

Growth-Driven Polymorphism Engineering and Direct Phase Modulation of α - and β' -In₂Se₃

Tianru Wu

trwu@s.jtu.edu.cn

Shanghai Jiao Tong University

Lei Xu

Shanghai Jiao Tong University

Dongyan Liu

Shanghai Jiao Tong University

Zhenhua Wu

Shanghai Jiao Tong University <https://orcid.org/0000-0002-5527-0310>

Han Chen

Shanghai Jiao Tong University

Yutao Han

Shanghai Jiao Tong University

Mingzheng Wang

Shanghai Jiao Tong University

Haoyue Guo

Shanghai Jiao Tong University

Tian Tan

Shanghai Jiao Tong University

Yakui Mu

Shanghai Jiao Tong University

Yang Wang

Shanghai Jiao Tong University

ZengQin Song

Shanghai Jiao Tong University

Qunli Rao

Shanghai Jiao Tong University

Xuewei Feng

Shanghai Jiao Tong University

Yakun Yuan

Shanghai Jiao Tong University <https://orcid.org/0000-0001-7384-9767>

Lei Shi

University of Science and Technology of China

Xiaotian Zhang

Shanghai Jiao Tong University

Article

Keywords:

Posted Date: August 28th, 2025

DOI: <https://doi.org/10.21203/rs.3.rs-7385740/v1>

License: This work is licensed under a Creative Commons Attribution 4.0 International License.

[Read Full License](#)

Additional Declarations: There is **NO** Competing Interest.

Growth-Driven Polymorphism Engineering and Direct Phase Modulation of α - and β' -In₂Se₃

Lei Xu¹, Dongyan Liu¹, Zhenhua Wu¹, Han Chen¹, Yutao Han^{1,2}, Mingzheng Wang^{2,3}, Haoyue Guo¹, Tian Tan¹, Yakui Mu¹, Yang Wang¹, Zengqin Song¹, Qunli Rao⁴, Xuewei Feng¹, Yakun Yuan^{2,5}, Lei Shi⁶, Xiaotian Zhang^{1*} and Tianru Wu^{1*}

¹School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

²Future Material Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China

³School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China

⁴Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China

⁵School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China

⁶Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China

* E-mail: xiaotianzhang@sjtu.edu.cn * E-mail: trwu@sjtu.edu.cn

Abstract

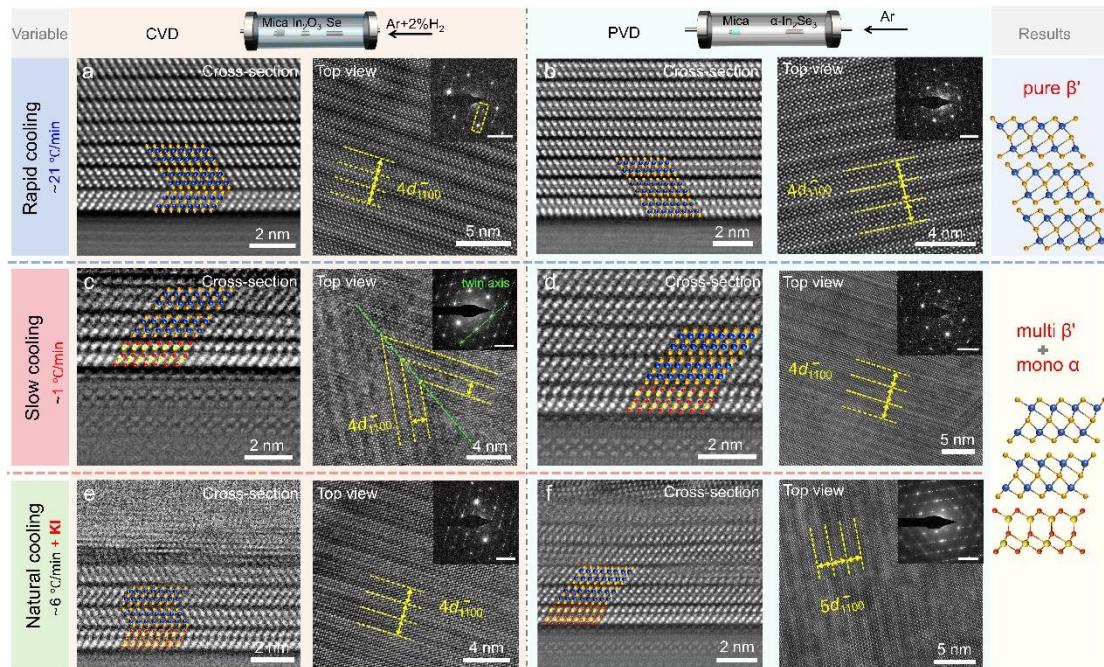
Two-dimensional (2D) In₂Se₃ represents a uniquely versatile platform for novel electronics, hosting the rare coexistence of paraelectric (β), antiferroelectric (β'), and ferroelectric (α) phases. However, synthesizing phase-pure In₂Se₃ films, particularly the critical ferroelectric semiconducting α -phase, is fundamentally hindered by the subtle structural distinctions and minimal energetic differences among its polymorphs. Here, we directly reveal phase-selective growth of In₂Se₃ on mica using cross-sectional transmission electron microscopy (TEM). It is found that both chemical vapor deposition (CVD) and physical vapor deposition (PVD) techniques yield exclusively either the pure β' phase or coexisting monolayer α and β' phases, with the cooling rate

playing a critical role in phase selection. Crucially, *in situ* stress release within the epitaxial film on mica generates wrinkles propagating along the $<1\bar{1}00>$ direction, triggering an immediate β' to α phase transformation. The resulting phase-pure α -In₂Se₃ films enable ferroelectric transistors exhibiting a high electron mobility of $259\text{ cm}^2\text{ V}^{-1}\text{ s}^{-1}$. This precise control over polymorph synthesis unlocks promising opportunities for 2D ferroelectric devices and nanoelectronics, offering a pathway to harness phase-specific functionalities.

2D van der Waals (vdW) ferroelectric materials exhibit robust ferroelectricity down to the atomic scale, positioning them as key enablers for ultrahigh-density integration and low-power electronics¹. Among these, 2D In₂Se₃ stands out for its rich polymorphism, offering a versatile platform for novel device concepts through tailored exploitation of its diverse physical properties. Current research primarily focuses on its α , β' , and β phases. The room-temperature-stable α -phase exhibits a non-centrosymmetric structure and robust ferroelectricity even at the monolayer limit, making it a highly promising ferroelectric semiconductor. In contrast, the β' -phase exhibits in-plane ferroelectricity², antiferroelectricity³, and ferroelasticity⁴. As the parent phase of β' , centrosymmetric β -In₂Se₃ displays paraelectric behavior. These distinct phase-dependent tunabilities make it a prime material for ferroelectric field-effect transistors (FET)^{5,6}, ferroelectric semiconductor junctions (FSJ)⁷, neuromorphic computing⁸ and optoelectronic detectors⁹.

Despite the intriguing polymorphism, subtle structural and energetic distinctions among the α , β , and β' -phases have sparked persistent identification controversies. These distinctions also pose formidable challenges for phase-selective synthesis, particularly in achieving the controlled growth of phase-pure α -In₂Se₃. The predominant synthesis routes, such as mica-based chemical vapor deposition (CVD) using Se + In₂O₃ precursors and physical vapor deposition (PVD) with In₂Se₃ powder, often yield inconsistent phase outcomes. Reported products range from α -phase^{7,10-15}, β' -In₂Se₃^{4,16-18} to mixed-phase^{16,17,19,20}, indicating profound sensitivity to synthetic conditions. For instance, Lin *et al.* associated α -phase formation via CVD with slow

cooling^{16,18,21,22}, while Si *et al.* achieved it via low-temperature salt-assisted PVD²³. Notably, distinct deviations could be observed in the Raman spectra of synthesized α -In₂Se₃^{10,15,16,21,24-26} compared to mechanically exfoliated α -In₂Se₃ flakes^{27,28}, whereas the β and β' phases even show near-identical signatures^{6,27}. This further complicates phase identification in synthesized In₂Se₃. Additionally, Zheng *et al.* reported α -phase formation is confined to the first few layers in PVD-grown films on mica¹⁷, while Han *et al.* suggest that Se+In₂O₃ CVD primarily yields β -In₂Se₃, achieving α -In₂Se₃ indirectly via transferring β' -In₂Se₃ onto the uneven substrate⁶. Although this study demonstrates potential route for large-area α -In₂Se₃ fabrication, the fundamental mechanisms underlying strain generation on mica and its subsequent relaxation on uneven substrate remain unresolved. Some recent advances offer other strategies for direct α -phase synthesis²⁹⁻³¹, significant challenges persist for robust and scalable synthesis methods for large-area and phase-pure α -In₂Se₃, which is critical for the advancement of 2D ferroelectric devices.


