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S1. Viscous dissipation due to hydrodynamic flow in the drop  31 

The total viscous force of a sliding drop is commonly split in two components. One comes from 32 

the viscous dissipation in the bulk, Fb, the other is concentrated at the wedge, Fw. An upper 33 

limit for bulk viscous dissipation can be estimated by replacing a drop with its real 3D shape 34 

by drop with vertical side having a base area of 𝜋𝑙𝑤 2⁄  and a height H. We assume that the 35 

bottom area of the drop is stationary (no slip) and that the top area at height H is sliding with 36 

2U. Twice the velocity to ensure that the center moves with U. Then, the bulk viscous force 37 

is:  38 

𝐹𝑏 ≈ 𝜂
𝜋𝑙𝑤

2𝐻
𝑈          (S1) 39 

This is more an upper limit. Le Grand, Daerr & Limat use 𝐹𝑣 = 𝜂𝑈𝑉1 3⁄   1. Kim, Lee & Kang apply 40 

𝐹𝑣 = 𝜂𝜋𝑟𝑑
2𝑈 𝐻⁄  2. Here, V is the volume of the drop and rd is the radius of the contact area of 41 

a drop, which, for simplicity, is assumed to have a circular contact radius. 42 

In addition to bulk viscous dissipation, there is viscous dissipation in the wedge region 2-10. 43 

Since we observe the shape of drops with a camera at a resolution of 10 µm, we detect 44 

macroscopic contact angles a(U) and r(U). Viscous dissipation in the wedge happens at a 45 

shorter length scale and manifests itself in an increase of a(U) and a decrease of r(U). 46 

Therefore, it is already included in Eq. (1). 47 

 48 

  49 
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S2. Experimental setup and image analysis 50 

The experimental setup is shown in Figure S1. To extract L, a(L), r(L), and w from the 51 

videos, we used and adapted the freely available drop shape analysis from MATLAB (DSAfM) 52 

originally developed by Andersen & Taboryski 11 (for details see 12). In a first step, images 53 

without a drop and the images with complete drops are identified. The images without a drop 54 

are used to extract the tilt angle. The images with a complete drop were corrected by 55 

subtracting the background and then rotating into a horizontal drop. Then the contour, front 56 

edge position and rear edge position of the drops were detected with sub-pixel precision. By 57 

the distance between rear edge and front edge, we calculated the length of the drop from 58 

side view and the width of the drop from front view. Afterwards, the image was divided into 59 

the front half and the rear half of the drop to further analyse the advancing and receding 60 

contact angles and the respective velocity. The velocities of both sides were calculated by the 61 

rear and front edge point moving distance in each frame. Dynamic contact angles were 62 

determined by applying a 4th order polynomial fit to the counter of drop in each image. To get 63 

the height of drops, we employ a free software named “Tracker” 64 

(https://github.com/OpenSourcePhysics/tracker). By defining the distance between the 65 

above drop edge and the highest point of a drop as the drop height, then setting the highest 66 

point of a drop as the tracking point, we got the real-time height of drops. All measurements 67 

were conducted at a temperature of 201°C and a humidity of 15-30%. 68 

 69 

Figure S1. Experimental setup. Water drops were automatically placed from a grounded 70 

syringe needle which was connected to a peristaltic pump onto the top of the tilted plate at 71 

fixed time intervals of 1.3 s. They contacted a grounded electrode and then started to move 72 

down the plate. The slide length and time were set to zero when drops detached from the 73 

electrode. At this point they unavoidably already had a velocity U0. Sliding drops were imaged 74 

with a camera in side and front view by using two parallel mirrors. From side-view images, the 75 

positions of the front and rear contact lines, drop velocity, dynamic advancing a, receding 76 

contact angles r and the length of the drops were determined. For details about data 77 

processing, we refer to 12. 78 
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S3. Static advancing and receding contact angles 79 

Table S1. Receding r
0 and advancing contact angles a

0 and contact angle hysteresis,  = 80 

a
0-r

0 for the hydrophobic samples studied.  81 

Coating Substrate Name of surfaces r
0 a

0  

PFOTS 

Si PFOTS-on-Si 87 117 30 

1 mm SiO2 PFOTS-on-1mm-SiO2 85 115 30 

5 mm SiO2 PFOTS-on-5mm-SiO2 86 116 30 

Polystyrene 
(20 nm) 

Gold PS-on-gold 80 97 17 

1 mm SiO2 PS-on-1mm-SiO2 77 93 16 

5 mm SiO2 PS-on-5mm-SiO2 78 95 17 

Teflon AF 1600 

(60 nm) 

Gold Teflon-on-gold 109 122 13 

1 mm SiO2 Teflon-on-1mm-SiO2 110 122 12 

5 mm SiO2 Teflon-on-5mm-SiO2 110 121 11 

PDMS brushes 

Si PDMS-on-Si 88 105 17 

1 mm SiO2 PDMS-on-1mm-SiO2 86 105 19 

5 mm SiO2 PDMS-on-5mm-SiO2 87 102 15 

Perfluoro-
decanethiols 

Gold Thiols-on-gold 95 115 20 

 82 

  83 
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S4. Scanning force microscope imaging 84 

 85 

Figure S2. SFM tapping mode images of all hydrophobic surfaces. 86 

  87 
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S5. Drop velocity-versus-slide length for PFOTS-coated surfaces at different tilt 88 

angles  89 

 90 

Figure S3. Representative results for drop velocity-versus-slide length for 33 µL water drops on 91 

PFOTS-coated samples. Drops sliding on PFOTS-on-Si the first 5 cm (A) and after having already 92 

moved 10 cm (B) at different tilt angles. (C-F) Drops on PFOTS on Si wafer (green symbols), 1 93 

mm SiO2 (blue symbols) and 5 mm SiO2 (red symbols) deposited at a rate of one drop per 1.3 s 94 

measured at 55° (C), 60° (D), 65° (E), and 70° (E) tilt angles. For comparison also the results 95 

obtained on Si wafers are plotted as green symbols. Results for drop number 1 (rectangles), 2 96 

(circles), and 100 (stars) are plotted.  97 
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S6. Direct numerical diffuse interface simulations of drop motion 98 

