

Injectable non-immunogenic PEG-like conjugate that forms a subcutaneous depot and enables sustained delivery of a peptide drug

Imran Ozer¹, Anna Slezak^{2†}, Jeffrey I. Everitt³, Xinghai Li¹, Nikita Zakharov¹, Joel H. Collier¹, Jonathan E. Campbell^{4,5,6}, David A. D'Alessio^{4,5}, and Ashutosh Chilkoti^{1*}

¹Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA.

²Department of Chemistry, Duke University, Durham, North Carolina 27708, USA.

³Department of Pathology, Duke University Medical Center, Durham, North Carolina 27701, USA.

⁴Duke Molecular Physiology Institute, Duke University, Durham, North Carolina 27701, USA

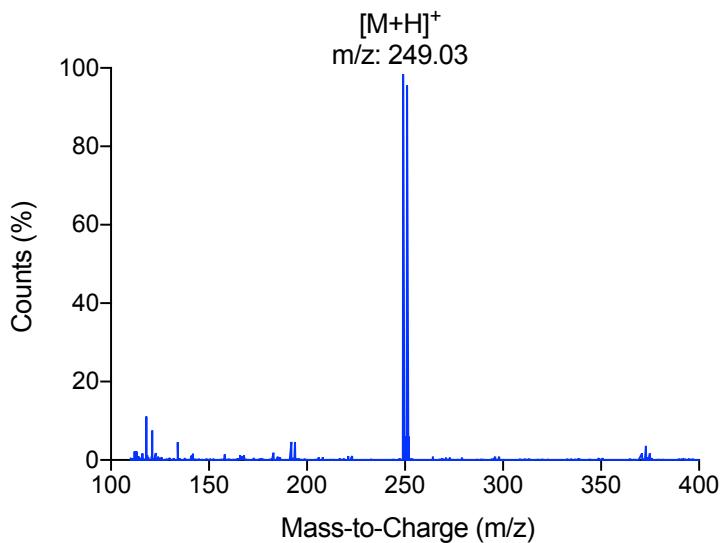
⁵Division of Endocrinology, Duke University Medical Center, Durham, North Carolina, 27701, USA.

⁶Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.

[†]Present Address: Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois,

12 60637, USA.

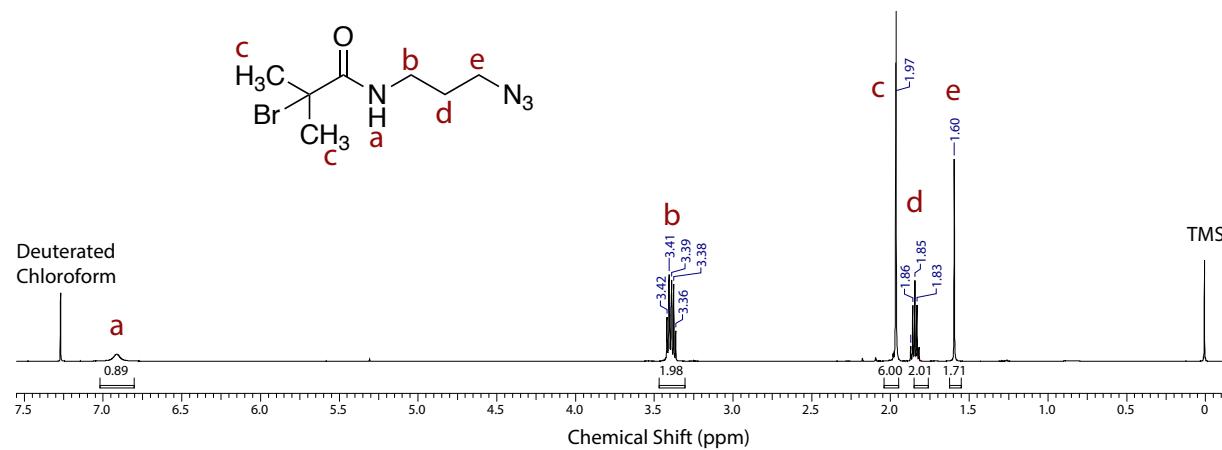
60637, USA.


¹³*e-mail: chilkoti@duke.edu

14	<i>Table of Contents</i>	
15	SECTION 1. SYNTHESIS AND CHARACTERIZATION OF POEGMA LIBRARY.	3
16	SECTION 2. SYNTHESIS AND CHARACTERIZATION OF SITE-SPECIFIC AND STOICHIOMETRIC EXENDIN CONJUGATES.	
17	15
18	SECTION 3. SHORT-TERM PHARMACOKINETICS AND PHARMACODYNAMICS	28
19	SECTION 4. LONG-TERM EFFICACY	33
20	SECTION 5. IMMUNOGENICITY	35
21	SECTION 6. EFFECT OF ADAs ON THE LONG-TERM EFFICACY	56
22	SECTION 7. HISTOPATHOLOGICAL EFFECTS OF TREATMENTS	61
23		

24 **Section 1. Synthesis and characterization of POEGMA library.**

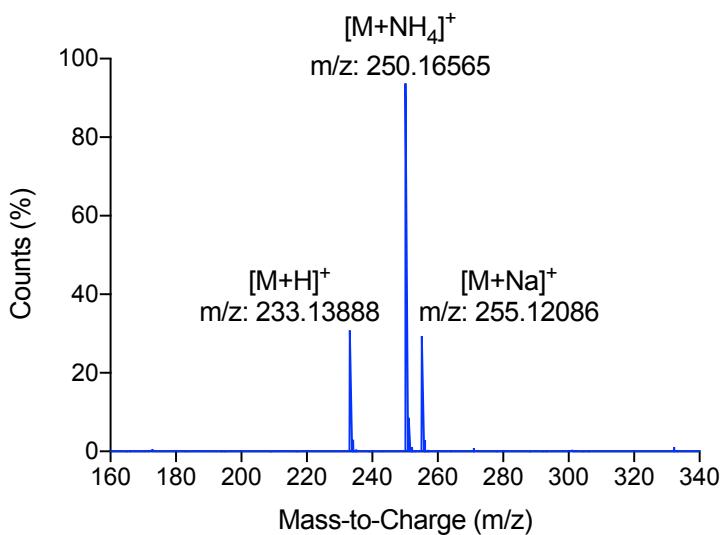
25 Synthesis, purification, and characterization of an azide-functional amide-based polymerization initiator.


26 2-Bromoisobutanoic acid N-hydroxy succinimide ester (4.1 mmol; 1.14 g) was purged with argon and
27 dissolved in 5 ml anhydrous dichloromethane (DCM) (Flask 1). In a separate Schlenk flask (Flask 2), 3-
28 azido-1-propanamine (4.9 mmol; 0.52 g) was purged with argon and dissolved in 11.09 ml anhydrous
29 DCM, followed by cooling to 0°C in an ice bath. The solution in Flask 1 was then added dropwise to Flask
30 2 under an inert atmosphere. The resulting solution was kept on ice for 30 min and left stirring at 30°C for
31 12 h. The solution was diluted in DCM and passed through a polyvinylidene fluoride (PVDF) membrane to
32 remove the solid phase. The resulting clear solution was washed with 0.5N HCl, saturated Na_2HCO_3 , and
33 1M NaCl, respectively, and the organic phase was collected. The organic phase dried over anhydrous
34 MgSO_4 , followed by filtration through a PVDF membrane and DCM evaporation under vacuum, yielding
35 the polymerization initiator. The polymerization initiator was characterized by high-resolution mass
36 spectrometry (HRMS) using an Agilent G6224 liquid chromatography mass spectrometry-time of flight
37 (LCMS-TOF) using an electrospray ionization source (Agilent) and a Series 1200 high-pressure liquid
38 chromatography (HPLC) (Agilent) (**Supplementary Fig. 1**) and nuclear magnetic resonance (NMR)
39 spectroscopy using a 400 MHz Varian Inova spectrometer and an ACD/NMR analysis software (ACD Labs)
40 (**Supplementary Fig. 2**).

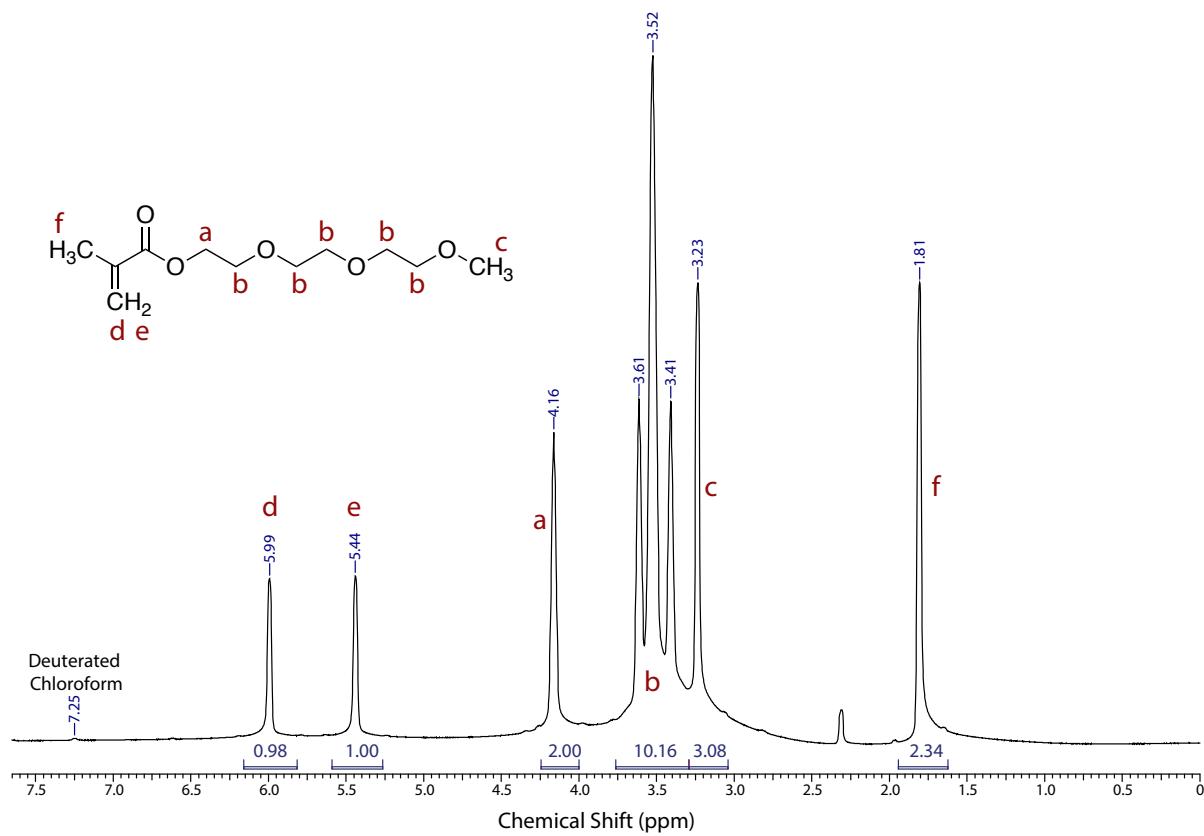
41

42 **Supplementary Figure 1. HRMS of the azide-functional amide-based polymerization initiator.** The initiator was analyzed using
43 reverse-phase HPLC on an Agilent G6224 LCMS-TOF using a Series 1200 HPLC (Agilent) equipped with a diode array detector
44 (Agilent) operating at 254 nm and connected to an electrospray ionization source (Agilent) operating in positive ion mode. 5 μ l
45 of the polymerization initiator was diluted 1:20,000 (v/v) in methanol and separated on a Phenomenex Kinetix C18 column (3
46 mm internal diameter x 30 mm length, 2.6 μ m particle size) at 40°C. Mobile phase A and B consisted of 100:3:0.4 (v/v) water:
47 methanol: formic acid and 100:3:0.3 (v/v) acetonitrile: water: formic acid, respectively. Mobile phase B was 0% for 2 min, with a
48 linear gradient to 95% for 10 min, and held at 95% for 3 min. The flow rate was 0.35 ml min⁻¹. The major peak at 249.03 Da was
49 assigned as the [M+H]⁺ ion, based on the initiator's theoretical mass (M) of 248.03 Da.

50

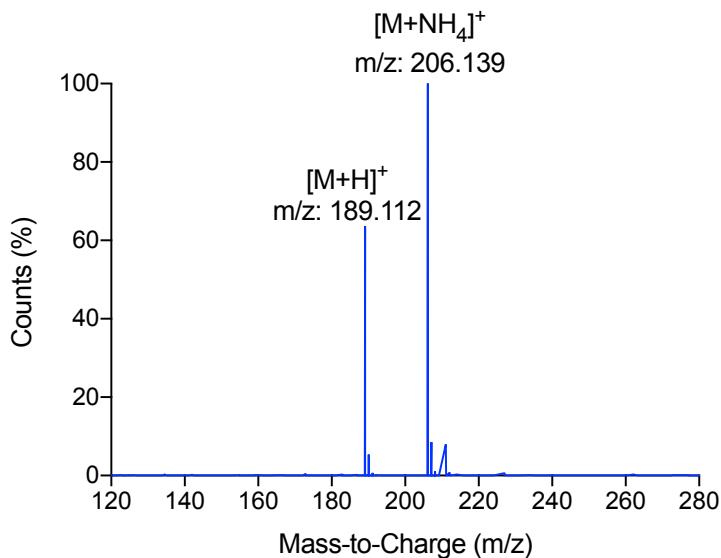


51

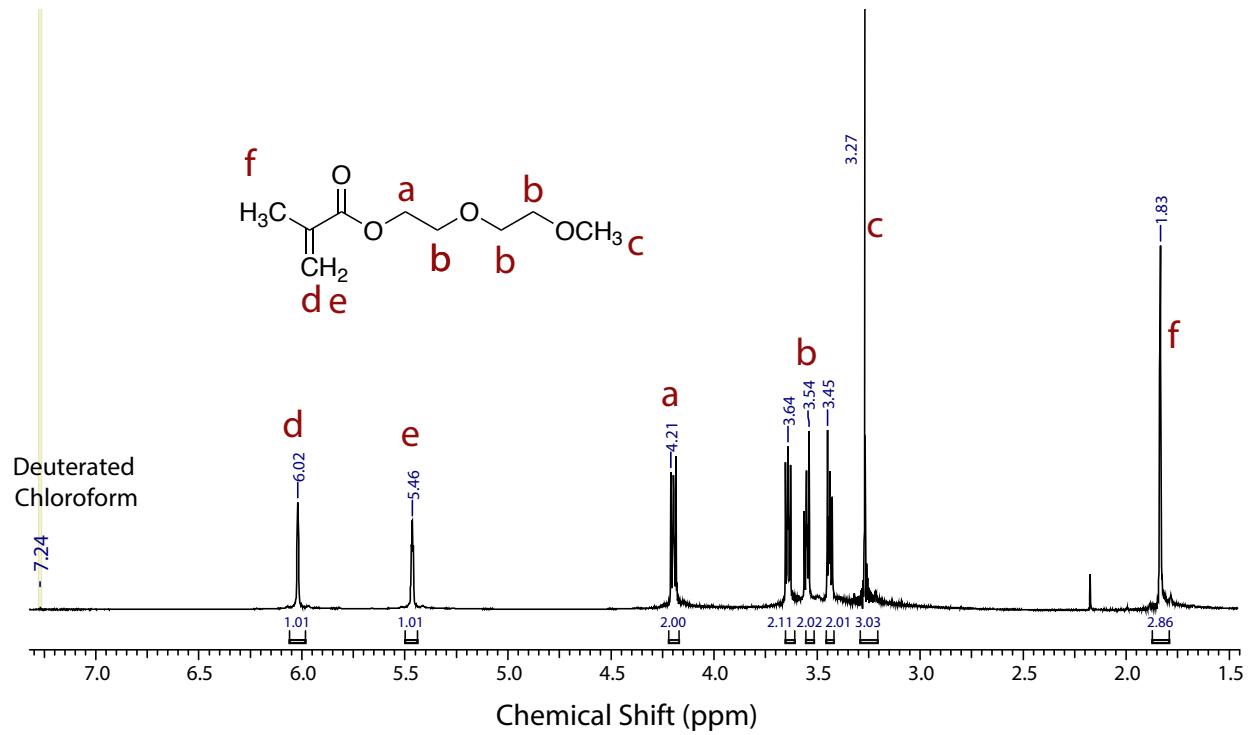

52 **Supplementary Figure 2. NMR spectrum of the azide functional amide-based polymerization initiator.** Data were acquired using
53 a 400 MHz Varian Inova spectrometer and analyzed using ACD/NMR software (ACD Labs). Deuterated chloroform and
54 tetramethylsilane (TMS) were used as a solvent and reference, respectively.

55 Characterization of EG2 and EG3 monomers

56 Triethylene glycol methyl ether methacrylate (EG3) and diethylene glycol methyl ether methacrylate (EG2)
57 monomers characterized using HRMS using an Agilent G6224 LCMS-TOF using an electrospray ionization
58 source (Agilent) and a Series 1200 HPLC (Agilent) (**Supplementary Figures 3 and 5**) and NMR spectrometry
59 using a 400 MHz Varian Inova spectrometer and an ACD/NMR analysis software (ACD Labs)
60 (**Supplementary Figures 4 and 6**).



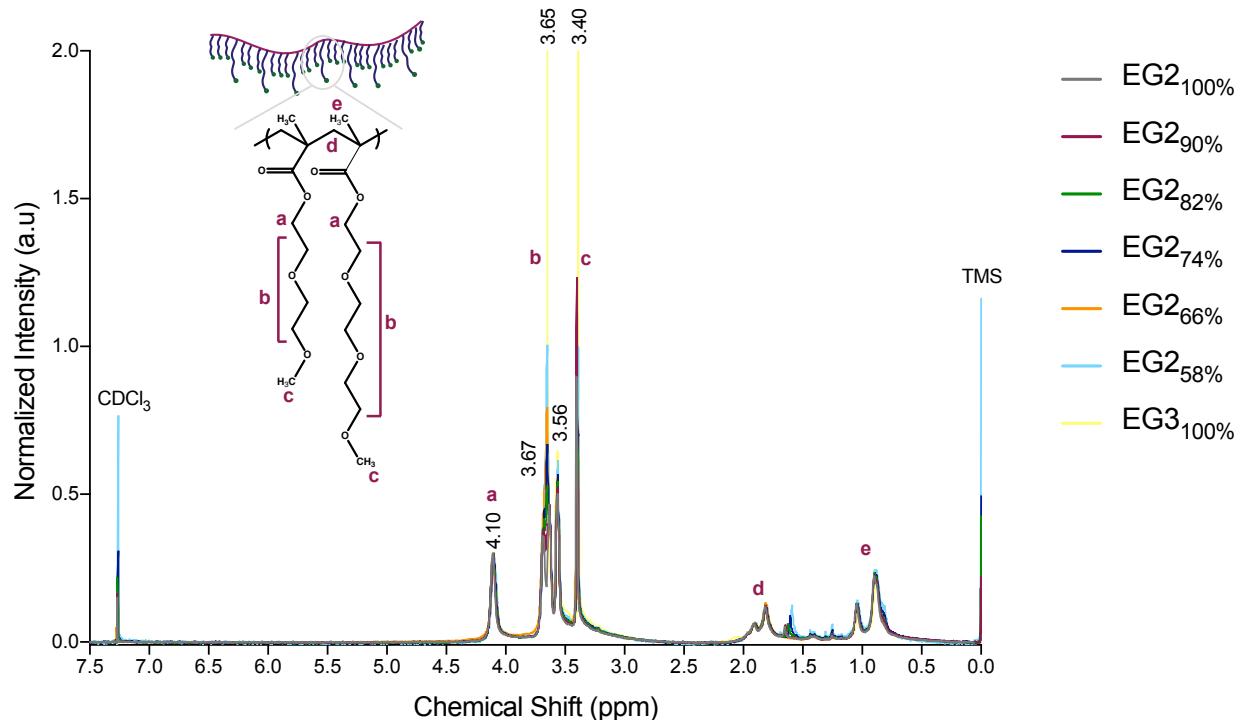
61
62 **Supplementary Figure 3. HRMS of EG3 monomer.** EG3 monomer was characterized using reverse-phase HPLC on an Agilent
63 G6224 LCMS-TOF using a Series 1200 HPLC (Agilent) equipped with a diode array detector (Agilent) operating at 254 nm and
64 connected to an electrospray ionization source (Agilent) operating in positive ion mode. 5 μ l of the monomer was diluted 1:20,000
65 (v/v) in water/acetonitrile and separated on a Phenomenex Kinetix C18 column (3 mm ID x 30 mm length, 2.6 μ m particle size) at
66 40°C. Mobile phase A and B consisted of 100:3:0.4 (v/v) water: methanol: formic acid and 100:3:0.3 (v/v) acetonitrile: water:
67 formic acid, respectively. Mobile phase B was 0% for 2 min, with a linear gradient up to 95% from 8 min, and was then held at
68 95% for 5 min. The flow rate was 0.35 ml min⁻¹. Based on the EG3 monomer's theoretical mass (M) of 212.13 Da, the major peaks
69 at 233.13, 250.16, and 255.12 Da were assigned as the $[M+H]^+$, $[M+NH_4]^+$, and $[M+Na]^+$ ions, respectively.


70

71 **Supplementary Figure 4. NMR spectrum of EG3 monomer.** Data were acquired on a 400 MHz Varian Inova NMR spectrometer
 72 and analyzed using ACD/NMR software (ACD Labs). Deuterated chloroform was used as the solvent.

