

Supplementary Materials for

Drop race: How electrostatic forces influence drop motion

3 Xiaomei Li¹, Pravash Bista¹, Amy Stetten¹, Henning Bonart^{1,2}, Maximilian T. Schür², Steffen
4 Hardt², Francisco Bodziony³, Holger Marschall³, Alexander Saal¹, Xu Deng⁴, Rüdiger Berger¹,
5 Stefan Weber^{1*}, Hans-Jürgen Butt^{1*}

¹ Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany

7 ² Institute for Nano- and Microfluidics, Technische Universität Darmstadt, Alarich-Weiss-
8 Straße 10, 64287 Darmstadt, Germany

9 ³ Computational Multiphase Flows, Technische Universität Darmstadt, Alarich-Weiss-Straße
10 10, 64287 Darmstadt, Germany

11 ⁴ Institute of Fundamental and Frontier Sciences, University of Electronic Science and
12 Technology of China, Chengdu, China.

13

14 This PDF file includes:

15 S1: Viscous dissipation due to hydrodynamic flow in the drop

16 S2: Experimental setup and image analysis

17 S3: Static advancing and receding contact angles

18 S4: Scanning force microscope imaging

19 SS5: Drop velocity-versus-slide length for PFOTS-coated surfaces at different tilt angles

20 S6: Direct numerical diffuse interface simulations of drop motion

21 S7: Aspect ratio of drops

22 S8: Contribution of capillary and bulk viscous force

23 S9: Measured extra force on PFOTS coated substrates

24 S10: Measurement of drop charges

25 S11: Analytical approximation of the electrostatic force on a drop

26 S12: Numerical computation of the electrostatic force on a drop

27 S13: Drop velocity profiles on conducting and high-permittivity substrates of PS, Teflon, PDMS,
28 and thiol-coated surfaces

29 S14: Reference forces for PS, Teflon, PDMS, and thiol-coated surfaces

30 S15: Measured extra forces of drops on PS, Teflon, and PDMS-coated surfaces

31 **S1. Viscous dissipation due to hydrodynamic flow in the drop**

32 The total viscous force of a sliding drop is commonly split in two components. One comes from
33 the viscous dissipation in the bulk, F_b , the other is concentrated at the wedge, F_w . An upper
34 limit for bulk viscous dissipation can be estimated by replacing a drop with its real 3D shape
35 by drop with vertical side having a base area of $\pi lw/2$ and a height H . We assume that the
36 bottom area of the drop is stationary (no slip) and that the top area at height H is sliding with
37 $2U$. Twice the velocity to ensure that the center moves with U . Then, the bulk viscous force
38 is:

39
$$F_b \approx \eta \frac{\pi lw}{2H} U \quad (S1)$$

40 This is more an upper limit. Le Grand, Daerr & Limat use $F_v = \eta UV^{1/3}$ ¹. Kim, Lee & Kang apply
41 $F_v = \eta \pi r_d^2 U/H$ ². Here, V is the volume of the drop and r_d is the radius of the contact area of
42 a drop, which, for simplicity, is assumed to have a circular contact radius.

43 In addition to bulk viscous dissipation, there is viscous dissipation in the wedge region²⁻¹⁰.
44 Since we observe the shape of drops with a camera at a resolution of $\approx 10 \mu\text{m}$, we detect
45 macroscopic contact angles $\Theta_a(U)$ and $\Theta_r(U)$. Viscous dissipation in the wedge happens at a
46 shorter length scale and manifests itself in an increase of $\Theta_a(U)$ and a decrease of $\Theta_r(U)$.
47 Therefore, it is already included in Eq. (1).

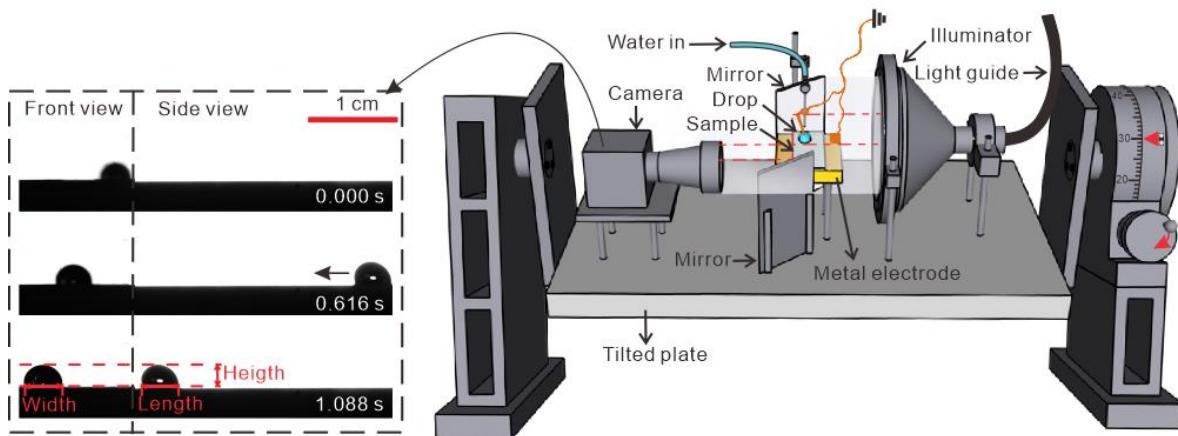
48

49

50 **S2. Experimental setup and image analysis**

51 The experimental setup is shown in Figure S1. To extract L , $\Theta_a(L)$, $\Theta_r(L)$, and w from the
 52 videos, we used and adapted the freely available drop shape analysis from MATLAB (DSAfM)
 53 originally developed by Andersen & Taboryski ¹¹ (for details see ¹²). In a first step, images
 54 without a drop and the images with complete drops are identified. The images without a drop
 55 are used to extract the tilt angle. The images with a complete drop were corrected by
 56 subtracting the background and then rotating into a horizontal drop. Then the contour, front
 57 edge position and rear edge position of the drops were detected with sub-pixel precision. By
 58 the distance between rear edge and front edge, we calculated the length of the drop from
 59 side view and the width of the drop from front view. Afterwards, the image was divided into
 60 the front half and the rear half of the drop to further analyse the advancing and receding
 61 contact angles and the respective velocity. The velocities of both sides were calculated by the
 62 rear and front edge point moving distance in each frame. Dynamic contact angles were
 63 determined by applying a 4th order polynomial fit to the contour of drop in each image. To get
 64 the height of drops, we employ a free software named "Tracker" (<https://github.com/OpenSourcePhysics/tracker>). By defining the distance between the
 65 above drop edge and the highest point of a drop as the drop height, then setting the highest
 66 point of a drop as the tracking point, we got the real-time height of drops. All measurements
 67 were conducted at a temperature of $20 \pm 1^\circ\text{C}$ and a humidity of 15-30%.

69



70 **Figure S1.** Experimental setup. Water drops were automatically placed from a grounded
 71 syringe needle which was connected to a peristaltic pump onto the top of the tilted plate at
 72 fixed time intervals of 1.3 s. They contacted a grounded electrode and then started to move
 73 down the plate. The slide length and time were set to zero when drops detached from the
 74 electrode. At this point they unavoidably already had a velocity U_0 . Sliding drops were imaged
 75 with a camera in side and front view by using two parallel mirrors. From side-view images, the
 76 positions of the front and rear contact lines, drop velocity, dynamic advancing Θ_a , receding
 77 contact angles Θ_r and the length of the drops were determined. For details about data
 78 processing, we refer to ¹².

79 **S3. Static advancing and receding contact angles**

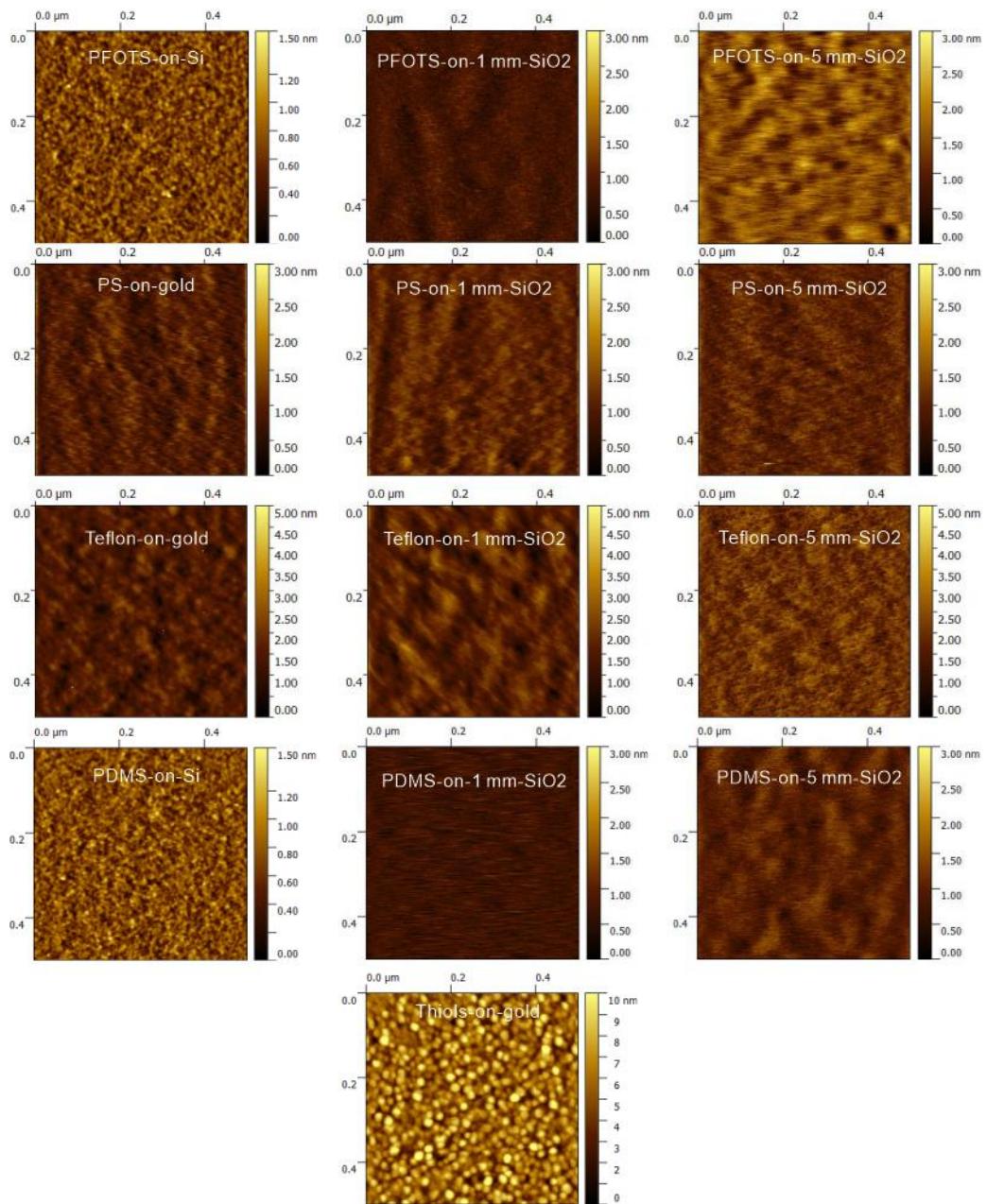
80 **Table S1.** Receding Θ_r^0 and advancing contact angles Θ_a^0 and contact angle hysteresis, $\Delta\Theta =$
 81 $\Theta_a^0 - \Theta_r^0$ for the hydrophobic samples studied.

