1	Nature Geoscience
2	Supplementary Information for
3	
4	Deep-Seated Mantle Plumes Detected Beneath the Moon's Earth-Facing
5	Hemisphere
6	
7	Jing Shi ¹ , Nan Zhang ¹ , Jiaqi Li ^{1,*}
8 9	¹ SKLab-DeepMinE, MOEKLab-OBCE, School of Earth and Space Sciences, Peking University, Beijng China.
10	*Corresponding author: JLI@pku.edu.cn
11	
12	The PDF file includes:
13	Supplementary Text
14	Supplementary Tables S1 and S2
15	References
16	

Supplementary Text

17

18 S1 Detectability Test for Events Within Seismicity Gaps

- 19 To assess whether the two seismicity gaps identified in Fig. 1b (outlined in red in the main text)
- 20 represent true seismicity deficits or artifacts of station geometry, we performed a synthetic test.
- We placed two hypothetical deep moonquake sources within the two gap regions (10° N, 20° W,
- 22 900 km depth; and 10° S, 6° W, 900 km depth), and evaluated whether their locations could be
- 23 accurately inverted using arrival times from various Apollo stations.
- 24 Supplementary Table 1 lists the theoretical arrival times of direct P and S waves from the two
- 25 preset seismic sources at the four Apollo stations, calculated using the very preliminary reference
- Moon model¹. For the localization of deep moonquakes, only the differential arrival times (Ts Tp)
- at each station can be used as input for the inversion, as the absolute travel times of direct waves
- 28 cannot be determined in the absence of the origin time.
- We then applied the least-squares inversion to invert the preset hypocenter locations. The input
- 30 consisted of combinations of differential arrival times (Ts Tp) from different station pairs. The
- 31 optimal source location was identified via a grid search spanning latitudes from 40°S to 40°N and
- 32 longitudes from 60°W to 60°E, both at 2° intervals, and depths from 700 km to 1,200 km at 20 km
- intervals. We inverted the event location by minimizing the following misfit function:

34
$$min \ Err = \sum_{i=1}^{n} (T_{dif}^{o} - T_{dif}^{p})_{i}^{2}, n \ge 2,$$

- 35 where i denotes the Apollo station index, T_{dif}^{o} is the observed differential arrival time (Ts Tp) at
- 36 the corresponding station i, and T_{dif}^{p} is the corresponding predicted value. The number of stations
- 37 n used in the inversion is at least two. The solution corresponds to the location that minimizes the
- 38 total prediction error.
- 39 These tests (Supplementary Table 2) shows that even with arrival time differences from only two
- 40 stations, the preset source locations can be accurately inverted, demonstrating that the observed
- 41 seismicity gaps are not artifacts of station geometry.

Supplementary Table 1 | Theoretical arrival times of direct P and S waves from the two preset source locations to the four Apollo stations, calculated using the very preliminary reference Moon model¹. The values are given in seconds.

Preset Position (Longitude, Latitude, Depth)	Apollo 12 (<i>Tp</i>)	Apollo 12 (Ts)	Apollo 14 (<i>Tp</i>)	Apollo 14 (<i>Ts</i>)	Apollo 15 (<i>Tp</i>)	Apollo 15 (<i>Ts</i>)	Apollo 16 (<i>Tp</i>)	Apollo 16 (<i>Ts</i>)
(10° N, 20° W, 900 km)	123.9	216.9	124.2	217.5	139.7	244.5	159.1	278.6
(10° S, 6° W, 900 km)	129.7	227.0	124.3	217.5	154.2	269.8	130.4	228.3

Supplementary Table 2 | The inverted locations of the two preset earthquake sources. They are determined using combinations of arrival time differences (Ts - Tp) from various station pairs.

Inverted Postion					
(Longitude,	Apollo 12	Apollo 14	Apollo 15	Apollo 16 (<i>Ts - Tp</i>)	
Latitude, Depth)	(Ts - Tp)	(Ts - Tp)	(Ts - Tp)		
(10° N, 20° W,					
900 km)	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
(10° N, 20° W,		_	_		
900 km)	×	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
(10° N, 20° W,			_		
900 km)	\checkmark	×	\checkmark	\checkmark	
(10° N, 20° W,	,	,		,	
900 km)	$\sqrt{}$	$\sqrt{}$	×	\checkmark	
(10° N, 20° W,		ſ	ſ		
900 km)	\checkmark	V	V	×	
(10° N, 20° W,	ſ	ſ	.,	.,	
900 km)	$\sqrt{}$	V	×	×	
(10° N, 20° W,	. [V	. [~	
900 km)	V	×	V	×	
(10° N, 20° W,		×	~		
900 km)	V		×	V	
(10° N, 20° W,	~	× √	$\sqrt{}$	×	
900 km)	×			^	
$(10^{\circ} \text{ N}, 20^{\circ} \text{ W},$	×		×	$\sqrt{}$	
900 km)		V		v	
(10° N, 20° W,	×	×			
900 km)	^	^	V	V	
$(10^{\circ} \text{S}, 6^{\circ} \text{W},$					
900 km)	V	V	v	<u> </u>	
$(10^{\circ} \text{S}, 6^{\circ} \text{W},$	×				
900 km)		,	v	v .	
$(10^{\circ} \text{ S}, 6^{\circ} \text{ W},$		×	$\sqrt{}$		
900 km)	•		•	•	
$(10^{\circ} \text{ S}, 6^{\circ} \text{ W},$		$\sqrt{}$	×	$\sqrt{}$	
900 km)		•		•	
(10° S, 6° W,	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	×	
900 km)					
(10° S, 6° W,	$\sqrt{}$	$\sqrt{}$	×	×	
900 km) (10° S, 6° W,					
900 km)	$\sqrt{}$	×	$\sqrt{}$	×	
900 KIII)					

(10° S, 6° W,		×	×	
900 km)				
$(10^{\circ} \text{S}, 6^{\circ} \text{W},$	×	$\sqrt{}$	$\sqrt{}$	×
900 km)				
$(10^{\circ} \text{S}, 6^{\circ} \text{W},$	×	$\sqrt{}$	×	$\sqrt{}$
900 km)				
$(10^{\circ} \text{S}, 6^{\circ} \text{W},$	×	×	$\sqrt{}$	
900 km)				٧

References in the Supplementary Materials

- 1. Garcia, R. F., Gagnepain-Beyneix, J., Chevrot, S. & Lognonné, P. Very preliminary reference
- Moon model. *Physics of the Earth and Planetary Interiors* **188**, 96–113 (2011).