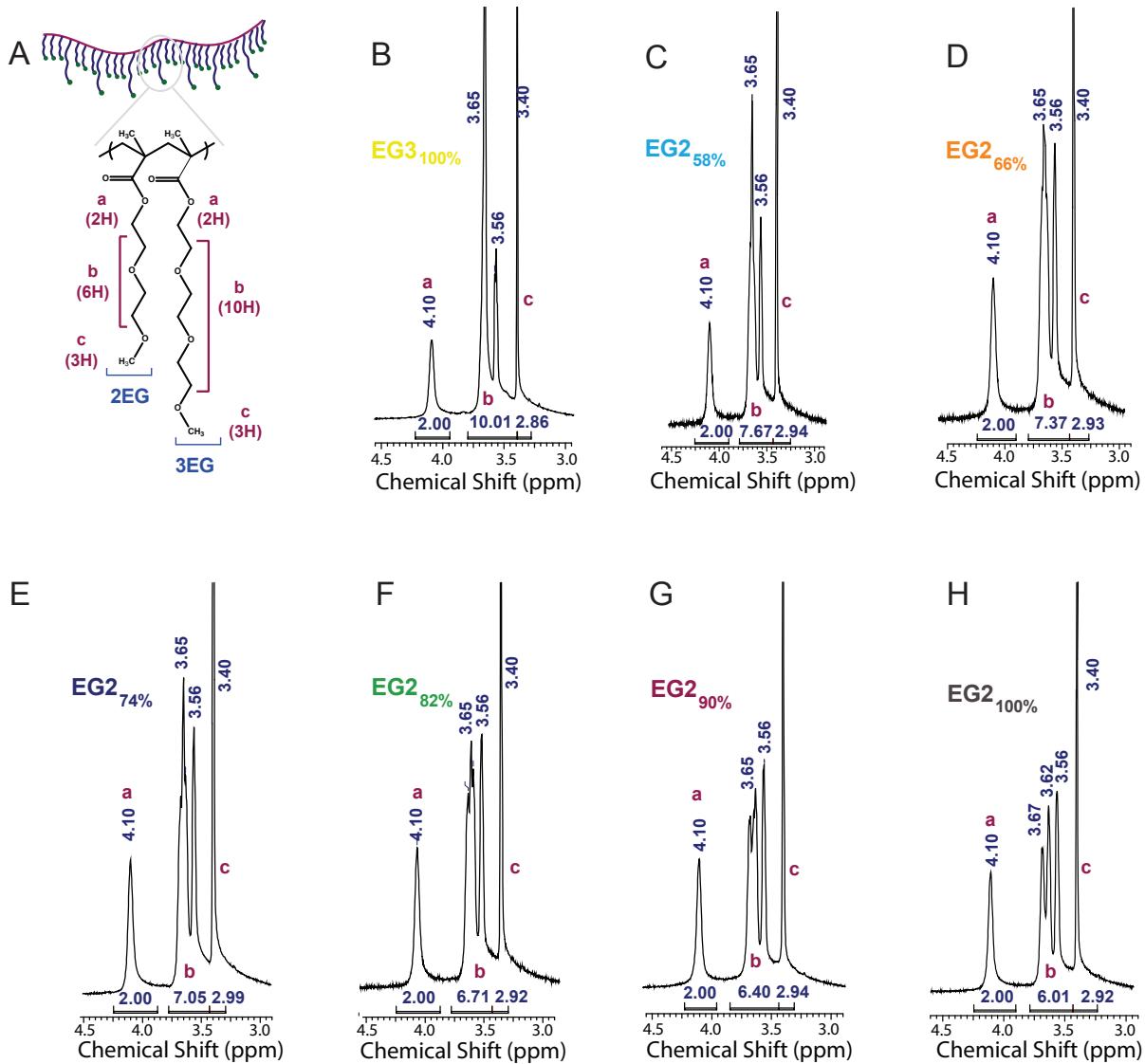
73

74 **Supplementary Figure 5. HRMS of EG2 monomer.** The monomer was characterized using reverse-phase HPLC on an Agilent
 75 G6224 LCMS-TOF using a Series 1200 HPLC (Agilent) equipped with a diode array detector (Agilent) operating at 254 nm and
 76 connected to an electrospray ionization source (Agilent) operating in positive ion mode. 5 μ l of the monomer was diluted 1:20,000
 77 (v/v) in water/MeCN and separated on a Phenomenex Kinetix C18 column (3 mm ID x 30 mm length, 2.6 μ m particle size) at 40°C.
 78 The mobile phases A and B consisted of 100:3:0.4 (v/v) water: MeOH: formic acid and 100:3:0.3 (v/v) MeCN: water: formic acid,
 79 respectively. Mobile phase B was 0% from 0-2 min, then gradually ramped up to 95% from 2-10 min, held at 95% for 10-15 min.
 80 The flow rate was 0.35 ml min^{-1} . The major peaks at 189.1 and 209.1 were assigned as $[M+H]^+$ and $[M+NH_4]^+$ ions based on the
 81 EG2 monomer's theoretical mass (M) of 188.1 Da.

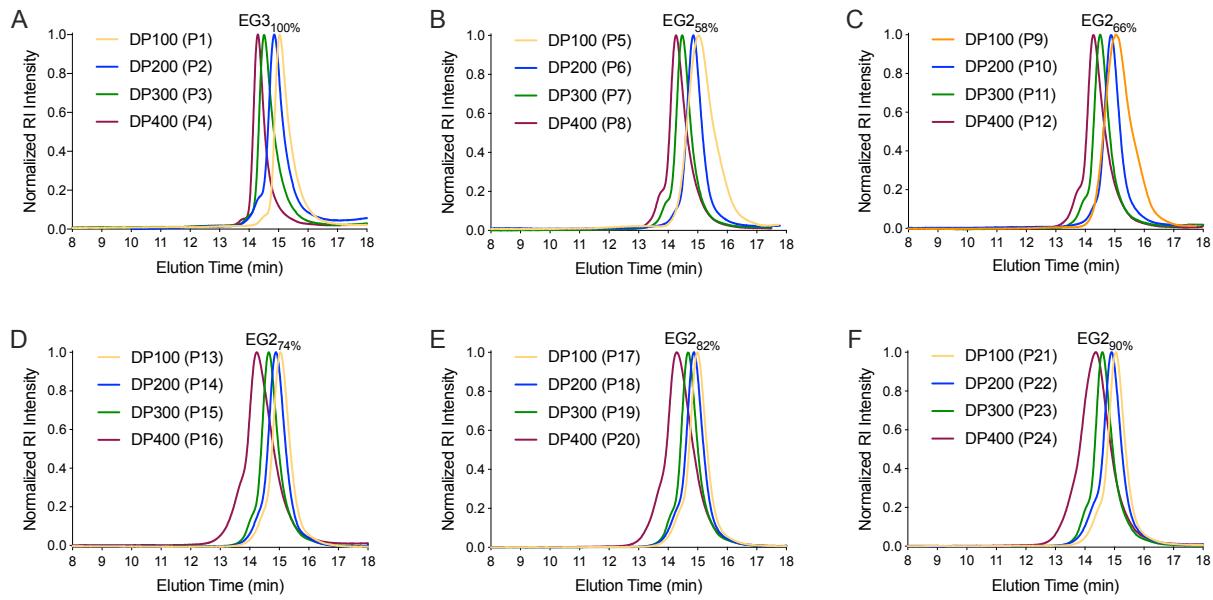


82

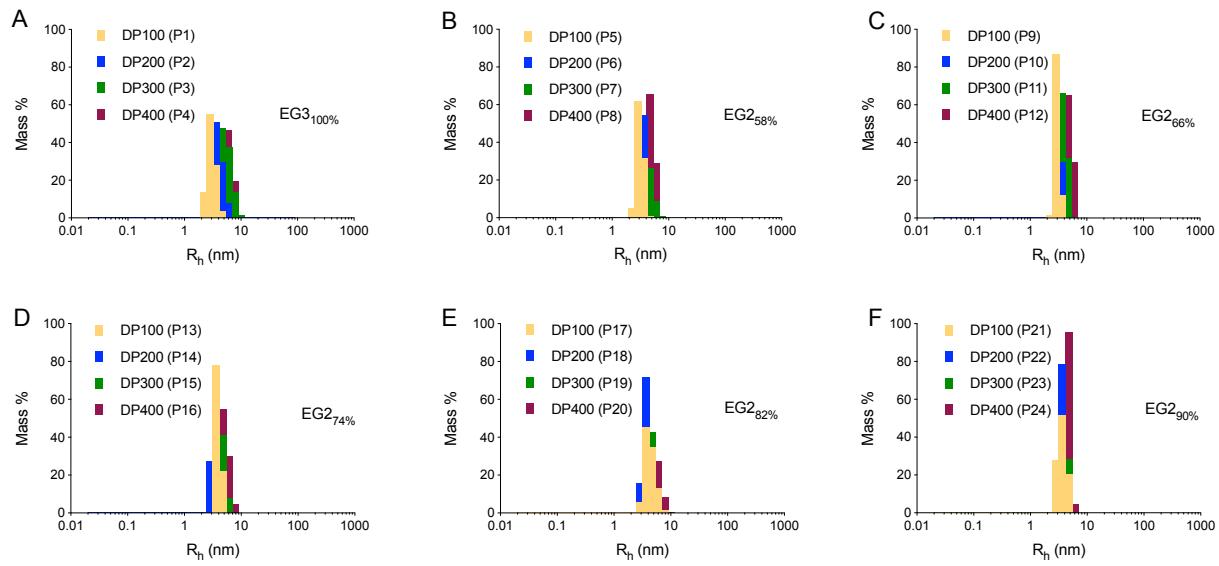
83 **Supplementary Figure 6. NMR spectrum of EG2 monomer.** Data were acquired using a 400 MHz Varian Inova NMR spectrometer
 84 and analyzed using ACD/NMR software (ACD Labs). Deuterated chloroform was used as the solvent.


85 **Supplementary Table 1. Summary of POEGMA library characterization.** The monomer composition of the POEGMAs was defined
 86 as the mole percentage of EG2 (or EG3) content in the copolymer derived from the NMR spectra shown in Supplementary Fig. 7-
 87 8. The DP, M_n , M_w , and D were determined from GPC-MALS data shown in Supplementary Fig. 9. The R_h was calculated from DLS
 88 data shown in Supplementary Fig. 10. T_t was derived from UV-vis spectrophotometry curves shown in Fig. 1b-d.

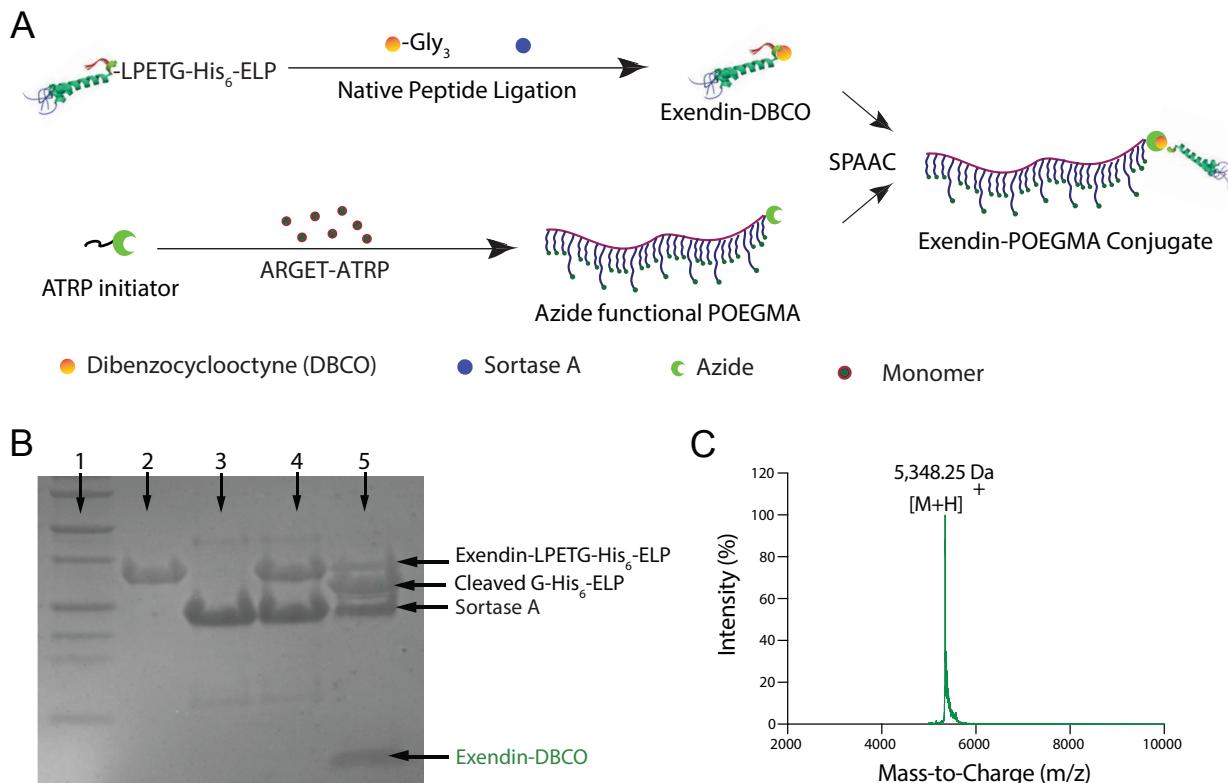
Group	POEGMA ID	EG2% by NMR	DP	M_w	M_n	$D(M_w/M_n)$	R_h (nm)	T_t (25 μ M, °C)
EG3 _{100%}	P1	0	105	24.7	22.7	1.079	3.4 ± 0.6	51.6
	P2	0	194	45.3	40.3	1.123	4.6 ± 1.0	48.9
	P3	0	314	73.2	68.0	1.075	6.5 ± 1.4	46.7
	P4	0	386	90.0	84.7	1.063	6.7 ± 1.3	43.9
EG2 _{58%}	P5	58.4	95	19.9	18.3	1.088	3.0 ± 0.5	37.8
	P6	58.5	206	42.7	39.6	1.078	3.4 ± 0.4	35.8
	P7	59.0	285	59.1	53.1	1.113	4.8 ± 1.2	33.8
	P8	56.5	394	82.0	71.6	1.146	5.1 ± 0.4	31.7
EG2 _{66%}	P9	65.6	96	19.8	18.1	1.092	2.9 ± 0.3	35.2
	P10	65.0	201	41.2	38.6	1.066	3.2 ± 0.4	33.6
	P11	68.8	298	60.5	55.3	1.095	3.9 ± 0.3	31.8
	P12	65.0	389	79.5	69.4	1.145	5.3 ± 0.7	30.6
EG2 _{74%}	P13	72.0	104	21.1	19.3	1.091	3.1 ± 0.4	33.7
	P14	75.5	208	41.6	38.3	1.086	3.5 ± 0.3	32.0
	P15	76.5	313	62.5	55.7	1.122	4.6 ± 0.8	30.3
	P16	73.8	420	84.2	72.2	1.166	5.7 ± 1.1	28.7
EG2 _{82%}	P17	82.3	105	20.8	19.0	1.097	3.1 ± 0.7	32.6
	P18	82.0	195	38.4	34.9	1.099	3.8 ± 0.5	30.1
	P19	83.0	289	56.8	52.8	1.075	4.3 ± 0.5	28.8
	P20	82.3	404	79.4	67.7	1.173	5.9 ± 1.3	26.7
EG2 _{90%}	P21	89.6	103	20.1	18.2	1.102	3.0 ± 0.5	30.8
	P22	92.0	210	40.6	35.3	1.151	3.5 ± 0.3	28.9
	P23	90.0	315	61.0	55.2	1.105	4.1 ± 0.5	27.0
	P24	90.0	405	78.2	66.2	1.182	4.8 ± 0.4	25.0
EG2 _{100%}	P25	100	190	36.0	32.3	1.116	3.1 ± 0.5	25.8


90

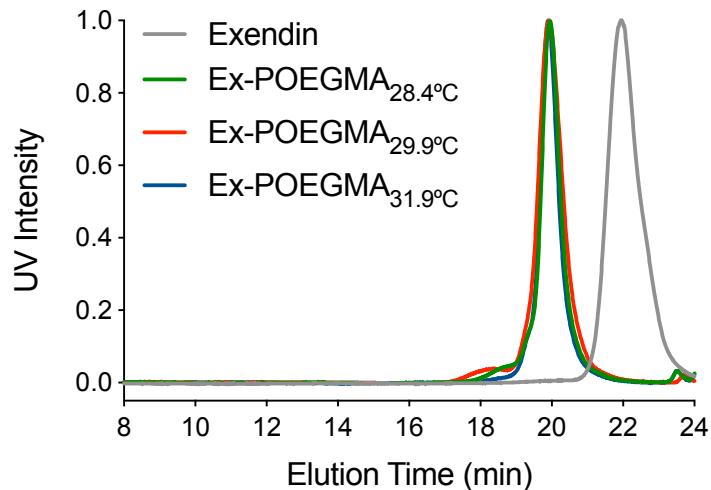
91 **Supplementary Figure 7. Structure of POEGMAs.** The POEGMA structure was identified by NMR spectroscopy at indicated
92 monomer compositions for a DP of ~ 200. These polymers correspond to POEGMA IDs of P2, P6, P10, P14, P18, P22, and P25,
93 shown in Supplementary Table 1. Data were acquired using a 400 MHz Varian Inova NMR spectrometer and analyzed using
94 ACD/NMR software (ACD Labs). Deuterated chloroform (CDCl_3) and TMS were used as the solvent and reference.


95

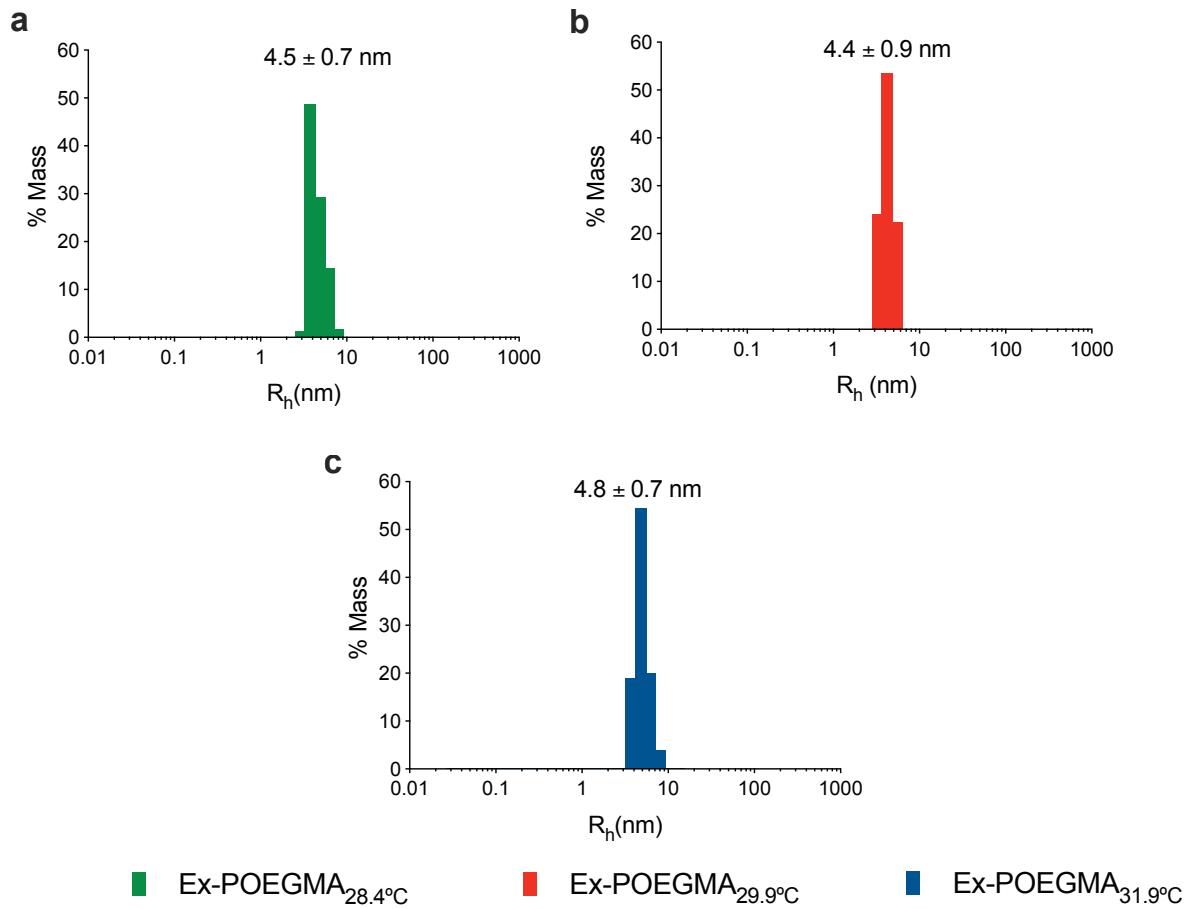
96 **Supplementary Figure 8. The monomer composition of the POEGMA library.** (A) Structure of a POEGMA copolymer. The
 97 monomer composition of (B) EG3_{100%}, (C) EG2_{58%}, (D) EG2_{66%}, (E) EG2_{74%}, (F) EG2_{82%}, (G) EG2_{90%} and (H) EG2_{100%}). These polymers
 98 correspond to POEGMA IDs of P2, P5, P9, P16, P17, P23, and P25 given in Supplementary Table 1, respectively. The monomer
 99 composition was defined as the percentage of EG2 (or EG3) content in the copolymer and characterized using NMR spectroscopy.
 100 The monomer composition was calculated from the integral value that corresponds to the average number of hydrogens (H)
 101 present in the OEG side-chain (b; 3.4-4.4 ppm; 6H for EG2_{100%} homopolymer; 10H for EG3_{100%} homopolymer) except chain end-
 102 group (c; 3.5-3.3 ppm; 3H) and methylene protons (a; 4.0-4.4 ppm; 2H).


103

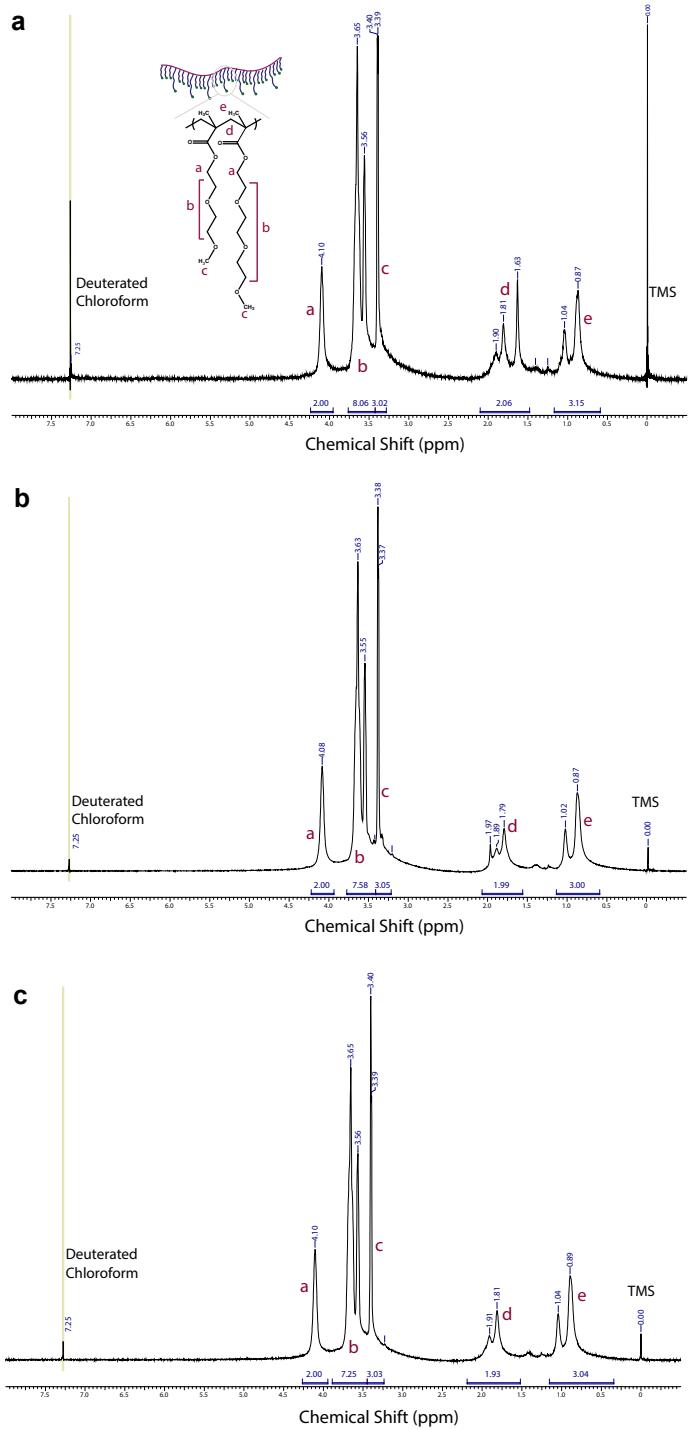
104 **Supplementary Figure 9. GPC traces of POEGMA library.** POEGMAs at indicated DP and compositions were separated on a GPC
 105 column. The refractive index (RI) signal at 658 nm was plotted as a function of the HPLC elution time.