Coating	Substrate	Name of surfaces	Θ_r^0	Θ_a^0	$\Delta\Theta$
PFOTS	Si	PFOTS-on-Si	87	117	30
	1 mm SiO ₂	PFOTS-on-1mm-SiO ₂	85	115	30
	5 mm SiO ₂	PFOTS-on-5mm-SiO ₂	86	116	30
Polystyrene (20 nm)	Gold	PS-on-gold	80	97	17
	1 mm SiO ₂	PS-on-1mm-SiO ₂	77	93	16
	5 mm SiO ₂	PS-on-5mm-SiO ₂	78	95	17
Teflon AF 1600 (60 nm)	Gold	Teflon-on-gold	109	122	13
	1 mm SiO ₂	Teflon-on-1mm-SiO ₂	110	122	12
	5 mm SiO ₂	Teflon-on-5mm-SiO ₂	110	121	11
PDMS brushes	Si	PDMS-on-Si	88	105	17
	1 mm SiO ₂	PDMS-on-1mm-SiO ₂	86	105	19
	5 mm SiO ₂	PDMS-on-5mm-SiO ₂	87	102	15
Perfluoro-decanethiols	Gold	Thiols-on-gold	95	115	20

82

83

84 **S4. Scanning force microscope imaging**

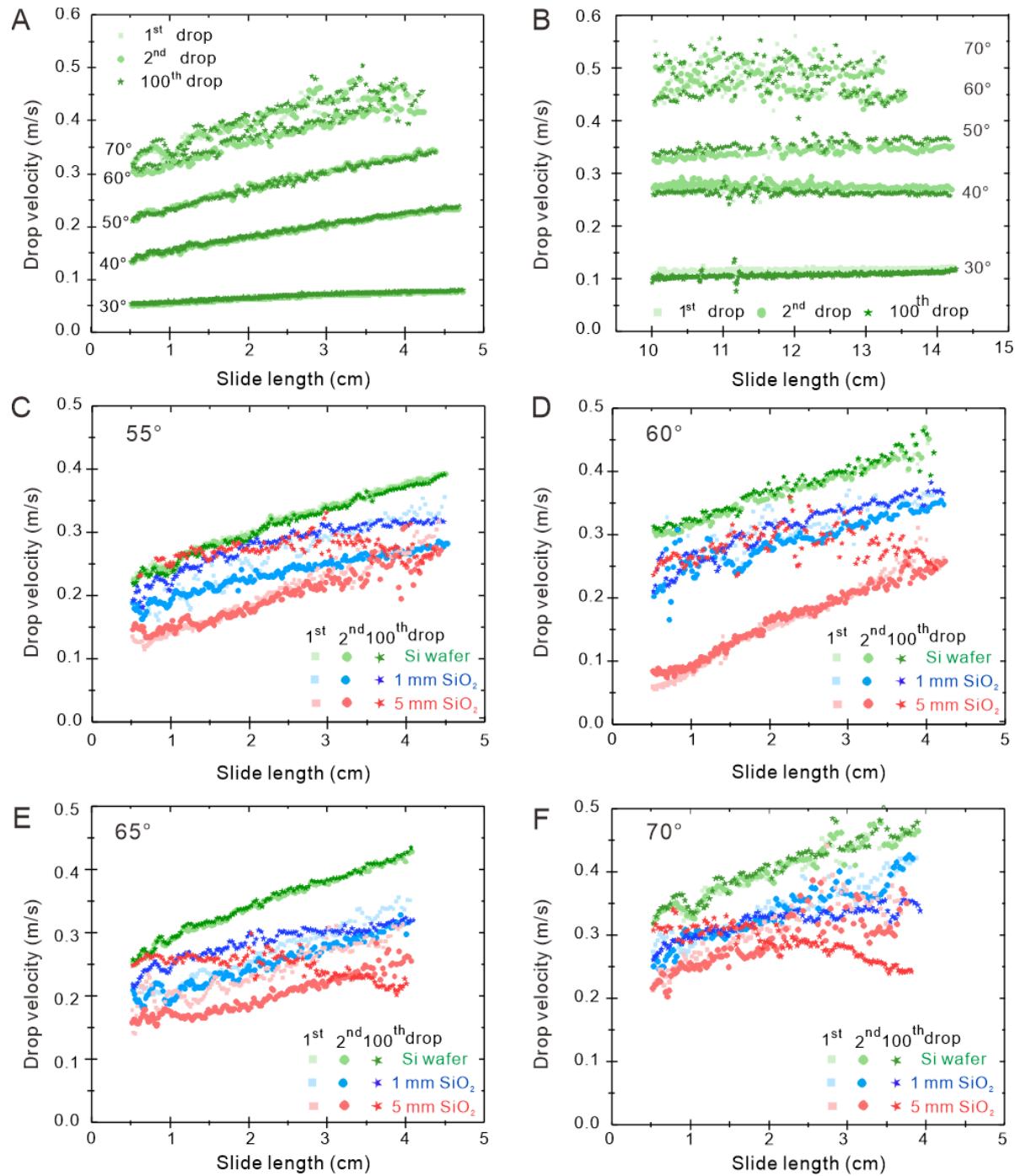


85

86 **Figure S2.** SFM tapping mode images of all hydrophobic surfaces.

87

88 **S5. Drop velocity-versus-slide length for PFOTS-coated surfaces at different tilt
89 angles**



90 **Figure S3.** Representative results for drop velocity-versus-slide length for 33 μL water drops on
91 PFOTS-coated samples. Drops sliding on PFOTS-on-Si the first 5 cm (A) and after having already
92 moved 10 cm (B) at different tilt angles. (C-F) Drops on PFOTS on Si wafer (green symbols), 1
93 mm SiO_2 (blue symbols) and 5 mm SiO_2 (red symbols) deposited at a rate of one drop per 1.3 s
94 measured at 55° (C), 60° (D), 65° (E), and 70° (F) tilt angles. For comparison also the results
95 obtained on Si wafers are plotted as green symbols. Results for drop number 1 (rectangles), 2
96 (circles), and 100 (stars) are plotted.

98 **S6. Direct numerical diffuse interface simulations of drop motion**

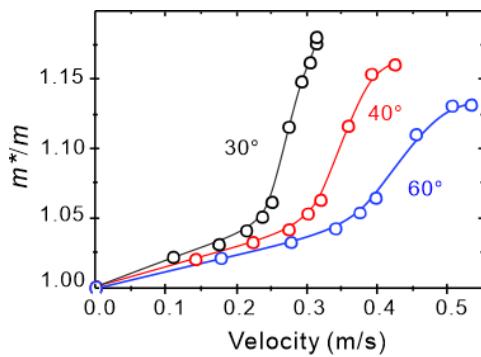
99 Due to the no-slip boundary condition on solid surfaces drops show a rolling component in
100 their motion ¹³⁻¹⁹. To quantify the effective mass of the rolling drop, Direct Numerical
101 Simulations (DNS) ²⁰ deploying a diffuse interface phase-field method were performed. The
102 effective mass is defined by $m^* = 2E_{kin}/U^2$, where E_{kin} is the kinetic energy of the drop. In
103 our DNS, the interface was treated as a diffuse layer through which the fluid properties vary
104 steeply but continuously. On the mesoscopic scale, the motion of the contact line occurs
105 naturally as diffusion across the interface driven by gradients of the chemical potential. In
106 contrast, the conventional sharp-interface model suffers from a non-integrable stress
107 singularity at the sliding contact line ^{21,22}.

108 The results of simulations for three-dimensional droplets on an inclined wall were obtained
109 with phaseFieldFoam, a diffuse interface phase-field solver developed within the OpenFOAM
110 C++ library for computational continuum physics ^{23,24}. The solver has also been enhanced to
111 use a sliding reference-frame technique, to follow the droplet's centre-of-mass, effectively
112 reducing the computational effort.

113 The following properties of the air-water system were used for the simulations: Water density
114 $\rho = 1000 \text{ kg/m}^3$, water dynamic viscosity $\eta = 10^{-3} \text{ Pas}$, air density $\rho_a = 1 \text{ kg/m}^3$, air dynamic
115 viscosity $\eta_a = 10^{-5} \text{ Pas}$, surface tension of water $\gamma = 0.072 \text{ N/m}$. A no-slip boundary condition is
116 applied at the bottom boundary with free-slip boundary conditions being applied on every
117 other boundary.

118 For initialization, a hemispherical drop with radius $R = 2.5 \text{ mm}$ ($V = 32.7 \mu\text{L}$, contact angle of
119 90°) was placed on a $25 \times 10 \text{ mm}^2$ rectangular domain at $(0.0125, 0) \text{ m}$, on a smooth inclined
120 wall. For various inclination angles, the droplet's barycentre position and velocity have been
121 tracked and its kinetic energy density field has been measured. This allowed to calculate both
122 contributions to the total kinetic energy – the translational and rotational kinetic energies.

123 The factor m^*/m slightly changed as a function of barycentre velocity (Figure S4). Initially, the
124 so-called sliding acceleration is greater than the rotational one, leading to a slow increase of
125 m^*/m since the main contribution to the total kinetic energy is from the sliding. The change
126 in slope is more pronounced for lower inclination angles since the sliding acceleration is also
127 lower, when compared to larger inclination angles. After some time, the droplet's sliding
128 acceleration starts to decrease but its angular acceleration is still increasing. Therefore, a
129 steeper increase of m^*/m was observed. Since our calculations of the electrostatic force did
130 not depend sensitively on the precise value of m^*/m , we applied the value of 1.05 throughout
131 our analysis.

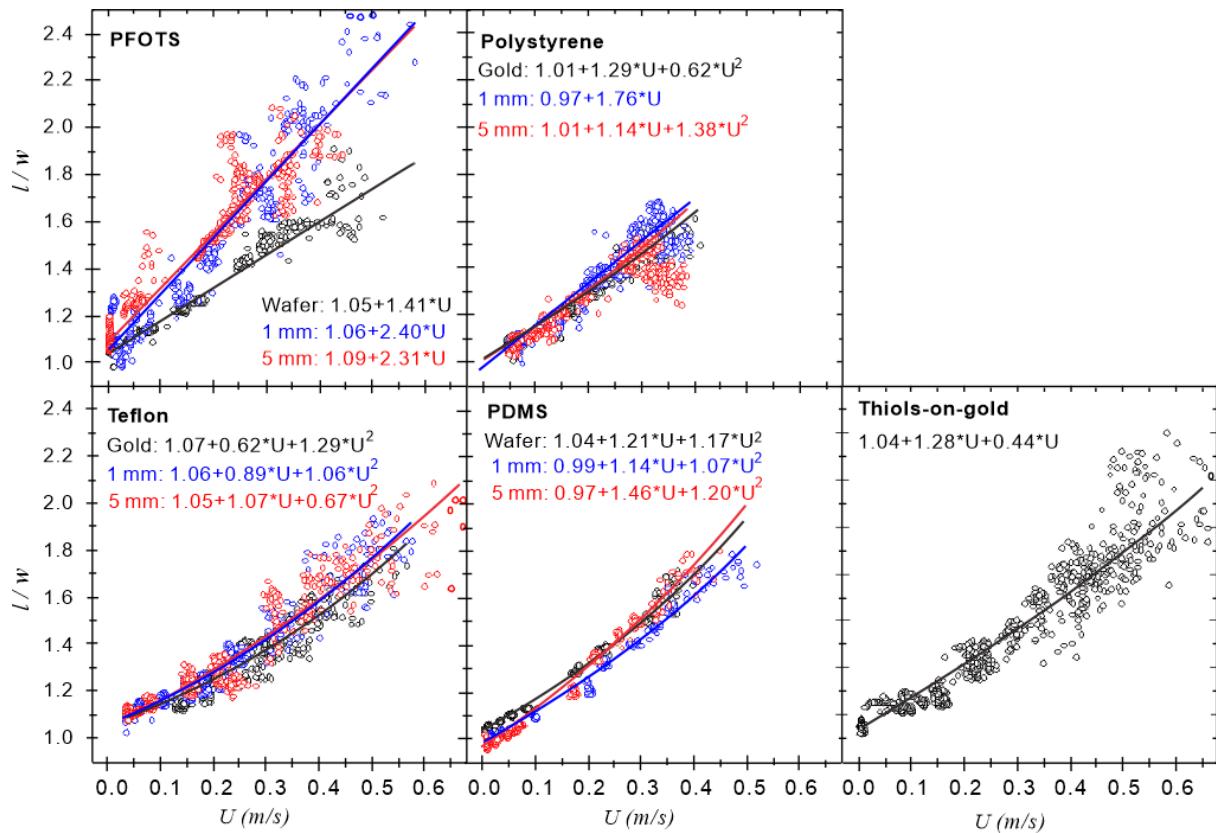


132

133 **Figure S4.** Effective mass m^* divided by real mass m of the drop versus velocity of a $32.7 \mu L$
134 water drop with an initial contact angle of 90° at tilt angles of 30° , 40° , and 60° .

135

136 **S7. Aspect ratio of drops**



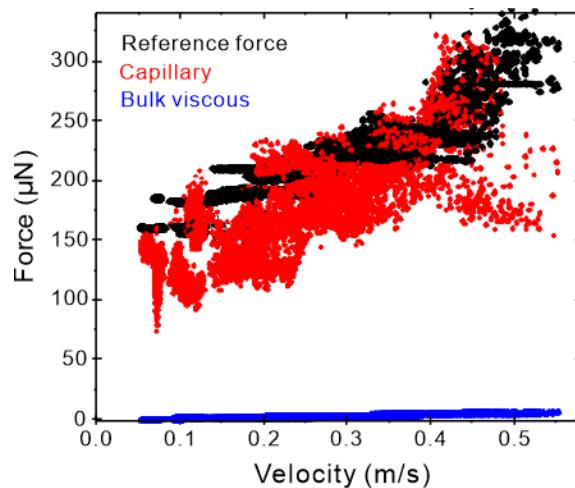
137

138 **Figure S5.** Ratio of length-to-width of the contact area of sliding water drops l/w versus drop
 139 velocity U on different surfaces. The corresponding experiments were carried out at different
 140 tilt angles to span a large velocity range. The equations give the best fits. In some cases, linear
 141 fits were sufficient. In others we used 2nd order polynomial fits.

