. A Tactical
376 Medicine After-action Report of the San Bernardino Terrorist Incident. *West J Emerg Med.*
377 2018;19(2):287-93.
- 378 17. Jones J, Kue R, Mitchell P, Eblan G, Dyer KS. Emergency medical services response
379 to active shooter incidents: provider comfort level and attitudes before and after participation
380 in a focused response training program. *Prehosp Disaster Med.* 2014;29(4):350-7.
- 381 18. Pahnke F, Hüttermann N, Krüger JP, Wesemann U. Psychological Impact on
382 Firefighters After the 2022 Amok Attack in Berlin at Tauentzienstraße. *Healthcare.*
383 2025;13(3):263.

384 19. Qureshi H, Lambert EG, Frank J. The relationship between stressors and police job
385 involvement. International Journal of Police Science & Management. 2019;21(1):48-61.

386 20. Jakupcak M, Conybeare D, Phelps L, Hunt S, Holmes HA, Felker B, et al. Anger,
387 hostility, and aggression among Iraq and Afghanistan war veterans reporting PTSD and
388 subthreshold PTSD. Journal of Traumatic Stress. 2007;20(6):945-54.

389 21. Bub K, Lommen MJ. The role of guilt in Posttraumatic Stress Disorder. European
390 Journal of Psychotraumatology. 2017;8(1):1407202.

391 22. Schwartz RB, Lerner B, Llewellyn C, Pennardt A, Wedmore I, Callaway DW, et al.
392 Development of a National Consensus for Tactical Emergency Medical Support (TEMS)
393 Training Programs--Operators and Medical Providers. J Spec Oper Med. 2014;14(2):122-38.

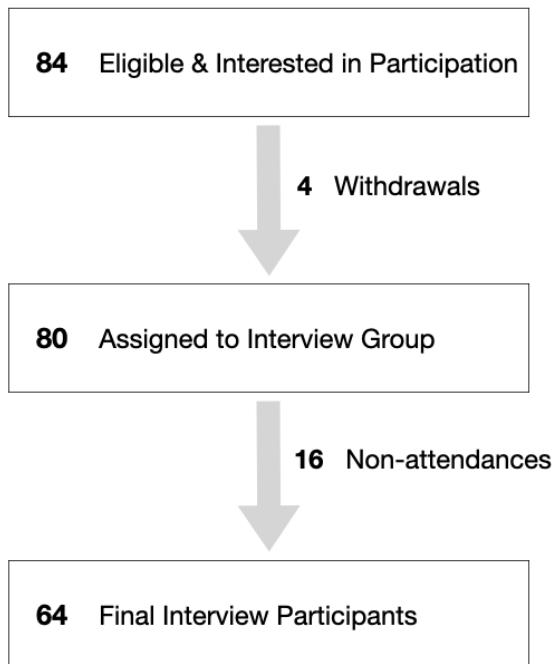
394 23. Vainionpää T, Peräjoki K, Hiltunen T, Porthan K, Taskinen A, Boyd J, et al.
395 Integrated model for providing tactical emergency medicine support (TEMS): analysis of 120
396 tactical situations. Acta Anaesthesiol Scand. 2012;56(2):158-63.

397 24. Granholm F, Tin D, Ciottone GR. Physician Involvement in High-Threat Prehospital
398 Situations. J Emerg Med. 2023;64(2):251-2.

399 25. Service Medical du Raid. Tactical emergency medicine: lessons from Paris marauding
400 terrorist attack. Crit Care. 2016;20:37.

401 26. Zonenkonzept - Organisationsübergreifende Zusammenarbeit bei besonderen
402 Einsatzlagen. Hilfestellung für die Einschätzung und Festlegung von Gefahrenbereichen.:
403 Tactical Rescue and Emergency Medicine Association (TREMA e.V.) Germany; Referat
404 Einsatztaktik; 2024.

405 27. Vägledning – samverkan vid pågående dödligt våld i publik miljö: Myndigheten för
406 samhällsskydd och beredskap; 2018 [Available from: <https://rib.msb.se/filer/pdf/28461.pdf>].