106

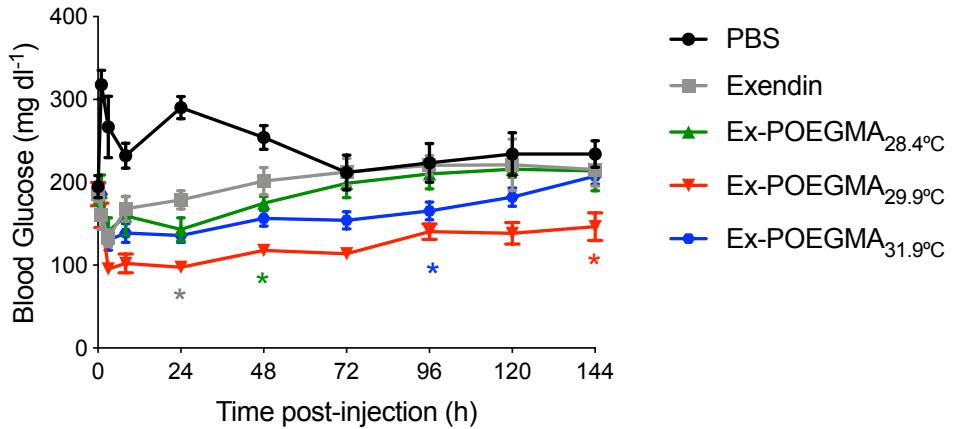
107 **Supplementary Figure 10. The R_h of the POEGMA library.** The R_h of (A) EG3_{100%}, (B) EG2_{58%}, (C) EG2_{66%}, (D) EG2_{74%}, (E) EG2_{82%},
108 and (F) EG2_{90%} were characterized at varying DP by DLS on a temperature-controlled DynaPro Plate Reader (Wyatt Technologies).


111 **Supplementary Figure 11. Synthesis of site-specific and stoichiometric exendin-POEGMA conjugates. (A)** Overview of site-
 112 specific and stoichiometric Ex-POEGMA conjugation approach. The bio-orthogonal DBCO group is installed on the C-terminus of
 113 exendin by sortase-A mediated native peptide ligation. Sortase A recognizes the LPETG sequence in the exendin-LPETG-His₆-ELP
 114 fusion, where ELP is an elastin-like polypeptide, and catalyzes a transpeptidation reaction using DBCO-terminated triglycine,
 115 yielding exendin-DBCO. A bio-orthogonal azide group is installed on POEGMA using an azide functional polymerization initiator
 116 in ARGET-ATRP. Strain-promoted azide-alkyne cycloaddition is then used to synthesize exendin-POEGMA conjugates. **(B)**
 117 Coomassie-stained SDS-PAGE analysis of DBCO conjugation to exendin by sortase A. Lane 1: M_w ladder; lane 2: exendin-LPETG-
 118 His₆-ELP; lane 3: sortase A; lane 4: reaction mixture immediately after mixing exendin-LPETG-His₆-ELP with sortase A; lane 5:
 119 reaction mixture after 18 h of reaction. **(C)** Exendin-DBCO was analyzed by MALDI-TOF-MS in the positive ion mode. Sinapinic
 120 acid was used as the matrix, and insulin and aldolase were used as standards for MALDI-TOF-MS. The major peak at 5,348.25 Da
 121 was assigned to the $[M+H]^+$ ion based on the theoretical mass (M) of exendin-DBCO of 5,347.47 Da.

122 *Characterization of exendin-POEGMA conjugates with varied T_t and near-constant M_w .*

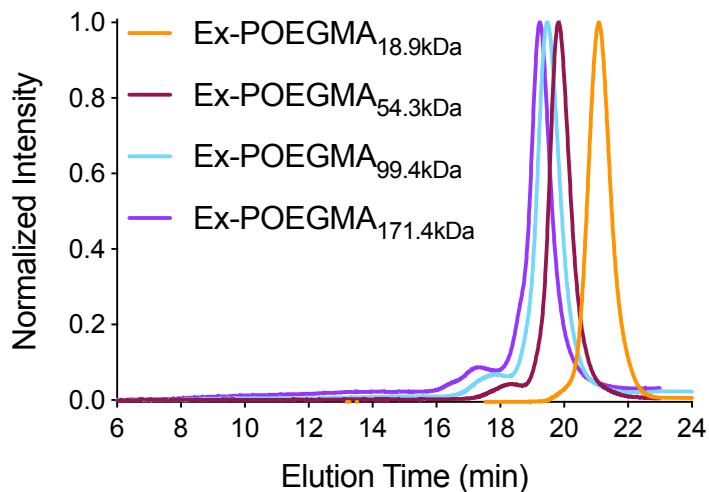

123

124 **Supplementary Figure 12.** SEC traces of exendin-POEGMA conjugates with varied T_t and near-constant M_w . The conjugates
125 were separated by HPLC on a SEC column.

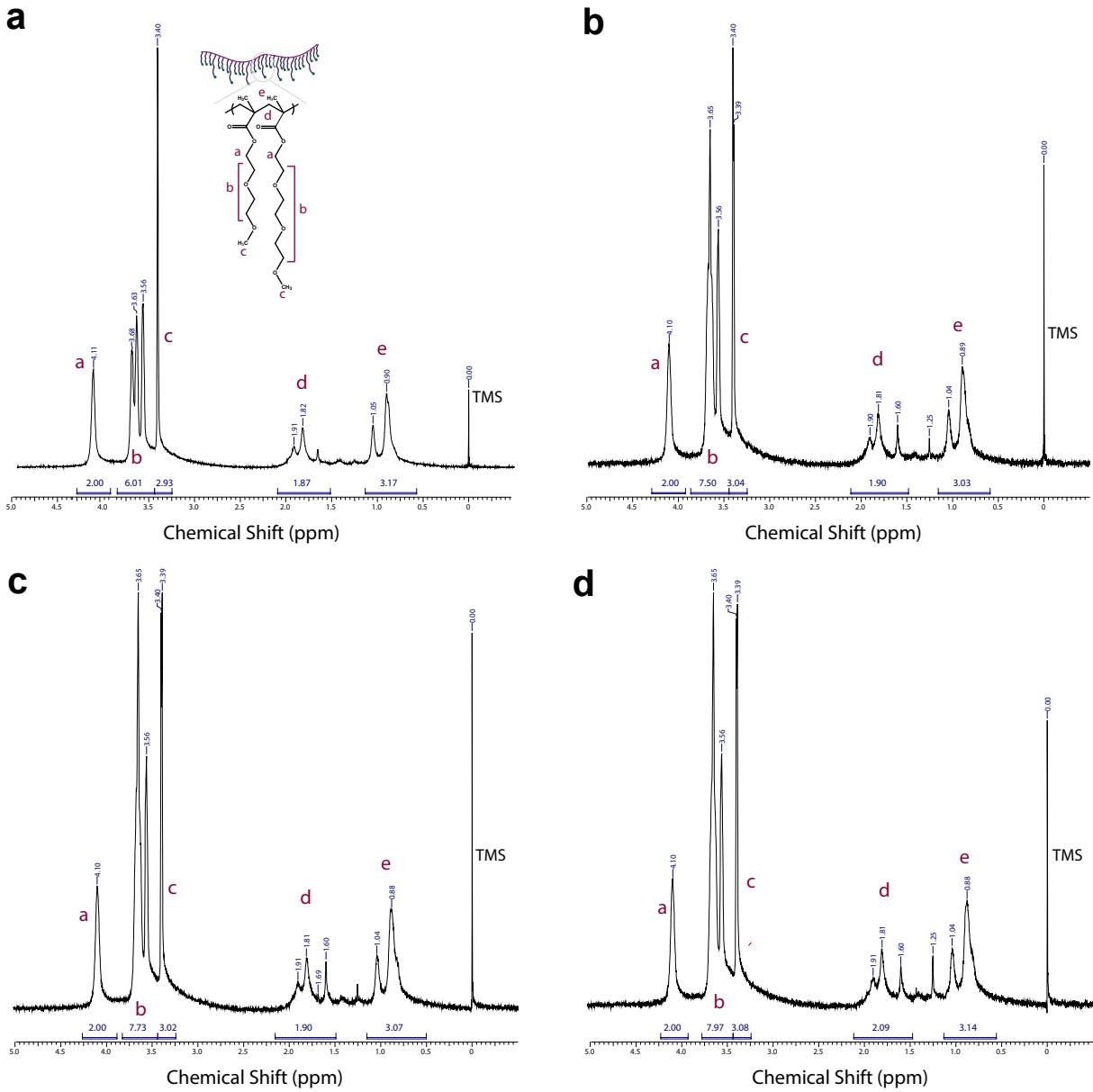

126

127 **Supplementary Figure 13. The R_h of exendin-POEGMA conjugates with varied T_t and near-constant M_w .** The R_h of (A) Ex-
 128 POEGMA_{28.4°C}, (B) Ex-POEGMA_{29.9°C}, (C) Ex-POEGMA_{31.9°C} was characterized by DLS on a temperature-controlled DynaPro Plate
 129 Reader (Wyatt Technologies).

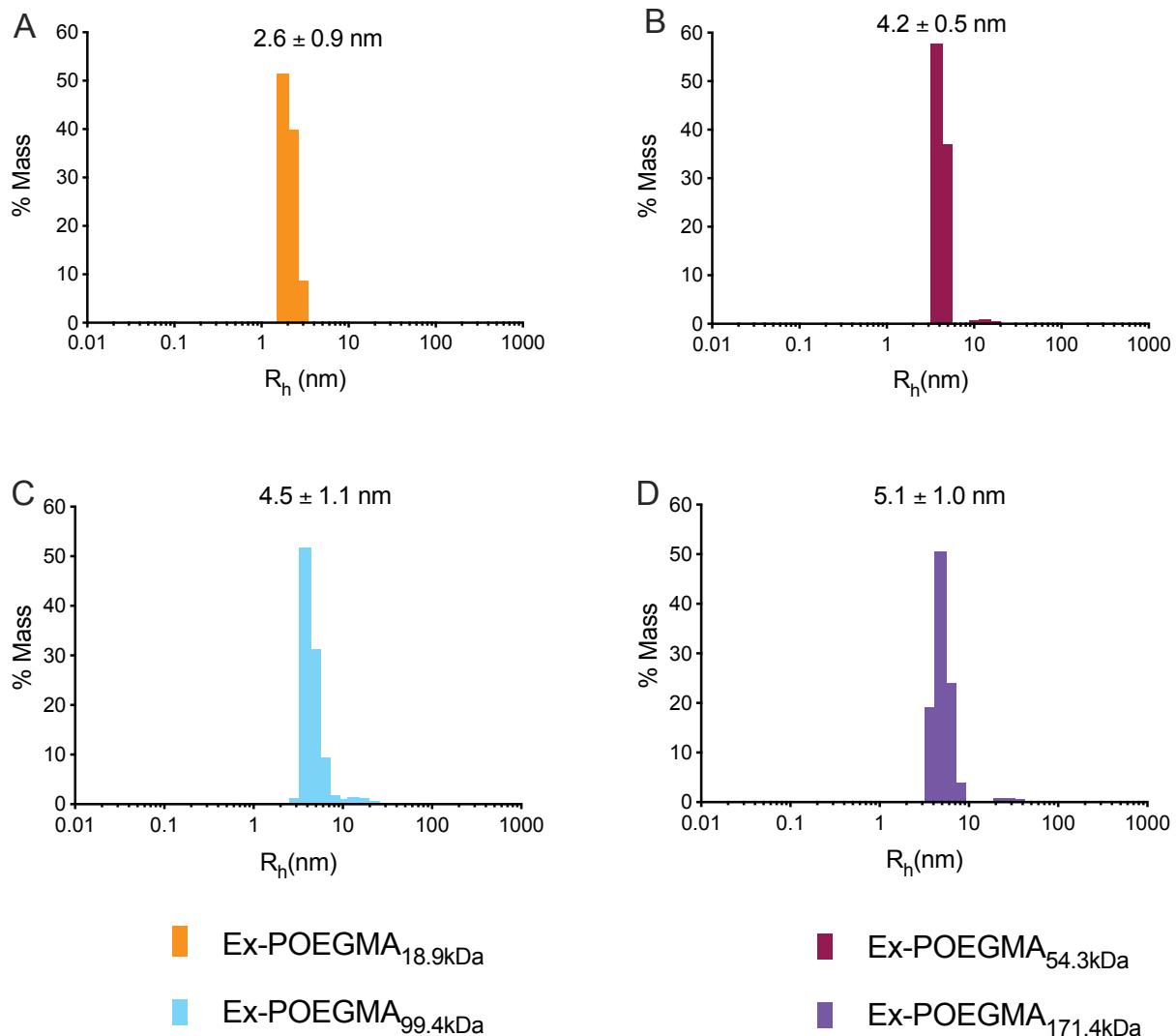
130


131 **Supplementary Figure 14. NMR spectra of POEGMAs used to synthesize Ex-POEGMA conjugates with varied T_t and near-
132 constant M_w .** Structure of POEGMAs used to synthesize **(A)** Ex-POEGMA_{31.9°C}, **(B)** Ex-POEGMA_{29.9°C}, and **(C)** Ex-POEGMA_{28.4°C}. Data
133 were acquired using a 400 MHz Varian Inova spectrometer using deuterated chloroform as a solvent and TMS as a reference.
134 Data were analyzed using ACD/NMR software (ACD Labs).

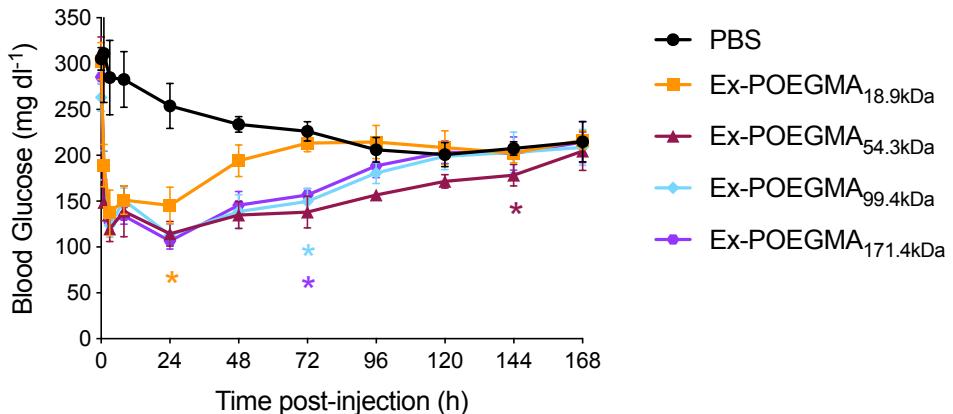
135


136 **Supplementary Figure 15. Raw fed blood glucose of mice treated with Ex-POEGMA conjugates with similar M_w but varied T_t .**

137 Fed blood glucose was monitored after treating 11-week-old male DIO C57BL/6J mice ($n=6$) with a single s.c. injection of Ex-
 138 POEGMA conjugates with similar M_w but varied T_t . Data were analyzed by two-way repeated-measures ANOVA followed by *post*
 139 *hoc* Dunnett's multiple comparison test. *The last time point that blood glucose for treatment is significantly lower than that of
 140 PBS treated mice. Data showed the mean \pm SEM and was considered statistically significant when $p<0.05$.

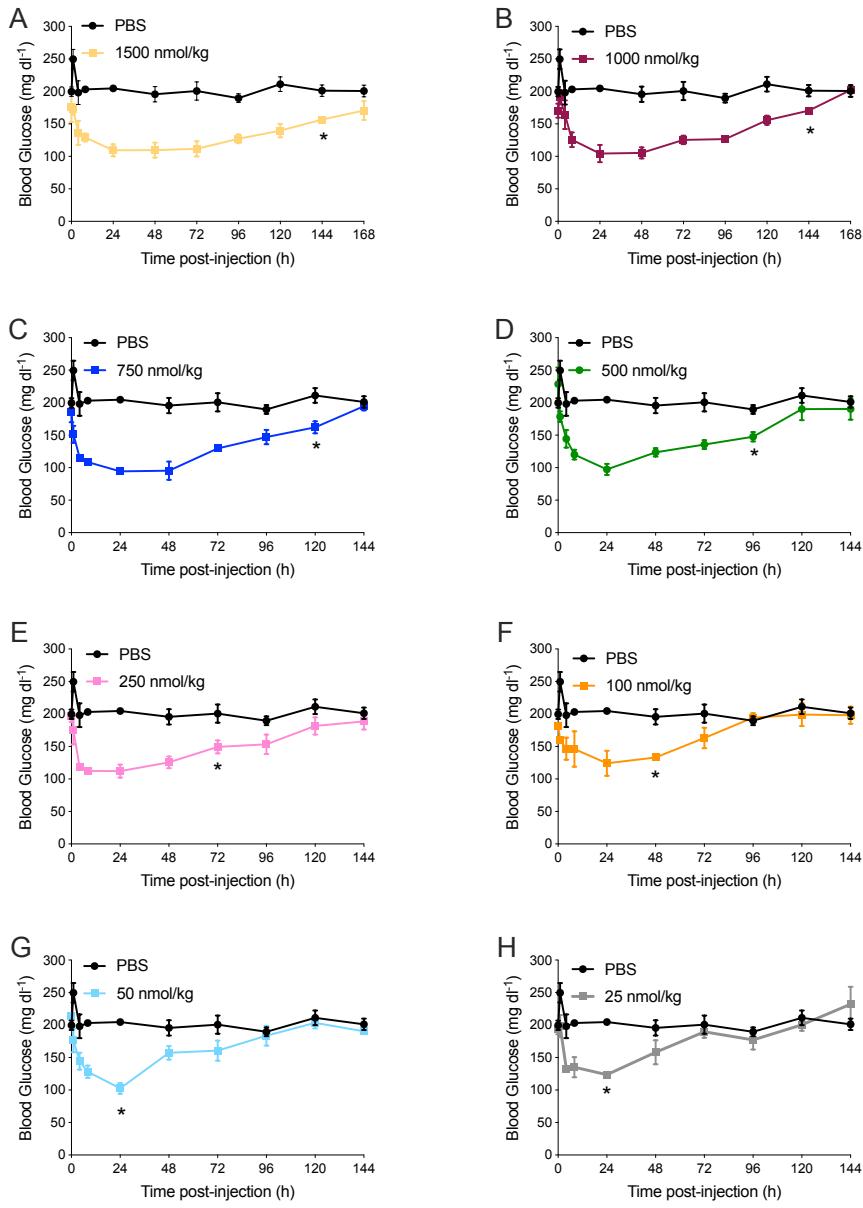

142

143 **Supplementary Figure 16.** SEC traces of Ex-POEGMA conjugates with optimal T_t and varying M_w . The conjugates were separated
144 by HPLC on a SEC column.