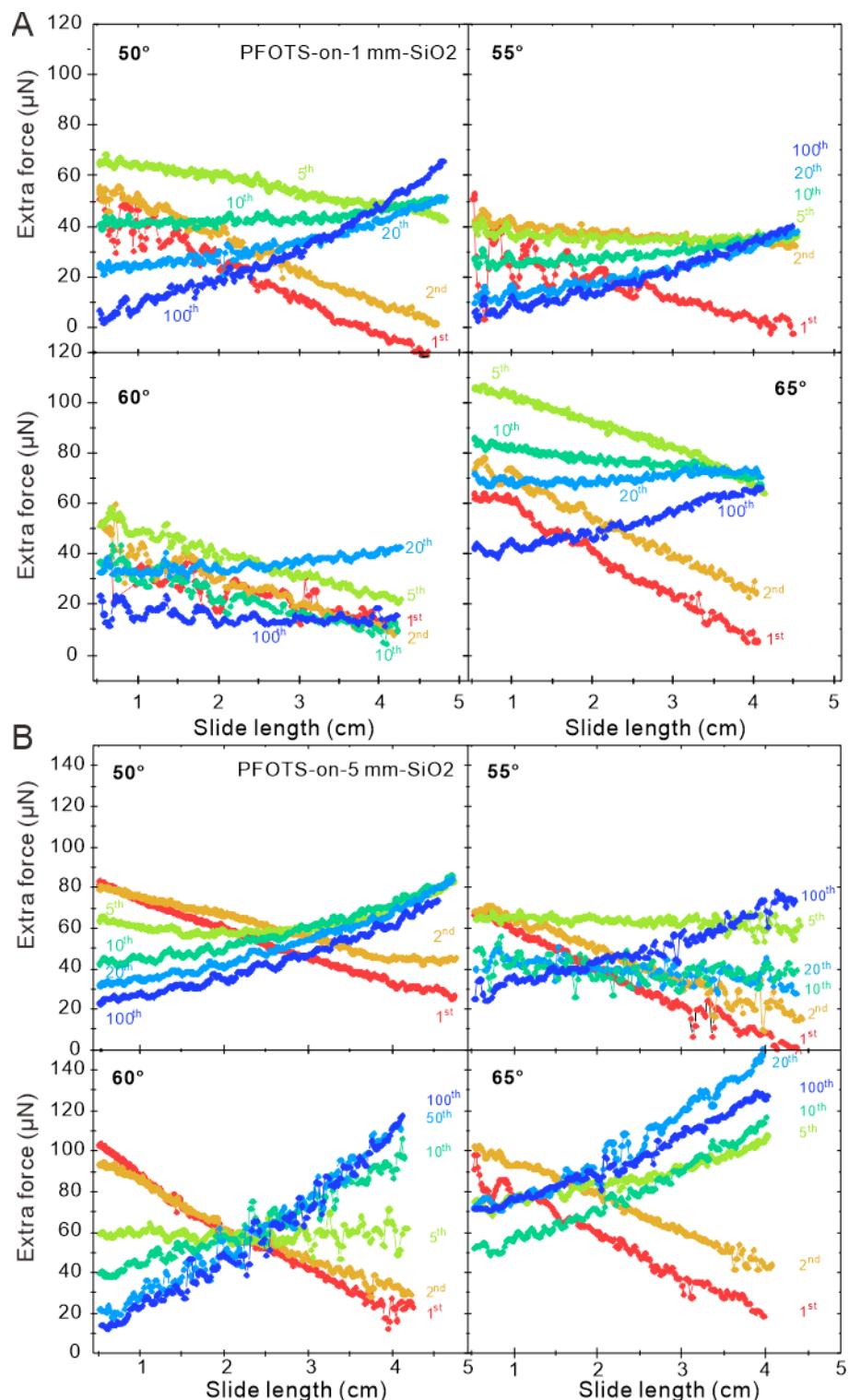
142

143 **S8. Contribution of capillary and bulk viscous force**

144 Although for the analysis of electrostatic force we do not need to know the origin of the
145 reference force, it is still instructive to see how significantly capillary and viscous forces
146 contribute. Therefore, we inserted the respective drop widths, advancing, and receding
147 contact angles into Eq. (1) with $k = 1$, calculated the capillary force (Figure S6, red symbols)
148 and compared it to measured reference forces (Figure S6, black symbols). Capillary forces,
149 which include wedge viscous forces (see SI1), dominate over bulk hydrodynamic viscous forces
150 calculated with Eq. (2) (Figure S6, blue symbols).



151
152 **Figure S6.** Force acting on 33 μL water drops sliding down PFOTS-on-Si versus velocity.
153 Reference forces were calculated with $mg \sin \alpha - m^* \frac{dU}{dt}$ (black symbols) for the respective 2nd
154 and 10th drop for tilt angles ranging from 30° to 70°. Capillary forces were calculated with Eq.
155 (1) and $k=1$. Bulk viscous forces calculated with Eq. (2) (blue). Results of three experiments are
156 plotted. To complete the graphs in particular at high velocity we added results obtained from
157 10-14 cm slide distance, where the drops were close to their steady-state velocity.

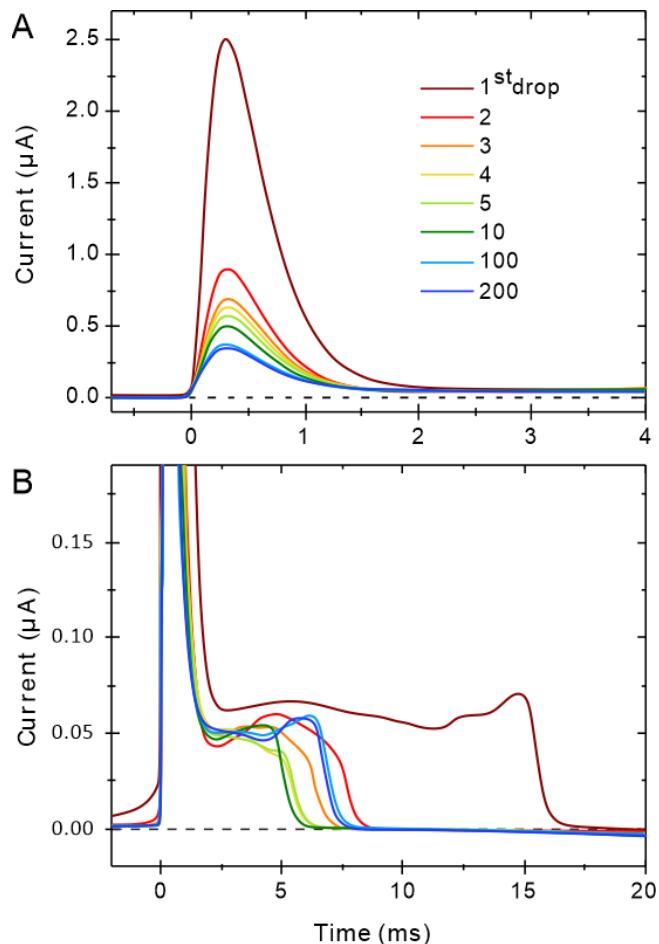
S9. Measured extra force on PFOTS-coated substrates

160 **Figure S7.** Representative extra force acting on water drops on PFOTS-on-1mm-SiO₂ (A) and
 161 PFOTS-on-5mm-SiO₂ (B) measured at different tilt angles. Plotted are results for the 1st, 2nd,
 162 5th, 10th, 20th, 50th and 100th drop. 33 μL drops were deposited at an interval of 1.3 s. Forces
 163 were calculated with Eq. (4) with $m^*/m=1.05$ and $F_r(U) = 156\mu N + 218\frac{\mu N s}{m} U$.

164 **S10. Measurement of drop charges**

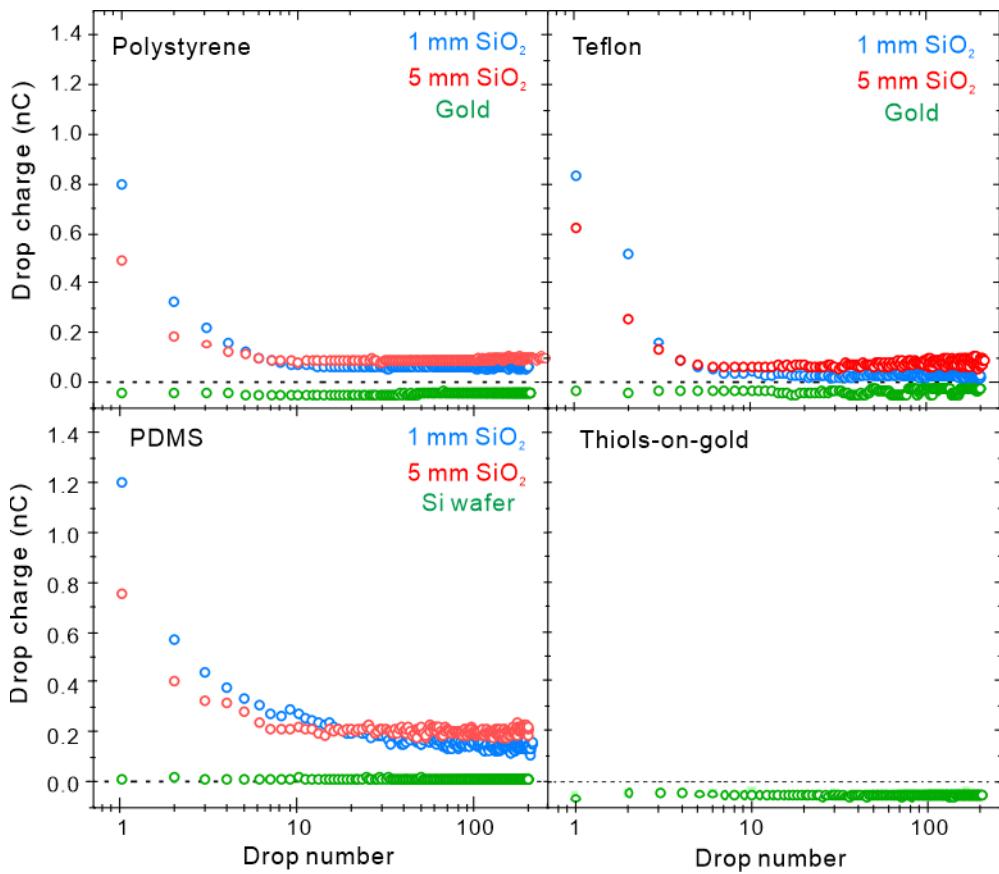
165 Drop charges were measured with a tilted plate setup at fixed tilt angle of 50° (details in ²⁵).
166 Right after deposition, water drops were discharged by touching a grounded electrode at the
167 beginning of their slide path at $L = 0$. After sliding 4 cm, a second electrode measured the
168 drop discharge current via a variable gain sub femto current amplifier (response time: 0.8 ms,
169 DDPCA-300, FEMTO). To reduce noise, the setup was placed in a Faraday cage. Care was taken
170 that the drop disconnected from the electrode before rolling over the end of the sample into
171 a collection dish. Data was recorded using a National Instruments data acquisition card (NI
172 USB-6366 X-Series) and the accompanying LabVIEW software. 45 μL drops were run
173 successively over the surface. A current spike was recorded when each drop touched the
174 electrode (Figure S8). The drop charge was calculated by integrating the current signal over
175 the first 2 ms. Experiments were carried out at a temperature of 21±1°C and a relative
176 humidity of 15-30%.

177 The charge of the first drop in a series Q_1 was the highest (Figure S9). For the following drops,
178 we measured monotonically decreasing charges. After typically 10-50 drops a saturation
179 charge Q_∞ was reached (table S2). Q_1 and Q_∞ depend on the specific sample and varied by
180 30%-50% from sample to sample. A possible reason for this variation could be the surface
181 quality of a particular batch, lab temperature, or humidity on the day of the experiment. To
182 get a first estimate of the initial surface charge density σ_0 , the decay length λ , and the
183 neutralization time τ , we used the methods and the charging model developed in ²⁵. The
184 uncertainty from the charge measurement propagated to the estimation of drop charging
185 parameters. We refined these parameters by comparing the experimental first and 100th drop
186 force-vs-slide length curves with predictions by Eqs. (S14) and (S21), respectively.



187

188 **Figure S8.** Typical current traces detected for a series of 45 μL water drops on PFOTS-on-1mm-
 189 SiO_2 after sliding 4 cm. Currents are plotted at different scales. As the probe electrode touches
 190 a sliding drop at $t = 0$, it discharges the accumulated drop charge within 2 ms, causing a
 191 positive current peak. This positive peak is due to the flow of electrons towards the positively
 192 charged drop, which also implies a negatively charged surface. The total accumulated drop
 193 charge was calculated by integrating the initial current peak of 2 ms. While the drop passes
 194 the probe electrode, a steady-state current of $\approx 0.05 \mu\text{A}$ is generated (B).