In this work, we employ cross-sectional aberration-corrected scanning transmission electron microscopy (AC-STEM) to systematically elucidate the phase-selective growth of In₂Se₃ on mica via both CVD and PVD under varying conditions. In situ heating/cooling X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses of α -In₂Se₃ reveal the phase transition sequences among the α , β , and β' phases. Crucially, CVD/PVD growth with a slow cooling rate consistently yields a heterostructure comprising a monolayer α -phase beneath the multilayer β' -phase on mica, which we attribute to epitaxial constraints imposed by the mica substrate. Building on this insight, we achieve direct $\beta' \rightarrow \alpha$ phase transformation on mica through controlled strain release, which generates wrinkles that propagating along $<1\bar{1}00>$ crystallographic direction. We further demonstrate reversible $\beta' \rightarrow \alpha \rightarrow \beta'$ phase transitions via annealing, with in-plane XRD precisely tracking the evolution of interplanar spacing during phase changes. Finally, field-effect transistors fabricated from phase-pure α -In₂Se₃, β' -In₂Se₃, and vertical α/β' heterophase junctions exhibit outstanding performance, including high carrier mobility (up to 259 cm² V⁻¹ s⁻¹), large on/off ratios ($>10^7$), and wide memory windows (\sim 136 V).

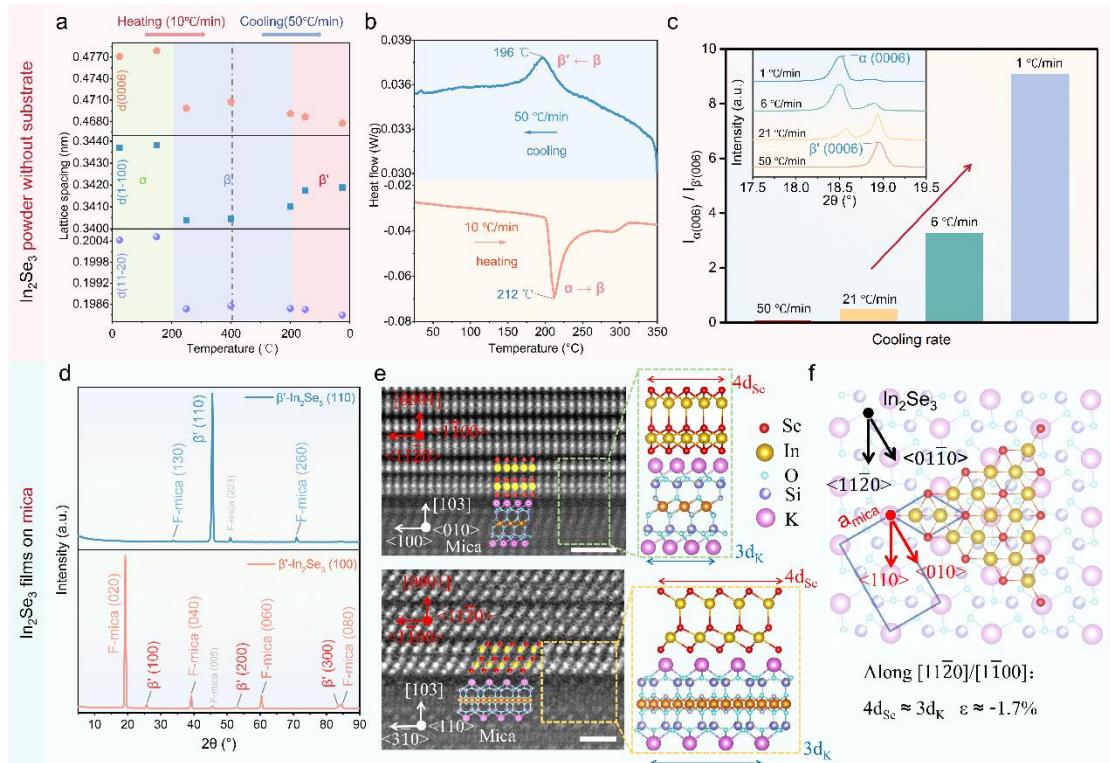
Phase-selective growth conditions and mechanism of In_2Se_3 on mica substrates.

To address the ongoing debate regarding phase segregation in vapor-deposited In_2Se_3 , we systematically compared the synthesis of In_2Se_3 films on mica substrates using two distinct methodologies: PVD with α - In_2Se_3 powder and CVD employing Se and In_2O_3 precursors. By controlling growth time, we can obtain large-area In_2Se_3 thin films (Supplementary Fig. 1). Unambiguous phase identification was achieved through comprehensive cross-sectional and plan-view transmission electron microscopy (TEM) analysis. We first investigated the influence of cooling rate on polymorph formation in multilayer In_2Se_3 films by employing both slow and rapid cooling protocols. Fig. 1a presents a representative cross-sectional high-angle annular dark-field STEM (HAADF-STEM) image (viewed along the $[11\bar{2}0]$ zone axis) of the CVD-grown In_2Se_3 film via rapid cooling. It reveals quintuple layers (QLs) with Se–In–Se–In–Se atomic sequence separated by vdW gaps. The position of the central Se atom definitively excludes the presence of the α -phase.

We further distinguished the as-grown films between the commonly reported high-temperature β -phase and its room-temperature polymorph, β' - In_2Se_3 ^{32,33}. Although structurally related, the β' phase is unambiguously identified by its characteristic modulated nanostriped superstructure, which arises from a distortion of the parent β -phase²⁻⁴. High-resolution TEM (HRTEM) image (Fig. 1a, top view) of transferred films onto a copper grid reveals periodic stripes oriented along $<11\bar{2}0>$ with a characteristic width of $4d_{1\bar{1}00}$. This nanostriped superstructure is further corroborated by satellite diffraction spots in the corresponding selected-area electron diffraction (SAED) pattern (Fig. 1a, inset). The intensity profile across the magnified diffraction pattern (Supplementary Fig. 2a) confirms a $<11\bar{2}0>$ -directed periodicity of $n/8$, corresponding precisely to the $4d_{1\bar{1}00}$ width of the nanostripes. Polarized light optical microscopy further reveals typical domain structures in the as-grown In_2Se_3 films (Supplementary Fig. 2b). Rapidly cooled PVD-grown In_2Se_3 films also exhibit similar nanostrips and satellite reflections (Fig. 1b). Collectively, these results unambiguously indicate that both CVD and PVD procedure with a rapid cooling rate yield pure β' - In_2Se_3 .

Subsequently, we examined the impact of slow cooling on phase evolution in both CVD- and PVD-deposited In_2Se_3 . Cross-sectional TEM images (Figs. 1c, d) reveal the presence of an initial α - In_2Se_3 monolayer at the epitaxial film/mica interface for both techniques. Top-view HRTEM combined with SAED analysis definitively identifies the overlying multilayer as β' -phase. Furthermore, HRTEM image (Fig. 2a) reveals a 120° domain wall formed by the reorientation of nanostrip between adjacent domains⁴, a structural feature corroborated by SAED patterns exhibiting satellite reflections indicative of bidirectional nanostrip ordering⁴.

Figure 1| Phase identification of In_2Se_3 films grown on mica substrates via CVD (using Se + In_2O_3 precursors) and PVD (using α - In_2Se_3 powder) under various growth conditions. Cross-sectional AC-STEM and top-view HRTEM images of In_2Se_3 grown under rapid cooling conditions via **a** CVD and **b** PVD, under slow cooling conditions via **c** CVD and **d** PVD, under natural cooling conditions via **e** salt-assisted CVD **f** salt-assisted PVD. Inset: Corresponding SAED patterns. (Scale bar: 5 1/nm).