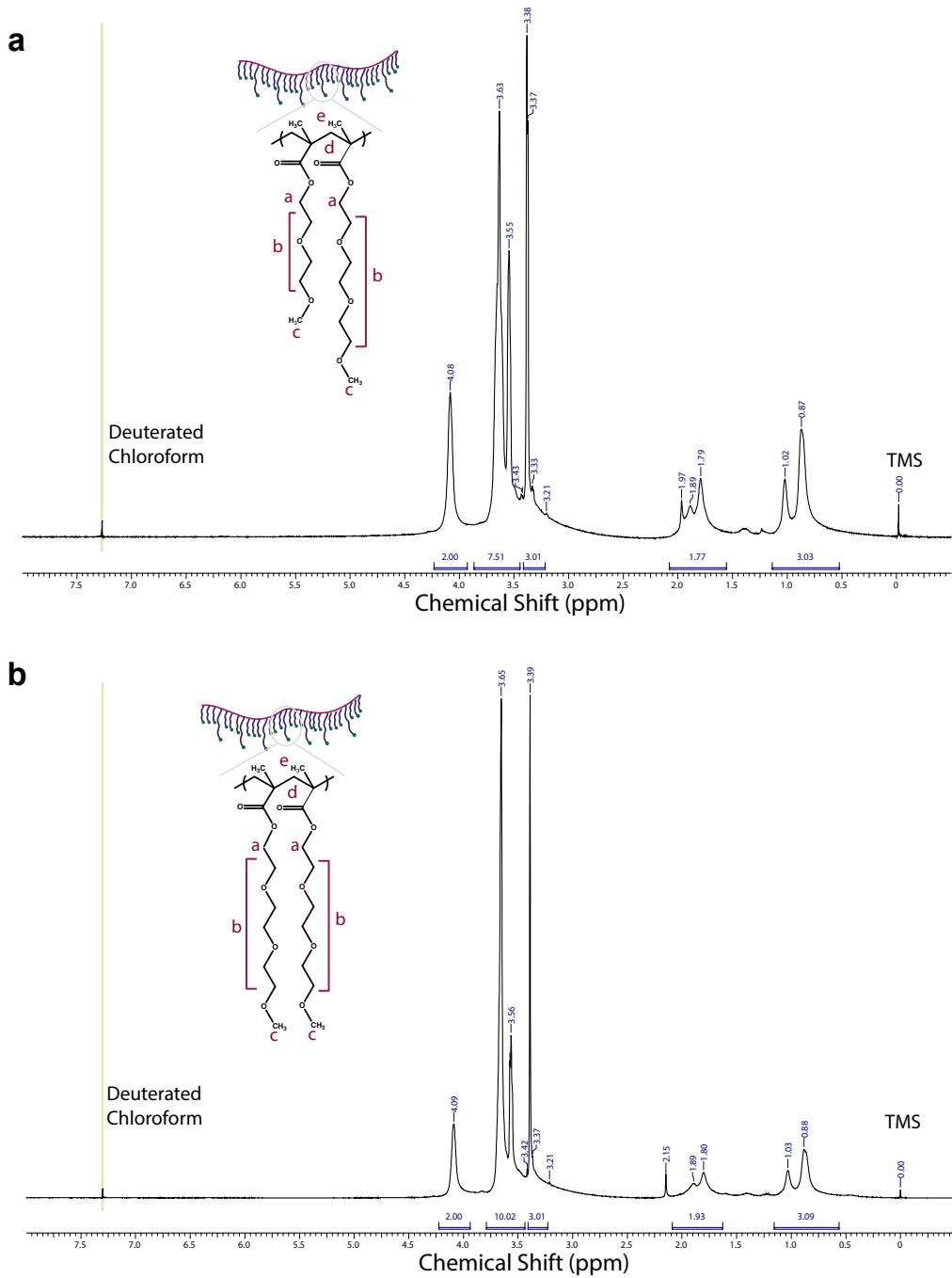

145

146 **Supplementary Figure 17. NMR spectra of POEGMAs used in the synthesis of Ex-POEGMA conjugates with optimal T_f and**
 147 **varying M_w . Structure of POEGMAs used to synthesize (A) Ex-POEGMA_{18.9kDa}, (B) Ex-POEGMA_{54.3kDa}, (C) Ex-POEGMA_{99.4kDa}, and (D)**
 148 **Ex-POEGMA_{171.4kDa}. Data were acquired using a 400 MHz Varian Inova spectrometer using deuterated chloroform as a solvent**
 149 **and TMS as a reference. Data were analyzed using ACD/NMR software (ACD Labs).**

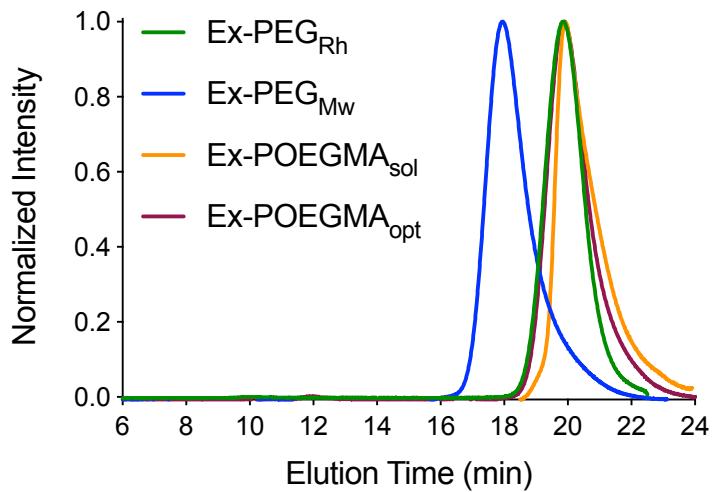
150


151 **Supplementary Figure 18. The R_h of Ex-POEGMA conjugates with optimal T_t and varying M_w .** The R_h of (A) Ex-POEGMA_{18.9kDa},
 152 (B) Ex-POEGMA_{54.3kDa}, (C) Ex-POEGMA_{99.4kDa}, and (D) Ex-POEGMA_{171.4kDa} was characterized by DLS on a temperature-controlled
 153 DynaPro Plate Reader (Wyatt Technologies).

154

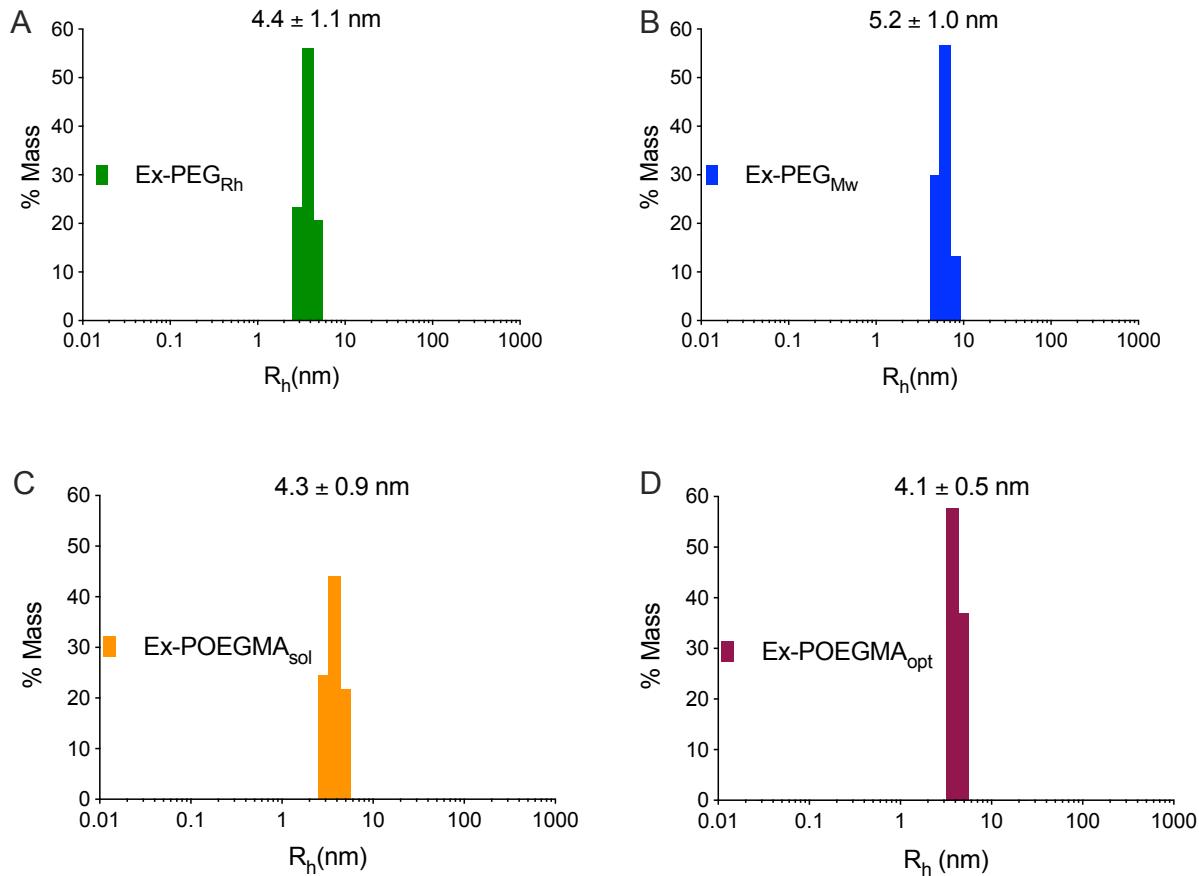

155 **Supplementary Figure 19. Raw fed blood glucose of mice treated with Ex-POEGMA conjugates with varying M_w but optimal**
 156 T_t . Fed blood glucose was monitored after treating 11-week-old male DIO C57BL/6J mice ($n=6$) with a single s.c. injection of Ex-
 157 POEGMA conjugates. Data were analyzed by two-way repeated-measures ANOVA followed by *post hoc* Dunnett's multiple
 158 comparison test. *The last time point that blood glucose for treatment is significantly lower than that of PBS treated mice. Data
 159 showed the mean \pm SEM and was considered statistically significant when $p<0.05$.

160 ***Dose optimization of Ex-POEGMA_{opt}***. In the dose optimization study, varied doses of Ex-POEGMA_{opt} were
 161 injected s.c into 11-week-old male DIO C57BL6/J mice ($n=5$) that were kept on a 60 kilocalorie % fat diet
 162 for five weeks before the study. The injection concentration (500 μ M) and volume (120 μ l) were kept
 163 constant across groups to prevent differences in T_t by keeping the volume of lower dose injections the
 164 same as that of the highest dose by adding free POEGMA to make up the difference in volume (500
 165 μ M). The fed blood glucose level and body weight (data not shown) were measured at 1-, 4-, 8-, 24-, 48-,
 166 72-, 96-, 120-, 144- and 168 h post-injection, as described in the Methods. Larger injection doses of the
 167 conjugate resulted in more extended blood glucose control. Because an injection dose of 1500 nmol kg⁻¹
 168 did not provide any additional benefit, 1000 nmol kg⁻¹ was chosen as the optimal injection dose.

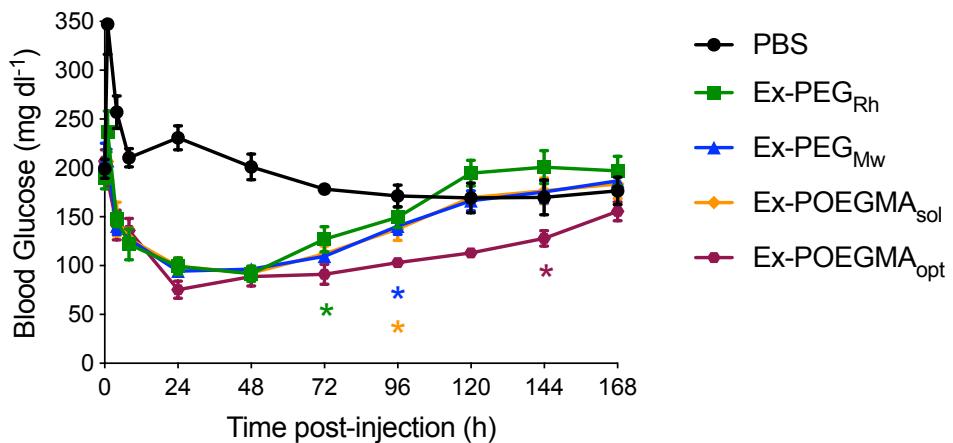


169

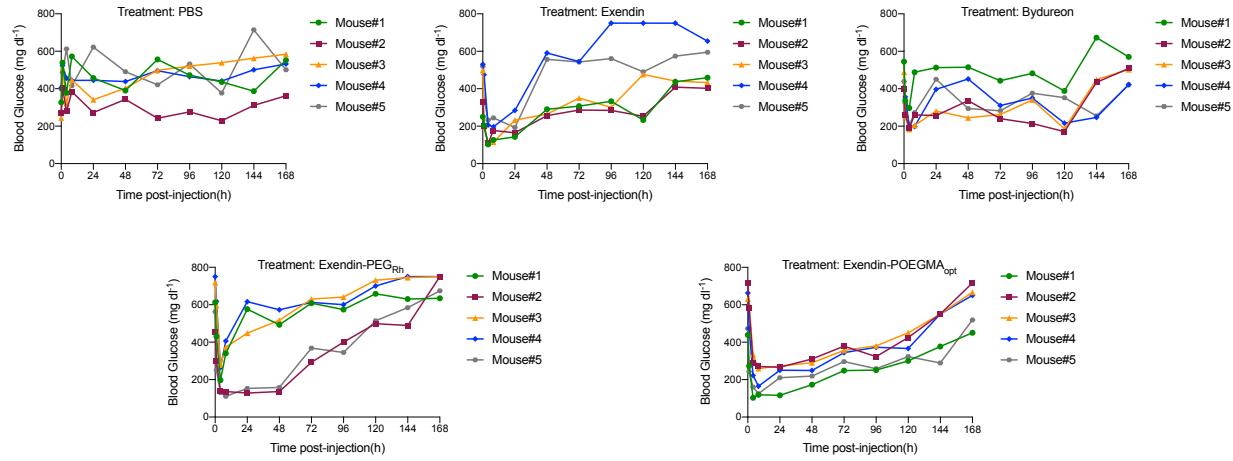
170 **Supplementary Figure 20. Dose optimization of Ex-POEGMA_{opt}.** (A) 1500, (B) 1000, (C) 750, (D) 500, (E) 250, (F) 100, (G) 50, and
 171 (H) 25 nmol kg⁻¹ bodyweight doses of Ex-POEGMA_{opt} were injected s.c. into 11-week-old male DIO C57BL6/J mice (n=5). Fed blood
 172 glucose levels was measured at 1-, 4-, 8-, 24-, 48-, 72-, 96-, 120-, 144- and 168 h post-injection, as described in the Methods. Data
 173 were analyzed by two-way repeated-measures ANOVA followed by *post hoc* Dunnett's multiple comparison test. *The last time
 174 point that blood glucose for treatment is significantly lower than that of PBS treated mice. Data showed the mean ± SEM and was
 175 considered statistically significant when p<0.05.



178 **Supplementary Figure 21. NMR spectra of POEGMAs used for the synthesis of the depot-forming and soluble exendin-POEGMA**
 179 **conjugates.** Structural analysis of POEGMAs used in the synthesis of **(A)** Ex-POEGMA_{opt} and **(B)** Ex-POEGMA_{sol}. Data were acquired
 180 using a 400 MHz Varian Inova spectrometer using deuterated chloroform as a solvent and TMS as a reference. Data were analyzed
 181 using ACD/NMR software (ACD Labs).

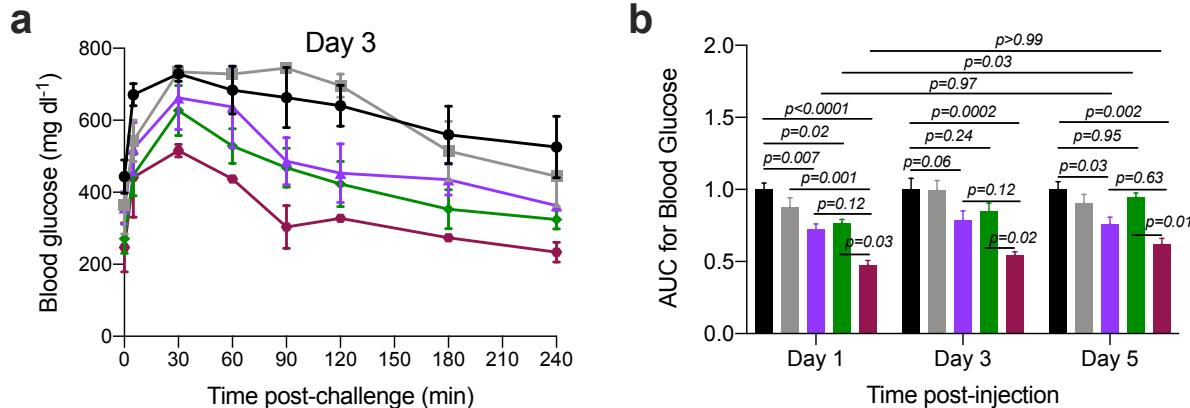

182

183 **Supplementary Figure 22. SEC traces of PEG and POEGMA conjugates of exendin.** The conjugates were separated by HPLC on a
184 SEC column.

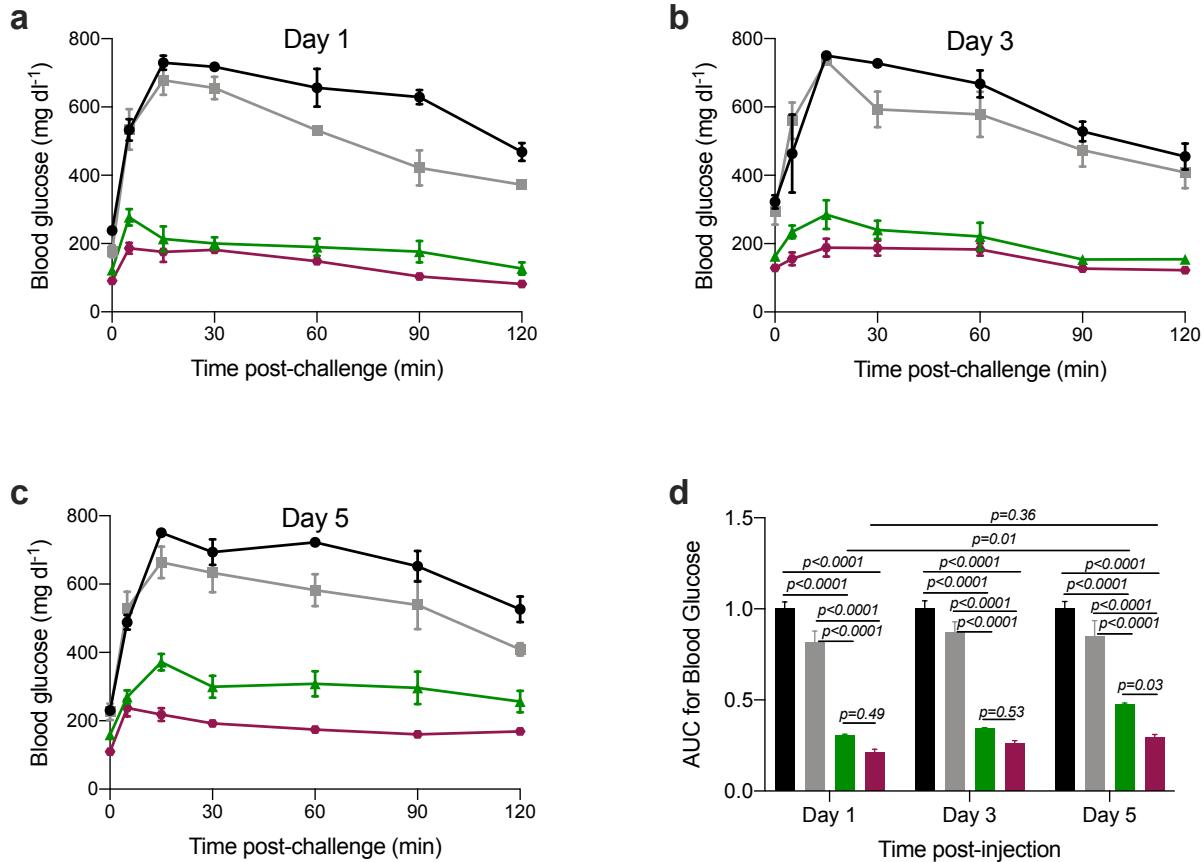


185

186 **Supplementary Figure 23. The R_h of PEG and POEGMA conjugates of exendin.** The R_h of (A) Ex-PEG_{Rh}, (B) Ex-PEG_{Mw}, (C) Ex-
 187 POEGMA_{sol}, and (D) Ex-POEGMA_{opt} was characterized by DLS on a temperature-controlled DynaPro Plate Reader (Wyatt
 188 Technologies).

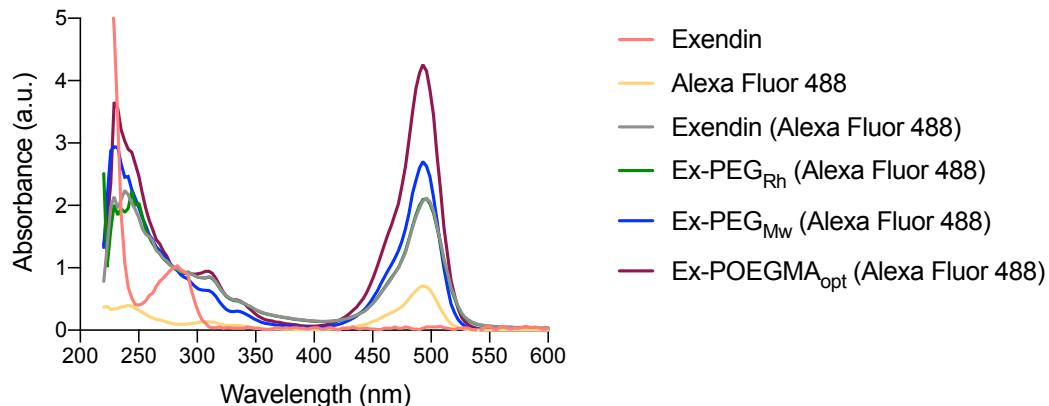


191 **Supplementary Figure 24. Raw fed blood glucose of mice treated with the depot-forming Ex-POEGMA_{opt} and its soluble**
 192 **POEGMA and PEG counterparts.** Fed blood glucose was monitored after treating 11-week-old male DIO C57BL/6J mice ($n=6$) with
 193 a single *s.c.* injection of Ex-POEGMA_{opt}, Ex-POEGMA_{sol}, Ex-PEG_{Rh}, and Ex-PEG_{Mw}. Data were analyzed by two-way ANOVA followed
 194 by *post hoc* Dunnett's multiple comparison test. *The last time point that blood glucose for treatment is significantly lower than
 195 that of PBS treated mice. Data showed the mean \pm SEM and was considered statistically significant when $p<0.05$.

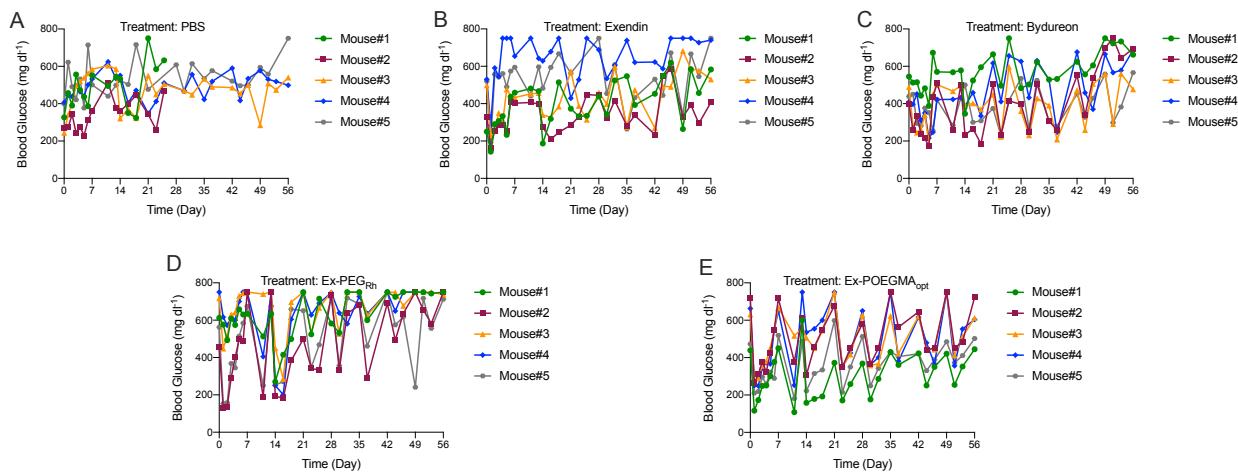

196

197 **Supplementary Figure 25. Individually plotted raw fed blood glucose of short-term-treated *db/db* mice.** 6-week-old *db/db* mice
 198 (*n*=5) received a single s.c. injection of (A) PBS, (B) exendin, (C) Bydureon, (D) Ex-PEG_{Rh}, and (E) Ex-POEGMA_{opt}. Fed blood glucose
 199 was measured as described in the Methods.