195

196 **Figure S9.** Measured drop charge-versus-drop number on 20 nm polystyrene films, 60 nm
 197 Teflon films, PDMS-brushes on different substrates and monolayers of Perfluorodecanethiol on
 198 gold. Results were measured at 50° tilt, 1.5 s intervals between deionized water drops of 45 μ L
 199 volume after 4 cm slide length.

200 On all SiO_2 substrates drops gained a positive charge and deposited a negative charge on the
 201 surfaces. In contrast, on silicon wafers or gold, drop charges were much lower. Charge
 202 separation was highest on PFOTS-coated SiO_2 followed by PDMS and the polymer films. The
 203 saturated drop charge, Q_∞ increased between the 1 mm and 5 mm SiO_2 substrates. This effect
 204 was most pronounced on PFOTS. On silicon wafers charging was \approx 10 times lower. On gold, the
 205 drop charge was even negative. The measured charge values agree well with earlier
 206 experiments on PFOTS-coated glass slides²⁵ and other hydrophobic surfaces.

207

208

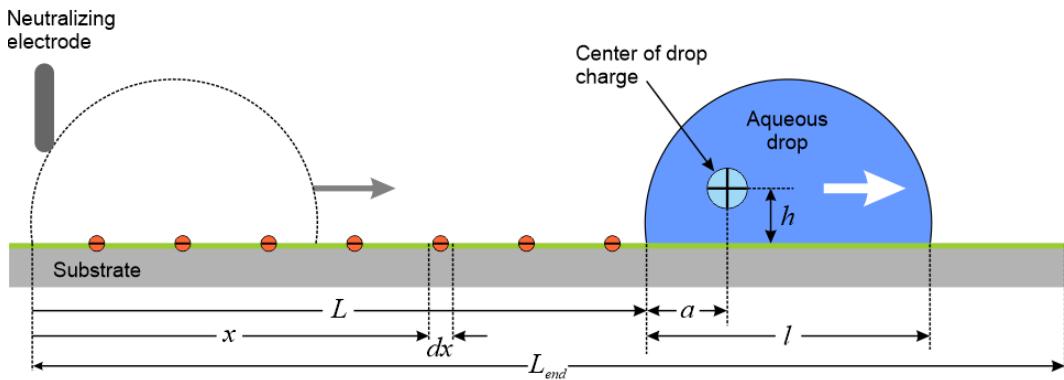
209 **Table S2.** Mean charge of the first drop and drops in steady state in series with 1.5 s time
 210 interval between them. $V = 45 \mu\text{l}$, $\alpha = 50^\circ$, 4 cm slide distance, $T = 21 \pm 1^\circ\text{C}$, RH = 15-30%.

Surfaces	Q_1 nC	Q_∞ nC	τ s	λ cm	σ_0 $\mu\text{C}/\text{m}^2$
PFOTS-on-Si	0.18	0.09			
PFOTS-on-1 mm-SiO ₂	1.4	0.26	12	2	-20
PFOTS-on-5 mm-SiO ₂	1.4	0.45	7	1.5	-20
PS-on-gold	-0.03	-0.04			
PS-on-1 mm-SiO ₂	0.7	0.05	30	2.5	-10
PS-on-5 mm-SiO ₂	0.5	0.07	17	2	-7
Teflon-on-gold	-0.03	-0.02			
Teflon-on-1 mm-SiO ₂	0.7	0.05	70	2.8	-10
Teflon-on-5 mm-SiO ₂	0.7	0.07	20	3	-7
PDMS-on-Si	0.02	0.02			
PDMS-1 mm-SiO ₂	1.2	0.15	12	4	-12
PDMS-5 mm-SiO ₂	0.6	0.2	8	0.9	-12
Thiols-on-gold	-0.05	-0.05			

211

212

213 **S11. Analytical approximation of the electrostatic force on a drop**



214

215 **Figure S10.** Parameters used to calculate the electrostatic force.

216 We derive an expression for the force between a drop bearing a charge Q interacting with a
 217 stripe of surface charges σ distributed over its track of slide length L . We assume the center
 218 of charge of the drop to be at a distance a from the rear side and at a height h (Figure S10). To
 219 obtain the electrostatic force we consider the electric field generated by a charge deposited
 220 at the solid-air interface on top of an infinitely extending solid half space (eq. 3). A surface
 221 charge dq at position x generates an electric field with lateral component

$$222 \quad dE(x, h) = \frac{dq}{2\pi\epsilon_0(\epsilon_S+1)} \frac{L+a-x}{[(L+a-x)^2+h^2]^{3/2}} \quad . \quad (S4)$$

223 This is the field strength at a position $L + a$ along the surface and a height h above the solid
 224 surface. Along its path, the drop deposits a certain surface charge density $\sigma(x)$. Since the local
 225 charge density may vary in a direction perpendicular to the slide direction, σ is taken to be the
 226 mean charge density at position x . The deposited charge can be related to the surface charge
 227 density on the free solid surface by $dq = \sigma w dx$, where w is the width of the contact area of
 228 the drop. Integrating the Coulomb forces of all infinitesimal charge elements dq gives the total
 229 lateral force on the drop:

$$230 \quad F_e^n(L) = \frac{wQ(L)}{2\pi\epsilon_0(\epsilon_S+1)} \left[\int_0^L \frac{(L+a-x)\sigma(x)}{((L+a-x)^2+h^2)^{3/2}} dx - \int_{L+l}^{L_{end}} \frac{(x-L-a)\sigma'(x)}{((x-L-a)^2+h^2)^{3/2}} dx \right] \quad (S5)$$

231 Assuming that $h \ll L+a-x$ we get Eq. (5). Here, the sign convention is that a positive force is
 232 decelerating the drop. The second term in (S5) takes into account surface charges $\sigma'(x)$
 233 situated ahead of the drop which is different from the charge distribution $\sigma(x)$ behind the
 234 drop.

235 To evaluate Eq. (S5), we need to make an assumption about the surface charge distribution.
 236 The simplest case is to assume that the drop only interacts with charges deposited by itself.
 237 This is the case for the first drop in a series. We further assume that the surface charge density
 238 is constant and that no charge on the surface and inside the drop is neutralized. Then, the
 239 charge of the first drop is $Q_1 = -Lw\sigma_1$, leading to an electrostatic force of

$$240 \quad F_e^1(L) = -\frac{Lw^2\sigma_1^2}{2\pi\epsilon_0(\epsilon_S+1)} \left[\frac{1}{\sqrt{a^2+h^2}} - \frac{1}{\sqrt{(L+a)^2+h^2}} \right] \quad . \quad (S6)$$

241 We used the superscript “1” to indicate that this is the first drop sliding down an initially
 242 neutral surface. σ_1 is the surface charge density deposited by the first drop.

243 A constant surface charge density is, however, not realistic. More realistic is a charge density
 244 that saturates exponentially with slide distance ²⁵. Again, considering the first drop and
 245 assuming that a drop only interacts with charges deposited by itself, the corresponding surface
 246 charge density and total charge of the drop can be parametrized as

247
$$\sigma_1 = \sigma_0 e^{-x/\lambda} \text{ and } Q_1 = -w\lambda\sigma_0(1 - e^{-L/\lambda}) \quad (S7)$$

248 Here we assumed that a possible neutralization of the surface is very slow compared to the
 249 sliding time of the drop. Inserting these two expressions into the first term of Eq. (5) leads to

250
$$F_e^1(L) = -\frac{w\lambda\sigma_0(1 - e^{-L/\lambda})w\sigma_0}{2\pi\varepsilon_0(\varepsilon_S + 1)} \int_0^L \frac{e^{-x/\lambda}}{(L+a-x)^2} dx = -C(1 - e^{-L/\lambda}) \int_0^L \frac{e^{-x/\lambda}}{(L+a-x)^2} dx \quad (S8)$$

251 The second term in Eq. (5) was not considered because we only take the charge deposited by
 252 the drop into account; thus, there is no charge ahead of the drop. Here, the constant $C =$
 253 $w^2\sigma_0^2\lambda/[2\pi\varepsilon_0(\varepsilon_S + 1)]$ summarizes all distance-independent parameters. Partial integration
 254 yields

255
$$F_e^1(L) = -C(1 - e^{-L/\lambda}) \left\{ \left[-\frac{e^{-x/\lambda}}{L+a-x} \right]_0^L - \frac{1}{\lambda} \int_0^L \frac{e^{-x/\lambda}}{L+a-x} dx \right\} \quad (S9)$$

256 Substitution with $t = \frac{L+a-x}{\lambda}$ gives

257
$$F_e^1(L) = C(1 - e^{-L/\lambda}) \left\{ \frac{1}{a} e^{-\frac{L}{\lambda}} - \frac{1}{L+a} - \frac{1}{\lambda} e^{-\frac{L+a}{\lambda}} \int_{(L+a)/\lambda}^{a/\lambda} \frac{e^t}{t} dt \right\} \quad (S10)$$

258 The integral in Eq. (S10) has the form of the exponential integral function:

259
$$\text{Ei}(z) = \int_{-\infty}^z \frac{e^t}{t} dt \quad \text{for } z > 0 \quad (S11)$$

260 With this function, we can calculate the force as

261
$$F_e^1(L) = C(1 - e^{-L/\lambda}) \left\{ \frac{1}{a} e^{-\frac{L}{\lambda}} - \frac{1}{L+a} - \frac{1}{\lambda} e^{-\frac{L+a}{\lambda}} \left[\text{Ei}\left(\frac{a}{\lambda}\right) - \text{Ei}\left(\frac{L+a}{\lambda}\right) \right] \right\} \quad (S12)$$

262 To evaluate this expression, the series representation of the exponential integral can be
 263 employed,

264
$$\text{Ei}(z) = 0.5772 + \ln(|z|) + \sum_{n=1}^{\infty} \frac{z^n}{n! n}, \quad (S13)$$

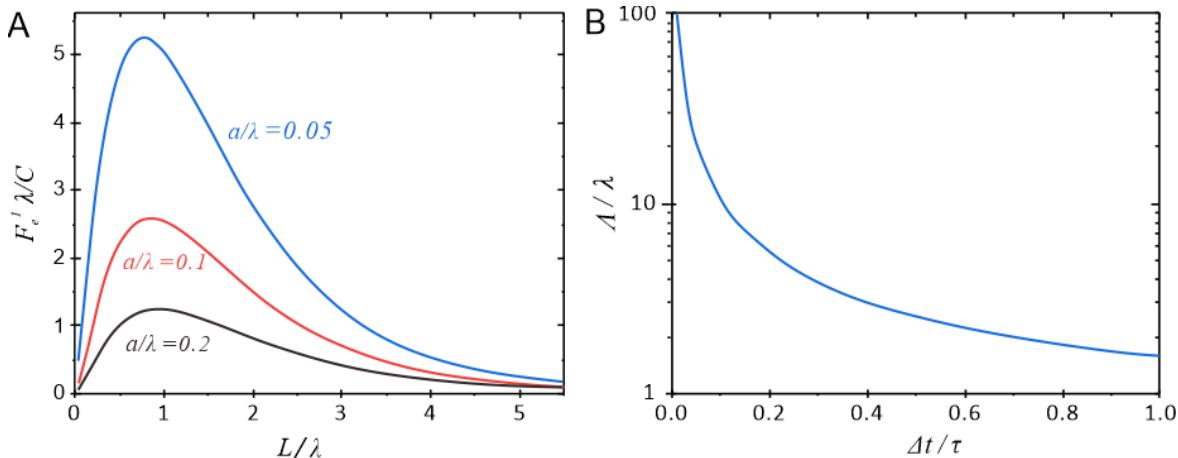
265 where 0.5772 is the Euler-Mascheroni constant. Using Eq. (S13), we can write

266
$$F_e^1(L) = \frac{C}{\lambda} (1 - e^{-L/\lambda}) \left\{ \frac{1}{a} e^{-\frac{L}{\lambda}} - \frac{1}{L+a} - e^{-\frac{L+a}{\lambda}} \left[\ln\left(\frac{a}{L+a}\right) + \sum_{k=1}^{\infty} \frac{a^k - (L+a)^k}{\lambda^k k! k} \right] \right\} \quad (S14)$$

267 For large arguments, convergence of this series can be slow. For example, to reach an accuracy
 268 of 5% and 1% at $z = 5$ one needs to take $n = 8$ and 10 terms, respectively. For $z = 10$ the series
 269 needs to be considered up to $n = 14$ and 16, respectively. Many modern mathematical

270 programs, such as Wolfram Alpha or IgorPro (Wavemetrics) provide built-in functions for the
271 effective numerical computation of the exponential integral function.

272 The distance-dependent part of Eq. (S14) (Dimensionless force) is plotted in figure S11A. A
273 maximum is observed at $L/\lambda \approx 0.8$. The force decreases with increasing a/λ ; thus, the more
274 the center of charge is shifted towards the rear of the drop, the stronger the electrostatic
275 retardation becomes. This strong dependence on a/λ results from interactions with surface
276 charges in the close vicinity of the drop, for which the analytical model is not realistic. To
277 better quantify these near-field interactions, we have developed the numerical model
278 described in the following section. In terms of the analytical model, a is regarded as a
279 parameter that describes the near-field interactions in an effective manner.