Due to the no-slip boundary condition on solid surfaces drops show a rolling component in 99 

their motion 13-19. To quantify the effective mass of the rolling drop, Direct Numerical 100 

Simulations (DNS) 20 deploying a diffuse interface phase-field method were performed. The 101 

effective mass is defined by 𝑚∗ = 2𝐸𝑘𝑖𝑛 𝑈2⁄ , where Ekin is the kinetic energy of the drop. In 102 

our DNS, the interface was treated as a diffuse layer through which the fluid properties vary 103 

steeply but continuously. On the mesoscopic scale, the motion of the contact line occurs 104 

naturally as diffusion across the interface driven by gradients of the chemical potential. In 105 

contrast, the conventional sharp-interface model suffers from a non-integrable stress 106 

singularity at the sliding contact line 21,22. 107 

The results of simulations for three-dimensional droplets on an inclined wall were obtained 108 

with phaseFieldFoam, a diffuse interface phase-field solver developed within the OpenFOAM 109 

C++ library for computational continuum physics 23,24. The solver has also been enhanced to 110 

use a sliding reference-frame technique, to follow the droplet’s centre-of-mass, effectively 111 

reducing the computational effort. 112 

The following properties of the air-water system were used for the simulations: Water density 113 

 = 1000 kg/m3, water dynamic viscosity  = 10-3 Pas, air density a = 1 kg/m3, air dynamic 114 

viscosity a = 10-5 Pas, surface tension of water  = 0.072 N/m. A no-slip boundary condition is 115 

applied at the bottom boundary with free-slip boundary conditions being applied on every 116 

other boundary.  117 

For initialization, a hemispherical drop with radius R = 2.5 mm (V = 32.7 µL, contact angle of 118 

90°) was placed on a 2510 mm2 rectangular domain at (0.0125, 0) m, on a smooth inclined 119 

wall. For various inclination angles, the droplet’s barycentre position and velocity have been 120 

tracked and its kinetic energy density field has been measured. This allowed to calculate both 121 

contributions to the total kinetic energy – the translational and rotational kinetic energies.  122 

The factor 𝑚∗ 𝑚⁄  slightly changed as a function of barycentre velocity (Figure S4). Initially, the 123 

so-called sliding acceleration is greater than the rotational one, leading to a slow increase of 124 

𝑚∗ 𝑚⁄  since the main contribution to the total kinetic energy is from the sliding. The change 125 

in slope is more pronounced for lower inclination angles since the sliding acceleration is also 126 

lower, when compared to larger inclination angles. After some time, the droplet’s sliding 127 

acceleration starts to decrease but its angular acceleration is still increasing. Therefore, a 128 

steeper increase of 𝑚∗ 𝑚⁄  was observed. Since our calculations of the electrostatic force did 129 

not depend sensitively on the precise value of m*/m, we applied the value of 1.05 throughout 130 

our analysis. 131 
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  132 

Figure S4. Effective mass m* divided by real mass m of the drop versus velocity of a 32.7 µL 133 

water drop with an initial contact angle of 90° at tilt angles of 30°, 40°, and 60°.  134 

  135 
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S7. Aspect ratio of drops 136 

 137 

Figure S5. Ratio of length-to-width of the contact area of sliding water drops l/w versus drop 138 

velocity U on different surfaces. The corresponding experiments were carried out at different 139 

tilt angles to span a large velocity range. The equations give the best fits. In some cases, linear 140 

fits were sufficient. In others we used 2nd order polynomial fits.  141 

  142 
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S8. Contribution of capillary and bulk viscous force 143 

Although for the analysis of electrostatic force we do not need to know the origin of the 144 

reference force, it is still instructive to see how significantly capillary and viscous forces 145 

contribute. Therefore, we inserted the respective drop widths, advancing, and receding 146 

contact angles into Eq. (1) with 𝑘 = 1, calculated the capillary force (Figure S6, red symbols) 147 

and compared it to measured reference forces (Figure S6, black symbols). Capillary forces, 148 

which include wedge viscous forces (see SI1), dominate over bulk hydrodynamic viscous forces 149 

calculated with Eq. (2) (Figure S6, blue symbols).  150 

 151 

Figure S6. Force acting on 33 µL water drops sliding down PFOTS-on-Si versus velocity. 152 

Reference forces were calculated with 𝑚𝑔 𝑠𝑖𝑛 𝛼 − 𝑚∗ 𝑑𝑈

𝑑𝑡
 (black symbols) for the respective 2nd 153 

and 10th drop for tilt angles ranging from 30° to 70°. Capillary forces were calculated with Eq. 154 

(1) and k=1. Bulk viscous forces calculated with Eq. (2) (blue). Results of three experiments are 155 

plotted. To complete the graphs in particular at high velocity we added results obtained from 156 

10-14 cm slide distance, where the drops were close to their steady-state velocity. 157 
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S9. Measured extra force on PFOTS-coated substrates  158 

 159 

Figure S7. Representative extra force acting on water drops on PFOTS-on-1mm-SiO2 (A) and 160 

PFOTS-on-5mm-SiO2 (B) measured at different tilt angles. Plotted are results for the 1st, 2nd, 161 

5th, 10th, 20th, 50th and 100th drop. 33 µL drops were deposited at an interval of 1.3 s. Forces 162 

were calculated with Eq. (4) with m*/m=1.05 and 𝐹𝑟(𝑈) = 156µ𝑁 + 218
µ𝑁𝑠

𝑚
𝑈.  163 
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S10. Measurement of drop charges 164 

Drop charges were measured with a tilted plate setup at fixed tilt angle of 50° (details in 25). 165 

Right after deposition, water drops were discharged by touching a grounded electrode at the 166 

beginning of their slide path at 𝐿 = 0. After sliding 4 cm, a second electrode measured the 167 

drop discharge current via a variable gain sub femto current amplifier (response time: 0.8 ms, 168 

DDPCA-300, FEMTO). To reduce noise, the setup was placed in a Faraday cage. Care was taken 169 

that the drop disconnected from the electrode before rolling over the end of the sample into 170 

a collection dish. Data was recorded using a National Instruments data acquisition card (NI 171 