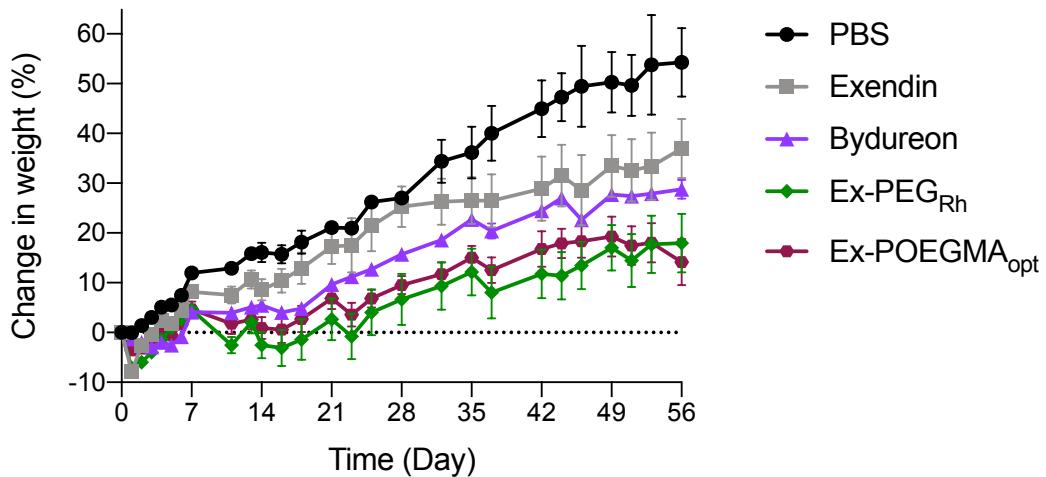
200


201 **Supplementary Figure 26. Ex-POEGMA_{opt} outperforms its PEG counterpart and a clinical sustained-release exendin**
202 **formulation, Bydureon, in providing glycemic control.** An *i.p.* glucose challenge was performed at **(A)** day 1, **(B)** day 3, and **(C)**
203 day 5 post-injection of treatments. 1500 g per kg body weight glucose was administered *s.c.* into 6-week-old *db/db* mice (*n*=5),
204 followed by monitoring their blood glucose. **(B)** AUC of blood glucose was quantified and is reported by the day it was measured
205 after administration of the drug. Data represent the mean and standard error of the mean (SEM). Data were analyzed by two-
206 way repeated-measures ANOVA, followed by *post-hoc* Tukey's multiple comparison test. Data were considered statistically
207 significant when *p*<0.05.

208


209

210 **Supplementary Figure 27. Ex-POEGMA_{opt} outperforms its PEG counterpart in providing glycemic control.** An *i.p.* glucose
 211 challenge was performed at **(A)** day 1, **(B)** day 3, and **(C)** day 5 post-injection of treatments. 1500 g per kg body weight glucose
 212 was administered to 11-week-old male DIO C57BL/6J mice ($n=5$), followed by monitoring their blood glucose. **(D)** AUC of blood
 213 glucose was quantified as reported by the day it was measured after drug administration. Data represent the mean \pm SEM. Data
 214 were analyzed by two-way repeated-measures ANOVA, followed by *post-hoc* Tukey's multiple comparison test. Data were
 215 considered statistically significant when $p < 0.05$.


216

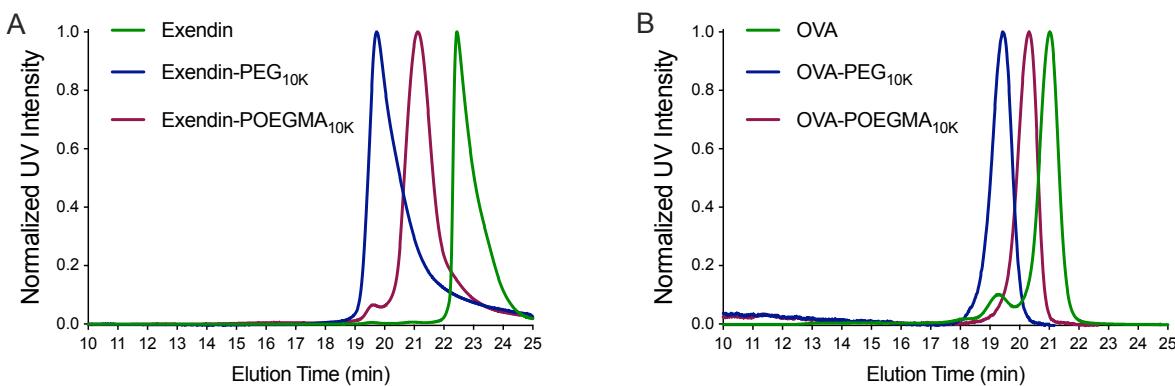
217 **Supplementary Figure 28. UV-vis absorbance spectrum of fluorescently labeled treatments used in the pharmacokinetics**
 218 **experiment.** Exendin variants were reacted with an amine-functionalized Alexa Fluor 488, followed by purification of the
 219 conjugate by gel filtration. UV-vis absorbance spectra of the fluorophore conjugate of the exendin variants were measured on a
 220 Nanodrop spectrometer using unmodified exendin as a negative control and Alexa Fluor 488 as a positive control.

222

223 **Supplementary Figure 29. Individually plotted raw fed blood glucose of long-term-treated *db/db* mice.** 6-week-old *db/db* mice
 224 ($n=5$) received weekly s.c. injections of (A) PBS, (B) exendin, (C) Bydureon, (D) Ex-PEG_{Rh}, and (E) Ex-POEGMA_{opt} for eight weeks.
 225 Fed blood glucose was measured as described in the Methods. Mice #1 and #2 in the PBS group died due to cage flooding on Day
 226 28. Mouse#4 in the Ex-PEG_{Rh} group was found dead on Day 51.

227

228 **Supplementary Figure 30. Change in body weight of long-term-treated *db/db* mice.** 6-week-old *db/db* mice (*n*=5) received
 229 weekly s.c. injections of PBS, exendin, Bydureon, Ex-PEG_{Rh}, and Ex-POEGMA_{opt} for eight weeks. Weight was tracked every other
 230 day.


231 **Section 5. Immunogenicity**

232 Design, optimization, and validation of a Luminex multiplexed immunoassay (LMI).

233 Assay Design. We designed an assay to assess the titer, specificity (anti-protein/peptide, anti-PEG, or anti-
234 POEGMA), and subtype (IgM or IgG) of ADAs using a LMI platform. The LMI platform uses drug or drug-
235 polymer conjugates that are covalently coupled to fluorescently barcoded magnetic beads to capture
236 ADAs. We conjugated exendin, exendin-PEG, and exendin-POEGMA and their OVA counterparts—OVA,
237 OVA-PEG, OVA-POEGMA—to different sets of fluorescently barcoded magnetic beads. This bead design
238 allowed us to determine the specificity of the ADAs, such that if exendin-PEG-treated mice plasma results
239 in a positive signal for the exendin-PEG- and OVA-PEG-conjugated bead sets but not for the exendin-
240 conjugated bead set, that would give a clear indication that the ADAs are PEG-specific and not protein
241 specific.

242 Drug synthesis, purification, and characterization for bead coupling. Due to the steric effects of high
243 M_w POEGMA and PEG used in the optimal conjugate synthesis on the bead coupling efficiency, we
244 synthesized exendin and OVA conjugates of PEG and POEGMA for bead coupling using polymers with
245 an M_w of ~10 kDa, yielding exendin-PEG_{10K}, exendin-POEGMA_{10K}, OVA-PEG_{10K}, and OVA-POEGMA_{10K}.
246 Exendin-PEG_{10K} and exendin-POEGMA_{10K} conjugates were synthesized, purified, and characterized, as
247 described in Methods with minor modifications. Briefly, azide functional, linear PEG was purchased from
248 Creative PEGWorks. Azide functional POEGMA was synthesized by reacting the EG3 monomer (2.5 mmol;
249 565.4 μ L), the catalytic complex (0.1 mmol TPMA and 0.01 mmol CuBr₂; 62.5 μ L), the polymerization
250 initiator (62.5 μ L in methanol; 0.01 mmol) in a mixture of methanol (1437.5 μ L) and 100 mM NaCl (4432.8
251 μ L) for 2 hours. Exendin-PEG_{10K} and exendin-POEGMA_{10K} conjugates were analyzed for M_n , M_w ,
252 and D using SEC-MALS (**Supplementary Fig. 31a; Supplementary Table 2**).

253 OVA conjugates of PEG and POEGMA were synthesized via activated carbonate-amine
 254 conjugation. Nitrophenyl-carbonate (NPC) functional PEG was purchased from Creative PEGWorks. A
 255 hydroxyl functional POEGMA was synthesized by reacting EG3 (10 mmol; 2261.6 μ L), the catalytic complex
 256 (0.08 mmol TPMA and 0.01 mmol CuBr₂; 100 μ L), 2-Hydroxyethyl 2-bromo isobutyrate (Sigma) (200 μ L in
 257 methanol; 0.04 mmol) in a mixture of methanol (5.800 mL) and 100 mM NaCl (11.638 mL) for 1.5 h. The
 258 resulting hydroxyl-functional POEGMA (5 mM in DCM) was reacted with p-nitrophenyl carbonate (100
 259 mM in DCM) in the presence of pyridine (240 mM in DCM) for 16 h to convert the hydroxyl end-group to
 260 an NPC. The resulting NPC-functional POEGMA was purified via filtration followed by diethyl ether
 261 precipitation. NPC functionalization yield was 79.7%, calculated by nuclear magnetic resonance (NMR)
 262 spectroscopy. NPC functional POEGMA and PEG were reacted with OVA (Invivogen; 2 mg ml⁻¹) at a 10: 1
 263 molar ratio for 5 h in 200 mM phosphate buffer at pH 8, yielding OVA-PEG_{10K} and OVA-POEGMA_{10K}
 264 conjugates. The resulting conjugates were purified by anion exchange chromatography to > 98% purity
 265 using 20 mM sodium phosphate buffer at pH 8.6 with a NaCl gradient of 0-50% and were then desalting
 266 and lyophilized. The conjugates were analyzed for M_n , M_w , and \mathcal{D} using SEC-MALS (**Supplementary Fig.**
 267 **31b; Supplementary Table 2**).

268
 269 **Supplementary Figure 31. SEC traces of the drugs used for the bead coupling.** The conjugates were separated on a Shodex KW
 270 803 SEC-HPLC column using 10 mM phosphate buffer (pH 7.2) as a mobile phase. The flow rate was 0.5 ml min⁻¹.

271 **Supplementary Table 2. Characterization of drugs used in bead coupling.** M_w and \mathcal{D} values were determined by SEC-MALS. The
272 data summarized here is shown in Supplementary Figure 32. Subscript shows the M_w of the polymer used in the synthesis of the
273 conjugate. Conjugation stoichiometry was defined as the number of polymer chains per peptide or protein and was calculated
274 using ASTRA (Wyatt Technology). The R_h was calculated by DLS and reported as the mean \pm standard deviation ($n= 10$). N/A (Not
275 applicable).

Compound	Polymer M_w (kDa)	Polymer \mathcal{D}	M_w (kDa)	\mathcal{D}	Conjugation Stoichiometry	R_h (nm)
Exendin	N/A	N/A	4.1	1.00	N/A	2.0 ± 0.7
Exendin-PEG _{10K}	10.2	1.06	16.2	1.10	1.01	3.8 ± 0.2
Exendin-POEGMA _{10K}	10.3	1.06	17.3	1.07	1.01	2.7 ± 0.8
OVA	N/A	N/A	42.9	1.00	N/A	2.5 ± 0.6
OVA-PEG _{10K}	10.3	1.01	54.5	1.16	1.03	4.5 ± 0.7
OVA-POEGMA _{10K}	10.4	1.09	54.7	1.07	1.03	3.3 ± 0.3

276
277 *Synthesis and characterization of drug coupled Luminex magnetic beads.* The drugs and drug-polymer
278 conjugates —exendin, exendin-PEG_{10K}, exendin-POEGMA_{10K}, OVA, OVA-PEG_{10K}, and OVA-POEGMA_{10K}—
279 were covalently coupled to different sets of fluorescently barcoded MagPlex magnetic beads (Luminex)
280 via carbodiimide chemistry by following the manufacturer's instructions with minor modifications.¹ The
281 concentration of drug or drug-polymer conjugate used in the coupling reactions were carefully titrated to
282 ensure that the resulting bead sets had equal amounts of antigen per bead, as described below.

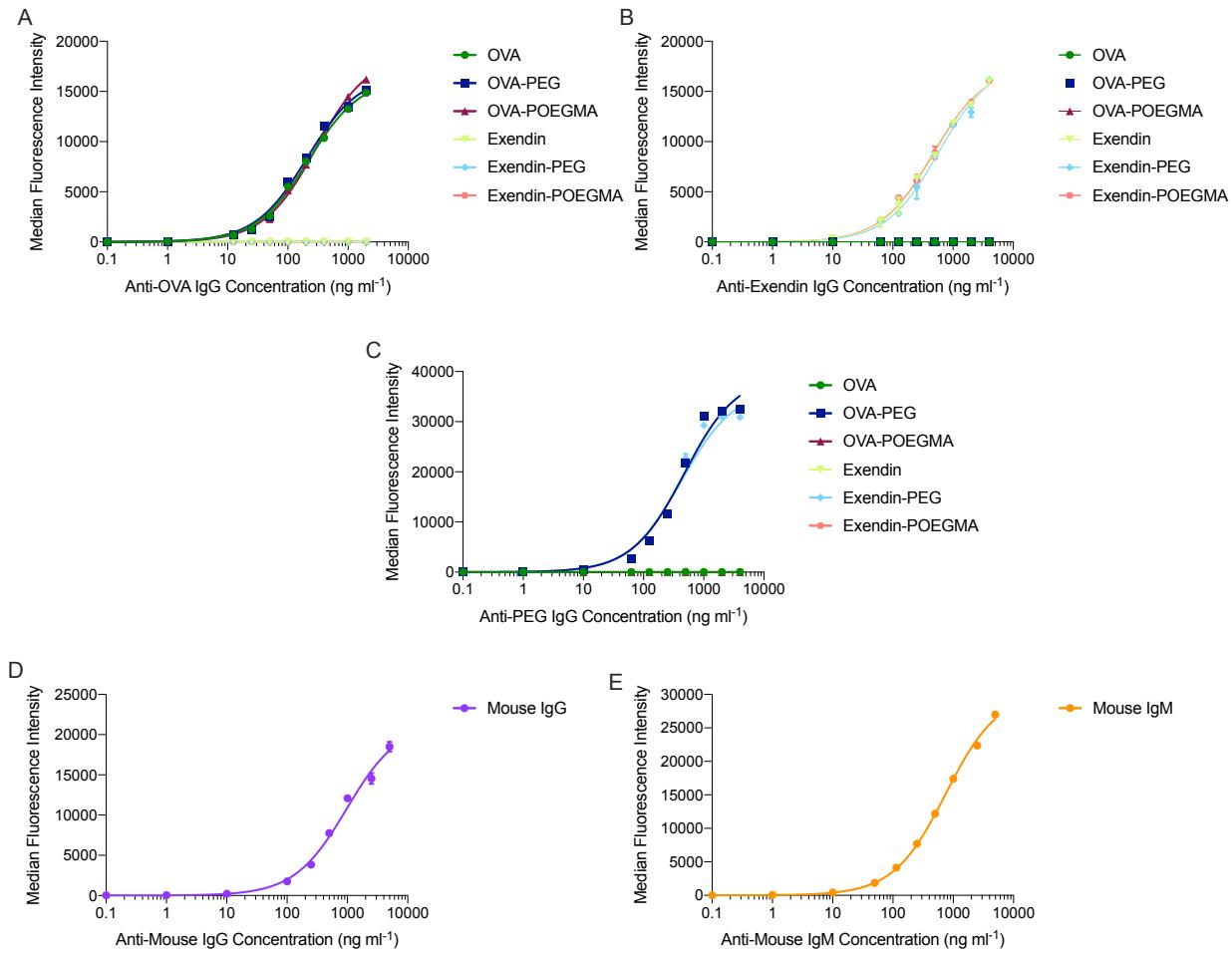
283 To couple exendin (Santa Cruz Biotechnology), exendin-PEG_{10K}, and exendin-POEGMA_{10K}, beads
284 were first amine-functionalized as described below. The amine-modified beads were then conjugated to
285 the exendin variants. Briefly, 12.5 million carboxyl-functional beads were rinsed with 0.5 ml of coupling
286 buffer II (0.1 M MES; pH 6.0). Rinsed beads were incubated with 500 μ L of adipic acid dihydrazide (ADH)
287 (35 mg ml⁻¹) and 100 μ L of EDC (200 mg ml⁻¹) for 1 h. The resulting amine-modified beads were washed
288 and resuspended in 200 μ L of the coupling buffer II. 31.8 μ L of exendin, 41.7 μ L of exendin-PEG and 39.7
289 μ L of exendin-POEGMA solutions (187.8 μ M) and 25 μ L of EDC (200 mg ml⁻¹) were added to amine-
290 modified beads followed by bringing the final volume to 250 μ L and incubation for 2 hours. The resulting
291 drug-coupled beads were blocked overnight in assay buffer, which is 0.2% (w/v) I-Block protein-based

292 blocking reagent (Thermo Scientific) in PBS (Hyclone). The next morning, they were washed three times,
293 resuspended, and counted using a hemocytometer for final concentration.

294 For the OVA, OVA-PEG_{10K}, and OVA-POEGMA_{10K} coupling reaction, 12.5 million beads were rinsed
295 with 250 μ L deionized water. Rinsed beads were resuspended in 50 μ L activation buffer (0.1 M NaH₂PO₄;
296 pH 6.2), followed by the addition of 25 μ L of 100 mg ml⁻¹ N-hydroxy sulfosuccinimide (Sulfo-NHS; Thermo
297 Scientific) and 1-Ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC; Thermo Scientific)
298 and incubation for 20 min. Activated beads were washed with 1 mL coupling buffer (50 mM 2-(N-
299 morpholino) ethanesulfonic acid (MES); pH 5.0) three times and resuspended in 500 μ L of the coupling
300 buffer. 93.7 μ L of OVA, 106.6 μ L of OVA-PEG_{10K}, and 105.6 μ L of OVA-POEGMA_{10K} solutions (46.8 μ M) were
301 transferred, followed by bringing the total volume to 1 ml with the coupling buffer and incubation for 2
302 h. The resulting drug-coupled beads were blocked overnight in the assay buffer, washed three times,
303 resuspended, and counted using a hemocytometer. This protocol was also used to couple mouse IgG
304 (Abcam; 2.5 μ L; 2 mg ml⁻¹) and IgM (Bio-Rad; 6.25 μ L; 2 mg ml⁻¹) as positive controls.

305 The resulting beads were characterized for their level of drug conjugation using anti-drug
306 antibodies at varied concentrations by following the manufacturer's instructions. Briefly, 50 μ L of each set
307 of beads (50,000 bead ml⁻¹ in the assay buffer) was transferred to a black, round-bottom 96-well-plate
308 (Corning). Next, serial dilutions were prepared of mouse anti-OVA IgG (Abcam #17293) mouse anti-
309 exendin IgG (Abcam #23407), mouse anti-PEG IgG (Abcam #195350), R-Phycoerythrin-conjugated goat
310 anti-mouse IgG (Jackson Immunoresearch; 115-115-164), and biotinylated goat anti-mouse IgM (Jackson
311 Immunoresearch; 115-065-075) in assay buffer. 50 μ L of the resulting solutions were transferred to wells
312 followed by incubation for 1 h on an orbital shaker. After incubation, a 96-well-plate was placed on a
313 magnetic ring stand (Invitrogen) and incubated for 60 s for capture of the magnetic particles to occur. The
314 supernatant was discarded, and wells were washed with 100 μ L of the assay buffer. Drug-coupled beads
315 were incubated with 100 μ L of 5 μ g ml⁻¹ R-Phycoerythrin-conjugated goat anti-mouse IgG (Jackson

316 Immunoresearch; #115-115-164) for 30 minutes. Mouse IgG and IgM-coupled beads were incubated in
317 assay buffer for 30 minutes. After incubation, 96-well-plate was placed on the magnetic ring stand and
318 incubated for 60 seconds for separation to occur. The supernatant was discarded, and wells were washed
319 twice with 100 μ l of the assay buffer. Mouse IgM coupled beads were incubated with Streptavidin-R-
320 Phycoerythrin Conjugate (SAPE) at 1.5 equivalent concentrations of biotinylated goat anti-mouse IgM
321 used in that particular well for 30 min. The 96-well-plate was placed on the magnetic ring stand and
322 incubated for 60 s for capture of the magnetic particles to occur. The supernatant was discarded, and
323 wells were washed twice with 100 μ l of the assay buffer. Beads were solubilized in the assay buffer and
324 analyzed using MAGPIX (Luminex).


325 The resulting bead sets had an equal amount of the same type of antigen. OVA, OVA-PEG_{10K}, and
326 OVA-POEGMA_{10K} bead sets had equal amounts of OVA, indicated by identical median fluorescence
327 intensity (MFI) detected at varied mouse anti-OVA antibody concentrations (**Supplementary Fig. 32a**).
328 Similarly, exendin, exendin-PEG_{10K}, and exendin-POEGMA_{10K} bead sets had equal amounts of exendin
329 (**Supplementary Fig. 32b**). Importantly, we confirmed that exendin-PEG_{10K}- and OVA-PEG_{10K}-conjugated
330 bead sets had equal amounts of PEG (**Supplementary Fig. 32c**). We also confirmed the conjugation of
331 mouse IgG (**Supplementary Fig. 32d**) and mouse IgM (**Supplementary Fig. 32e**) on the positive control
332 beads.

333 Optimization and validation of the LMI. The LMI was optimized in its background, specificity, sensitivity,
334 precision, and linearity. The optimized assay was validated by performing a spike-and-recovery
335 experiment.

336 Background. The Limit of Blank (LoB) was defined as median fluorescence intensity (MFI) of singleplex and
337 multiplexed drug-coupled magnetic beads in assay buffer. Singlet LoB (SLoB) and multiplexed LoB (MLoB)
338 were calculated by adding three standard deviations to the mean MFI in the assay buffer (**Supplementary**
339 **Table 3**). The highest SLoB was 42 MFI, roughly corresponding to 0.26% of MFI detected with anti-drug

340 antibodies, indicating that drug-coupled beads have a low fluorescence background. Importantly, SLoB
341 and MLoB were not significantly different ($P>0.99$), indicating that multiplexing the beads does not affect
342 their fluorescence background.