280
281 **Figure S11.** (A) Plot of dimensionless force $F_e^1 \lambda / C$ versus L / λ for $a / \lambda = 0.05$, 0.1 and 0.2
282 calculated with Eq. S14. (B) Ratio of λ / λ -versus- $\Delta t / \tau$ calculated with Eq. (S15).

283 For a succession of drops sliding over the surface at time intervals Δt , the charge distribution
284 and the drop charge are altered by the presence of surface charges of previous drops. Once
285 deposited, the surface charge is neutralized with a characteristic neutralization time τ . To
286 calculate the charge distribution for following drops, a recursive approach is required. Thus, a
287 closed analytical description for the electrostatic force on successive drops is difficult.
288 Nevertheless, a relatively simple analytical description is possible for the saturated drop
289 charge distribution after a large number ($n \rightarrow \infty$) of drops. Here, the surface charge density
290 and the drop charge are given by²⁵:

291
$$\sigma_\infty(x) = \sigma_0 e^{-x/\Lambda}, Q_\infty(L) = -\sigma_0 \lambda w(1 - e^{-L/\Lambda}) \text{ with } \Lambda = \frac{\lambda}{1 - e^{-\Delta t/\tau}} \quad . \quad (S15)$$

292 For short time intervals the modified saturation distance, Λ , is much larger than the initial
293 saturation distance, λ (Figure S11B). With increasing drop interval time, $\Delta\tau$, Λ decreases and
294 eventually approaches the initial λ for $\Delta t/\tau \gg 1$.

295 Using these expressions, we calculate the electrostatic force caused by the charges behind the
296 drop in analogy to Eq. (S14):

297
$$F_{eb}^{\infty}(L) = \frac{C}{\Lambda} \left(1 - e^{-L/\Lambda}\right) \left\{ \frac{\Lambda}{a} e^{-\frac{L}{\Lambda}} - \frac{\Lambda}{L+a} - e^{-\frac{L+a}{\Lambda}} \left[Ei\left(\frac{a}{\Lambda}\right) - Ei\left(\frac{L+a}{\Lambda}\right) \right] \right\}$$

298
$$= \frac{C}{\Lambda} \left(1 - e^{-L/\Lambda}\right) \left\{ \frac{\Lambda}{a} e^{-\frac{L}{\Lambda}} - \frac{\Lambda}{L+a} - e^{-\frac{L+a}{\Lambda}} \left[\ln\left(\frac{a}{L+a}\right) + \sum_{k=1}^{\infty} \frac{a^k - (L+a)^k}{\Lambda^k k! k} \right] \right\} \quad (S16)$$

299 In addition, surface charges ahead of the drop are accelerating the drop. Their contribution is
300 given by

301
$$F_{eb}^{\infty}(L) = \frac{\sigma_0^2 w^2 \lambda}{2\pi\epsilon_0(\epsilon_S+1)} e^{-\Delta t/\tau} \left(1 - e^{-L/\lambda}\right) \int_{L+l}^{L_{end}} \frac{\sigma}{(x-L-a)^2} dx$$

302
$$= C e^{-\Delta t/\tau} \left(1 - e^{-L/\lambda}\right) \int_{L+l}^{L_{end}} \frac{e^{-x/\lambda}}{(x-L-a)^2} dx. \quad (S17)$$

303 The factor $e^{-\Delta t/\tau}$ takes into account that after the time interval Δt the charge left by the
304 previous drop has been partially neutralized.

305 Partial integration and substitution with $t = -(x - L - a)/\Lambda$ gives

306
$$F_{eb}^{\infty}(L) = C e^{-\Delta t/\tau} \left(1 - e^{-L/\lambda}\right) \left\{ \left[\frac{e^{-x/\lambda}}{x-L-a} \right]_{L+l}^{L_{end}} + \frac{1}{\Lambda} e^{-\frac{L+a}{\Lambda}} \int_{-(l-a)/\Lambda}^{-(L_{end}-L-a)/\Lambda} \frac{e^t}{t} dt \right\} \quad (S18)$$

307 Here, the argument of the exponential integral as defined in Eq. (S11) is negative. We
308 therefore have to use the following function

309
$$Ei(-z) = -E_1(z) = - \int_z^{\infty} \frac{e^{-t}}{t} dt \quad \text{for } z > 0 \quad (S19)$$

310 Where $E_1(z)$ is defined as

311
$$E_1(z) = -0.5772 - \ln(|z|) - \sum_{n=1}^{\infty} \frac{(-z)^n}{n! n}$$

312 Using these definitions, we get:

313
$$F_{eb}^{\infty}(L) = \frac{C}{\Lambda} e^{-\Delta t/\tau} \left(1 - e^{-L/\lambda}\right) \left\{ \frac{\Lambda e^{-L_{end}/\Lambda}}{L_{end}-L-a} - \frac{\Lambda e^{-\frac{L+1}{\Lambda}}}{l-a} - e^{-\frac{L+a}{\Lambda}} \left[E_1\left(\frac{L_{end}-L-a}{\Lambda}\right) - E_1\left(\frac{l-a}{\Lambda}\right) \right] \right\}$$

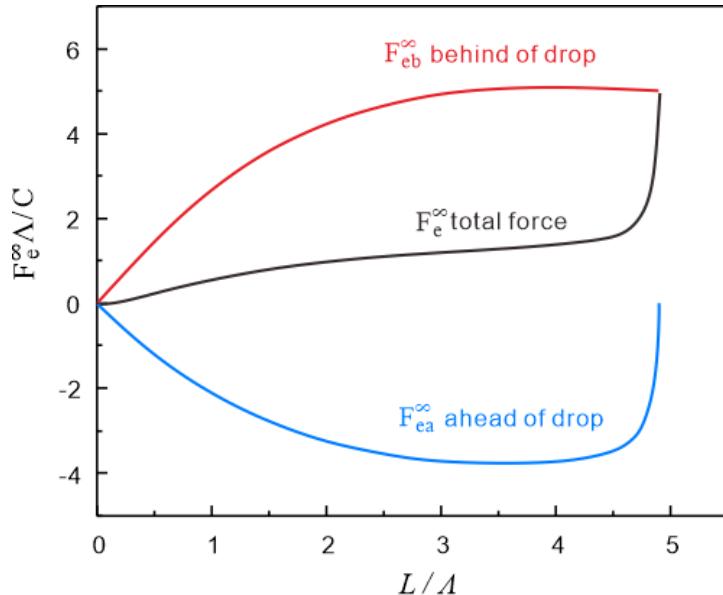
314
$$= \frac{C}{\Lambda} e^{-\Delta t/\tau} \left(1 - e^{-L/\lambda}\right) \left\{ \frac{\Lambda e^{-\frac{L_{end}}{\Lambda}}}{L_{end}-L-a} - \frac{\Lambda e^{-\frac{L+1}{\Lambda}}}{l-a} - e^{-\frac{L+a}{\Lambda}} \left[\ln\left(\frac{l-a}{L_{end}-L-a}\right) + \sum_{k=1}^{\infty} \frac{(L_{end}-L-a)^k - (l-a)^k}{\Lambda^k k! k} \right] \right\}$$

315
$$\quad (S20)$$

316 The total electrostatic force acting on drop number $n > 50$ is the sum of both contributions:

317
$$F_e^{\infty}(L) = F_{ea}^{\infty}(L) + F_{eb}^{\infty}(L) \quad \text{for } L < L_{end} - l. \quad (S21)$$

318 The different contributions to the total force are shown in Figure S12 Interestingly, the
319 accelerating force of the charges ahead of the drop is stronger at the beginning before the
320 decelerating force of the charges behind the drop start to dominate. At the end of the slide
321 path, there are no more charges ahead and the accelerating force contribution vanishes at
322 $L_{end} - l$, leading to a steep increase in the drop force.

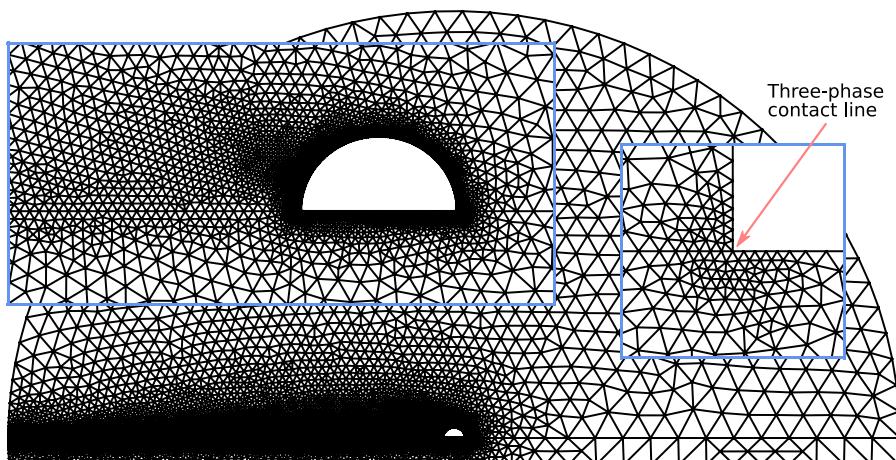


323

324 **Figure S12.** Dimensionless force $F_e^\infty \Lambda/C$ on a drop after a long (>50) succession of drops as a
 325 function of slide length normalized with respect to the saturation length, L/Λ . The total force
 326 acting on the drop (black curve) consists of an accelerating force coming from charges ahead
 327 of the drop (blue curve) and a decelerating force from charges behind the drop (red curve).
 328 Parameters used in this example: $\Lambda = 4$ cm, $w = 4$ mm, $l = 5$ mm, $a = 2$ mm, $L_{end} = 20$ cm.

329 **S12. Numerical computation of the electrostatic force on a drop**

330 One of the assumptions in Eq. (5) was to neglect the presence of the grounded back-electrode.
 331 To account, among other things, for the presence of the back electrode, we carried out
 332 numerical calculations of the electric field distribution based on Poisson's equation and the
 333 electrostatic force. As it turned out, by choosing the position of the center of charge in the
 334 drop appropriately we can account for the presence of the back electrode. In figure S13 the
 335 two-dimensional simulation domain and the mesh are displayed. The domain includes the
 336 substrate, the drop, and the surrounding air.



337

338 **Figure S13.** Overview of the simulation domain and the grid including the substrate, the drop,
339 and the surrounding air, compare figure S10. The insets display the finer mesh around the drop
340 and the highly refined mesh around the contact line (the physical height shown in the latter
341 inset is 1 μm).

342 The fundamental equation of electrostatics is Gauss's law. If the media are linear, isotropic,
343 homogeneous and do not carry a space charge we end up with Poisson's equation $\Delta\varphi = 0$ in
344 the surrounding air and in the substrate, with appropriate boundary conditions at the
345 interfaces between different materials.

346 We assume that the drop is a conductor and can be modelled as a surface with a constant
347 potential φ_{drop} . Even for non-conductive bodies with a dielectric permittivity much higher
348 than their surrounding (such as water) this boundary condition is a good approximation. The
349 value of φ_{drop} cannot be specified directly but is given implicitly by the total charge of the
350 drop Q . Q and φ_{drop} are related by solving Poisson's equation and integrating $\int_{drop} \varepsilon_0 \vec{E} \cdot \vec{n} ds$ along the surface of the drop; here ε_0 is the vacuum permittivity and \vec{n} and ds are the
351 normal vector and the infinitesimal line element along the drop's surface, respectively. To fix
352 the potential on the drop's surface, we iteratively vary φ_{drop} until the calculated drop charge
353 is equal to the real drop charge.

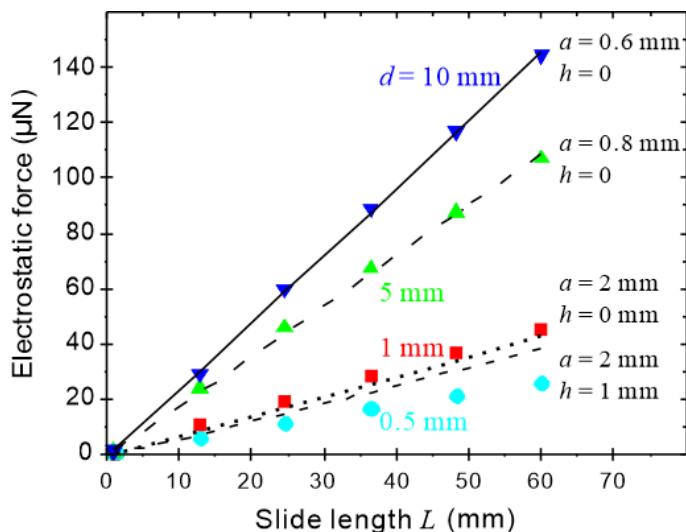
355 At the interface between the substrate and air the electric field needs to fulfil the boundary
356 condition $-(\varepsilon_s \vec{\nabla} \varphi_s - \vec{\nabla} \varphi_a) \cdot \vec{n} = \frac{\sigma(x)}{\varepsilon_0}$, where ε_s is the dielectric permittivity of the substrate,
357 $\sigma(x)$ is the surface charge density on the substrate, \vec{n} is the normal vector of the substrate,
358 and φ_s and φ_a are the electrostatic potentials infinitesimally away from the solid surface
359 inside the substrate and inside air, respectively. To complete the set of boundary conditions,
360 we assume that the surrounding circular boundaries are far away and that the normal
361 component of the electric field vanishes in the far field, $\vec{\nabla} \varphi_{farfield} \cdot \vec{n} = 0$. We further
362 assume that the electrode below the substrate is grounded, $\varphi_{electrode} = 0$. After the electric
363 field fulfilling the equations and the boundary conditions above is obtained, the electrostatic
364 force acting on the drop can be calculated from the integral of the Maxwell stress tensor on
365 the drop's surface $F_e = \frac{\varepsilon_0}{2} \int_{drop} \vec{E}^2 \vec{n} \cdot \vec{n}_x ds$, where \vec{n}_x is the normal vector pointing in sliding
366 direction.