To explore phase formation at lower temperatures, we also employed salt-assisted vapor deposition under natural cooling conditions (620 °C for CVD, 750 °C for PVD). Remarkably, this approach likewise yielded exclusively heterophase structures consisting of a monolayer α - In_2Se_3 coupled with multilayer β' - In_2Se_3 (Fig. 1e, f). Plan-view HRTEM (Fig. 1f) revealed adjacent nanostrips with a characteristic width of

$5d_{1\bar{1}00}$. In addition to the two types of nanostripe widths observed in our β' -In₂Se₃, Wang et al. also reported antiparallel stripes with $5d_{1\bar{1}00}/4d_{1\bar{1}00}$ configurations³⁴. Raman spectra, second-harmonic generation (SHG) and photoluminescence (PL) spectra for films grown under all six conditions are presented in Supplementary Fig. 3-5. The Raman signatures across all samples are perplexingly similar and correspond to literature reports assigned to both β - and α -phases^{6,11,19,35}. Additionally, all of these samples exhibit extremely weak SHG and PL responses. These comprehensive analyses lead to two key conclusions: 1. The polymorph evolution of In₂Se₃ on mica is fundamentally independent of the specific deposition technique (e.g., precursor variants or salt assistance). 2. Modulation of the cooling rate serves as the dominant factor, exclusively yielding either pure β' -phase films or vertical heterophase structures consisting of multilayer β' -phase on monolayer α -phase. Consequently, the direct growth-driven synthesis of phase-pure α -In₂Se₃ films on mica remains an unresolved fundamental challenge.

To elucidate the origin of phase-purity limitations in CVD/PVD-grown α -In₂Se₃ on mica, we investigated the α , β and β' phase transition using *in situ* heating/cooling XRD (Supplementary Fig. 6a). α -In₂Se₃ powder was heated to 400 °C at a rate of 10 °C/min, followed by rapid quenching in liquid nitrogen (50°C/min), while monitoring the evolution of lattice spacing for in-plane (11 $\bar{2}$ 0) / (1 $\bar{1}$ 00) and out-of-plane (0006) reflections. As shown in Fig. 2a, pronounced discontinuities in all lattice spacing were observed near 200°C during both heating and cooling process. Above the Curie temperature of α -In₂Se₃ (200°C), heating induces a transformation to high temperature β -phase. Rapid quenching to room temperature results in compressed lattice spacings in both in-plane and out-of-plane directions relative to the initial α -phase, indicating an irreversible transition. The quenched In₂Se₃ films further exhibits characteristic peak splitting in XRD (Supplementary Fig. 6b), manifesting anisotropic lattice distortion and symmetry breaking inherent to β' -In₂Se₃ phase³. This $\alpha \rightarrow \beta \rightarrow \beta'$ transition sequence was corroborated by DSC (Fig. 2b): an endothermic peak at 212 °C (heating) confirms the $\alpha \rightarrow \beta$ transition, while an exothermic peak at 196 °C (cooling) corresponds to $\beta \rightarrow \beta'$ transition. Notably, the quenched α -In₂Se₃ powder transforms into β' -phase, exhibiting significantly greater peak shifting for the (11 $\bar{2}$ 0) reflection compared to (1 $\bar{1}$ 00) in XRD

patterns (Supplementary Fig. 7). This indicates that the interplanar spacing of the $(11\bar{2}0)$ plane undergoes more pronounced compression than that of the $(1\bar{1}00)$ planes during the $\alpha \rightarrow \beta'$ phase transition.

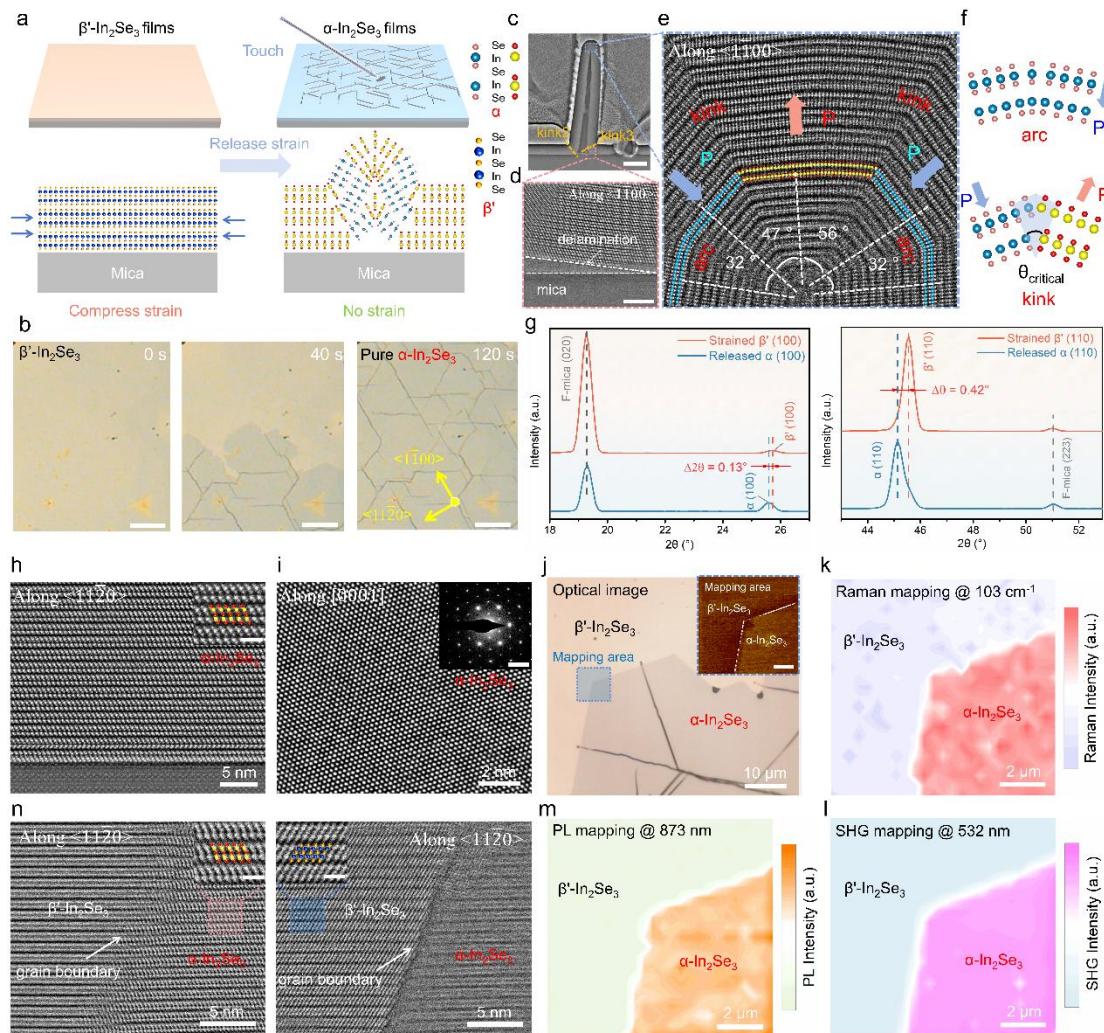
To further probe the kinetics of phase transformation, we performed powder XRD measurements on residual In_2Se_3 precursors after PVD growth under varying cooling rates (Supplementary Fig. 8). The α -phase coexists with β' -phase in all residual precursors, with its fraction inversely proportional to the cooling rate, as quantified by the intensity ratio of α (0006) to β' (0006) reflections (Fig. 2c). This demonstrates enhanced β' -to- α conversion at slower cooling rates. The inset of Fig. 2c confirms that liquid-nitrogen-quenched material retains pure β' -phase, while slowly cooled precursors achieve near-complete reversion to α -phase. Importantly, both the as-grown film and its precursor source reside within the same PVD thermal zone. After growth, the remnant precursor reverts predominantly to α -phase, whereas the In_2Se_3 film on mica stabilizes primarily as the β' -phase (or exhibits β' - In_2Se_3 on monolayer α - In_2Se_3). This stark contrast strongly implicates a substrate-mediated stabilization mechanism. Recent studies highlight the sensitivity of In_2Se_3 domain orientation to subtle PVD-growth variations²³, coupled with computational simulations of epitaxial relationships. To elucidate the PVD-specific epitaxy on mica, we therefore employed a combined micro-scale TEM and macro-scale in-plane XRD approach.