USB-6366 X-Series) and the accompanying LabVIEW software. 45 µL drops were run 172 

successively over the surface. A current spike was recorded when each drop touched the 173 

electrode (Figure S8). The drop charge was calculated by integrating the current signal over 174 

the first 2 ms. Experiments were carried out at a temperature of 211°C and a relative 175 

humidity of 15-30%.  176 

The charge of the first drop in a series Q1 was the highest (Figure S9). For the following drops, 177 

we measured monotonically decreasing charges. After typically 10-50 drops a saturation 178 

charge Q was reached (table S2). Q1 and Q depend on the specific sample and varied by 179 

30%-50% from sample to sample. A possible reason for this variation could be the surface 180 

quality of a particular batch, lab temperature, or humidity on the day of the experiment. To 181 

get a first estimate of the initial surface charge density 0, the decay length , and the 182 

neutralization time , we used the methods and the charging model developed in 25. The 183 

uncertainty from the charge measurement propagated to the estimation of drop charging 184 

parameters. We refined these parameters by comparing the experimental first and 100th drop 185 

force-vs-slide length curves with predictions by Eqs. (S14) and (S21), respectively.  186 
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  187 

Figure S8. Typical current traces detected for a series of 45 µL water drops on PFOTS-on-1mm-188 

SiO2 after sliding 4 cm. Currents are plotted at different scales. As the probe electrode touches 189 

a sliding drop at 𝑡 = 0, it discharges the accumulated drop charge within 2 ms, causing a 190 

positive current peak. This positive peak is due to the flow of electrons towards the positively 191 

charged drop, which also implies a negatively charged surface. The total accumulated drop 192 

charge was calculated by integrating the initial current peak of 2 ms. While the drop passes 193 

the probe electrode, a steady-state current of 0.05 µA is generated (B).  194 
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 195 

Figure S9. Measured drop charge-versus-drop number on 20 nm polystyrene films, 60 nm 196 

Teflon films, PDMS-brushes on different substrates and monolayers of Perfluorodecanethiol on 197 

gold. Results were measured at 50° tilt, 1.5 s intervals between deionized water drops of 45 µL 198 

volume after 4 cm slide length.  199 

On all SiO2 substrates drops gained a positive charge and deposited a negative charge on the 200 

surfaces. In contrast, on silicon wafers or gold, drop charges were much lower. Charge 201 

separation was highest on PFOTS-coated SiO2 followed by PDMS and the polymer films. The 202 

saturated drop charge, Q increased between the 1 mm and 5 mm SiO2 substrates. This effect 203 

was most pronounced on PFOTS. On silicon wafers charging was 10 times lower. On gold, the 204 

drop charge was even negative. The measured charge values agree well with earlier 205 

experiments on PFOTS-coated glass slides 25 and other hydrophobic surfaces. 206 

 207 

  208 
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Table S2. Mean charge of the first drop and drops in steady state in series with 1.5 s time 209 

interval between them. V = 45 µl,  = 50°, 4 cm slide distance, T = 211°C, RH = 15-30%. 210 

Surfaces 
Q1 

nC 

Q 

nC 

 

s 

 

cm 

0 

µC/m2 

PFOTS-on-Si 0.18 0.09    

PFOTS-on-1 mm-SiO2 1.4 0.26 12 2 -20 

PFOTS-on-5 mm-SiO2 1.4 0.45 7 1.5 -20 

PS-on-gold -0.03 -0.04    

PS-on-1 mm-SiO2 0.7 0.05 30 2.5 -10 

PS-on-5 mm-SiO2 0.5 0.07 17 2 -7 

Teflon-on-gold -0.03 -0.02    

Teflon-on-1 mm-SiO2 0.7 0.05 70 2.8 -10 

Teflon-on-5 mm-SiO2 0.7 0.07 20 3 -7 

PDMS-on-Si 0.02 0.02    

PDMS-1 mm-SiO2 1.2 0.15 12 4 -12 

PDMS-5 mm-SiO2 0.6 0.2 8 0.9 -12 

Thiols-on-gold -0.05 -0.05    

 211 

  212 
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S11. Analytical approximation of the electrostatic force on a drop  213 

 214 

Figure S10. Parameters used to calculate the electrostatic force.  215 

We derive an expression for the force between a drop bearing a charge Q interacting with a 216 

stripe of surface charges  distributed over its track of slide length L. We assume the center 217 

of charge of the drop to be at a distance a from the rear side and at a height h (Figure S10). To 218 

obtain the electrostatic force we consider the electric field generated by a charge deposited 219 

at the solid-air interface on top of an infinitely extending solid half space (eq. 3). A surface 220 

charge dq at position x generates an electric field with lateral component  221 

𝑑𝐸(𝑥, ℎ) =
𝑑𝑞

2𝜋𝜀0(𝜀𝑆+1)

𝐿+𝑎−𝑥

[(𝐿+𝑎−𝑥)2+ℎ2]3 2⁄  .     (S4) 222 

This is the field strength at a position 𝐿 + 𝑎 along the surface and a height h above the solid 223 

surface. Along its path, the drop deposits a certain surface charge density (x). Since the local 224 

charge density may vary in a direction perpendicular to the slide direction,  is taken to be the 225 

mean charge density at position x. The deposited charge can be related to the surface charge 226 

density on the free solid surface by 𝑑𝑞 = 𝜎𝑤𝑑𝑥, where w is the width of the contact area of 227 

the drop. Integrating the Coulomb forces of all infinitesimal charge elements dq gives the total 228 

lateral force on the drop: 229 

𝐹𝑒
𝑛(𝐿) =

𝑤𝑄(𝐿)

2𝜋𝜀0(𝜀𝑆+1)
[∫

(𝐿+𝑎−𝑥)𝜎(𝑥)

((𝐿+𝑎−𝑥)2+ℎ2)3 2⁄ 𝑑𝑥
𝐿

0
− ∫

(𝑥−𝐿−𝑎)𝜎′(𝑥)