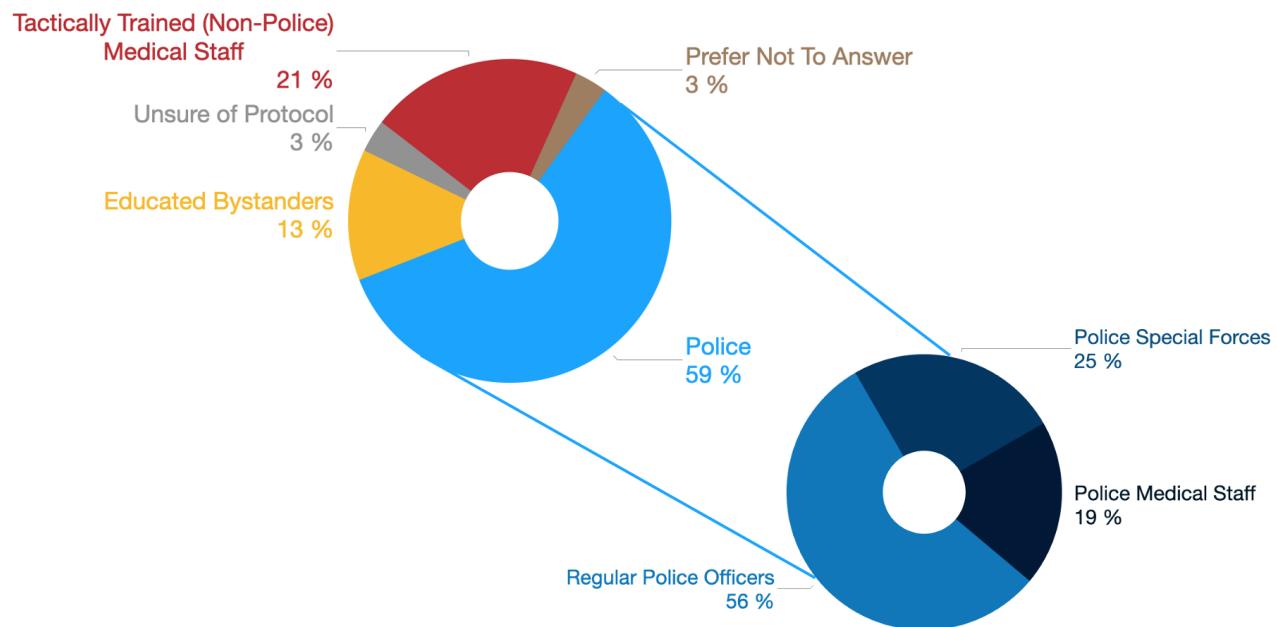

407 28. Ragoler M, Radomislensky I, Dolev E, Renert L, Peleg K. Rethinking the Current
408 "Stage-and-Wait" Paradigm. Prehosp Disaster Med. 2023;38(2):185-92.

410 **Supplementary Figures**

411

412 **Supplementary Figure S1. Study Flow.**

413


414

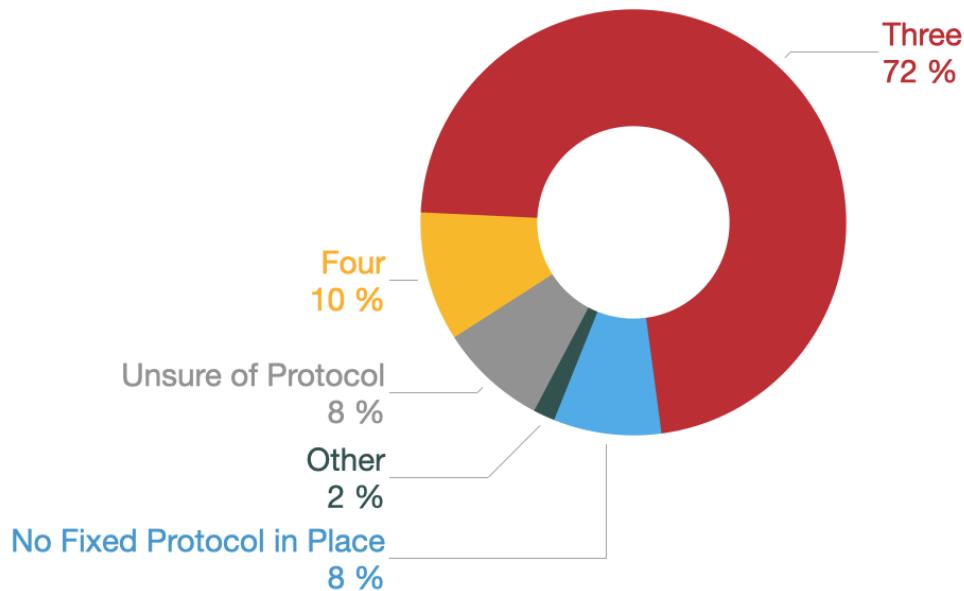
415

416 This figure shows the flow of potential and final participants throughout the recruitment
417 process.

418 **Supplementary Figure S2. Participants' Preferences Regarding Casualty Care**419 **Responsibilities Within the Hot Zone.**