Figure 2 | Growth mechanisms of β' -phase or monolayer α -phase coupled with multilayer β' -phase In_2Se_3 on mica substrates via CVD and PVD. **a** Out of plane and in-plane lattice spacing of α - In_2Se_3 powder as a function of temperature extracted from in situ XRD for both heating and cooling processes. **b** DSC curve reveals temperature for phase transition ($\alpha \rightarrow \beta \rightarrow \beta'$) during heating and cooling processes. **c** Comparison of $I_{\alpha(0006)}/I_{\beta'(0006)}$ ratios in In_2Se_3 powder obtained at different cooling rates. Inset: Comparison of (006) diffraction peak intensities between α - In_2Se_3 and β' - In_2Se_3 under varying cooling rates. **d** In-plane XRD θ - 2θ diffractograms of (110) In_2Se_3 /mica (top) and (100) In_2Se_3 /mica (bottom). **e** Cross-sectional HAADF images of the as-grown In_2Se_3 /mica interface captured along the $\langle 11\bar{2}0 \rangle$ and $\langle 1\bar{1}00 \rangle$ zone axes of In_2Se_3 . Scale bar: 1 nm. **f** Schematic diagram of the 4×4 α - In_2Se_3 on $3 \times \sqrt{3}$ F-mica.

In-plane XRD measurements (Fig. 2d) reveal the epitaxial relationships: $(11\bar{2}0) \text{In}_2\text{Se}_3 \parallel (130) \text{mica}$ and $(10\bar{1}0) \text{In}_2\text{Se}_3 \parallel (010) \text{mica}$. This aligns precisely with the cross-sectional AC-STEM observations (Fig. 2e), where the relationship $4d_{\text{Se}} \approx 3d_{\text{K}}$ holds along both the $[1\bar{1}00]$ and $[11\bar{2}0]$ directions. Consequently, the epitaxial relationship for PVD-grown In_2Se_3 on mica can be described by a 4×4 In_2Se_3 unit cell matching a $3 \times \sqrt{3}$ mica supercell (Fig. 2f). The resulting lattice mismatch for epitaxial In_2Se_3 is

calculated to be -1.7%, imposing compressive strain that kinetically traps the β' -phase by suppressing lattice expansion required for $\beta' \rightarrow \alpha$ transition. This explains the inherent α -phase growth limitation on mica. In addition, the stabilization of multilayer β' -In₂Se₃/ monolayer α -In₂Se₃ achieved by reducing the cooling rate can be attributed to the interfacial strain release to the flexible mica substrate, consistent with previous reports of misfit strain transfer to mica substrate side^{36,37}. This mechanism is further corroborated by growth experiments on rigid highly oriented pyrolytic graphite (HOPG). Here, cross-sectional AC-STEM analysis definitively demonstrates the presence of pure β' -In₂Se₃ (Detailed in Supplementary Fig.9). Due to the inability of stress to transfer to the rigid HOPG substrate, the first In₂Se₃ layer at interface retains the β' phase rather than transforming into the α phase.

Direct phase transition ($\beta' \rightarrow \alpha \rightarrow \beta'$) of In₂Se₃ on mica


During cooling process after growth, the naturally formed β' -In₂Se₃ phase exhibits intrinsically compressed in-plane and out-of-plane lattice spacings relative to the α -phase. These inherent characteristics amplified by compressive epitaxial stress from the mica substrate, collectively impede the direct growth of pure, multilayer α -In₂Se₃. Here, we developed a strategy for the direct synthesis of α -In₂Se₃ via in situ strain engineering. As illustrated in Fig. 3a, localized mechanical contact was applied directly to the as-grown β' -In₂Se₃ film on mica using a metal probe. This process instantly releases compressive stress, triggering lattice expansion in the form of microscale wrinkles and simultaneously driving a complete $\beta' \rightarrow \alpha$ phase transformation. Fig. 3b presents optical images of PVD-grown β' -In₂Se₃ films on mica before and after strain release. The forming wrinkles preferentially propagate along the $<1\bar{1}00>$ crystallographic direction and complete transformation to α -phase occurs within 120 seconds (Supplementary Fig. 10). AFM image (Supplementary Fig. 11) reveals wrinkle heights reaching several hundred nanometers. To demonstrate the robustness and reproducibility of this strategy, in situ strain release was recorded on both PVD- and CVD grown continuous films and triangular β' -In₂Se₃ domains (Supplementary Figs. 12-15; Supplementary Videos 1-4).

Cross-sectional AC-STEM analysis of the wrinkle structure (Fig. 3c) reveals delamination at the α -In₂Se₃/mica interface (Fig. 3d). This indicates that compressive stress release initiates from the interfacial β' -In₂Se₃ layer, enabling the formation of phase-pure multilayer α -In₂Se₃. Atomic-resolution image within the wrinkle confirms propagation along $<1\bar{1}00>$ and identifies two distinct bending modes: arcs and kinks

(Fig. 3e). Remarkably, the central Se atoms within the α -In₂Se₃ QLs remain unchanged across arcs, whereas antiparallel offsets at kinks sites create adjacent domains with opposing polarization (Fig. 3f). This bending behavior is determined by a critical angle ($\theta_{\text{critical}} = 34^\circ$)³⁸: arcs form for $\theta < \theta_{\text{critical}}$, while kinks emerge at $\theta > \theta_{\text{critical}}$. Accordingly, we observe 32° arc bends alongside 47° and 57° kinks at top of the wrinkle. Two additional HAADF images of 44° kinks at bottom of the wrinkle are shown in Supplementary Fig. 16. Furthermore, polarized light optical microscopy captured the real-time disappearance of domain structures as wrinkles propagated, signifying the $\beta' \rightarrow \alpha$ transition (Supplementary Fig. 17 and Supplementary Video 5). Thus, this approach successfully achieved centimeter-scale α -In₂Se₃ films (Supplementary Fig. 18).

To directly visualize the stress evolution during wrinkle formation, we employed in situ XRD to monitor changes in the in-plane interplanar spacings of the (100) and (110) planes of β' -In₂Se₃ on mica before and after stress relaxation. Fig. 3g shows that lattice spacing of mica substrate remains virtually unchanged. In stark contrast, both the (100) and (110) spacings of β' -In₂Se₃ increase significantly, with substantially greater expansion observed for the (110) planes. These results unambiguously confirm that β' -In₂Se₃ on mica experiences in-plane compressive stress. Upon relaxation, the β' -In₂Se₃ lattice expands in-plane and delaminates from the mica substrate. This anisotropic expansion, with the (110) planes exhibiting significantly greater dilation than the (100) planes, drives wrinkle propagation along the $\langle 1\bar{1}00 \rangle$ direction. Out-of-plane (0006) spacing also expands after stress release (Supplementary Fig. 19).

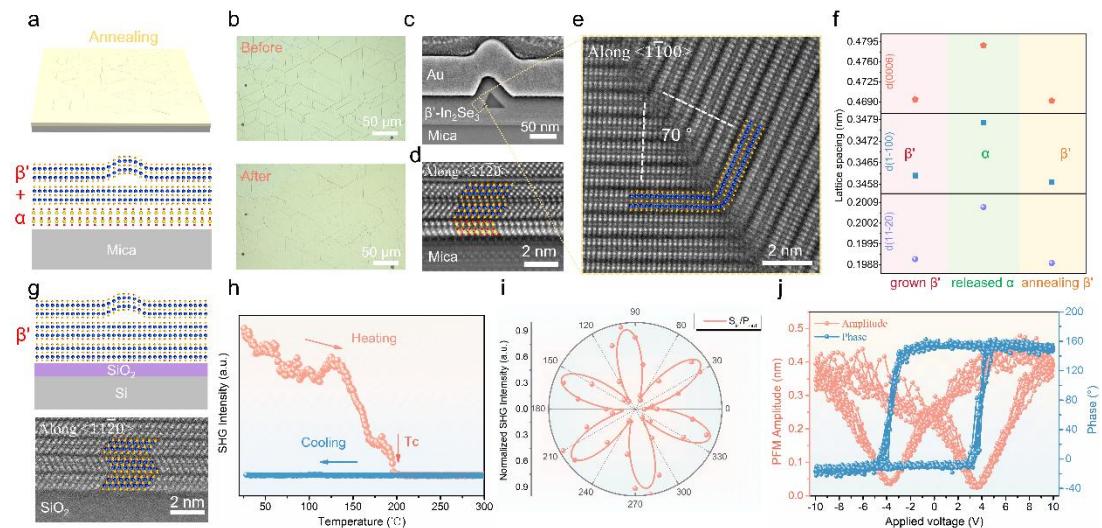

Importantly, the changes in interplanar spacings during the $\beta' \rightarrow \alpha$ transition in stress-released films on mica are identical to those observed during the spontaneous $\beta' \rightarrow \alpha$ transition in slowly cooled β' -In₂Se₃ powder. Cross-sectional AC-STEM image of the strain-released films on mica (Fig. 3h) validates the synthesis of phase-pure α -In₂Se₃. This contrasts with indirect methods requiring β' -In₂Se₃ transfer onto uneven substrates for strain manipulation⁶. Crucially, the atomically sharp interface confirms preservation of the original epitaxy: [1120] In₂Se₃ || [110] mica, consistent with in-plane XRD results. Moreover, plan-view HRTEM of the released α -In₂Se₃ reveals pristine lattice fringes devoid of nanostrips, with corresponding SAED patterns exhibiting no satellite spots. Together, these features definitively confirm the crystallographic characteristics of the α -phase.