((𝑥−𝐿−𝑎)2+ℎ2)3 2⁄ 𝑑𝑥
𝐿𝑒𝑛𝑑

𝐿+𝑙
]   (S5) 230 

Assuming that h << L+a-x we get Eq. (5). Here, the sign convention is that a positive force is 231 

decelerating the drop. The second term in (S5) takes into account surface charges ’(x) 232 

situated ahead of the drop which is different from the charge distribution (x) behind the 233 

drop. 234 

To evaluate Eq. (S5), we need to make an assumption about the surface charge distribution. 235 

The simplest case is to assume that the drop only interacts with charges deposited by itself. 236 

This is the case for the first drop in a series. We further assume that the surface charge density 237 

is constant and that no charge on the surface and inside the drop is neutralized. Then, the 238 

charge of the first drop is 𝑄1 = −𝐿𝑤𝜎1, leading to an electrostatic force of  239 

𝐹𝑒
1(𝐿) = −

𝐿𝑤2𝜎1
2

2𝜋𝜀0(𝜀𝑆+1)
[

1

√𝑎2+ℎ2
−

1

√(𝐿+𝑎)2+ℎ2
]  .    (S6) 240 
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We used the superscript “1” to indicate that this is the first drop sliding down an initially 241 

neutral surface. 1 is the surface charge density deposited by the first drop.  242 

A constant surface charge density is, however, not realistic. More realistic is a charge density 243 

that saturates exponentially with slide distance 25. Again, considering the first drop and 244 

assuming that a drop only interacts with charges deposited by itself, the corresponding surface 245 

charge density and total charge of the drop can be parametrized as  246 

𝜎1 = 𝜎0𝑒
−𝑥 𝜆⁄  and 𝑄1 = −𝑤𝜆0(1 − 𝑒−𝐿 𝜆⁄ )      (S7) 247 

Here we assumed that a possible neutralization of the surface is very slow compared to the 248 

sliding time of the drop. Inserting these two expressions into the first term of Eq. (5) leads to  249 

𝐹𝑒
1(𝐿) = −

𝑤𝜆0(1−𝑒−𝐿 𝜆⁄ )𝑤𝜎0

2𝜋𝜀0(𝜀𝑆+1)
∫

𝑒−𝑥 𝜆⁄

(𝐿+𝑎−𝑥)2
𝑑𝑥

𝐿

0
= −𝐶(1 − 𝑒−𝐿 𝜆⁄ ) ∫

𝑒−𝑥 𝜆⁄

(𝐿+𝑎−𝑥)2
𝑑𝑥

𝐿

0
  (S8) 250 

The second term in Eq. (5) was not considered because we only take the charge deposited by 251 

the drop into account; thus, there is no charge ahead of the drop. Here, the constant 𝐶 =252 

𝑤2𝜎0
2𝜆/[2𝜋𝜀0(𝜀𝑆 + 1)] summarizes all distance-independent parameters. Partial integration 253 

yields 254 

 𝐹𝑒
1(𝐿) = −𝐶(1 − 𝑒−𝐿 𝜆⁄ ) {[−

𝑒−𝑥/𝜆

𝐿+𝑎−𝑥
]
0

𝐿

−
1

𝜆
∫

𝑒−𝑥 𝜆⁄

𝐿+𝑎−𝑥
𝑑𝑥

𝐿

0
}    (S9) 255 

Substitution with 𝑡 =
𝐿+𝑎−𝑥

𝜆
 gives 256 

 𝐹𝑒
1(𝐿) = 𝐶(1 − 𝑒−𝐿 𝜆⁄ ) {

1

𝑎
𝑒−

𝐿
𝜆 −

1

𝐿+𝑎
−

1

𝜆
𝑒
−

𝐿+𝑎
𝜆

∫
𝑒𝑡

𝑡
𝑑𝑡

𝑎/𝜆

(𝐿+𝑎)/𝜆
}     (S10) 257 

The integral in Eq. (S10) has the form of the exponential integral function: 258 

Ei(𝑧) = ∫
𝑒𝑡

𝑡
𝑑𝑡

𝑧

−∞
  for  𝑧 > 0       (S11) 259 

With this function, we can calculate the force as 260 

 𝐹𝑒
1(𝐿) = 𝐶(1 − 𝑒−𝐿 𝜆⁄ ) {

1

𝑎
𝑒−

𝐿
𝜆 −

1

𝐿+𝑎
−

1

𝜆
𝑒
−

𝐿+𝑎
𝜆  [𝐸𝑖 (

𝑎

𝜆
) − 𝐸𝑖 (

𝐿+𝑎

𝜆
)]}  (S12) 261 

To evaluate this expression, the series representation of the exponential integral can be 262 

employed, 263 

Ei(𝑧) = 0.5772 + ln (|z|) + ∑
𝑧𝑛

𝑛! 𝑛
∞
𝑛=1  ,       (S13)  264 

where 0.5772 is the Euler-Mascheroni constant. Using Eq. (S13), we can write  265 

 𝐹𝑒
1(𝐿) =

𝐶

𝜆
(1 − 𝑒−𝐿 𝜆⁄ ) {

𝜆

𝑎
𝑒−

𝐿
𝜆 −

𝜆

𝐿+𝑎
− 𝑒−

𝐿+𝑎
𝜆 [ln (

𝑎

𝐿+𝑎
) + ∑

𝑎𝑘−(𝐿+𝑎)𝑘

𝜆𝑘𝑘!𝑘

∞
𝑘=1 ]}   (S14) 266 

For large arguments, convergence of this series can be slow. For example, to reach an accuracy 267 

of 5% and 1% at z = 5 one needs to take n = 8 and 10 terms, respectively. For z = 10 the series 268 

needs to be considered up to n = 14 and 16, respectively. Many modern mathematical 269 
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programs, such as Wolfram Alpha or IgorPro (Wavemetrics) provide built-in functions for the 270 

effective numerical computation of the exponential integral function.  271 

The distance-dependent part of Eq. (S14) (Dimensionless force) is plotted in figure S11A. A 272 

maximum is observed at 𝐿 𝜆⁄ ≈ 0.8.  The force decreases with increasing 𝑎 𝜆⁄ ; thus, the more 273 

the center of charge is shifted towards the rear of the drop, the stronger the electrostatic 274 

retardation becomes. This strong dependence on 𝑎 𝜆⁄  results from interactions with surface 275 

charges in the close vicinity of the drop, for which the analytical model is not realistic. To 276 

better quantify these near-field interactions, we have developed the numerical model 277 

described in the following section. In terms of the analytical model, 𝑎  is regarded as a 278 

parameter that describes the near-field interactions in an effective manner.  279 