420

421

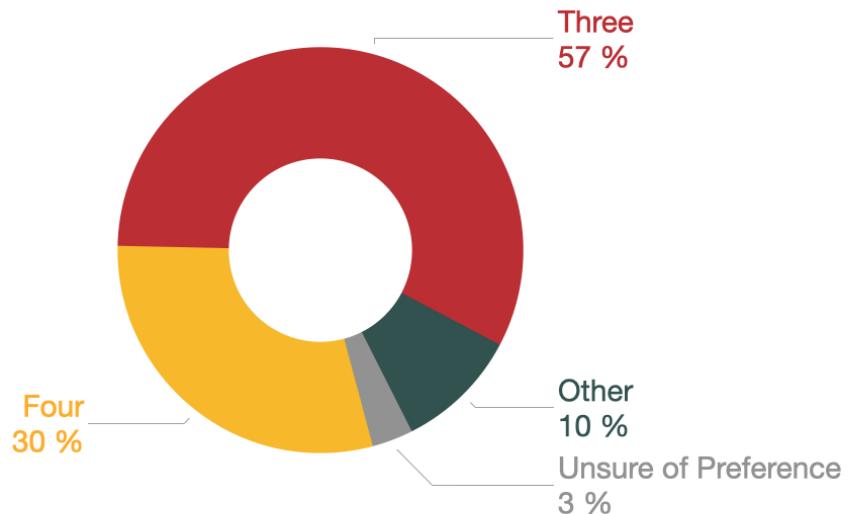

422

423 This figure depicts participants' responses to poll 3: "Which protocol would you prefer to
424 take care of patients inside the red (hot) zone?", with the response options displayed in the
425 figure. Poll response rate: 95% (61/64 participants).

426 **Supplementary Figure S3A. Zoning Concepts According to Participants' Response**

427 **Protocols.**

428



429

430 This figure depicts participants' responses to poll 4: "How many threat zones does your local
431 protocol for tactical/terrorist incidents include?", with the response options displayed in the
432 figure. Poll response rate: 95% (61/64 participants).

433 **Supplementary Figure S3B. Participants' Preferences Regarding Zoning Concepts.**

434

435

436 This figure depicts participants' responses to poll 5: "How many threat zones do you wish
437 your local protocol for tactical/terrorist incidents would include?", with the response options
438 displayed in the figure. Poll response rate: 95% (61/64 participants).

APPENDIX:
Interview Protocol

Introduction of Principal Investigator & Interview Setting

Self-Introduction of Participants

- Start of Audio Recording -

Poll 1:

Do you feel adequately trained to collaborate with other responding agencies during a terrorist scenario?

- Yes
- No
- I don't know
- I prefer not to answer

Scenario:

Tuesday, 1.30 pm.

You have been dispatched to the following scenario:

A delivery van hit multiple people in the city centre, driver left the scene with a knife, driver now attacking pedestrians, unknown number of casualties, unknown location of attacker.

Dispatched to scene: 2 ambulances, 1 fast car incl. emergency physician, 3 police cars.

Question 1: Command

What are critical decisions to be made by commanders of responding agencies within the first 30 minutes of their arrival?

Question 2: Communication

What should be the protocol of communication among the different responding agencies?

Poll 2:

Do your local protocols for tactical/terrorist incidents focus on any of the following to take care of casualties inside the red (hot) zone?

- Medically trained regular police officers
- Medically trained police special forces
- Tactically trained non-police medical staff
- Tactically trained police medical staff

- Focus on educating bystanders (e.g., STOP THE BLEED®)
 - None of the above
 - I currently don't know
 - I prefer not to answer

Question 3: Hot Zone Care

How can we minimise the therapeutic vacuum inside the red (hot) zone?

Poll 3:

Which protocol would you prefer to take care of patients inside the red (hot) zone?

- Medically trained regular police officers
- Medically trained police special forces
- Tactically trained non-police medical staff
- Tactically trained police medical staff
- Focus on educating bystanders (e.g., STOP THE BLEED®)
 - None of the above
 - I currently don't know
 - I prefer not to answer

Question 4: Evacuation

How can we ensure the prioritised but safe evacuation of red-tagged patients from the red (hot) zone to a safer zone?

Poll 4:

How many threat zones does your local protocol for tactical/terrorist incidents include?

- Three
- Four
- Other
- No fixed protocol in place
 - I currently don't know
 - I prefer not to answer

Question 5: Spatial Planning

How can provider and patient safety be emphasised in terms of spatial planning?

Poll 5:

How many threat zones do you wish your local protocol for tactical/terrorist incidents would include?

- Three
- Four
- Other
- I currently don't know
- I prefer not to answer

Question 6: Interagency Understanding

Which thought process do you struggle the most to understand or would like to know more about in other agencies responding to a terrorist incident?

Question 7: Critical Improvements

Which area of interagency collaboration calls for the most urgent improvement?

Question 8:

Are there any topics we haven't covered that you consider a priority?

- End of Audio Recording -

Closing of Interview