Figure 3| Direct fabrication of α -In₂Se₃ on mica substrates via novel phase engineering. a Schematic illustration of the β' to α phase transition triggered by wrinkle formation via metal probe contact on β' -In₂Se₃ film grown on mica. **b** In situ optical image showing wrinkle propagation in stress-released β' -In₂Se₃ film grown on mica. Scale bar: 2 μ m **c** Cross-sectional HAADF image of the wrinkle. **d** Magnified HAADF image of delamination at In₂Se₃/mica interface. **e** AC-STEM image of two kinks and arcs at the top of wrinkle. **f** Schematic diagram of atomic arrangement for two types of bends within the wrinkle. **g** Comparison of (100) and (110) interplanar spacings in β' -In₂Se₃ (strained) versus α -In₂Se₃ (strain released) films on mica. **h** Cross-sectional HAADF image of strain released multilayer α -In₂Se₃/F-mica interface, recorded along the $<11\bar{2}0>$ direction of α -In₂Se₃. **i** Top view HRTEM image of strain released α -In₂Se₃ films and corresponding SAED pattern. Optical image of the interfacial region between strain-released α -In₂Se₃ and as-grown β' -In₂Se₃ area. Inset: AFM image of the area

within the dashed rectangle. Scale bar: 2 μ m. **k-m** Raman, SHG and PL mapping across the strain-released (α)/strain-retained (β') area. **n** Cross-sectional HAADF imaging of the α/β' phase boundary between strain-relaxed and strain-retained regions.

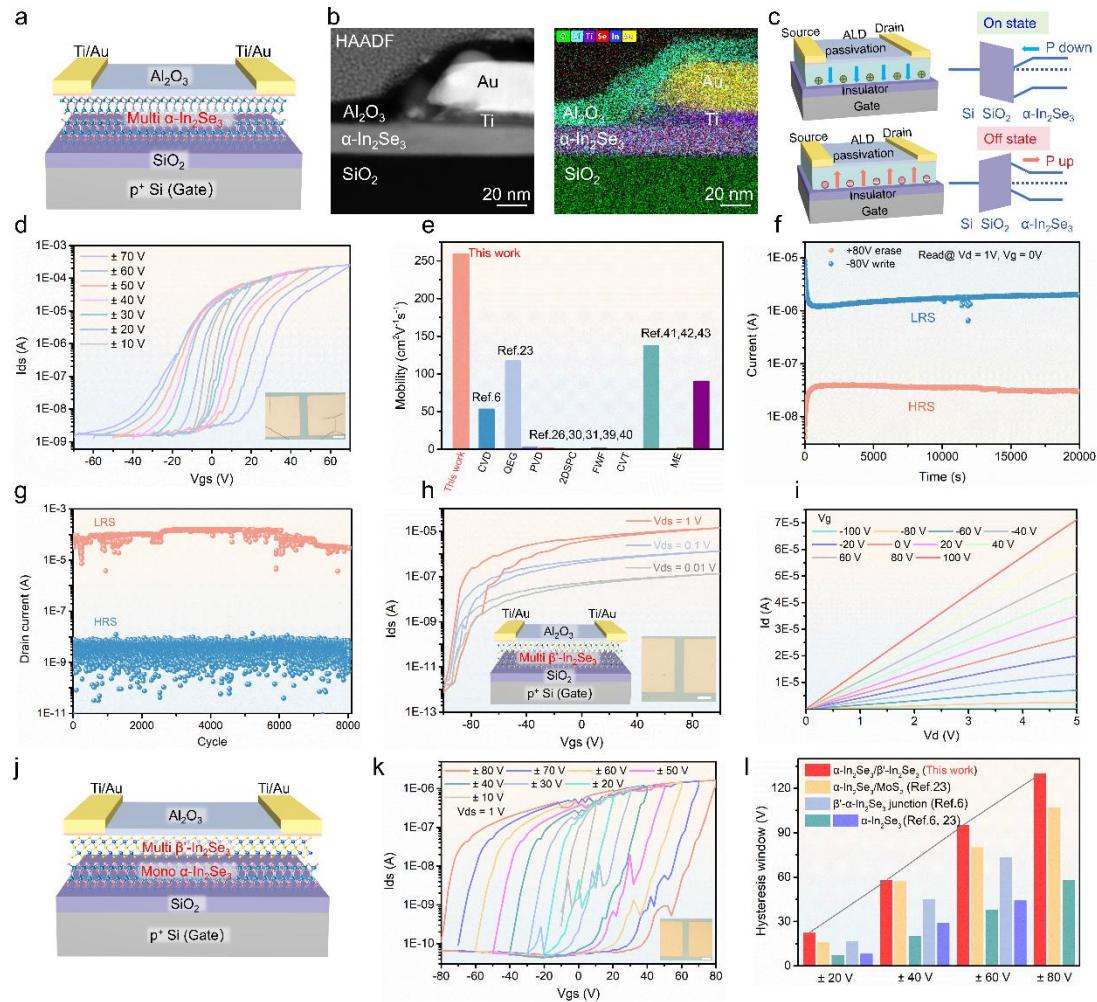
Direct property comparisons between strain-released (α -phase) and strained (β' -phase) regions further validate the transformation. The optical image (Fig. 3j) shows this phase boundary with distinct color modulation. Spatially resolved Raman, SHG, and PL mapping (Fig. 3k-m) across the phase boundary (dashed box, Fig. 3j) reveal a homogeneous α -phase transformation (Raman at 103 cm^{-1}), a strong SHG response in non-centrosymmetric α -In₂Se₃ (compared to negligible signal in β'), and a direct bandgap of 1.4 eV (PL) in the α -phase (Spectra comparisons shown in Supplementary Fig. 20). All mapping profiles exhibit exact spatial correspondence with AFM topography (inset, Fig. 3j). Furthermore, cross-sectional AC-STEM at the phase boundary directly visualizes the abrupt α/β' transition and reveals a grain boundary that pins the wrinkle propagation front. This confinement creates in-plane heterophase junctions between α and β' domains.

Figure 4| Annealing-mediated strain relaxation triggers reversible $\beta' \rightarrow \alpha \rightarrow \beta'$ phase transformation in In₂Se₃. **a** Schematic illustration depicting wrinkle relaxation via annealing, leading to formation of monolayer α -phase and multilayer β' -In₂Se₃ films. **b** Optical images of strain-released α -In₂Se₃ films on mica before and after annealing. **c** Cross-sectional HAADF image of the wrinkle after annealing. **d** Cross-sectional HAADF image of the annealed multilayer α -In₂Se₃/mica interface along the $<11\bar{2}0>$ zone axis. **e** Atomic HAADF image of the α/β' phase boundary between strain-relaxed and strain-retained regions. **f** Lattice spacing (nm) vs. phase regions: grown β' (red), released α (green), annealing β' (yellow). **g** Schematic of the annealing process. **h** SHG intensity (a.u.) vs. Temperature (°C) showing reversible phase transformation. **i** Normalized SHG intensity (a.u.) vs. Phase (°) showing reversible phase transformation. **j** PL Amplitude (nm) and Phase (°) vs. Applied voltage (V) showing reversible phase transformation.

maximum bending angle region (dashed box in Fig.4 **c**). **f** Evolution of interplanar spacing during the phase transition from as-grown β' -In₂Se₃ on mica to strain-released α -In₂Se₃ and subsequent annealing-mediated β' reversion. **g** Schematic and AC-STEM characterization of phase-pure β' -In₂Se₃ via annealing strain-released α -In₂Se₃ transferred onto rigid SiO₂/Si substrates. **h** Temperature-dependent SHG response of strain-released α -In₂Se₃. **i** Angle-resolved SHG spectra of strain-released α -In₂Se₃ films on mica before annealing. **j** PFM tests of α -In₂Se₃ transferred on Au-coated SiO₂/Si substrate before annealing.