 280 

Figure S11. (A) Plot of dimensionless force 𝐹𝑒
1𝜆/𝐶  versus 𝐿 𝜆⁄  for 𝑎 𝜆⁄ = 0.05, 0.1 and 0.2 281 

calculated with Eq. S14. (B) Ratio of /-versus-t/ calculated with Eq. (S15).  282 

For a succession of drops sliding over the surface at time intervals Δ𝑡, the charge distribution 283 

and the drop charge are altered by the presence of surface charges of previous drops. Once 284 

deposited, the surface charge is neutralized with a characteristic neutralization time 𝜏. To 285 

calculate the charge distribution for following drops, a recursive approach is required. Thus, a 286 

closed analytical description for the electrostatic force on successive drops is difficult. 287 

Nevertheless, a relatively simple analytical description is possible for the saturated drop 288 

charge distribution after a large number (𝑛 → ∞) of drops. Here, the surface charge density 289 

and the drop charge are given by 25: 290 

 𝜎∞(𝑥) = 𝜎0𝑒
−𝑥 Λ⁄ , 𝑄∞(𝐿) = −𝜎0𝜆𝑤(1 − 𝑒−𝐿 Λ⁄ ) with Λ =

𝜆

1−𝑒−Δ𝑡 𝜏⁄  . (S15) 291 

For short time intervals the modified saturation distance, , is much larger than the initial 292 

saturation distance,  (Figure S11B). With increasing drop interval time, Δ𝜏, Λ decreases and 293 

eventually approaches the initial  for Δ𝑡 𝜏⁄ ≫ 1.  294 

Using these expressions, we calculate the electrostatic force caused by the charges behind the 295 

drop in analogy to Eq. (S14):  296 
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𝐹𝑒𝑏
∞(𝐿) =

𝐶

Λ
(1 − 𝑒−𝐿 Λ⁄ ) {

Λ

𝑎
𝑒
−

𝐿

Λ −
Λ

𝐿+𝑎
− 𝑒

−
𝐿+𝑎

Λ [𝐸𝑖 (
𝑎

Λ
) − 𝐸𝑖 (

𝐿+𝑎

Λ
)]}   297 

   = 
𝐶

Λ
(1 − 𝑒−𝐿 Λ⁄ ) {

Λ

𝑎
𝑒−

𝐿

Λ −
Λ

𝐿+𝑎
− 𝑒−

𝐿+𝑎

Λ [ln (
𝑎

𝐿+𝑎
) + ∑

𝑎𝑘−(𝐿+𝑎)𝑘

Λ𝑘𝑘!𝑘
∞
𝑘=1 ]}      (S16) 298 

In addition, surface charges ahead of the drop are accelerating the drop. Their contribution is 299 

given by 300 

𝐹𝑒𝑏
∞(𝐿) =

𝜎0
2𝑤2𝜆

2𝜋𝜀0(𝜀𝑆+1)
𝑒−Δ𝑡 𝜏⁄ (1 − 𝑒−𝐿 𝜆⁄ ) ∫

𝜎

(𝑥−𝐿−𝑎)2
𝑑𝑥

𝐿𝑒𝑛𝑑

𝐿+𝑙
  301 

= 𝐶𝑒−Δ𝑡 𝜏⁄ (1 − 𝑒−𝐿 Λ⁄ ) ∫
𝑒−𝑥 Λ⁄

(𝑥−𝐿−𝑎)2
𝑑𝑥

𝐿𝑒𝑛𝑑

𝐿+𝑙
 .     (S17) 302 

The factor 𝑒−Δ𝑡 𝜏⁄  takes into account that after the time interval t the charge left by the 303 

previous drop has been partially neutralized.  304 

Partial integration and substitution with 𝑡 = −(𝑥 − 𝐿 − 𝑎)/Λ gives 305 

𝐹𝑒𝑏
∞(𝐿) = 𝐶𝑒−Δ𝑡 𝜏⁄ (1 − 𝑒−𝐿 𝜆⁄ ) {[

𝑒−𝑥/𝜆

𝑥−𝐿−𝑎
]
𝐿+𝑙

𝐿𝑒𝑛𝑑

+
1

Λ
𝑒
−

𝐿+𝑎

Λ ∫
𝑒𝑡

𝑡
𝑑𝑡

−(𝐿𝐸𝑛𝑑−𝐿−𝑎)/Λ

−(𝑙−𝑎)/Λ
} (S18) 306 

Here, the argument of the exponential integral as defined in Eq. (S11) is negative. We 307 

therefore have to use the following function 308 

Ei(−z) = −E1(𝑧) = −∫
𝑒−𝑡

𝑡
𝑑𝑡

∞

𝑧
  for  𝑧 > 0     (S19) 309 

Where 𝐸1(𝑧) is defined as 310 

E1(𝑧) = −0.5772 − ln(|z|) − ∑
(−𝑧)𝑛

𝑛! 𝑛
∞
𝑛=1   311 

Using these definitions, we get: 312 

𝐹𝑒𝑏
∞(𝐿) =

𝐶

Λ
𝑒−Δ𝑡 𝜏⁄ (1 − 𝑒−𝐿 𝜆⁄ ) {

Λe−Lend/Λ

𝐿𝑒𝑛𝑑−𝐿−𝑎
−

Λe
−

L+l
Λ

𝑙−𝑎
− 𝑒

−
𝐿+𝑎

Λ [𝐸1 (
𝐿𝐸𝑛𝑑−𝐿−𝑎

Λ
) − 𝐸1 (

𝑙−𝑎

Λ
)]}  313 

=
𝐶

Λ
𝑒−Δ𝑡 𝜏⁄ (1 − 𝑒−𝐿 𝜆⁄ ) {

Λe
−

Lend
Λ

𝐿𝑒𝑛𝑑−𝐿−𝑎
−

Λe
−

L+l
Λ

𝑙−𝑎
− 𝑒−

𝐿+𝑎

Λ [ln (
𝑙−𝑎

𝐿𝑒𝑛𝑑−𝐿−𝑎
) + ∑

(𝐿𝑒𝑛𝑑−𝐿−𝑎)𝑘−(𝑙−𝑎)𝑘

Λ𝑘𝑘!𝑘
∞
𝑘=1 ]}  314 

(S20) 315 

The total electrostatic force acting on drop number 𝑛 > 50 is the sum of both contributions:  316 