367 We implemented the equations and boundary conditions above in variational form into the
368 open-source software package FEniCS ²⁶. The solution was obtained by the common finite-
369 element method. To determine the potential on the drop surface φ_{drop} we solved a tracking-
370 type optimal control problem utilizing *dolfin-adjoint* to automatically compute the gradient ²⁷.
371 The finite-element mesh was generated with *Gmsh* (<https://gmsh.info/>). The mesh was
372 systematically refined around the substrate-air interface as well as the drop-air interface with
373 cell sizes as low as 50 μm . In the contact line region the minimal cell size was only 50 nm, see
374 the right inset in figure S13.

375 The problem parameters include the drop shape and size, contact angle, sliding length, charge
 376 distribution, substrate thickness, and dielectric permittivity of the solid. Here, we consider a
 377 fixed, circular-arc shaped drop with contact angles $\Theta_a = \Theta_r = 90^\circ$ and diameter $w = 4$ mm
 378 on a substrate with $\varepsilon_s = 3.9$. The charge density behind the drop is supposed to be
 379 homogenous and constant at $\sigma = 5 \mu\text{C}/\text{m}^2$. There is no surface charge ahead of the drop. The
 380 resulting electrostatic force is plotted versus the sliding length L in figure S14 (symbols) for
 381 different substrate thicknesses. The electrostatic force scales linearly with slide length. With
 382 decreasing thickness of the substrate, the screening influence of the electrode becomes
 383 stronger, which results in lower overall electrostatic forces acting on the drop.

384 In figure S14 we also compare electrostatic forces calculated with the analytical model (black
 385 lines, Eq. S5) with the numerically calculated forces (symbols). The analytical model and the
 386 simulations predict the same linear scaling of the force with the sliding length. As long as h is
 387 small the influence of h on the resulting force is negligible (lines, Figure S14); therefore, we
 388 set $h=0$. Furthermore, it turned out that, by shifting the effective drop charge away from the
 389 drop's center to different horizontal positions a , the analytical model can fit the simulations.
 390 Thus, phenomenologically we can take the presence of a back-electrode into account by
 391 choosing the right value of a . One reason for this could be that for a vanishing substrate
 392 thickness the charge on the drop surface is symmetrically distributed (which results in a
 393 vanishing horizontal force on the drop, compare the smaller forces for thinner substrates in
 394 Figure S14), whereas for larger thicknesses the charges on the substrate induce significant
 395 charges at the rear end of the drop. In addition, our simulations show that a large fraction of
 396 the charges is located in the utmost vicinity of the contact line.

397 In summary, the numerical calculations confirm the validity and scaling of Eq. (5). Good
 398 agreement was achieved when the center of charge of the drop was placed directly on the
 399 surface ($h = 0$). The choice of the parameter a is dictated by the thickness of the substrate.
 400 We find that for 1 mm and 5 mm thick substrates, setting $a = 2$ mm and $a = 0.8$ mm,
 401 respectively, can mimic the shielding effect of the back electrode.

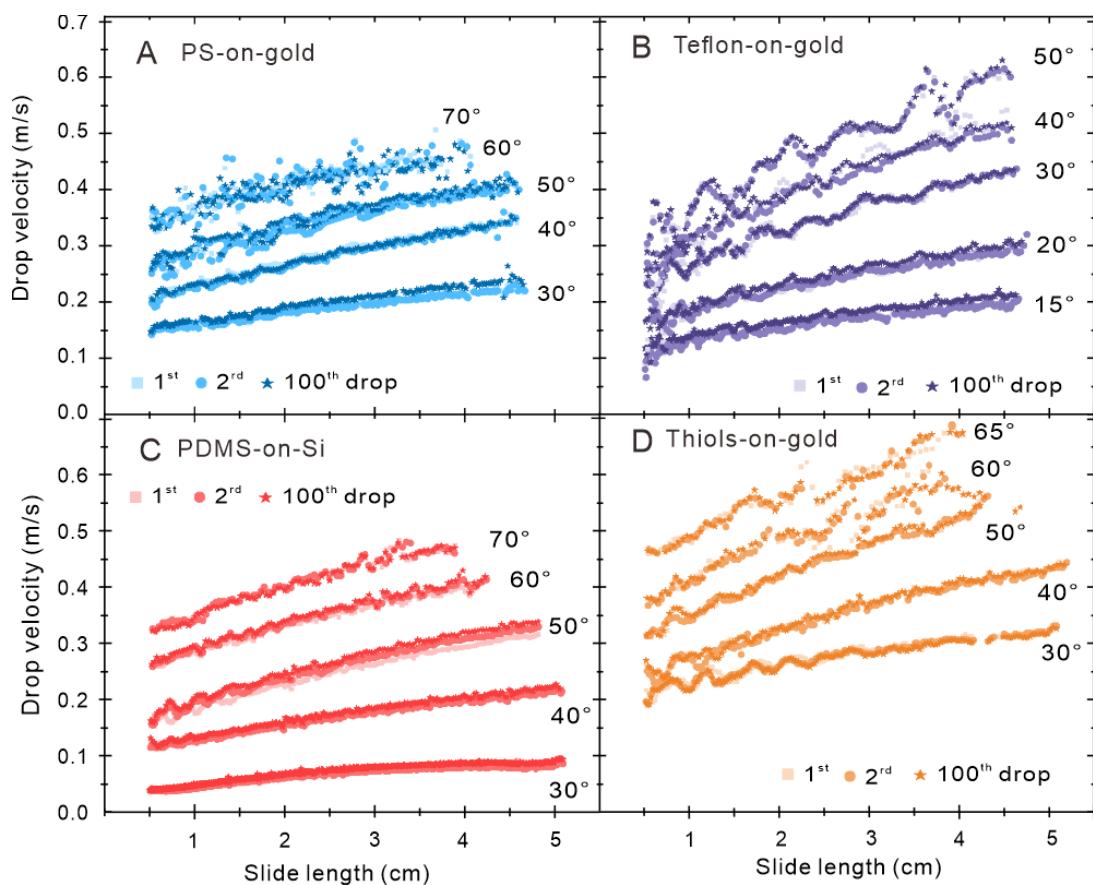


402

403 **Figure S14.** Electrostatic force on a drop calculated from the solution of Poisson's equation
404 (symbols) and the analytical model for different positions of the effective point charge (eq. S6,
405 lines) as well as slide lengths L and substrate thicknesses d . Here we assumed a constant
406 charge density for the deposited charge of $\sigma_1 = 5 \mu\text{C}/\text{m}^2$ behind the drop.

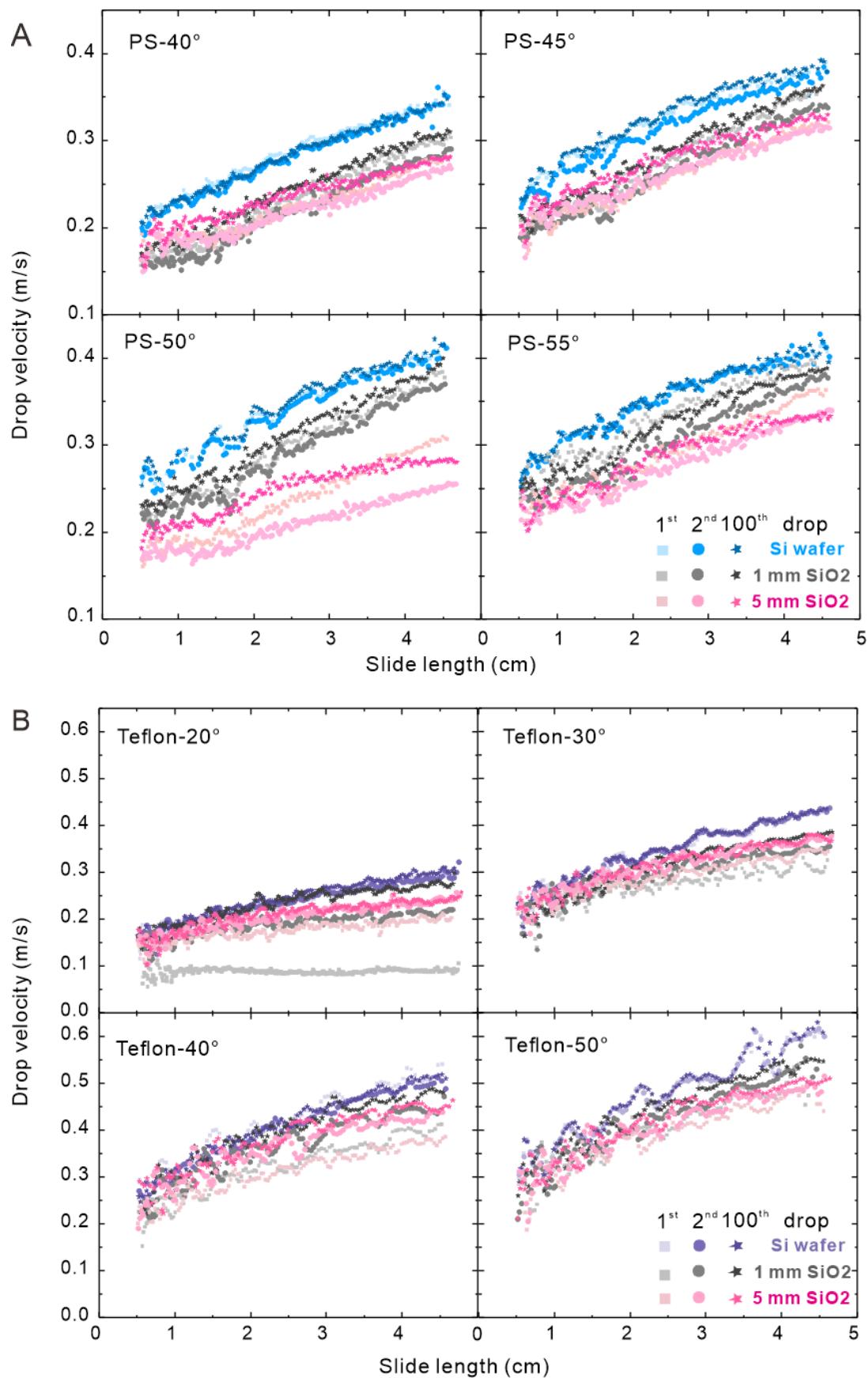
407

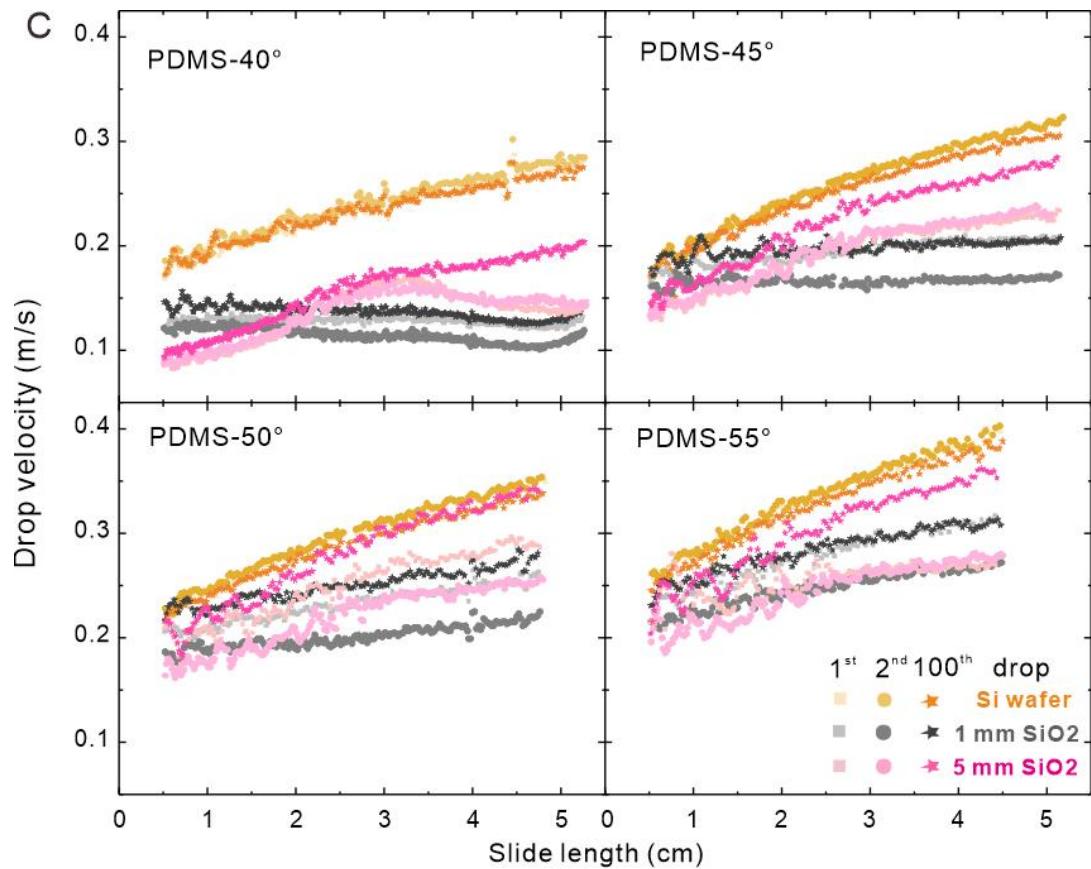
408 **S13. Drop velocity profiles on conducting and high-permittivity substrates of PS,**
 409 **Teflon, PDMS, and thiol-coated surfaces**