It is also found that thermal annealing could effectively eliminate wrinkles and improves film morphology, thereby triggering the reversion of the α -phase back to the β' -phase. As depicted in Fig. 4a, the α -In₂Se₃ film (formed via strain release from β' -In₂Se₃ on mica) was annealed at 350 °C under N₂ for 15 minutes, followed by natural cooling. Fig. 4b reveals a clear morphological contrast before and after annealing. Cross-sectional HAADF image of the film after annealing (Fig. 4c) demonstrates that the annealed In₂Se₃ film regains intimate contact with the mica substrate. AC-STEM image of the In₂Se₃/mica interface confirms that annealing re-establishes a vertical heterophase junction comprising monolayer α -In₂Se₃ and multilayer β' -In₂Se₃ on the mica. Atomic-resolution image (Fig. 4e) at the region of maximum bending angle (dashed box in Fig. 4c), reveals that the wrinkle remains persistently aligned along the $<1\bar{1}00>$ direction. Notably, within the QLs structure of the reformed β' -In₂Se₃, the central Se atom occupies the symmetric position, indicating the absence of out-of-plane ferroelectricity. Even at bending angles up to 70°, the atomic arrangement within the QLs remains consistent on both sides of the kink. This structural rigidity contrasts with the α -phase, which forms oppositely polarized domains across similar kinks.

We further employed XRD to probe the evolution in the in-plane (11 $\bar{2}$ 0) and (1 $\bar{1}$ 00), as well as the out-of-plane (0006) interplanar spacings before and after annealing (Supplementary Fig. 21-23). Fig. 4f summarizes the extracted lattice spacings corresponding to three distinct states: the initially grown β' -In₂Se₃ film on mica, the α -In₂Se₃ film formed by direct strain release and β' -In₂Se₃ transition on mica by subsequent annealing. The change of lattice spacing further confirm the annealing-induced reversion from strain-released α -In₂Se₃ back to the β' -phase. Furthermore, the


re-established intimate contact with mica substrate after annealing imposes compressive strain. As evidenced by the substantially reduced interplanar spacings in the annealed β' -In₂Se₃ compared to the strain-released α -In₂Se₃ (Fig. 4f).

Earlier analysis attributed the formation of monolayer α -In₂Se₃/multilayer β' -In₂Se₃ heterostructures under slow cooling exclusively to strain dissipation into the flexible mica substrate. To further validate this conclusion, strain-released α -In₂Se₃ was transferred onto rigid SiO₂/Si and annealed under identical conditions. Cross-sectional atomic schematics and HAADF images (Fig. 4g) reveal that the In₂Se₃ layer in direct contact with the SiO₂ substrate retains the β' -phase (Supplementary Fig. 24). This retention is attributed to the inability of the interfacial β' -In₂Se₃ to dissipate strain into the rigid substrate during cooling. Furthermore, we investigated the temperature-dependent second-harmonic generation (SHG) response of stress-released α -In₂Se₃. As shown in Fig. 4h, the SHG signal disappears above 200 °C and does not recover upon cooling, indicating an irreversible phase transition. Polarization-dependent SHG before heating confirmed out-of-plane (OOP) inversion symmetry breaking (six-fold pattern), which disappeared after annealing (Supplementary Fig. 25). Finally, piezoresponse force microscopy (PFM) on strain-released α -In₂Se₃ transferred onto Au/SiO₂/Si revealed clear OOP ferroelectricity (phase hysteresis and amplitude butterfly loops). Significantly, these ferroelectric signatures vanished post-annealing (Supplementary Fig. 26), confirming the transformation to a centrosymmetric structure and the loss of OOP ferroelectricity.

Device performance

To investigate the electrical properties, we fabricated back-gated field-effect transistors (FETs) using phase-engineered In₂Se₃ films. Fig. 5a schematically illustrates ferroelectric FET (FeFET) based on strain-released α -In₂Se₃. Corresponding cross-sectional HAADF-STEM imaging and EDS elemental mapping (Fig. 5b) confirm a α -In₂Se₃ channel capped by a 15 nm Al₂O₃ passivation layer. As a ferroelectric semiconductor, α -In₂Se₃ uniquely hosts both n-type mobile charges and polarization-bound charges, enabling non-volatile resistance switching controlled by V_{gs}. In the polarization-down (P-down) state (Fig. 5c), positive bound charges accumulate at α -

$\text{In}_2\text{Se}_3/\text{SiO}_2$ interface, inducing pronounced band bending, thereby accumulating mobile electrons and establishing a low-resistance state (LRS, "On state"). Conversely, under polarization-up (P-up) conditions, the reversed built-in field and attendant band bending deplete electrons at the $\alpha\text{-In}_2\text{Se}_3/\text{SiO}_2$ interface, driving the device into a high-resistance state (HRS, "Off state"). This gate-controlled switching between polarization orientations manifests as pronounced hysteresis in transfer characteristics.

Figure 5| Mechanisms and performance of phase-engineered In_2Se_3 field-effect transistors.

a Schematic of the $\alpha\text{-In}_2\text{Se}_3$ -based ferroelectric field-effect transistors (Fe-FETs). **b** HAADF images and corresponding EDS mapping of the cross-sectional $\alpha\text{-In}_2\text{Se}_3$ Fe-FETs. **c** Operational states and band diagrams of $\alpha\text{-In}_2\text{Se}_3$ Fe-FETs under P-down and P-up conditions. **d** Hysteresis transfer curve in $\alpha\text{-In}_2\text{Se}_3$ Fe-FETs ($V_{ds} = 1$ V). Inset: Optical image of $\alpha\text{-In}_2\text{Se}_3$ Fe-FETs. Scale bar: 10 μm . **e** Comparative $\mu\text{-FET}$ analysis of $\alpha\text{-In}_2\text{Se}_3$ prepared by alternative methods: CVD⁶, QEG²³, PVD^{26,39}, 2DSPC³⁰, FWF³¹, CVT⁴⁰ and ME⁴¹⁻⁴³. **f** Polarization retention

characterization in α -In₂Se₃ Fe-FETs (± 80 V write/erase, read at V_{gs}=0V and V_{ds}=1V). **g** Endurance of the α -In₂Se₃ Fe-FETs device after 8000 write/erase cycles. **h** Transfer characteristics of β' -In₂Se₃ FETs at varying V_{ds}. Inset: Schematic diagram and optical image of the device. Scale bar: 10 μ m. **i** Output characteristics of β' -In₂Se₃ FETs. **j** Schematic of Fe-FETs based on vertical α -In₂Se₃/ β' -In₂Se₃ heterophase junction. **k** Hysteresis transfer curve in α -In₂Se₃/ β' -In₂Se₃ Fe-FETs. **l** Hysteresis window comparison of our α -In₂Se₃/ β' -In₂Se₃ vertical heterophase junction, α -In₂Se₃/MoS₂ heterostructure²³, α -In₂Se₃,^{6,23} and α -In₂Se₃/ β' -In₂Se₃ lateral heterophase junction⁶ devices within various voltage sweep ranges.

Fig. 5d shows substantial hysteresis loops under bidirectional V_{gs} sweeps. At ± 60 V sweep range, a hysteresis window of ≈ 37 V is achieved with an on/off ratio $>10^5$. Compared to other α -In₂Se₃ flakes prepared by alternative strategies^{6,23,26,39-44} (Fig. 5e), our device exhibits a high mobility of 259 cm² V⁻¹ s⁻¹ in reverse scan—more than double the value reported recently for QEG- α -In₂Se₃. Furthermore, benefiting from phase-pure α -In₂Se₃ and ALD passivation, the devices demonstrate excellent reliability, with long retention ($>20,000$ s) under ± 80 V write/erase pulses (Figs. 5f) and high endurance ($>8,000$ cycles) (Fig. 5g). For comparison, we fabricated back-gated FETs using β' -In₂Se₃ films (dual-sweep transfer characteristics shown in Fig. 5h). Unlike the non-centrosymmetric, ferroelectric α -phase, β' -In₂Se₃ FETs show minimal hysteresis, with only an 8 V memory window under ± 90 V gate sweeps (V_{ds} = 0.1 V). Nevertheless, the high on/off ratio (10^7 at V_{ds} = 1 V) and linear output characteristics (Fig. 5i) confirm excellent material quality and contact properties.