𝐹𝑒
∞(𝐿) = 𝐹𝑒𝑎

∞(𝐿) + 𝐹𝑒𝑏
∞(𝐿)   for 𝐿 < 𝐿𝑒𝑛𝑑 − 𝑙.     (S21) 317 

The different contributions to the total force are shown in Figure S12 Interestingly, the 318 

accelerating force of the charges ahead of the drop is stronger at the beginning before the 319 

decelerating force of the charges behind the drop start to dominate. At the end of the slide 320 

path, there are no more charges ahead and the accelerating force contribution vanishes at 321 

𝐿𝑒𝑛𝑑 − 𝑙, leading to a steep increase in the drop force. 322 



20 

 

 323 

Figure S12. Dimensionless force 𝐹𝑒
∞𝛬/𝐶 on a drop after a long (>50) succession of drops as a 324 

function of slide length normalized with respect to the saturation length, 𝐿/Λ. The total force 325 

acting on the drop (black curve) consists of an accelerating force coming from charges ahead 326 

of the drop (blue curve) and a decelerating force from charges behind the drop (red curve). 327 

Parameters used in this example:  = 4 cm, w = 4 mm, l = 5 mm, a = 2 mm, Lend = 20 cm. 328 

S12. Numerical computation of the electrostatic force on a drop  329 

One of the assumptions in Eq. (5) was to neglect the presence of the grounded back-electrode. 330 

To account, among other things, for the presence of the back electrode, we carried out 331 

numerical calculations of the electric field distribution based on Poisson’s equation and the 332 

electrostatic force. As it turned out, by choosing the position of the center of charge in the 333 

drop appropriately we can account for the presence of the back electrode. In figure S13 the 334 

two-dimensional simulation domain and the mesh are displayed. The domain includes the 335 

substrate, the drop, and the surrounding air.  336 

 337 
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Figure S13. Overview of the simulation domain and the grid including the substrate, the drop, 338 

and the surrounding air, compare figure S10. The insets display the finer mesh around the drop 339 

and the highly refined mesh around the contact line (the physical height shown in the latter 340 

inset is 1 µm).  341 

The fundamental equation of electrostatics is Gauss's law. If the media are linear, isotropic, 342 

homogeneous and do not carry a space charge we end up with Poisson’s equation Δ𝜑 = 0 in 343 

the surrounding air and in the substrate, with appropriate boundary conditions at the 344 

interfaces between different materials.  345 

We assume that the drop is a conductor and can be modelled as a surface with a constant 346 

potential 𝜑𝑑𝑟𝑜𝑝. Even for non-conductive bodies with a dielectric permittivity much higher 347 

than their surrounding (such as water) this boundary condition is a good approximation. The 348 

value of 𝜑𝑑𝑟𝑜𝑝 cannot be specified directly but is given implicitly by the total charge of the 349 

drop 𝑄 . 𝑄  and 𝜑𝑑𝑟𝑜𝑝  are related by solving Poisson’s equation and integrating ∫ 𝜀0𝑑𝑟𝑜𝑝
𝐸⃗ ⋅350 

𝑛⃗ 𝑑𝑠 along the surface of the drop; here 𝜀0 is the vacuum permittivity and 𝑛⃗  and 𝑑𝑠 are the 351 

normal vector and the infinitesimal line element along the drop’s surface, respectively. To fix 352 

the potential on the drop’s surface, we iteratively vary 𝜑𝑑𝑟𝑜𝑝 until the calculated drop charge 353 

is equal to the real drop charge.  354 

At the interface between the substrate and air the electric field needs to fulfil the boundary 355 

condition −(𝜀𝑠𝛻⃗ 𝜑𝑠 − 𝛻⃗ 𝜑𝑎) ⋅ 𝑛⃗ =
𝜎(𝑥)

𝜀0
, where 𝜀𝑠 is the dielectric permittivity of the substrate, 356 

𝜎(𝑥) is the surface charge density on the substrate, 𝑛⃗  is the normal vector of the substrate, 357 

and 𝜑𝑠  and 𝜑𝑎  are the electrostatic potentials infinitesimally away from the solid surface 358 

inside the substrate and inside air, respectively. To complete the set of boundary conditions, 359 

we assume that the surrounding circular boundaries are far away and that the normal 360 

component of the electric field vanishes in the far field, 𝛻⃗ 𝜑𝑓𝑎𝑟𝑓𝑖𝑒𝑙𝑑 ⋅ 𝑛⃗ = 0 . We further 361 

assume that the electrode below the substrate is grounded, 𝜑𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 = 0. After the electric 362 

field fulfilling the equations and the boundary conditions above is obtained, the electrostatic 363 

force acting on the drop can be calculated from the integral of the Maxwell stress tensor on 364 

the drop’s surface 𝐹𝑒 =
𝜀0

2
∫ 𝐸⃗ 2
𝑑𝑟𝑜𝑝

𝑛⃗ ⋅ 𝑛⃗ 𝑥𝑑𝑠, where 𝑛⃗ 𝑥 is the normal vector pointing in sliding 365 

direction. 366 

We implemented the equations and boundary conditions above in variational form into the 367 

open-source software package FEniCS 26. The solution was obtained by the common finite-368 

element method. To determine the potential on the drop surface 𝜑𝑑𝑟𝑜𝑝 we solved a tracking-369 

type optimal control problem utilizing dolfin-adjoint to automatically compute the gradient 27. 370 