343 Specificity. We tested if the control antibodies (anti-exendin IgG, anti-OVA IgG, anti-PEG IgG, anti-mouse
344 IgG, and anti-mouse IgM) showed any cross-reactivity to the drug-coupled beads by incubating singleplex
345 and multiplexed beads with a single type or multiple types of antibodies. Cross-reactivity of a bead set to
346 a control antibody was calculated as the percent MFI signal of a true positive bead set and was less than
347 1% for all drug-coupled beads at $1 \mu\text{g ml}^{-1}$ antibody concentration. This result indicated that the control
348 reagents were of high specificity. Similarly, the assay buffer showed no cross-reactivity to anti-drug
349 antibodies or drugs (**Supplementary Table 4**).

350

351 **Supplementary Figure 32. Characterization of drug- and antibody-coupled beads used in Luminex multiplexed**
 352 **immunoassays.** The amount of drug coupled was carefully titrated to ensure that the resulting bead sets had equal amounts of
 353 the same type of antigen, indicated by near-identical MFI detected at varied positive control antibody concentrations.

354 **Supplementary Table 3. Background of the LMI.** The Limit of Blank (LoB) was defined as MFI of singlet and multiplexed drug-
 355 coupled magnetic beads in assay buffer. SLoB and MLoB were calculated by adding three standard deviations to the mean MFI
 356 detected in the assay buffer. Data were analyzed using two-way repeated-measures ANOVA, followed by Tukey's multiple
 357 comparison test. $P<0.05$ was considered statistically significant. N/A (Not applicable).

Antigen/ Limit of Blank (LoB)	OVA	OVA-PEG _{10K}	OVA-POEGMA _{10K}	Exendin	Exendin-PEG _{10K}	Exendin-POEGMA _{10K}	Mouse IgG	Mouse IgM
Singleplex LoB	41.2	40.3	40.6	36.9	39.1	28.6	26.8	29.5
Multiplexed LoB	26.2	27.1	38.8	26.1	34.6	35.5	N/A	N/A

358 **Supplementary Table 4. The specificity of the control antibodies used in the LMI.** Cross-reactivity of a bead set to a control
 359 antibody was calculated as the percent MFI signal of a true positive bead set and assessed at 1 $\mu\text{g ml}^{-1}$ control antibody
 360 concentration. Data represent the mean and SEM.

Singleplex Antigen Cross-Reactivity (%)								
Antigen/Anti-Drug Antibody	OVA	OVA-PEG	OVA-POEGMA	Exendin	Exendin-PEG	Exendin-POEGMA	Mouse IgG	Mouse IgM
Anti-OVA IgG	100 \pm 7.0	100 \pm 0.4	100 \pm 2.2	0.2 \pm 0.01	0.2 \pm 0.01	0.2 \pm 0.01	0.6 \pm 0.04	0.2 \pm 0.03
Anti-PEG IgG	0.5 \pm 0.1	234.5 \pm 0.5	0.6 \pm 0.1	0.2 \pm 0.01	280.4 \pm 4.2	0.6 \pm 0.06	0.5 \pm 0.04	0.2 \pm 0.02
Anti-Exendin IgG	0.2 \pm 0.02	0.3 \pm 0.1	0.2 \pm 0.04	100 \pm 1.4	100 \pm 2.25	100 \pm 5.47	0.5 \pm 0.02	0.2 \pm 0.06
Anti-Mouse IgG	0.2 \pm 0.01	0.2 \pm 0.02	0.1 \pm 0.01	0.2 \pm 0.02	0.2 \pm 0.02	0.2 \pm 0.01	100 \pm 6	0.2 \pm 0.02
Anti-Mouse IgM	0.2 \pm 0.01	0.2 \pm 0.02	0.2 \pm 0.02	0.2 \pm 0.02	0.2 \pm 0.02	0.1 \pm 0.02	0.7 \pm 0.07	100 \pm 9.3
Anti-OVA IgG + Anti-Exendin IgG	98.1 \pm 0.1	94.5 \pm 4.4	96.4 \pm 1.1	101.8 \pm 9.2	100.7 \pm 1	97.9 \pm 0.9	0.5 \pm 0.1	0.3 \pm 0.06
Anti-OVA IgG + Anti-Exendin IgG + Anti-PEG IgG	98.4 \pm 6.1	314.3 \pm 7.7	96.0 \pm 9.4	102.2 \pm 2.5	377.2 \pm 0.3	103.5 \pm 4.1	0.6 \pm 0.07	0.2 \pm 0.2
Multiplexed Antigen Cross-Reactivity (%)								
Antigen/Anti-Drug Antibody	OVA	OVA-PEG	OVA-POEGMA	Exendin	Exendin-PEG	Exendin-POEGMA	Mouse IgG	Mouse IgM
Anti-OVA IgG	100 \pm 3	100 \pm 4.6	100 \pm 1.4	0.2 \pm 0.02	0.2 \pm 0.05	0.2 \pm 0.03	0.5 \pm 0.1	0.1 \pm 0.01
Anti-PEG IgG	0.2 \pm 0.03	231 \pm 2.8	0.24 \pm 0.1	0.65 \pm 0.02	233.8 \pm 2.7	0.35 \pm 0.03	0.5 \pm 0.02	0.1 \pm 0.02
Anti-Exendin IgG	0.2 \pm 0.03	0.2 \pm 0.01	0.2 \pm 0.05	100 \pm 1.2	100 \pm 1.2	100 \pm 2.4	0.5 \pm 0.01	0.2 \pm 0.01
Anti-Mouse IgG	0.1 \pm 0.1	0.07 \pm 0.08	0.2 \pm 0.01	0.1 \pm 0.07	0.2 \pm 0.01	0.1 \pm 0.09	100 \pm 2.2	0.9 \pm 0.05
Anti-Mouse IgM	0.1 \pm 0.04	0.2 \pm 0.01	0.2 \pm 0.02	0.2 \pm 0.1	0.2 \pm 0.01	0.2 \pm 0.03	0.5 \pm 0.03	100 \pm 0.7
Anti-OVA IgG + Anti-Exendin IgG	96.3 \pm 2	241 \pm 1.6	97.3 \pm 3.2	93.8 \pm 2.6	239 \pm 4.3	94.5 \pm 4.2	0.2 \pm 0.01	0.1 \pm 0.1
Anti-OVA IgG + Anti-Exendin IgG + Anti-PEG IgG	94.3 \pm 1.9	327.3 \pm 7.2	100.8 \pm 1.9	100.9 \pm 0.6	346.3 \pm 4.6	97.9 \pm 4.8	0.6 \pm 0.3	0.2 \pm 0.08

362 363 **Sensitivity.** The sensitivity of the immunoassay was assessed at varying concentrations of the control
 364 antibodies. The Limit of Detection (LoD) was defined as the minimum detectable control antibody dose
 365 for a particular drug-coupled bead and calculated for each bead set as mean antibody concentration plus
 366 three standard deviations. LoD was below 1.5 ng ml^{-1} for all antigens (**Supplementary Table 5**), indicating
 367 that the assay has high sensitivity. The lower limit of quantification (LLoQ) and upper limit of quantification
 368 (ULoQ) were defined as the minimum and maximum antibody concentration detected in the assay's

369 linear working range plus three standard deviations, *respectively*, and demarcate the lower and upper
370 boundaries of the assay for each bead set.

371 **Supplementary Table 5. The sensitivity of the LMI.** The LoD was defined as the minimum detectable control antibody dose for a
372 particular drug-coupled bead and calculated for each bead set as mean antibody concentration plus three standard deviations.
373 The LLoQ and ULoQ defined the lower and upper boundaries of the assay's linear working range for each bead set. N/A (Not
374 applicable).

Antigen/ Sensitivity (ng ml ⁻¹)	OVA	OVA-PEG _{10K}	OVA-POEGMA _{10K}	Exendin	Exendin-PEG _{10K}	Exendin- POEGMA _{10K}	Mouse IgG	Mouse IgM
Anti-OVA LoD	0.315	0.289	0.426	N/A	N/A	N/A	N/A	N/A
Anti-OVA LLoQ	0.999	1.063	0.935	N/A	N/A	N/A	N/A	N/A
Anti-OVA ULoQ	119.8	123.1	115.0	N/A	N/A	N/A	N/A	N/A
Anti-PEG LoD	N/A	0.514	N/A	N/A	0.450	N/A	N/A	N/A
Anti-PEG LLoQ	N/A	1.001	N/A	N/A	1.002	N/A	N/A	N/A
Anti-PEG ULoQ	N/A	568.3	N/A	N/A	507.5	N/A	N/A	N/A
Anti-Exendin LoD	N/A	N/A	N/A	1.248	1.452	1.397	N/A	N/A
Anti-Exendin LLoQ	N/A	N/A	N/A	5.276	5.185	5.191	N/A	N/A
Anti-Exendin ULoQ	N/A	N/A	N/A	103.3	124.4	129.4	N/A	N/A
Anti-mouse IgG LoD	N/A	N/A	N/A	N/A	N/A	N/A	0.126	N/A
Anti-mouse IgG LLoQ	N/A	N/A	N/A	N/A	N/A	N/A	1.171	N/A
Anti-mouse IgG ULoQ	N/A	N/A	N/A	N/A	N/A	N/A	500.1	N/A
Anti-mouse IgM LoD	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.326
Anti-mouse IgM LLoQ	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.997
Anti-mouse IgM ULoQ	N/A	N/A	N/A	N/A	N/A	N/A	N/A	169.6

375
376 Linearity. The assay's linearity was determined by assessing whether assay values were proportional to
377 the analyte concentration. It was defined as the goodness of fit (R^2) of at least four dilutions of plasma or
378 control antibodies in the assay buffer. R^2 values were greater than 0.98 for all bead sets, indicating that
379 working conditions remained in the assay's dynamic range (**Supplementary Table 6**).

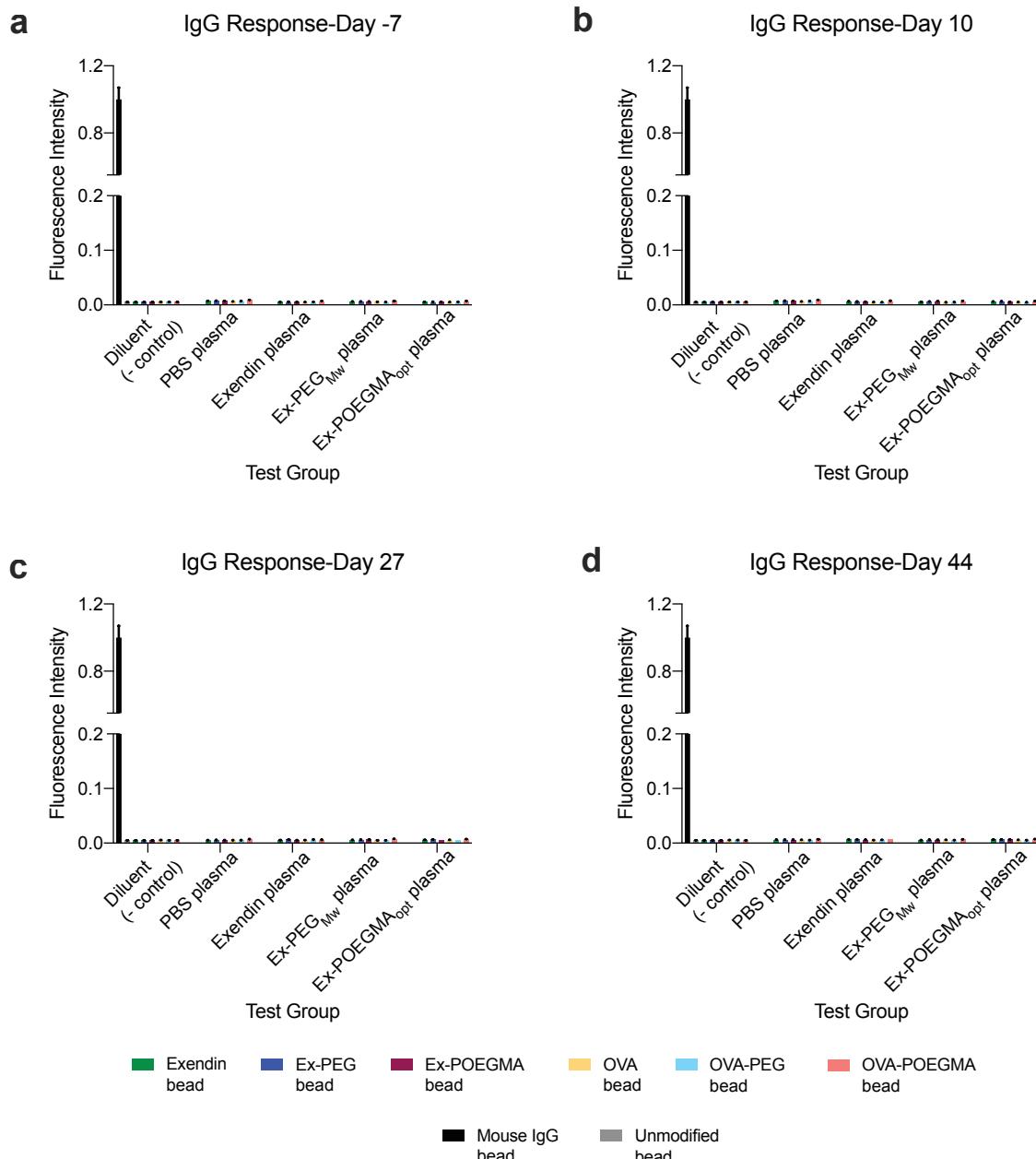
380 **Supplementary Table 6. The linearity of the LMI.** Linearity was defined as the R^2 of at least four dilutions of plasma or control
 381 antibodies in the assay buffer. Not applicable (N/A).

Linearity Correlation Coefficient in Assay Buffer								
Antigen/Anti-Drug Antibody	OVA	OVA-PEG _{10K}	OVA-POEGMA _{10K}	Exendin	Exendin-PEG _{10K}	Exendin-POEGMA _{10K}	Mouse IgG	Mouse IgM
Anti-OVA IgG	0.999	0.999	0.993	N/A	N/A	N/A	N/A	N/A
Anti-PEG IgG	N/A	0.999	N/A	N/A	0.985	N/A	N/A	N/A
Anti-Exendin IgG	N/A	N/A	N/A	0.999	0.998	0.999	N/A	N/A
Anti-Mouse IgG	N/A	N/A	N/A	N/A	N/A	N/A	0.999	N/A
Anti-Mouse IgM	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.984
Linearity Correlation Coefficient in Immunized Mice Plasma								
Antigen/Plasma	OVA	OVA-PEG _{10K}	OVA-POEGMA _{10K}	Exendin	Exendin-PEG _{10K}	Exendin-POEGMA _{10K}	Mouse IgG	Mouse IgM
Anti-OVA	0.994	0.987	0.993	N/A	N/A	N/A	N/A	N/A
Anti-OVA-PEG	0.990	0.976	0.995	N/A	N/A	N/A	N/A	N/A
Anti-OVA-POEGMA	0.993	0.985	0.994	N/A	N/A	N/A	N/A	N/A
Anti-Exendin	N/A	N/A	N/A	N/S	NS	N/S	N/A	N/A
Anti-Exendin-PEG	N/A	N/A	N/A	N/S	0.990	N/S	N/A	N/A
Anti-Exendin-POEGMA	N/A	N/A	N/A	N/S	N/S	N/S	N/A	N/A

382
 383 **Precision.** Precision was determined by assessing the repeatability and the reproducibility of the assay and
 384 is defined as the intra-assay and inter-assay variability. Intra-assay variability (%CV) was calculated by
 385 dividing the standard deviation of anti-drug IgG concentration measured using drug-coupled beads ($n=9$)
 386 on the same plate by its mean. Inter-assay variability (%CV) was calculated by dividing the standard
 387 deviation of anti-drug IgG concentration measured using drug-coupled beads on three different plates
 388 ($n=3$) by its mean. Intra-assay and inter-assay variabilities were 6.57% and 9.57% for all antigens,
 389 indicating that the assay had high precision (**Supplementary Table 7**).

390 **Supplementary Table 7. The precision of the LMI.** Precision was determined by assessing the repeatability and the reproducibility
 391 of the assay and defined as intra-assay and inter-assay variability.

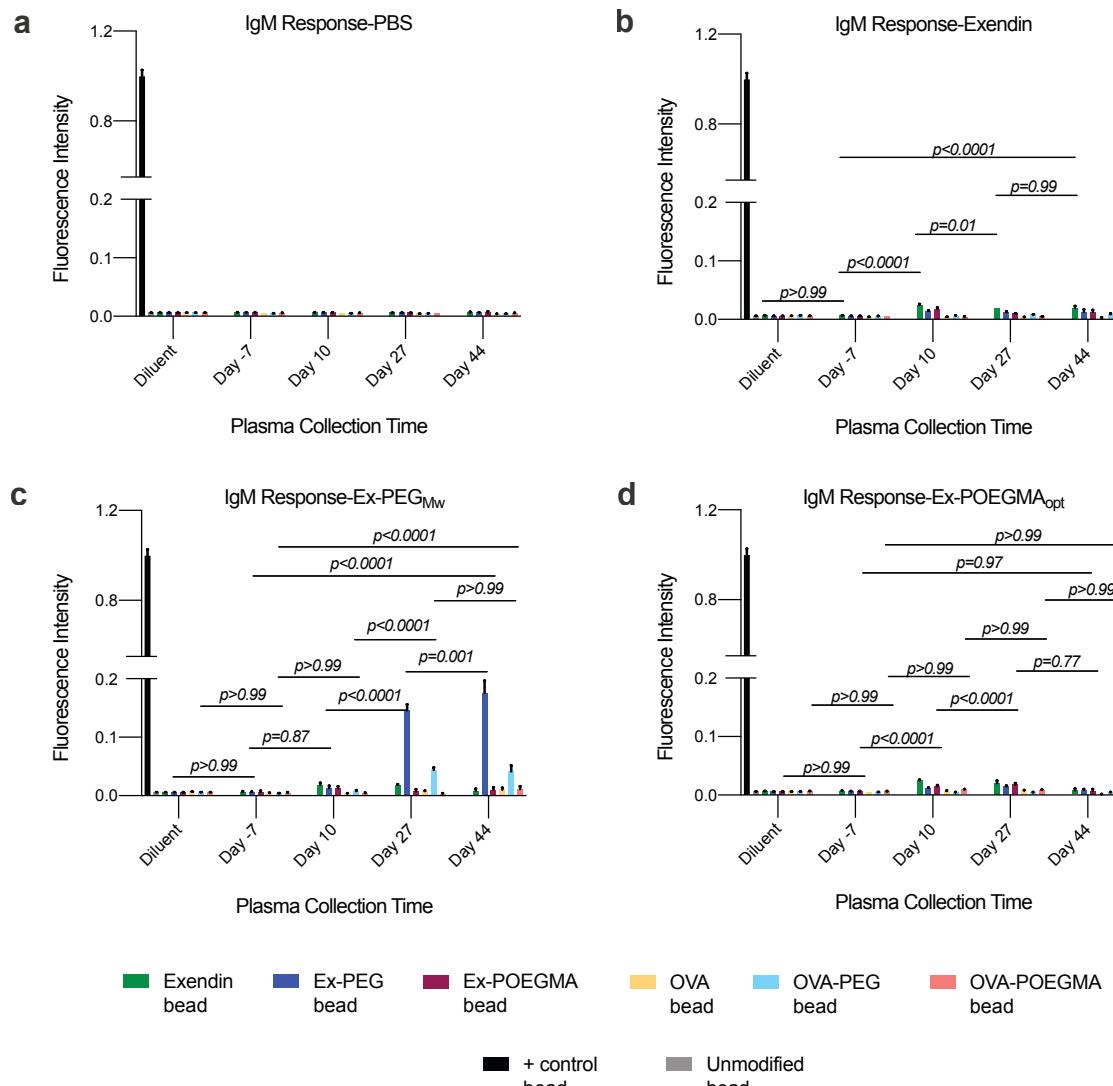
Spiked Control Reagent	Intra-Assay Variability (%CV)	Inter-Assay Variability (%CV)
Anti-OVA IgG + Anti-Exendin IgG + Anti-PEG IgG	<6.57	<9.57


392
 393 **Validation.** The optimized multiplexed immunoassay was validated by performing a spike-and-recovery
 394 experiment. Briefly, PBS-treated mouse plasma was spiked with 25 ng ml⁻¹ of exendin, OVA, and PEG
 395 antibodies the percent drug recovered from the assay at varying dilutions was calculated. The % recovery

396 was 105.4 ± 9.6 in the assay buffer and 102 ± 7.7 in the plasma, validating the assay performance
397 (**Supplementary Table 8**).

398 **Supplementary Table 8. The validation of the optimized LMI.** The optimized multiplexed immunoassay was validated by
399 performing a spike-and-recovery experiment. Data represent the mean and standard deviation.