We also fabricated FeFETs based on directly grown vertical heterophase structures comprising a monolayer α -In₂Se₃ and multilayer β' -In₂Se₃ (Fig. 5j). Leveraging the reported ~ 2.8 eV bandgap of monolayer α -In₂Se₃, we incorporated the ferroelectric monolayer as gate dielectric component to regulate electronic properties of the n-type β' -In₂Se₃ channel^{23,45}. As shown in Supplementary Fig. 27, when α -In₂Se₃ is in the P-up polarization state, a trap layer forms at the α -In₂Se₃/ β' -In₂Se₃ interface, confining electrons and depleting the β' -In₂Se₃ channel, thereby switching the device to the off-state^{23,46}. Conversely, under P-down polarization, holes become confined at the interface while electrons accumulate in β' -In₂Se₃, establishing the on-state. Fig. 5h

exhibits clockwise hysteresis in transfer characteristics under varying gate voltages, achieving 136 V memory window within ± 80 V sweep range. Notably, compared to recently reported transferred α -In₂Se₃/MoS₂ vertical heterostructure FETs (Fig. 5l), our single-step grown α -In₂Se₃/ β' -In₂Se₃ vertical heterophase junctions exhibit larger hysteresis windows and higher on/off ratios²³, demonstrating superior memory performance⁴⁷.

Conclusion

In summary, we find that growth of In₂Se₃ on mica substrates under different conditions yields only the β' phase or monolayer α phase/multilayer β' phase. The direct growth of phase-pure α -In₂Se₃ on mica substrates is constrained, and this limitation originates from substrate-induced compressive epitaxial strain and mechanical flexibility. Crucially, we achieved pure α -phase formation by directly releasing strain in β' -In₂Se₃ films on mica, providing a rapid and effective method for preparing large-area α -In₂Se₃ films. Transistors fabricated from α -In₂Se₃, β' -In₂Se₃, and vertical monolayer α/β' In₂Se₃ heterophase structures exhibit high electron mobility, high on/off ratio and large hysteresis window, establishing a foundation for phase-controlled 2D material growth and next-generation electronic devices.

Methods

CVD/PVD growth of large-area α -In₂Se₃ films

α -In₂Se₃ films were synthesized on the F-mica (KMg₃AlSi₃O₁₀F₂) substrates using a 2-inch tube furnace. For rapid/slow-cooling CVD growth, Se and In₂O₃ precursors were positioned in two separate temperature zones, with the Se source located 15 cm upstream of the In₂O₃ source. the zones were heated to 280 °C and 700 °C, respectively. Growth proceeded for 18 minutes under a carrier gas flow of mixed Ar/H₂. Post-growth cooling to room temperature was performed at rates of ~20 °C/min and 1 °C/min, respectively. For salt-assisted CVD, In₂O₃ and KI were thoroughly mixed at a mass ratio of 60:1. The mixture and Se were positioned in two separate temperature zones heated to 280 °C and 620 °C, respectively, all other conditions remained identical. After

growth, the sample underwent natural cooling to room temperature. For rapid/slow-cooling PVD growth, mica substrate and α -In₂Se₃ powder source were co-located within a single temperature zone. Deposition was conducted at 850 °C for 18 minutes under Ar carrier gas flow. Post-deposition cooling to room temperature was implemented at rates of 21 °C/min and 1 °C/min, respectively. For salt-assisted PVD, α -In₂Se₃ powder and KI were thoroughly mixed at a mass ratio of 60:1 and deposition occurred at 750 °C, with all other conditions identical. After deposition, the system was allowed to cool naturally to room temperature.

Transfer method of α -In₂Se₃ films

The α -In₂Se₃ film grown on mica was transferred onto specific target substrates using a poly (methyl methacrylate) (PMMA)-mediated method. PMMA solution was spin-coated onto the α -In₂Se₃/mica at 1500 rpm for 1 min, followed by baking at 120 °C for 3 min. The PMMA film supporting the α -In₂Se₃ layer was then delaminated from the mica substrate using deionized water and subsequently transferred onto the target substrate or TEM grid. Finally, the PMMA was removed by dissolving it in acetone twice.

Materials characterization

The morphology of α -In₂Se₃ films were characterized by optical microscope (Leica, DM1750M), AFM (Bruker, Dimension ICON), Raman and PL spectroscopy (LabRAM Evolution, Horiba scientific), In-plane XRD (Rigaku, SmartLab), temperature dependent XRD (ARL Equinox 3500), plan view TEM (FEI Talos F200X), PFM (MFP 3D, Oxford). SHG mapping were measured in the reflection mode via a modified confocal micro-Raman spectrometer (HR800, Horiba/Jobin Yvon) and picosecond pulsed laser at 1064 nm was applied for SHG measurements. The cross-sectional TEM samples were prepared by a dual-beam FIB scanning electron microscopy system (FEI Helios G4 UX). Microstructural analyses of interface were performed using AC-STEM (FEI, Themis Z).

Device fabrication and characterization

α -In₂Se₃, β' -In₂Se₃ and α/β' -In₂Se₃ films were transferred onto SiO₂ (285 nm)/Si substrate. Laser direct writing lithography and e-beam evaporation of Ti/Au (5 nm/50

nm) were used to fabricate back-gate FETs. All devices are deposited with 15 nm-thick Al₂O₃ passivation by ALD to avoid oxygen/moisture and to enhance device stability and performance. All FETs were tested by Keithley 4200 semiconductor analyzer in a probe station. The field-effect mobility (μ) was extracted from the equation $\mu = \frac{dI_{ds}}{dV_{gs}} \times \frac{L}{WC_iV_{ds}}$, where $\frac{dI_{ds}}{dV_{gs}}$ is the maximum transconductance; L and W are the channel length and width, respectively; C_i is the capacitance of the SiO₂ (1.15×10^{-4} F m⁻²); V_{ds} is the drain voltage.

Acknowledgement

We acknowledge the support from the National Natural Science Foundation of China (Grant Nos. 52202179, 62174169, 52372118 & 62201345).

Author contributions

T.W., L.X. and X.Z. conceived and designed the experiments. L.X., T.W. and X.Z. performed the growth. L.X., T.W. conducted strain-released experiments. Q.R., L.S, L.X. and X.Z. performed XRD measurements and analysis. D.L. performed FIB for TEM tests. Y.Y., Y.H., M.W. and L.X. performed SHG tests. X.F., L.X., T.T., H.G., Z.W. and Y.M. performed device fabrication and analysis. Y.W. and Z.S. carried out the CVD equipment renovation.

Competing interests

The authors declare no conflict of interest.

References

- 1 Kim, K. H. *et al.* Scalable CMOS back-end-of-line-compatible AlScN/two-dimensional channel ferroelectric field-effect transistors. *Nat. Nanotechnol.* **18**, 1044-+ (2023).
- 2 Zheng, C. *et al.* Room temperature in-plane ferroelectricity in van der Waals In₂Se₃. *Sci. Adv.* **4** (2018).
- 3 Xu, C. *et al.* Two-Dimensional Antiferroelectricity in Nanostripe-Ordered In₂Se₃. *Phys. Rev. Lett.* **125** (2020).
- 4 Xu, C. *et al.* Two-dimensional ferroelasticity in van der Waals β' -In₂Se₃. *Nat. Commun.* **12**, 3665 (2021).
- 5 Sharma, P. *et al.* A room-temperature ferroelectric semimetal. *Sci. Adv.* **5** (2019).
- 6 Han, W. *et al.* Phase-controllable large-area two-dimensional In₂Se₃ and ferroelectric heterophase junction. *Nat. Nanotechnol.* **18**, 55-63 (2023).