The finite-element mesh was generated with Gmsh (https://gmsh.info/). The mesh was 371 

systematically refined around the substrate-air interface as well as the drop-air interface with 372 

cell sizes as low as 50 µm. In the contact line region the minimal cell size was only 50 nm, see 373 

the right inset in figure S13.  374 
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The problem parameters include the drop shape and size, contact angle, sliding length, charge 375 

distribution, substrate thickness, and dielectric permittivity of the solid. Here, we consider a 376 

fixed, circular-arc shaped drop with contact angles Θ𝑎 = Θ𝑟 = 90° and diameter 𝑤 = 4 mm 377 

on a substrate with 𝜀𝑠 = 3.9 . The charge density behind the drop is supposed to be 378 

homogenous and constant at  = 5 µC/m2. There is no surface charge ahead of the drop. The 379 

resulting electrostatic force is plotted versus the sliding length 𝐿 in figure S14 (symbols) for 380 

different substrate thicknesses. The electrostatic force scales linearly with slide length. With 381 

decreasing thickness of the substrate, the screening influence of the electrode becomes 382 

stronger, which results in lower overall electrostatic forces acting on the drop. 383 

In figure S14 we also compare electrostatic forces calculated with the analytical model (black 384 

lines, Eq. S5) with the numerically calculated forces (symbols). The analytical model and the 385 

simulations predict the same linear scaling of the force with the sliding length. As long as ℎ is 386 

small the influence of ℎ on the resulting force is negligible (lines, Figure S14); therefore, we 387 

set h=0. Furthermore, it turned out that, by shifting the effective drop charge away from the 388 

drop’s center to different horizontal positions 𝑎, the analytical model can fit the simulations. 389 

Thus, phenomenologically we can take the presence of a back-electrode into account by 390 

choosing the right value of a. One reason for this could be that for a vanishing substrate 391 

thickness the charge on the drop surface is symmetrically distributed (which results in a 392 

vanishing horizontal force on the drop, compare the smaller forces for thinner substrates in 393 

Figure S14), whereas for larger thicknesses the charges on the substrate induce significant 394 

charges at the rear end of the drop. In addition, our simulations show that a large fraction of 395 

the charges is located in the utmost vicinity of the contact line.  396 

In summary, the numerical calculations confirm the validity and scaling of Eq. (5). Good 397 

agreement was achieved when the center of charge of the drop was placed directly on the 398 

surface (h = 0). The choice of the parameter 𝑎 is dictated by the thickness of the substrate. 399 

We find that for 1 mm and 5 mm thick substrates, setting 𝑎 = 2 mm  and 𝑎 = 0.8 mm , 400 

respectively, can mimic the shielding effect of the back electrode. 401 

 402 



23 

 

Figure S14. Electrostatic force on a drop calculated from the solution of Poisson’s equation 403 

(symbols) and the analytical model for different positions of the effective point charge (eq. S6, 404 

lines) as well as slide lengths L and substrate thicknesses d. Here we assumed a constant 405 

charge density for the deposited charge of 𝜎1 = 5 µC/m2 behind the drop. 406 

  407 
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S13. Drop velocity profiles on conducting and high-permittivity substrates of PS, 408 

Teflon, PDMS, and thiol-coated surfaces  409 

 410 

Figure S15. Representative results for drop velocity-versus-slide length measured at different 411 

tilt angles. (A) 20 nm PS films on gold, (B) 60 nm thick Teflon films on gold, (C) PDMS on silicon 412 

wafers, and (D) Perfluorodecanethiol on gold. Results for drop number 1 (rectangle), 2 (circle), 413 

and 100 (star) are plotted. The lower tilt angle was given by the requirement that drops slide 414 

at all; at lower tilt angels the drops did not move. The maximal tilt angle was given by the 415 

requirement of having a stable steady state shape of the drop. At higher tilt angles and thus 416 

higher velocities the drop shape analysis started to fail.  417 

 418 
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 420 

Figure S16. Representative results for drop velocity-versus-slide length measured at different 421 

tilt angles. (A) 20 nm PS films, (B) 60 nm thick Teflon films, and (C) PDMS on 1 mm SiO2 (blue 422 

symbols) and 5 mm SiO2 (red symbols). For comparison also the results obtained on Si wafers 423 

(A) or gold (B, C) are plotted as black symbols. Results for drop number 1 (rectangle), 2 (circle), 424 

and 100 (star) are plotted.  425 

  426 
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S14. Reference forces for PS, Teflon, PDMS, and thiol-coated surfaces  427 

 428 

Figure S17. Reference forces measured on different substrates and the linear fit (black lines) 429 

derived from velocities up to 0.4 m/s. (A) PS-on-gold fitted by  𝐹𝑟 = 74 µ𝑁 + 398
µ𝑁𝑠

𝑚
∙ 𝑈, (B) 430 

Teflon-on-gold fitted with  𝐹𝑟 = 48 µ𝑁 + 175
µ𝑁𝑠

𝑚
∙ 𝑈 , (C) PDMS-on-Si fitted by  𝐹𝑟 =431 

141 µ𝑁 + 269
µ𝑁𝑠

𝑚
∙ 𝑈 , and (D) thiols-on-gold fitted with  𝐹𝑟 = 120 µ𝑁 + 103

µ𝑁𝑠

𝑚
∙ 𝑈 . The 432 

water drops of 33 µL volume were deposited at 1.3 s intervals. The results were obtained from 433 

the respective 2nd and 10th drop for tilt angles of between 15 and 70°. To complete the graph 434 

in particular at high velocity we added results obtained from 10-14 cm slide distance, where 435 

the drops had reached or were close to their steady state velocity.  436 

  437 
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S15. Measured extra forces of drops on PS, Teflon, and PDMS-coated surfaces 438 

 439 

Figure S18. (A) Examples for extra forces acting on water drops sliding down PS-on-1mm-SiO2 440 

and (B) PS-on-5mm-SiO2 for different tilt angles. Plotted are results for the 1st, 2nd, 5th, 10th, 441 

20th, and the 100th drop. 33 µL drops were deposited at an interval of 1.3 s. Force were 442 

calculated with Eq. (1) using m*/m=1.05 and  𝐹𝑟 = 74 µ𝑁 + 398
µ𝑁𝑠

𝑚
∙ 𝑈.  443 
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 444 

Figure S19. (A) Examples for extra forces acting on water drops sliding down Teflon-on-1mm-445 

SiO2 and (B) Teflon-on-5mm-SiO2. For different tilt angles. Plotted are results for the 1st, 2nd, 446 