410
 411 **Figure S15.** Representative results for drop velocity-versus-slide length measured at different
 412 tilt angles. (A) 20 nm PS films on gold, (B) 60 nm thick Teflon films on gold, (C) PDMS on silicon
 413 wafers, and (D) Perfluorodecanethiol on gold. Results for drop number 1 (rectangle), 2 (circle),
 414 and 100 (star) are plotted. The lower tilt angle was given by the requirement that drops slide
 415 at all; at lower tilt angles the drops did not move. The maximal tilt angle was given by the
 416 requirement of having a stable steady state shape of the drop. At higher tilt angles and thus
 417 higher velocities the drop shape analysis started to fail.

418



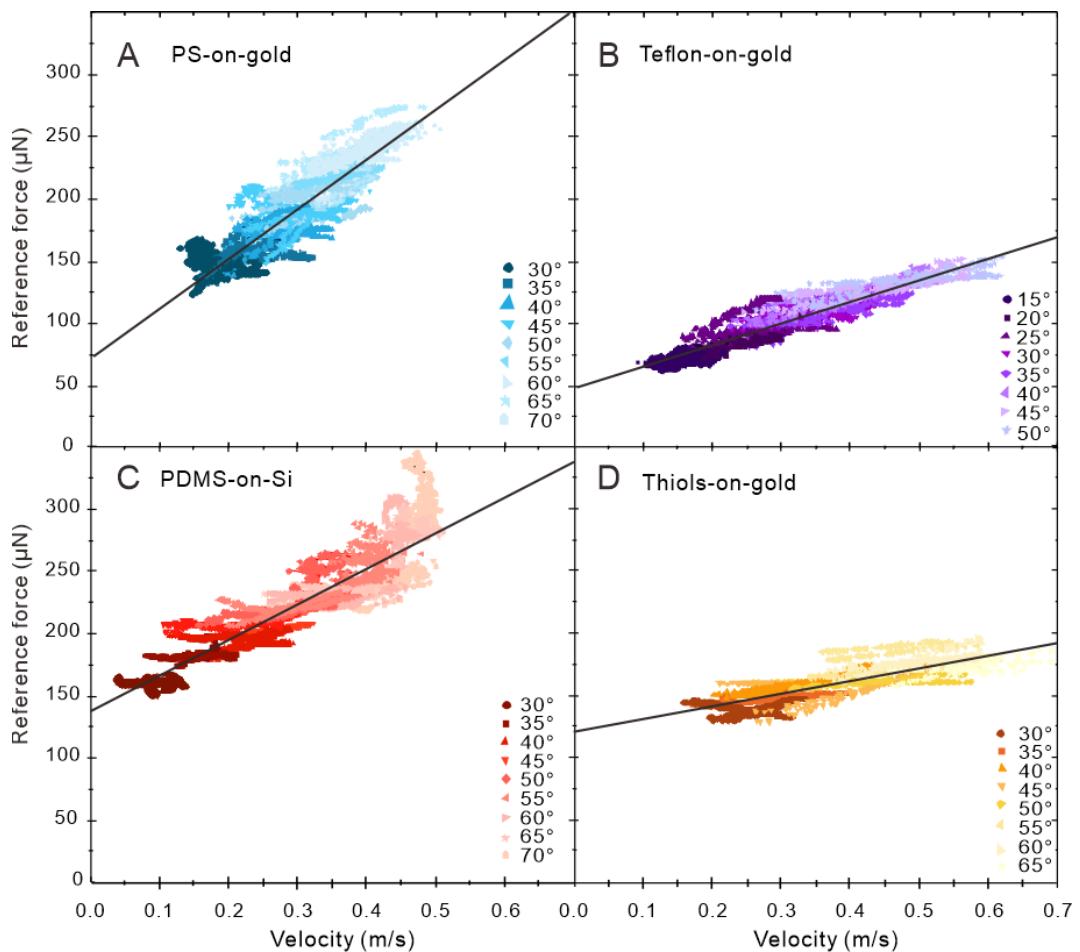


420

421 **Figure S16.** Representative results for drop velocity-versus-slide length measured at different
 422 tilt angles. (A) 20 nm PS films, (B) 60 nm thick Teflon films, and (C) PDMS on 1 mm SiO₂ (blue
 423 symbols) and 5 mm SiO₂ (red symbols). For comparison also the results obtained on Si wafers
 424 (A) or gold (B, C) are plotted as black symbols. Results for drop number 1 (rectangle), 2 (circle),
 425 and 100 (star) are plotted.

426

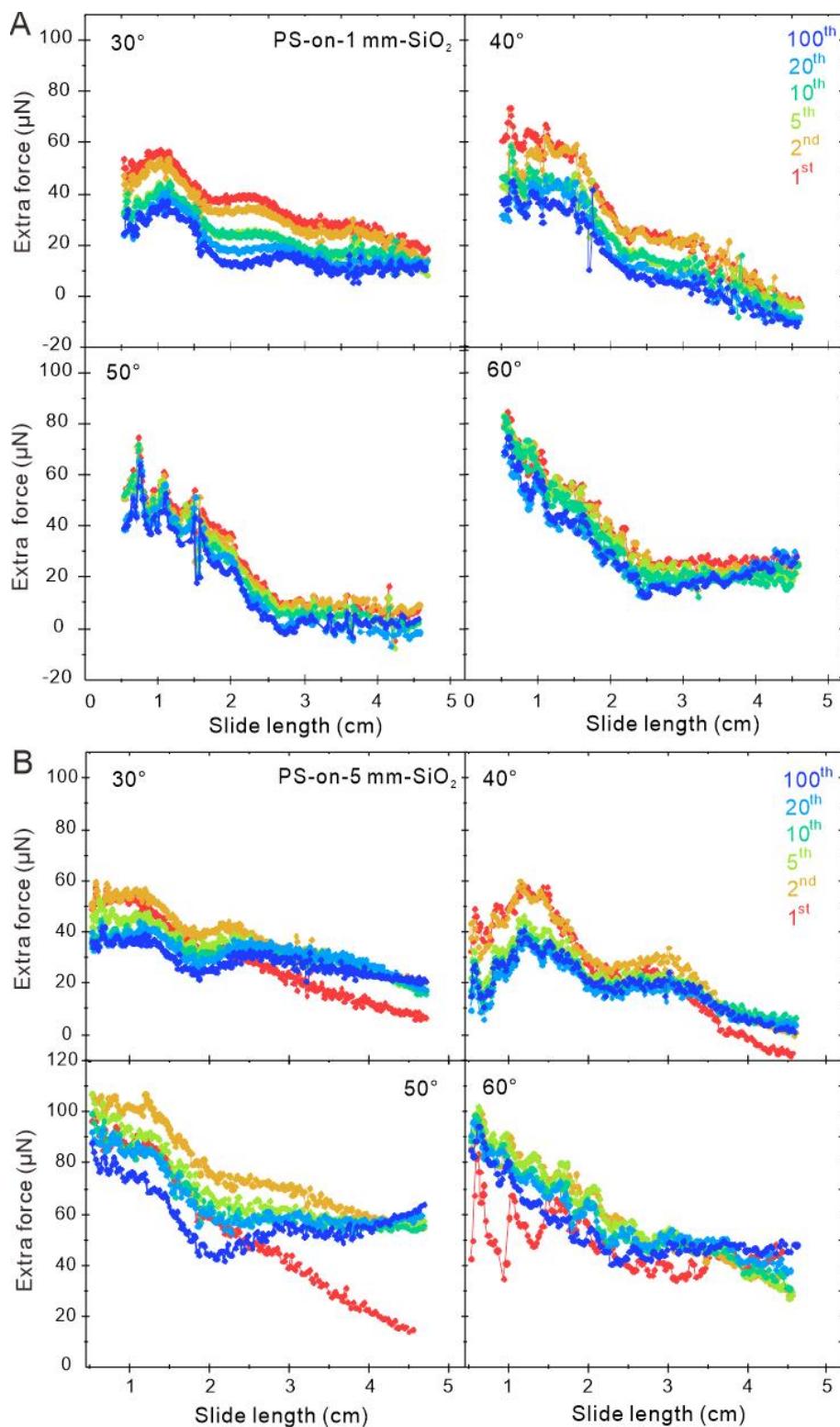
427 **S14. Reference forces for PS, Teflon, PDMS, and thiol-coated surfaces**