- 7 Xu, L. *et al.* Pseudosymmetric Epitaxy for Scalable Growth of Uniform Two-Dimensional Ferroelectric α -In₂Se₃ Monolayer. *Nano Lett.* **25**, 8423-8430 (2025).
- 8 Wang, S. *et al.* Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing. *Nat. Commun.* **12** (2021).
- 9 Claro, M. S. *et al.* Wafer-Scale Fabrication of 2D β -In₂Se₃ Photodetectors. *Adv. Opt. Mater.* **9** (2021).
- 10 Lv, B. H. *et al.* Layer-dependent ferroelectricity in 2H-stacked few-layer α -In₂Se₃. *Mater. Horiz.* **8**, 1472-1480 (2021).
- 11 He, Q. M. *et al.* Epitaxial Growth of Large Area Two-Dimensional Ferroelectric α -In₂Se₃. *Nano Lett.* **23**, 3098-3105 (2023).
- 12 Xiao, J. *et al.* Intrinsic Two-Dimensional Ferroelectricity with Dipole Locking. *Phys. Rev. Lett.* **120**, 227601 (2018).
- 13 Zhou, Y. *et al.* Out-of-Plane Piezoelectricity and Ferroelectricity in Layered α -In₂Se₃ Nanoflakes. *Nano Lett.* **17**, 5508-5513 (2017).
- 14 Zhou, S. Y. *et al.* Periodic Ferroelectric Stripe Domains in α -In₂Se₃ Nanoflakes Grown via Reverse-Flow Chemical Vapor Deposition. *ACS Appl. Mater. Interfaces* **15**, 23613-23622 (2023).
- 15 Io, W. F. *et al.* Temperature- and thickness-dependence of robust out-of-plane ferroelectricity in CVD grown ultrathin van der Waals α -In₂Se₃ layers. *Nano Res.* **13**, 1897-1902 (2020).
- 16 Cui, C. J. *et al.* Intercorrelated In-Plane and Out-of-Plane Ferroelectricity in Ultrathin Two-Dimensional Layered Semiconductor In₂Se₃. *Nano Lett.* **18**, 1253-1258 (2018).
- 17 Zheng, X. D. *et al.* Phase and polarization modulation in two-dimensional In₂Se₃ via in situ transmission electron microscopy. *Sci. Adv.* **8**, 0773 (2022).
- 18 Lin, M. *et al.* Controlled Growth of Atomically Thin In₂Se₃ Flakes by van der Waals Epitaxy. *J. Am. Chem. Soc.* **135**, 13274-13277 (2013).
- 19 Rashid, R. *et al.* Shape-control growth of 2D-In₂Se₃ with out-of-plane ferroelectricity by chemical vapor deposition. *Nanoscale* **12**, 20189-20201 (2020).
- 20 Yang, K. M. *et al.* Controllable growth α -In₂Se₃ flakes by chemical vapor deposition. *Results Phys.* **51** (2023).
- 21 Dai, M. J. *et al.* Intrinsic Dipole Coupling in 2D van der Waals Ferroelectrics for Gate-Controlled Switchable Rectifier. *Adv. Electron. Mater.* **6** (2020).
- 22 Wan, S. *et al.* Nonvolatile Ferroelectric Memory with Lateral $\beta/\alpha/\beta$ In₂Se₃ Heterojunctions. *ACS Appl. Mater. Interfaces* **14**, 25693-25700 (2022).
- 23 Si, K. *et al.* Quasi-equilibrium growth of inch-scale single-crystal monolayer alpha-In₂Se₃ on fluor-phlogopite. *Nat. Commun.* **15**, 7471 (2024).
- 24 Feng, W. *et al.* Sensitive Electronic-Skin Strain Sensor Array Based on the Patterned Two-Dimensional α -In₂Se₃. *Chem. Mater.* **28**, 4278-4283 (2016).
- 25 Poh, S. M. *et al.* Molecular-Beam Epitaxy of Two-Dimensional In₂Se₃ and Its Giant Electroresistance Switching in Ferroresistive Memory Junction. *Nano Lett.* **18**, 6340-6346 (2018).
- 26 Zhang, W. *et al.* a-In₂Se₃ Nanostructure-Based Photodetectors for Tunable and Broadband Response. *ACS Appl. Nano Mater.* **6**, 8795-8803 (2023).

27 Lyu, F. J. *et al.* Temperature-Driven α - β Phase Transformation and Enhanced Electronic Property of 2H α -In₂Se₃. *ACS Appl. Mater. Interfaces* **14**, 23637-23644 (2022).

28 Si, M. W. *et al.* A ferroelectric semiconductor field-effect transistor. *Nat. Electron.* **2**, 580-586 (2019).

29 Liu, B. T. *et al.* Phase Tailoring of In₂Se₃ Toward van der Waals Vertical Heterostructures via Selenization of γ -InSe Semiconductor. *Small Methods* (2024).

30 Hsu, C. P. *et al.* Synthesis and Phase Transition of Large-Area Layered Ferroelectric Semiconductor α -In₂Se₃ via 2D Solid-Phase Crystallization. *Adv. Electron. Mater.* **10** (2024).

31 Shin, J. *et al.* In₂Se₃ Synthesized by the FWF Method for Neuromorphic Computing. *Adv. Electron. Mater.* **11** (2025).

32 Zhang, Z. M. *et al.* Atomic Visualization and Switching of Ferroelectric Order in β -In₂Se₃ Films at the Single Layer Limit. *Adv. Mater.* **34** (2022).

33 Vanlanduyt, J. *et al.* PHASE-TRANSITIONS IN IN₂SE₃ AS STUDIED BY ELECTRON-MICROSCOPY AND ELECTRON-DIFFRACTION. *Physica Status Solidi a-Applied Research* **30**, 299-314 (1975).

34 Wang, L. *et al.* In-Plane Ferrielectric Order in van der Waals β' -In₂Se₃. *ACS Nano* **18**, 809-818 (2023).

35 Zheng, D. Q. *et al.* Ultrathin two-dimensional van der Waals asymmetric ferroelectric semiconductor junctions. *J. Appl. Phys.* **132**, 054101 (2022).

36 Wang, N. *et al.* Is all epitaxy on mica van der Waals epitaxy? *Mater. Today Nano* **20** (2022).

37 Lu, L. *et al.* Atomic Scale Understanding of the Epitaxy of Perovskite Oxides on Flexible Mica Substrate. *Adv. Mater. Interfaces* **7** (2020).

38 Han, E. *et al.* Bend-Induced Ferroelectric Domain Walls in α -In₂Se₃. *ACS Nano* **17**, 7881-7888 (2023).

39 Zhou, J. *et al.* Controlled Synthesis of High-Quality Mono layered α -In₂Se₃ via Physical Vapor Deposition. *Nano Lett.* **15**, 6400-6405 (2015).

40 Anandan, M. *et al.* High-responsivity broad-band sensing and photoconduction mechanism in direct-Gap α -In₂Se₃ nanosheet photodetectors. *Nanotechnology* **31** (2020).

41 Wang, L. *et al.* Exploring Ferroelectric Switching in α -In₂Se₃ for Neuromorphic Computing. *Adv. Funct. Mater.* **30**, 2004609 (2020).

42 Wang, S. Y. *et al.* Strong Anisotropic Two-Dimensional In₂Se₃ for Light Intensity and Polarization Dual-Mode High-Performance Detection. *ACS Appl. Mater. Interfaces* **15**, 3357-3364 (2023).

43 Li, X. *et al.* Multi-Functional Platform for In-Memory Computing And Sensing Based on 2D Ferroelectric Semiconductor α -In₂Se₃. *Adv. Funct. Mater.* **34** (2024).

44 Feng, W. *et al.* Phase-Engineering-Driven Enhanced Electronic and Optoelectronic Performance of Multilayer In₂Se₃ Nanosheets. *ACS Appl. Mater. Interfaces* **10**, 27584-27588 (2018).

45 Lyu, F. J. *et al.* Thickness-dependent band gap of α -In₂Se₃ from electron energy loss spectroscopy to density functional theory calculations. *Nanotechnology* **31**

(2020).

46 Chen, J. *et al.* Polarized Tunneling Transistor for Ultrafast Memory. *ACS Nano* **17**, 12374-12382 (2023).

47 Hong, A. J. *et al.* Graphene Flash Memory. *ACS Nano* **5**, 7812-7817 (2011).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- [Supplementarymaterials.docx](#)
- [Vedio1CVDtriangulardomain.mp4](#)
- [Vedio2CVDfilms.mp4](#)
- [Vedio3PVDtriangulardomain.mp4](#)
- [Vedio4PVDfilms.mp4](#)
- [Vedio5Domaindisapear.mp4](#)