5th, 10th, 20th, and the 100th drop. 33 µL drops were deposited at an interval of 1.3 s. Force were 447 

calculated with Eq. (1) using m*/m=1.05 and  𝐹𝑟 = 48 µ𝑁 + 175
µ𝑁𝑠

𝑚
∙ 𝑈.  448 
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 449 

Figure S20. (A) Examples for extra forces acting on water drops sliding down PDMS-on-1mm-450 

SiO2 and (B) PDMS-on-5mm-SiO2 for different tilt angles. Plotted are results for the 1st, 2nd, 5th, 451 

10th, 20th, and the 100th drop. 33 µL drops were deposited at intervals of 1.3 s. Force were 452 

calculated with Eq. (3) using m*/m=1.05 and  𝐹𝑟 = 141 µ𝑁 + 269
µ𝑁𝑠

𝑚
∙ 𝑈.  453 



31 

 

References 454 

1 Le Grand, N., Daerr, A. & Limat, L. Shape and motion of drops sliding down an inclined 455 
plane. J. Fluid Mech. 541, 293-315 (2005). 456 

2 Kim, H. Y., Lee, H. J. & Kang, B. H. Sliding of liquid drops down an inclined solid surface. 457 
J. Colloid Interface Sci. 247, 372-380 (2002). 458 

3 Huh, C. & Scriven, L. E. Hydrodynamic model of steady movement of a solid/liquid/fluid 459 
contact line. J. Colloid Interface Sci. 35, 85-101 (1971). 460 

4 Voinov, O. V. Hydrodynamics of wetting. Fluid Dynamics 11, 714-721 (1976). 461 

5 Cox, R. G. The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous 462 
flow. J. Fluid Mech. 168, 169-194 (1986). 463 

6 Dussan, E. B., Ramé, E. & Garoff, S. On identifying the appropriate boundary conditions 464 
at a moving contact line: an experimental investigation. J. Fluid Mech. 230, 97-116 465 
(1991). 466 

7 Eggers, J. & Stone, H. A. Characteristic lengths at moving contact lines for a perfectly 467 
wetting fluid: the influence of speed on the dynamic contact angle. J. Fluid Mech. 505, 468 
309-321 (2004). 469 

8 Eggers, J. Existence of receding and advancing contact lines. Phys. Fluids 17, 082106 470 
(2005). 471 

9 Snoeijer, J. H. Free-surface flows with large slopes: Beyond lubrication theory. Physics 472 
of Fluids 18, 021701 (2006). 473 

10 Maglio, M. & Legendre, D. in Computational and Experimental Fluid Mechanics with 474 
Applications to Physics, Engineering and the Environment Environmental Science and 475 
Engineering (eds L. D. Sigalotti, J. Klapp, & E. Sira) 47-69 (2014). 476 

11 Andersen, N. K. & Taboryski, R. Drop shape analysis for determination of dynamic 477 
contact angles by double sided elliptical fitting method. Measurement Science and 478 
Technology 28, 047003 (2017). 479 

12 Li, X. et al. Adaptation of a styrene-acrylic acid copolymer surface to water. Langmuir 480 
37, 1571–1577 (2021). 481 

13 Yarnold, G. D. The motion of a mercury index in a capillary tube. Proceedings of the 482 
Physical Society 50, 540-552 (1938). 483 

14 Frenkel, Y. I. On the behavior of liquid drops on a solid surface. 1. The sliding of drops 484 
on an inclined surface. J. Exptl. Theoret. Phys. (USSR) 18, 659-669 (1948). 485 

15 Dussan, E. B. & Davis, S. H. On the motion of a fluid-fluid interface along a solid surface. 486 
J. Fluid Mech. 65, 71-95 (1974). 487 

16 de Gennes, P. G. Wetting: Statics and dynamics. Rev. Modern Phys. 57, 827-863 (1985). 488 

17 Shikhmurzaev, Y. D. The moving contact line on a smooth solid surface. Int. J. 489 
Multiphase Flow 19, 589-610 (1993). 490 

18 Olin, P., Lindstrom, S. B., Pettersson, T. & Wagberg, L. Water drop friction on 491 
superhydrophobic surfaces. Langmuir 29, 9079-9089 (2013). 492 



32 

 

19 Yilbas, B. S., Al-Sharafi, A., Ali, H. & Al-Aqeeli, N. Dynamics of a water droplet on a 493 
hydrophobic inclined surface: influence of droplet size and surface inclination angle on 494 
droplet rolling. RSC Advances 7, 48806-48818 (2017). 495 

20 Sartori, P. et al. Drop motion induced by vertical vibrations. New J. Phys. 17, 113017 496 
(2015). 497 

21 Ngan, C. G. & Dussan, E. B. On the dynamics of liquid spreading on solid surfaces. J. 498 
Fluid Mech. 209, 191-226 (1989). 499 

22 Yue, P. T. Thermodynamically consistent phase-field modelling of contact angle 500 
hysteresis. J. Fluid Mech. 899, A15-41 (2020). 501 

23 Cai, X., Marschall, H., Wörner, M. & Deutschmann, O. Numerical simulation of wetting 502 
phenomena with a phase-field method using OpenFOAM. Chemical Engineering & 503 
Technology 38, 1985-1992 (2015). 504 

24 Jamshidi, F. et al. On suitability of phase-field and algebraic volume-of-fluid 505 
OpenFOAM (R) solvers for gas-liquid microfluidic applications. Computer Physics 506 
Communications 236, 72-85 (2019). 507 

25 Stetten, A. Z., Golovko, D. S., Weber, S. A. L. & Butt, H. J. Slide electrification: charging 508 
of surfaces by moving water drops. Soft Matter 15, 8667-8679 (2019). 509 

26 Alnaes, M. S. et al. The FEniCS Project Version 1.5. Archive of Numerical Software 3, 9-510 
23 (2015). 511 

27 Mitusch, S. K., Funke, S. W. & Dokken, J. S. dolfin-adjoint 2018.1: automated adjoints 512 
for FEniCSand Firedrake. The Journal of Open Source Software 4, 1292 (2019). 513 

 514 