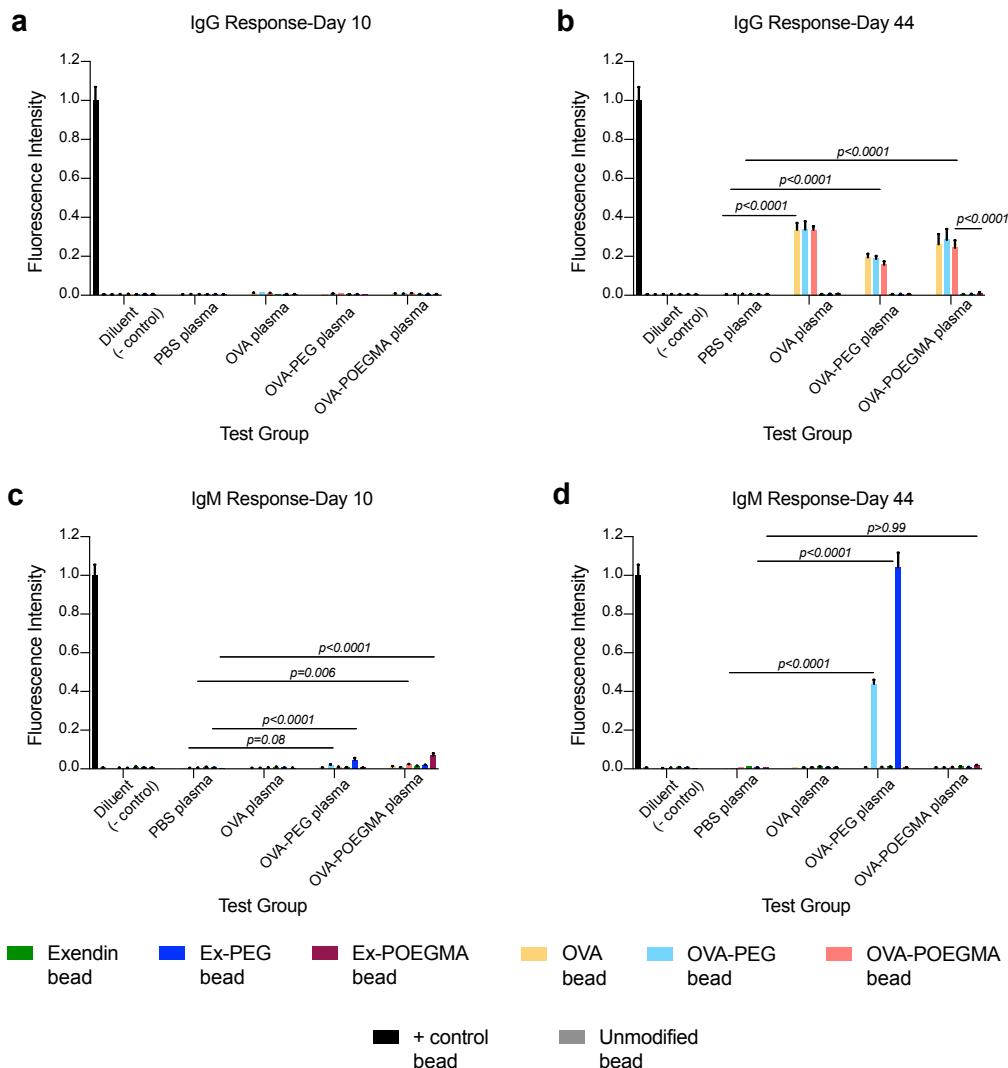
Spiked Control Reagent	Recovery in Diluent (%)	Recovery in Plasma (%)
Anti-OVA IgG + Anti-Exendin IgG + Anti-PEG IgG	105.4 ± 9.6	102 ± 7.7


400

401

402 **Supplementary Figure 33. Ex-POEGMA_{opt} does not induce exendin- or POEGMA-specific IgGs.** IgG response on **(A)** Day -7, **(B)**
 403 Day 10, **(C)** Day 27, and **(D)** Day 44. Blood samples were collected from mice repeatedly treated with PBS, exendin, Ex-PEG_{Mw},
 404 and Ex-POEGMA_{opt}. ADA response was analyzed using a LMI. Ex-PEG- and Ex-POEGMA-coupled beads were used to determine
 405 ADAs induced towards the entire conjugate (*i.e.*, anti-exendin and anti-polymer (PEG or POEGMA)). OVA-PEG- and OVA-POEGMA-
 406 coupled beads were used to determine ADAs induced towards PEG or POEGMA, respectively. The OVA-coupled bead was used
 407 as a negative control for cross-reactivity towards OVA. Data represent the mean ADA response induced in each mouse and the

408 SEM. Data were analyzed by two-way repeated-measures ANOVA, followed by *post-hoc* Tukey's multiple comparison test. Data
 409 were considered statistically significant when $p < 0.05$.

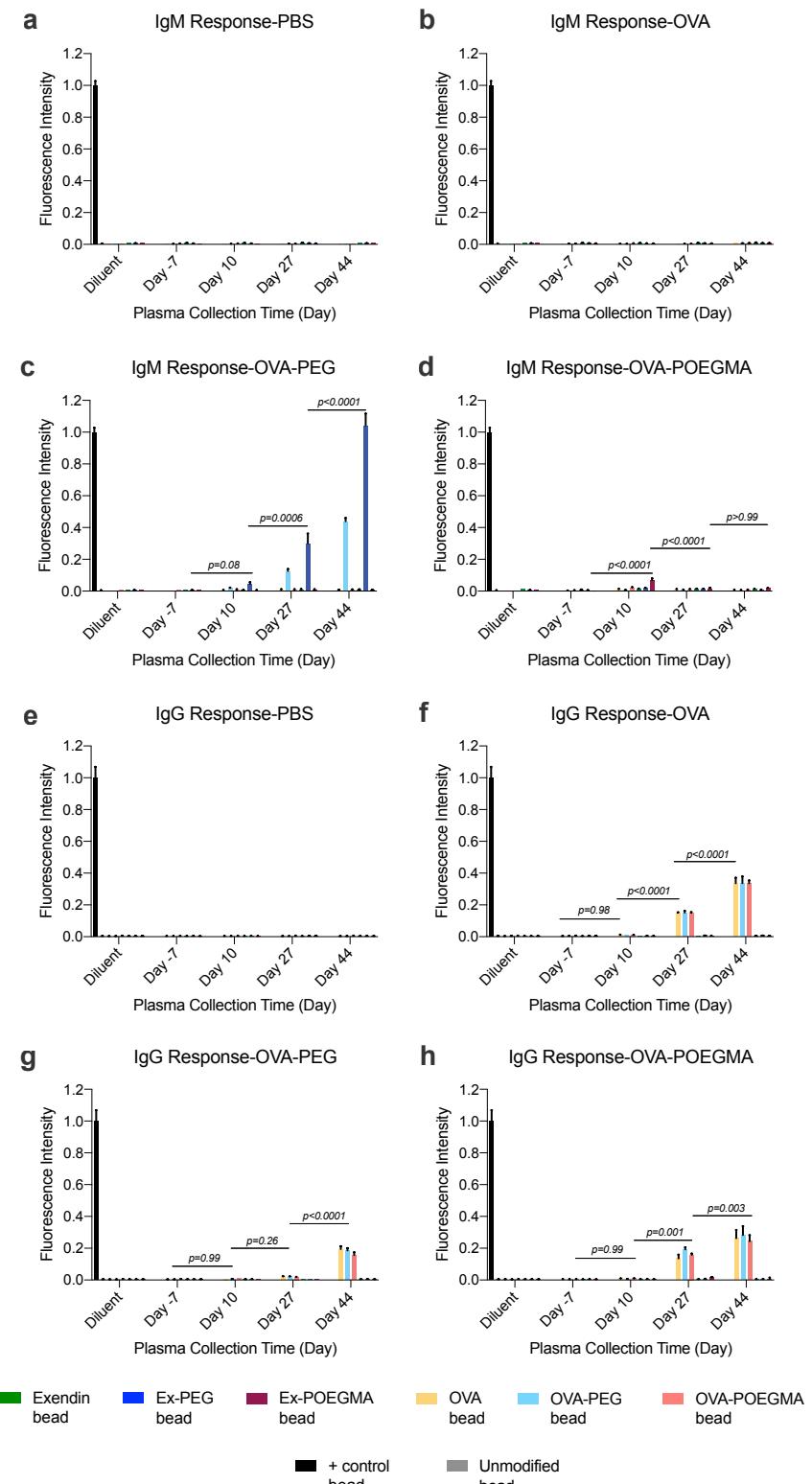


410

411 **Supplementary Figure 34. Development of IgM responses towards exendin variants over time.** IgM response towards (A) PBS,
 412 (B) exendin, (C) Ex-PEG_{Mw}, and (D) Ex-POEGMA_{opt}. Blood samples were collected from mice repeatedly treated with PBS, exendin,
 413 Ex-PEG_{Mw}, and Ex-POEGMA_{opt}. ADA response analyzed using a LMI. Ex-PEG- and Ex-POEGMA-coupled beads were used to
 414 determine ADAs induced towards the entire conjugate (*i.e.*, anti-exendin and anti-polymer (PEG or POEGMA)). OVA-PEG- and
 415 OVA-POEGMA-coupled beads were used to determine ADAs induced towards PEG or POEGMA, respectively. The OVA-coupled
 416 bead was used as a negative control for cross-reactivity towards OVA. Different panels represent mice immunized with the various
 417 materials, while the different colored bars are what was applied in the multiplex assay. Data represent the mean ADA response

418 induced in each mouse and the SEM. Data were analyzed by two-way repeated-measures ANOVA, followed by *post-hoc* Tukey's
419 multiple comparison test. Data were considered statistically significant when $p<0.05$.

420

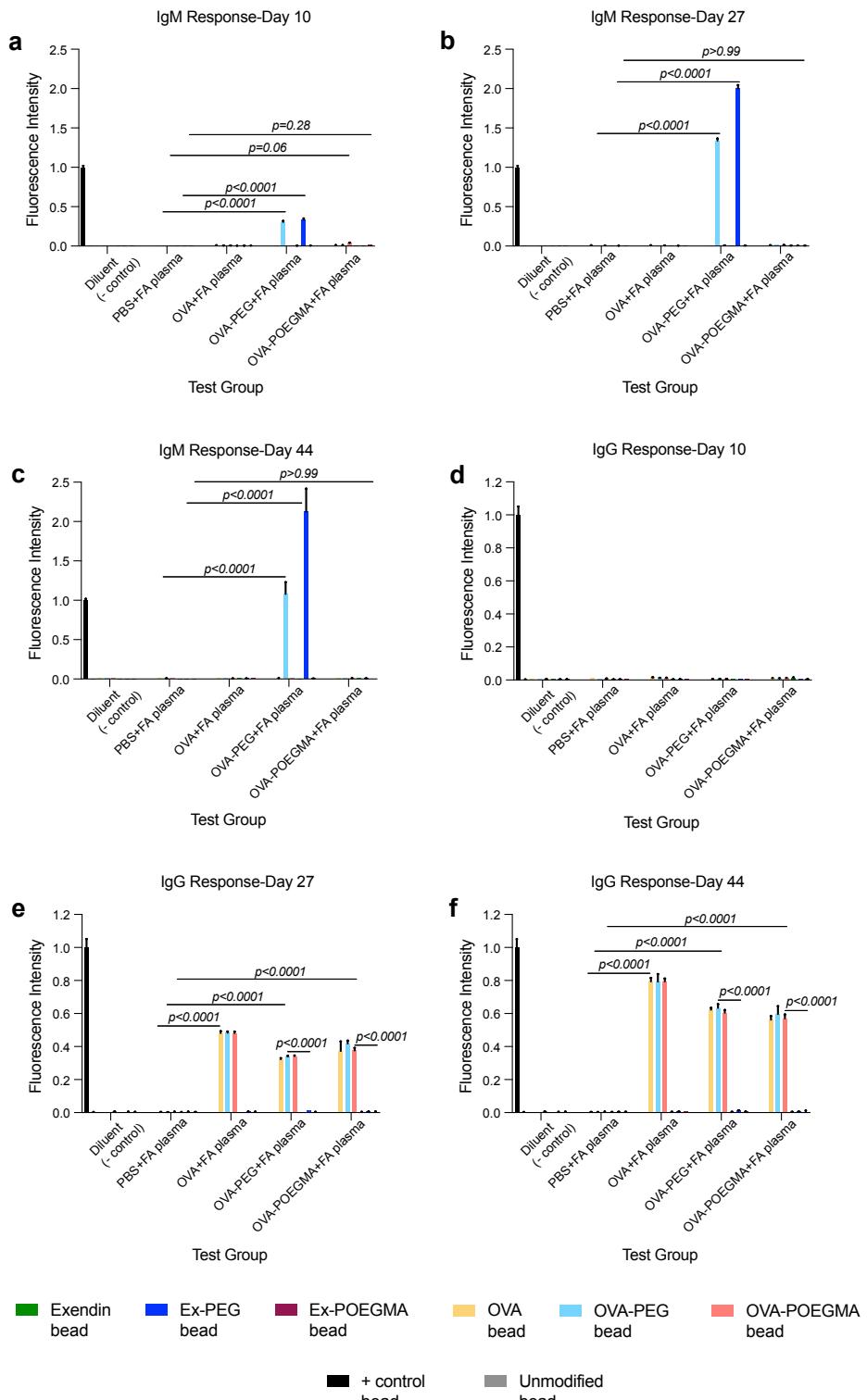


421

422 **Supplementary Figure 35. OVA-POEGMA does not induce anti-POEGMA antibodies except a mild and transient IgM response.**

423 IgM response on **(A)** Day 10, **(B)** Day 27, and **(C)** Day 44. IgG response on **(D)** Day 10, **(E)** Day 27, and **(F)** Day 44. Blood samples
424 were collected from C57BL/6J mice treated with OVA, OVA-PEG, and OVA-POEGMA (2.34 μ M) at an equivalent dose of 9.6 nmol
425 kg^{-1} bodyweight using an equivalent volume of PBS as a negative control. Blood collection and drug injection followed the timeline
426 given in Figure 6a. ADA response analyzed using a LMI. OVA-PEG- and OVA-POEGMA-coupled beads were used to determine
427 ADAs induced towards the entire conjugate (*i.e.*, anti-OVA and anti-polymer (PEG or POEGMA)). Ex-PEG- and Ex-POEGMA-coupled

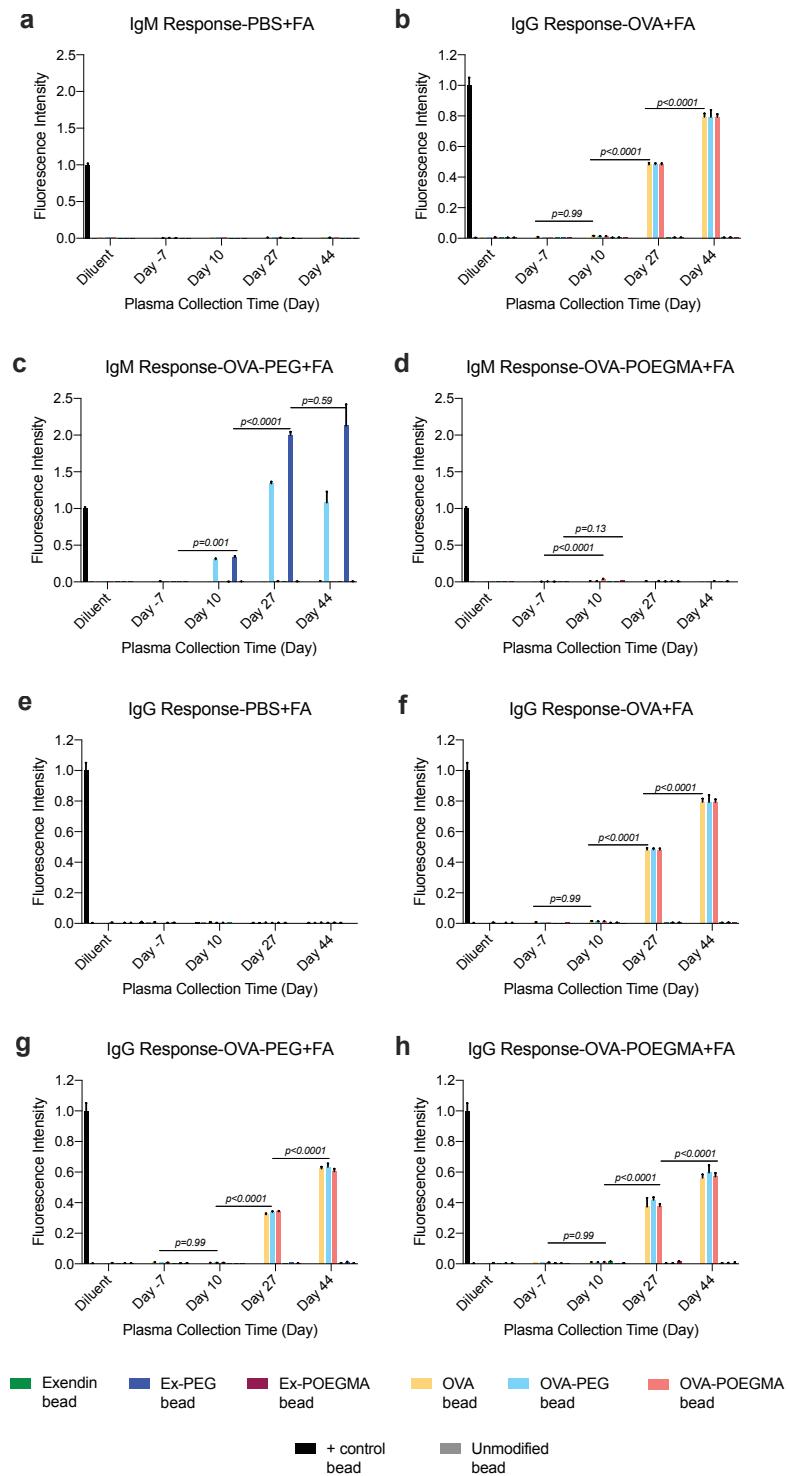
428 beads were used to determine ADAs induced towards PEG or POEGMA, respectively. The exendin-coupled bead was used as a
429 negative control for cross-reactivity towards OVA. Data represent the mean ADA response induced in each mouse and the SEM.
430 Data were analyzed by two-way repeated-measures ANOVA, followed by *post-hoc* Tukey's multiple comparison test. Data were
431 considered statistically significant when $p < 0.05$.



432

433 **Supplementary Figure 36. Development of immune response towards OVA-based treatments over time.** IgM response towards

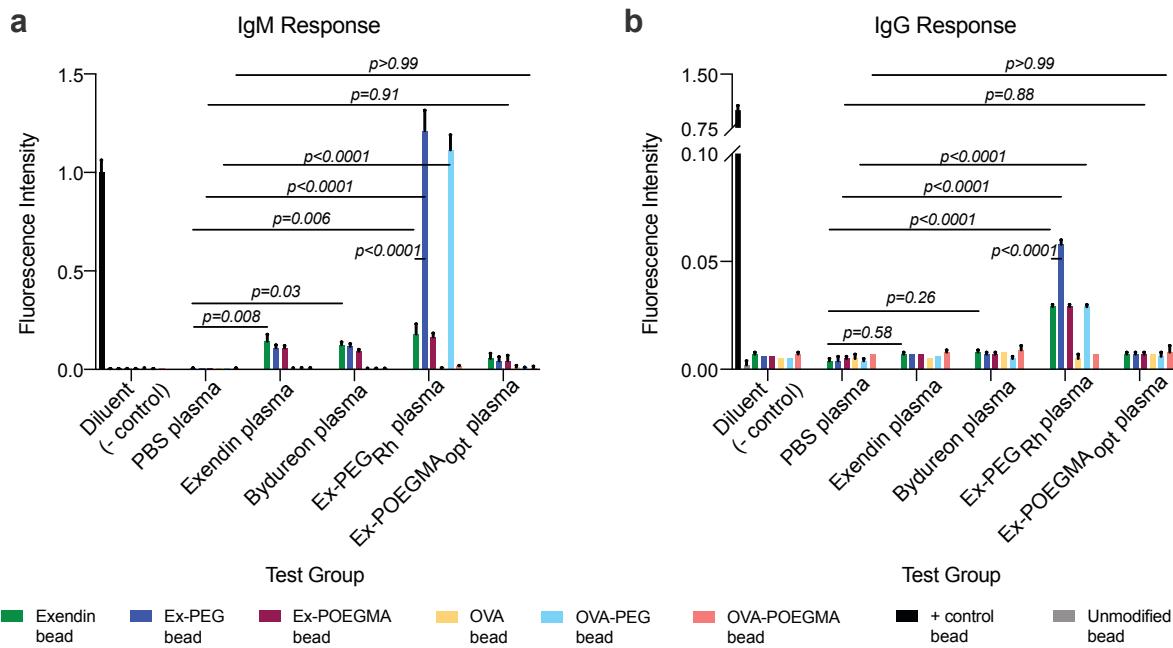
434 (A) PBS, (B) OVA, (C) OVA-PEG, and (D) OVA-POEGMA. IgG response towards (E) PBS, (F) OVA, (G) OVA-


435 POEGMA. Blood samples were collected from C57BL/6J mice treated with OVA, OVA-PEG, and OVA-POEGMA at an equivalent
436 dose of 9.6 nmol kg⁻¹ bodyweight using an equivalent volume of PBS as a negative control. Blood collection and drug injection
437 followed the timeline given in Figure 6a. ADA response analyzed using a LMI platform. OVA-PEG- and OVA-POEGMA-coupled
438 beads were used to determine ADAs induced towards the entire conjugate (*i.e.*, anti-OVA and anti-polymer (PEG or POEGMA)).
439 Ex-PEG- and Ex-POEGMA-coupled beads were used to determine ADAs induced towards PEG or POEGMA, respectively. The
440 exendin-coupled bead was used as a negative control for cross-reactivity towards OVA. Data represent the mean ADA response
441 induced in each mouse and the SEM. Data were analyzed by two-way repeated-measures ANOVA, followed by *post-hoc* Tukey's
442 multiple comparison test. Data were considered statistically significant when $p<0.05$.

443

444 **Supplementary Figure 37. OVA-POEGMA administrated with FA does not induce anti-POEGMA antibodies except a mild and**
 445 **transient IgM response. IgM response on (A) Day 10, (B) Day 27, and (C) Day 44. IgG response on (D) Day 10, (E) Day 27, and (F)**

446 Day 44. Blood samples were collected from C57BL/6J mice treated with equivalent doses of 1:1 (v/v) emulsions of OVA, OVA-
447 PEG, and OVA-POEGMA in PBS and FA using an equivalent volume of PBS as a negative control. Blood collection and drug injection
448 followed the timeline given in Figure 6a. ADA response analyzed using a Luminex multiplexed immunoassay platform. OVA-PEG-
449 and OVA-POEGMA-coupled beads were used to determine ADAs induced towards the entire conjugate (*i.e.*, anti-OVA and anti-
450 polymer (PEG or POEGMA)). Ex-PEG- and Ex-POEGMA-coupled beads were used to determine ADAs induced towards PEG or
451 POEGMA, respectively. The exendin-coupled bead was used as a negative control for cross-reactivity towards OVA. Data
452 represent the mean ADA response induced in each mouse and the SEM. Data were analyzed by two-way repeated-measures
453 ANOVA, followed by *post-hoc* Tukey's multiple comparison test. Data were considered statistically significant when $p < 0.05$.


454

455 **Supplementary Figure 38. Development of immune response towards OVA variants administered as FA emulsions over time.**

456 IgM response towards (A) PBS, (B) OVA, (C) OVA-PEG, and (D) OVA-POEGMA. IgG response towards (E) PBS, (F) OVA, (G) OVA-

457 PEG, and (H) OVA-POEGMA. Blood samples were collected from C57BL/6J mice treated with equivalent doses of 1:1 (v/v)

458 emulsions of OVA, OVA-PEG, and OVA-POEGMA in PBS and FA using an equivalent volume of PBS as a negative control. Blood
459 collection and drug injection followed the timeline given in Figure 6a. ADA response analyzed using a LMI. OVA-PEG- and OVA-
460 POEGMA-coupled beads were used to determine ADAs induced towards the entire conjugate (*i.e.*, anti-OVA and anti-polymer
461 (PEG or POEGMA)). Ex-PEG- and Ex-POEGMA-coupled beads were used to determine ADAs induced towards PEG or POEGMA,
462 respectively. The exendin-coupled bead was used as a negative control for cross-reactivity towards OVA. Data represent the mean
463 ADA response induced in each mouse and the SEM. Data were analyzed by two-way repeated-measures ANOVA, followed by
464 *post-hoc* Tukey's multiple comparison test. Data were considered statistically significant when $p < 0.05$.