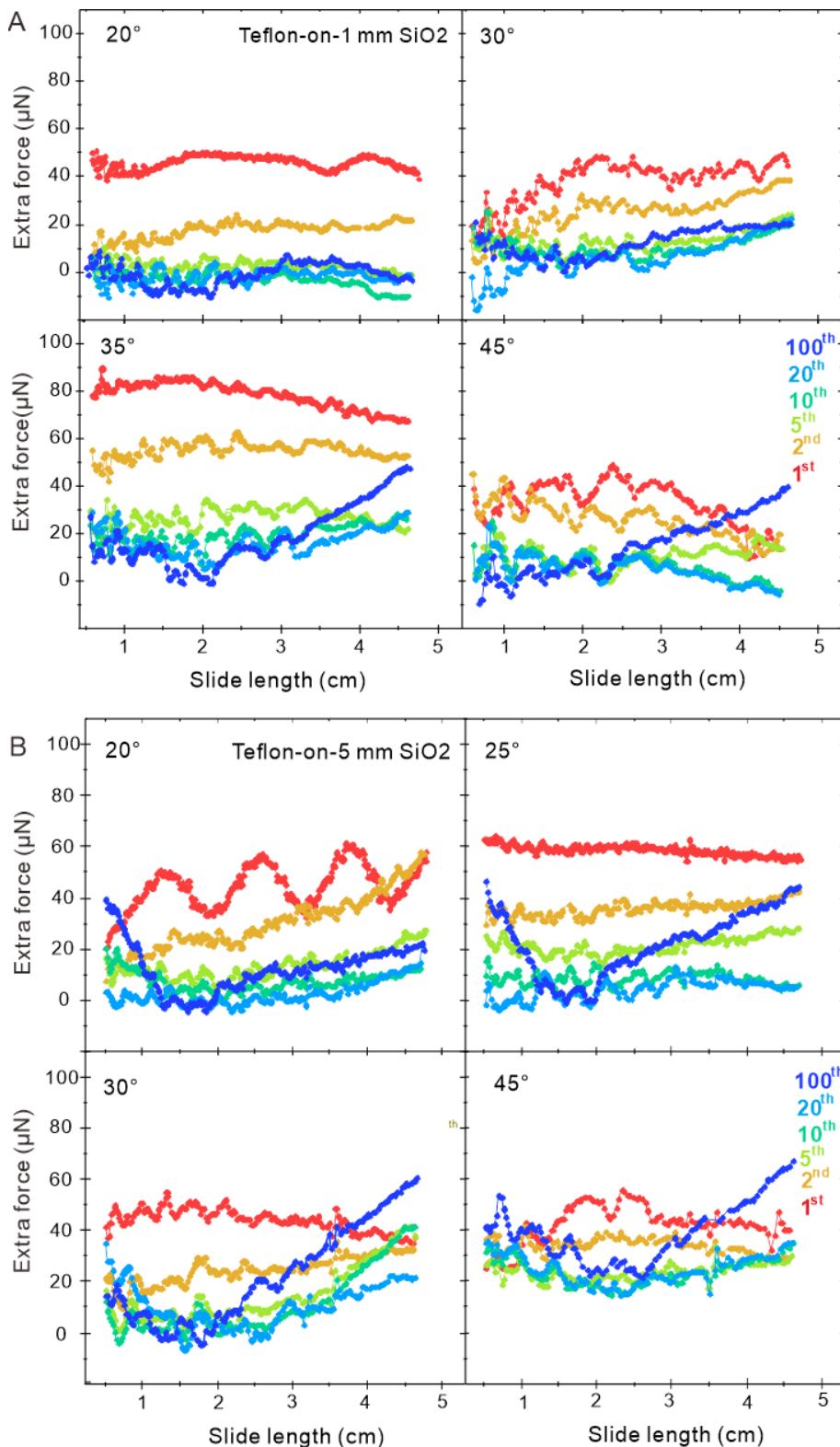
428

429 **Figure S17.** Reference forces measured on different substrates and the linear fit (black lines)
430 derived from velocities up to 0.4 m/s. (A) PS-on-gold fitted by $F_r = 74 \mu\text{N} + 398 \frac{\mu\text{Ns}}{\text{m}} \cdot U$, (B)
431 Teflon-on-gold fitted with $F_r = 48 \mu\text{N} + 175 \frac{\mu\text{Ns}}{\text{m}} \cdot U$, (C) PDMS-on-Si fitted by $F_r =$
432 $141 \mu\text{N} + 269 \frac{\mu\text{Ns}}{\text{m}} \cdot U$, and (D) thiols-on-gold fitted with $F_r = 120 \mu\text{N} + 103 \frac{\mu\text{Ns}}{\text{m}} \cdot U$. The
433 water drops of 33 μL volume were deposited at 1.3 s intervals. The results were obtained from
434 the respective 2nd and 10th drop for tilt angles of between 15 and 70°. To complete the graph
435 in particular at high velocity we added results obtained from 10-14 cm slide distance, where
436 the drops had reached or were close to their steady state velocity.

437

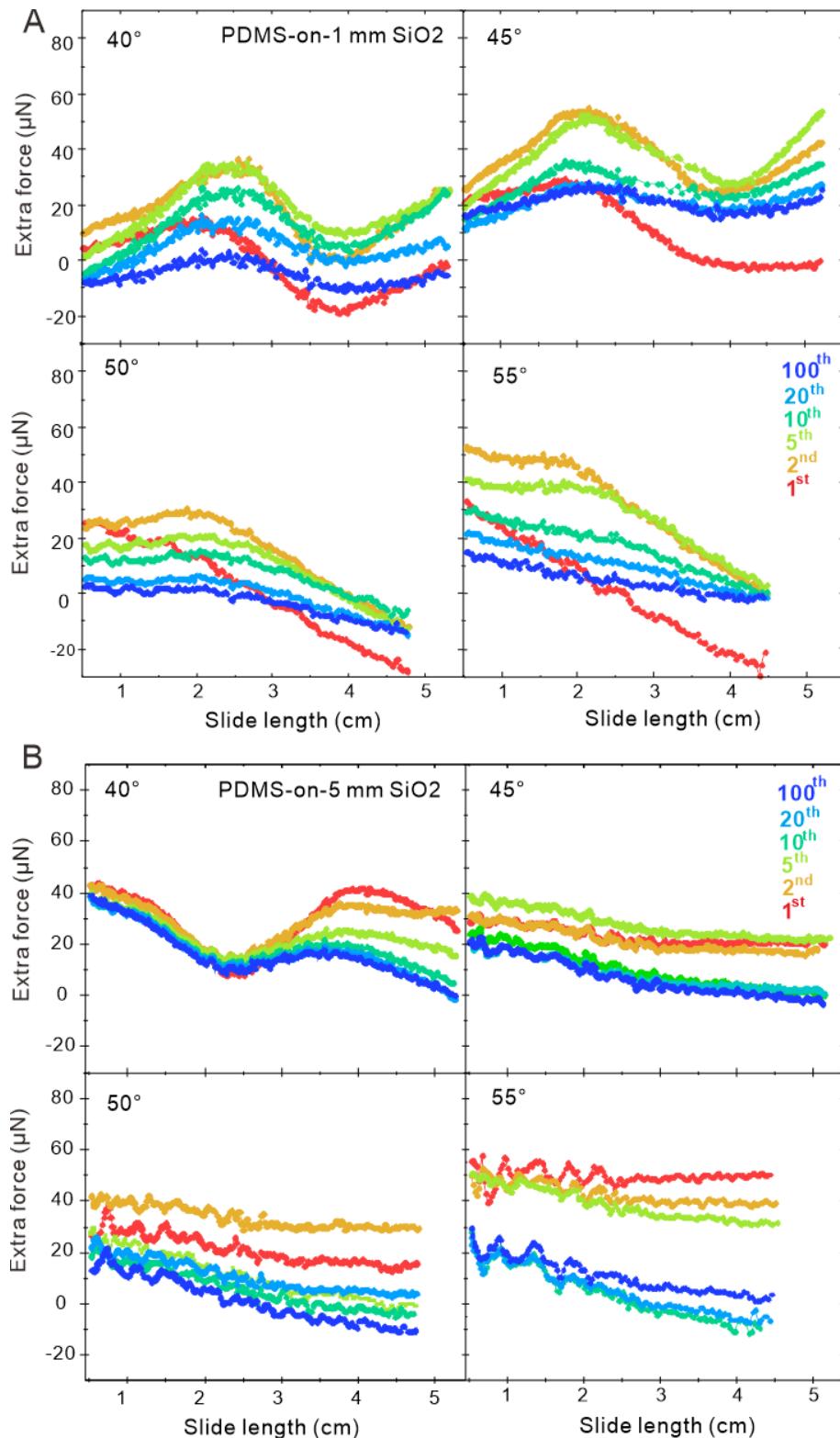
S15. Measured extra forces of drops on PS, Teflon, and PDMS-coated surfaces

440 **Figure S18.** (A) Examples for extra forces acting on water drops sliding down PS-on-1mm-SiO₂
 441 and (B) PS-on-5mm-SiO₂ for different tilt angles. Plotted are results for the 1st, 2nd, 5th, 10th,
 442 20th, and the 100th drop. 33 μL drops were deposited at an interval of 1.3 s. Force were
 443 calculated with Eq. (1) using $m^*/m=1.05$ and $F_r = 74 \mu N + 398 \frac{\mu N s}{m} \cdot U$.



444

445 **Figure S19.** (A) Examples for extra forces acting on water drops sliding down Teflon-on-1mm-
 446 SiO₂ and (B) Teflon-on-5mm-SiO₂. For different tilt angles. Plotted are results for the 1st, 2nd,
 447 5th, 10th, 20th, and the 100th drop. 33 μL drops were deposited at an interval of 1.3 s. Force were
 448 calculated with Eq. (1) using $m^*/m=1.05$ and $F_r = 48 \mu N + 175 \frac{\mu N s}{m} \cdot U$.



449

450 **Figure S20.** (A) Examples for extra forces acting on water drops sliding down PDMS-on-1mm-
 451 *SiO₂* and (B) PDMS-on-5mm-SiO₂ for different tilt angles. Plotted are results for the 1st, 2nd, 5th,
 452 10th, 20th, and the 100th drop. 33 μL drops were deposited at intervals of 1.3 s. Force were
 453 calculated with Eq. (3) using $m^*/m=1.05$ and $F_r = 141 \mu N + 269 \frac{\mu N s}{m} \cdot U$.

454 **References**

- 455 1 Le Grand, N., Daerr, A. & Limat, L. Shape and motion of drops sliding down an inclined
456 plane. *J. Fluid Mech.* **541**, 293-315 (2005).
- 457 2 Kim, H. Y., Lee, H. J. & Kang, B. H. Sliding of liquid drops down an inclined solid surface.
458 *J. Colloid Interface Sci.* **247**, 372-380 (2002).
- 459 3 Huh, C. & Scriven, L. E. Hydrodynamic model of steady movement of a solid/liquid/fluid
460 contact line. *J. Colloid Interface Sci.* **35**, 85-101 (1971).
- 461 4 Voinov, O. V. Hydrodynamics of wetting. *Fluid Dynamics* **11**, 714-721 (1976).
- 462 5 Cox, R. G. The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous
463 flow. *J. Fluid Mech.* **168**, 169-194 (1986).
- 464 6 Dussan, E. B., Ramé, E. & Garoff, S. On identifying the appropriate boundary conditions
465 at a moving contact line: an experimental investigation. *J. Fluid Mech.* **230**, 97-116
466 (1991).
- 467 7 Eggers, J. & Stone, H. A. Characteristic lengths at moving contact lines for a perfectly
468 wetting fluid: the influence of speed on the dynamic contact angle. *J. Fluid Mech.* **505**,
469 309-321 (2004).
- 470 8 Eggers, J. Existence of receding and advancing contact lines. *Phys. Fluids* **17**, 082106
471 (2005).
- 472 9 Snoeijer, J. H. Free-surface flows with large slopes: Beyond lubrication theory. *Physics*
473 of *Fluids* **18**, 021701 (2006).
- 474 10 Maglio, M. & Legendre, D. in *Computational and Experimental Fluid Mechanics with*
475 *Applications to Physics, Engineering and the Environment Environmental Science and*
476 *Engineering* (eds L. D. Sigalotti, J. Klapp, & E. Sira) 47-69 (2014).
- 477 11 Andersen, N. K. & Taboryski, R. Drop shape analysis for determination of dynamic
478 contact angles by double sided elliptical fitting method. *Measurement Science and*
479 *Technology* **28**, 047003 (2017).
- 480 12 Li, X. *et al.* Adaptation of a styrene-acrylic acid copolymer surface to water. *Langmuir*
481 **37**, 1571–1577 (2021).
- 482 13 Yarnold, G. D. The motion of a mercury index in a capillary tube. *Proceedings of the*
483 *Physical Society* **50**, 540-552 (1938).
- 484 14 Frenkel, Y. I. On the behavior of liquid drops on a solid surface. 1. The sliding of drops
485 on an inclined surface. *J. Exptl. Theoret. Phys. (USSR)* **18**, 659-669 (1948).
- 486 15 Dussan, E. B. & Davis, S. H. On the motion of a fluid-fluid interface along a solid surface.
487 *J. Fluid Mech.* **65**, 71-95 (1974).
- 488 16 de Gennes, P. G. Wetting: Statics and dynamics. *Rev. Modern Phys.* **57**, 827-863 (1985).
- 489 17 Shikmurzaev, Y. D. The moving contact line on a smooth solid surface. *Int. J.*
490 *Multiphase Flow* **19**, 589-610 (1993).
- 491 18 Olin, P., Lindstrom, S. B., Pettersson, T. & Wagberg, L. Water drop friction on
492 superhydrophobic surfaces. *Langmuir* **29**, 9079-9089 (2013).

- 493 19 Yilbas, B. S., Al-Sharafi, A., Ali, H. & Al-Aqeeli, N. Dynamics of a water droplet on a
494 hydrophobic inclined surface: influence of droplet size and surface inclination angle on
495 droplet rolling. *RSC Advances* **7**, 48806-48818 (2017).
- 496 20 Sartori, P. *et al.* Drop motion induced by vertical vibrations. *New J. Phys.* **17**, 113017
497 (2015).
- 498 21 Ngan, C. G. & Dussan, E. B. On the dynamics of liquid spreading on solid surfaces. *J.
499 Fluid Mech.* **209**, 191-226 (1989).
- 500 22 Yue, P. T. Thermodynamically consistent phase-field modelling of contact angle
501 hysteresis. *J. Fluid Mech.* **899**, A15-41 (2020).
- 502 23 Cai, X., Marschall, H., Wörner, M. & Deutschmann, O. Numerical simulation of wetting
503 phenomena with a phase-field method using OpenFOAM. *Chemical Engineering &
504 Technology* **38**, 1985-1992 (2015).
- 505 24 Jamshidi, F. *et al.* On suitability of phase-field and algebraic volume-of-fluid
506 OpenFOAM (R) solvers for gas-liquid microfluidic applications. *Computer Physics
507 Communications* **236**, 72-85 (2019).
- 508 25 Stetten, A. Z., Golovko, D. S., Weber, S. A. L. & Butt, H. J. Slide electrification: charging
509 of surfaces by moving water drops. *Soft Matter* **15**, 8667-8679 (2019).
- 510 26 Alnaes, M. S. *et al.* The FEniCS Project Version 1.5. *Archive of Numerical Software* **3**, 9-
511 23 (2015).
- 512 27 Mitusch, S. K., Funke, S. W. & Dokken, J. S. dolfin-adjoint 2018.1: automated adjoints
513 for FEniCS and Firedrake. *The Journal of Open Source Software* **4**, 1292 (2019).

514