467 **Supplementary Figure 39. Ex-POEGMA_{opt} does not induce anti-POEGMA antibodies after long-term treatment. (A) IgM and (B)**

468 IgG response after weekly treatment of 6-week-old *db/db* mice (*n*=5) for eight weeks with equivalent drug dose of exendin,

469 Bydureon, Ex-PEG_{Rh}, and Ex-POEGMA_{opt}, and an equivalent volume of PBS as a negative control. Blood samples were collected

470 ten days after the last drug injection. ADA response was measured by a LMI. Ex-PEG- and Ex-POEGMA-coupled beads were used

471 to determine ADAs induced towards the entire conjugate (*i.e.*, anti-exendin and anti-polymer (PEG or POEGMA)). OVA-PEG- and

472 OVA-POEGMA-coupled beads were used to determine ADAs induced towards PEG or POEGMA, respectively. The OVA-coupled

473 bead was used as a negative control for cross-reactivity towards OVA. Data represent the mean of the ADA response induced in

474 each mouse and the error bars are the SEM. Data were analyzed by two-way repeated-measures ANOVA, followed by *post-hoc*

475 Tukey's multiple comparison test. Data were considered statistically significant when *p*<0.05.

476 Design, optimization, and validation of a cell-based neutralizing antibody assay.

477 Assay Design. The presence of neutralizing antibodies (NAb) was tested in long-term treated mice sera.

478 Nabs were analyzed using the in vitro cell-based assay described in Methods with minor modifications.²

479 Briefly, the mice serum samples were incubated with exendin, Ex-PEG_{Mw}, or Ex-POEGMA_{opt} for 2 h at room

480 temperature. HEK293/CRE-Luc/GLP1R cells were then treated with the serum: drug mixtures (10% v/v)

481 for 5 h at a final concentration of the drugs' respective half-maximal effective concentration (EC₅₀),

482 followed by measurement of luminescence from the cells. This assay allowed us to determine the binding

483 antibodies' neutralizing ability, such that if there were NAb present, they interacted with the drugs and

484 blocked their binding to GLP1R, preventing cAMP induction and leading to a decrease in luminescence.

485 Assay optimization. The NAb assay was optimized in terms of matrix interference and sensitivity.

486 Matrix interference. The matrix interference was tested in terms of HEK293/CRE-Luc/GLP1R cells' ability

487 to respond to a fixed concentration of exendin at varying dilutions of PBS-treated C57BL/6J mice sera. We

488 found that mice sera \leq 5% (volume) did not significantly affect cell behavior (data not shown). Therefore,

489 the final serum volume was kept constant at 5% across all assays.

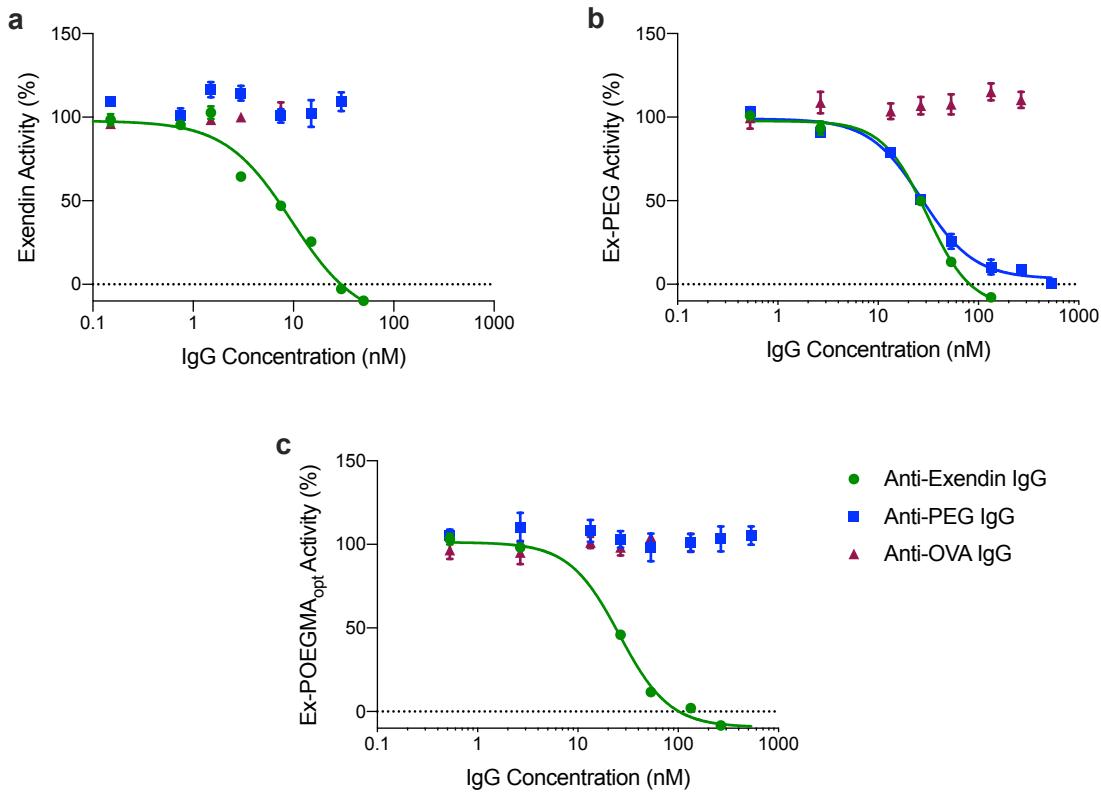
490 Sensitivity. The sensitivity of the cell-based neutralizing antibody assay was tested using anti-exendin

491 (NBP1-05179H; Novus Biologicals) and anti-PEG (ab195350; Abcam) antibodies as positive controls and

492 anti-OVA antibody (ab17293; Abcam) as a negative control. Briefly, exendin, Ex-PEG_{Mw}, or Ex-POEGMA_{opt}

493 were preincubated with varied concentrations of anti-exendin, anti-PEG, and anti-OVA antibodies, which

494 were diluted in 5% PBS-treated C57BL/6J mice sera, followed by treating HEK293/CRE-Luc/GLP1R cells and

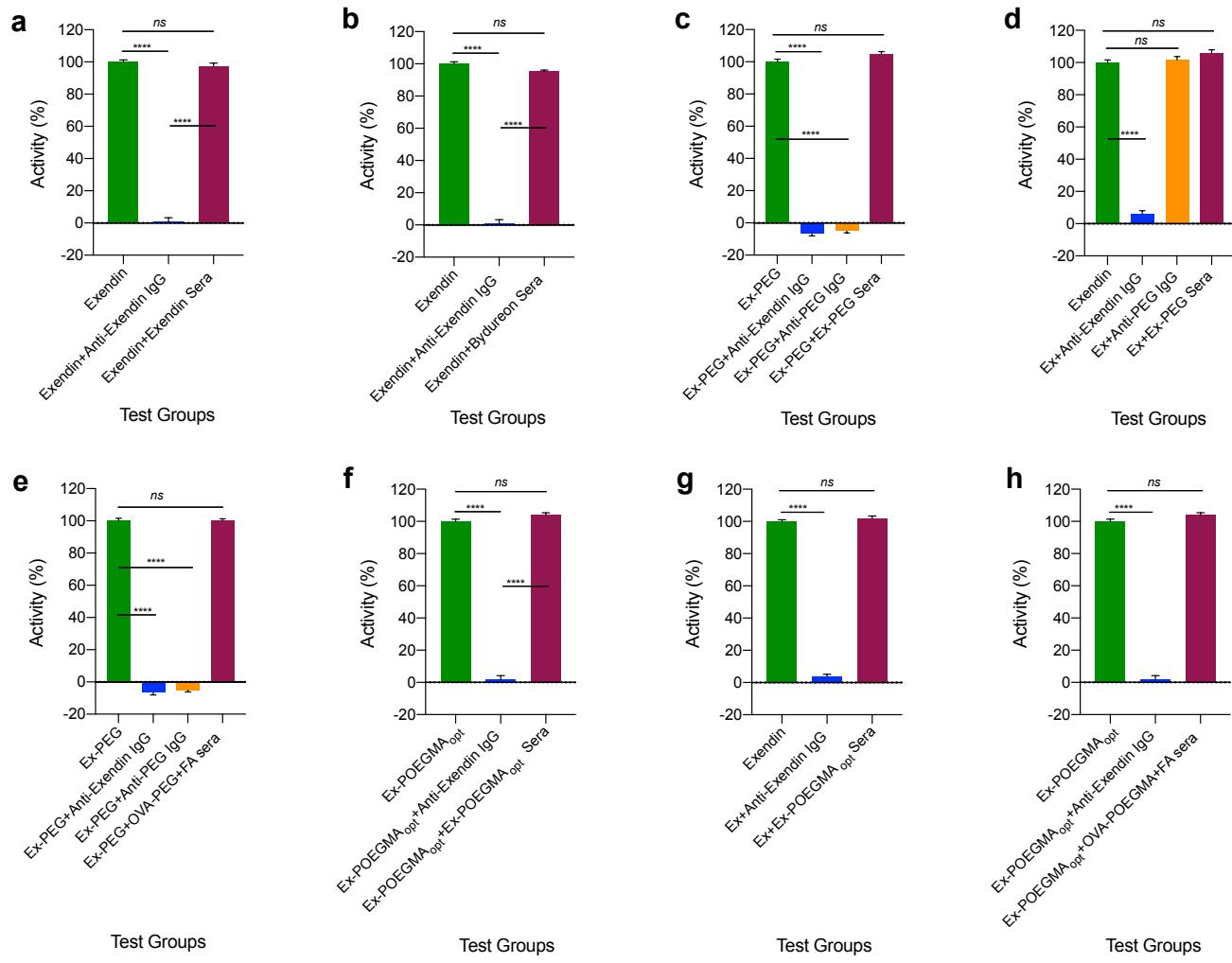

495 measuring luminescence. The luminescence signal measured from cells in each treatment group was

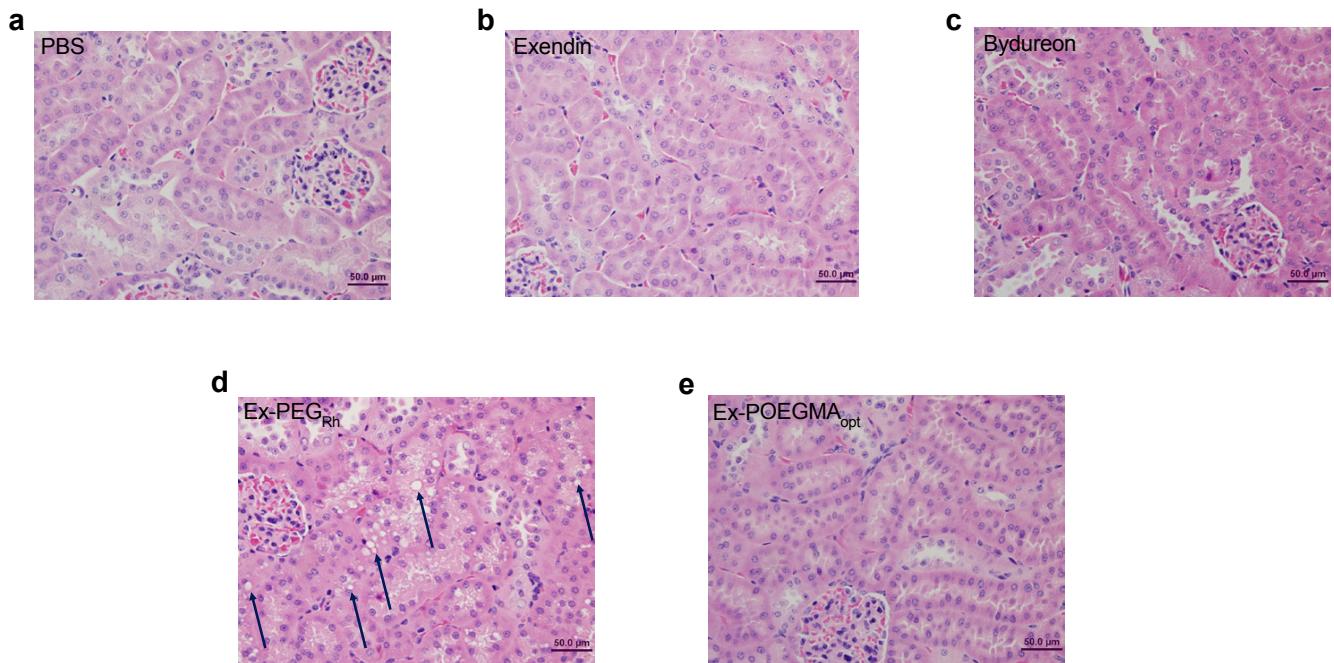
496 represented as the percentage of the mean signal of cells treated without antibodies (**Supplementary Fig.**

497 **40**). Anti-exendin antibodies inhibited exendin (**Supplementary Fig. 40a**), Ex-PEG_{Mw} (**Supplementary Fig.**

498 **40b**), or Ex-POEGMA_{opt} (**Supplementary Fig. 40c**), while anti-OVA antibodies did not have any effect on the

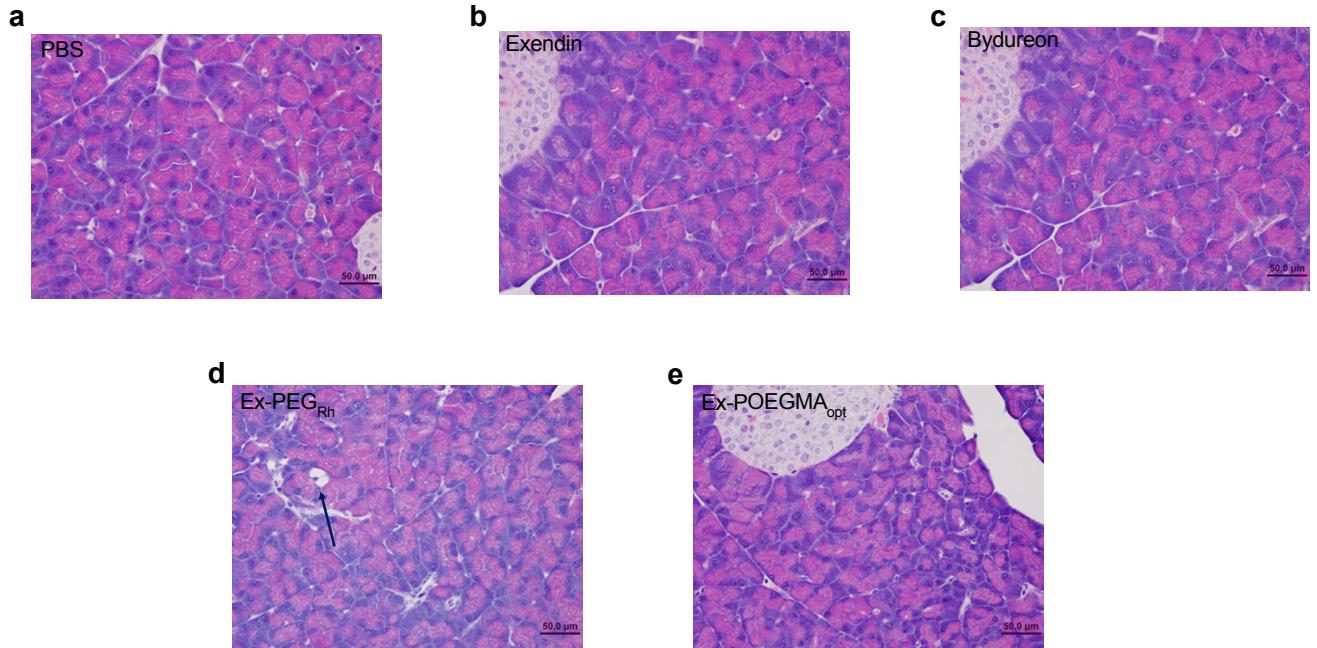
499 drugs' activity. Anti-PEG antibodies only inhibited Ex-PEG_{Mw} (**Supplementary Fig. 40b**) and did not affect
500 the activity of exendin (**Supplementary Fig. 40a**) and Ex-POEGMA_{opt} (**Supplementary Fig. 40c**). The assay
501 sensitivity was defined as the half-maximal inhibitory concentration (IC₅₀) of the antibodies and was
502 summarized in **Supplementary Table 9**. The assay was more sensitive for exendin (7.2 ± 1.1 nM) than Ex-
503 PEG_{Mw} (26.9 ± 5.3 nM) and Ex-POEGMA_{opt} (23.5 ± 3.1 nM) due to the lower concentration of exendin (0.15
504 nM) used in the assay than Ex-PEG_{Mw} (2.7 nM) and Ex-POEGMA_{opt} (2.8 nM). The molar equivalent of anti-
505 exendin antibody needed to inhibit Ex-PEG_{Mw} (10.0 ± 2.0) and Ex-POEGMA_{opt} (8.4 ± 1.1) half-maximally
506 was higher than exendin (48 ± 7.3) due to the steric hindrance imparted on exendin by conjugated PEG
507 and POEGMA. The assay sensitivity for anti-PEG antibodies was 28.3 ± 3.5 nM, which corresponded to the
508 10.5 ± 1.3 molar equivalent of Ex-PEG_{Mw}.


509

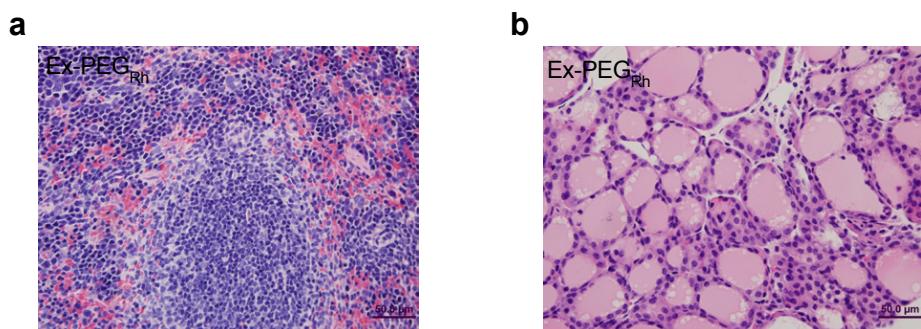

510 **Supplementary Figure 40. The sensitivity of a NAb assay.** Exendin, Ex-PEG_{Mw}, and Ex-POEGMA_{opt} were preincubated with varied
 511 concentrations of anti-exendin, anti-PEG, and anti-OVA antibodies in PBS-treated C57BL/6J mice sera, followed by treating
 512 HEK293/CRE-Luc/GLP1R cells with the serum: drug mixtures (10% v/v) for 5 hours at a final concentration of the drugs' respective
 513 EC₅₀s and measuring luminescence. The luminescence signal derived from each treatment group was represented as the
 514 percentage of the mean signal of cells treated without antibodies. Data were fitted to a non-linear curve fit using GraphPad Prism
 515 8 software.

516 **Supplementary Table 9. Summary of results of a cell-based neutralizing antibody assay.** Assay sensitivity was calculated from
 517 the data shown in Supplementary Figure 41. Data represent the mean and the SEM. Data were fitted to a non-linear curve fit to
 518 calculate the half-maximal inhibitory concentration (IC₅₀) of the antibodies using GraphPad Prism 8 software. Not applicable (n/a).

Treatment	Anti-Exendin IgG IC ₅₀ (nM)	Fold Anti-Exendin IgG for IC ₅₀	Anti-PEG IgG IC ₅₀ (nM)	Fold Anti-PEG IgG for IC ₅₀
Exendin	7.2 ± 1.1	48 ± 7.3	n/a	n/a
Ex-PEG _{Mw}	26.9 ± 5.3	10.0 ± 2.0	28.3 ± 3.5	10.5 ± 1.3
Ex-POEGMA _{opt}	23.5 ± 3.1	8.4 ± 1.1	n/a	n/a


519

530


531 **Supplementary Figure 42. Histopathological effects of treatments on the kidney.** Representative histological slices of kidneys
532 from long-term (A) PBS-, (B) exendin-, (C) Bydureon-, (D) Ex-PEG_{Rh}-, and (E) Ex-POEGMA_{opt}-treated *db/db* mice (*n*=3). The mice
533 were treated weekly with *s.c.* injections of the treatments for eight weeks. At week 10, the mice were sacrificed, and organs were
534 collected, followed by processing and staining with H&E. Compound induced renal changes were present in kidneys in each of
535 the three Ex-PEG_{Rh}-treated mice. These vacuolar lesions, marked by arrows in (D) were prominent primarily within renal tubular
536 epithelial cells of proximal tubules in the outer cortical region. No compound induced changes were noted in other treatments.
537 Scale bar = 50μm.

538

539 **Supplementary Figure 43. Histopathological effects of treatments on the pancreas.** Representative histological slices of
 540 pancreas collected from long-term (A) PBS-, (B) exendin-, (C) Bydureon-, (D) Ex-PEG_{Rh}-, and (E) Ex-POEGMA_{opt}-treated *db/db* mice
 541 ($n=3$). The mice were treated weekly with *s.c.* injections of the treatments for eight weeks. At week 10, the mice were sacrificed,
 542 and organs were collected, followed by processing and H&E staining. Minimal compound induced vacuolar lesions, marked by
 543 arrows in (D), were present in pancreases in each of the three Ex-PEG_{Rh}-treated mice. Scale bar = 50 μm.

544

545

546 **Supplementary Figure 44. No Ex-PEG_{Rh}-induced histopathological alterations were identified in the (A) spleen and (B) thyroid**
 547 **tissues.** Representative histological slices of pancreas collected from long-term Ex-PEG_{Rh}-treated *db/db* mice ($n=3$). The mice were
 548 treated weekly with *s.c.* injections of the treatments for eight weeks. At week 10, the mice were sacrificed, and organs were
 collected, followed by processing and H&E staining. Scale bar = 50 μm.

549 **References**

550 1 Luminex. *xMAP CookBook*. 4th edn, (2018).

551 2 Buse, J. B. *et al.* Liraglutide Treatment Is Associated with a Low Frequency and Magnitude of
552 Antibody Formation with No Apparent Impact on Glycemic Response or Increased Frequency of
553 Adverse Events: Results from the Liraglutide Effect and Action in Diabetes (LEAD) Trials. *The
554 Journal of Clinical Endocrinology & Metabolism* **96**, 1695-1702, doi:10.1210/jc.2010-2822 (2011).