

Supplementary Information: α -Synuclein driven cell susceptibility in Parkinson's disease

Authors: Jonathan C. Breiter ^{1,2,3}, [†], Joseph S. Beckwith ^{1,3}, [†], Emma E. Brock ^{1,3}, Joanne Lachica ^{3,4,5}, Christina E. Toomey ^{3,4,6}, Bin Fu ^{1,3}, Mina Ryten ^{3,7,8,9}, Lucien E. Weiss ¹⁰, Nicholas W. Wood ^{3,11}, Sonia Gandhi ^{3,5,11}, Michele Vendruscolo ^{1,2,3*}, Steven F. Lee ^{1,3*}

Affiliations:

¹Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK

²Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK

³Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA

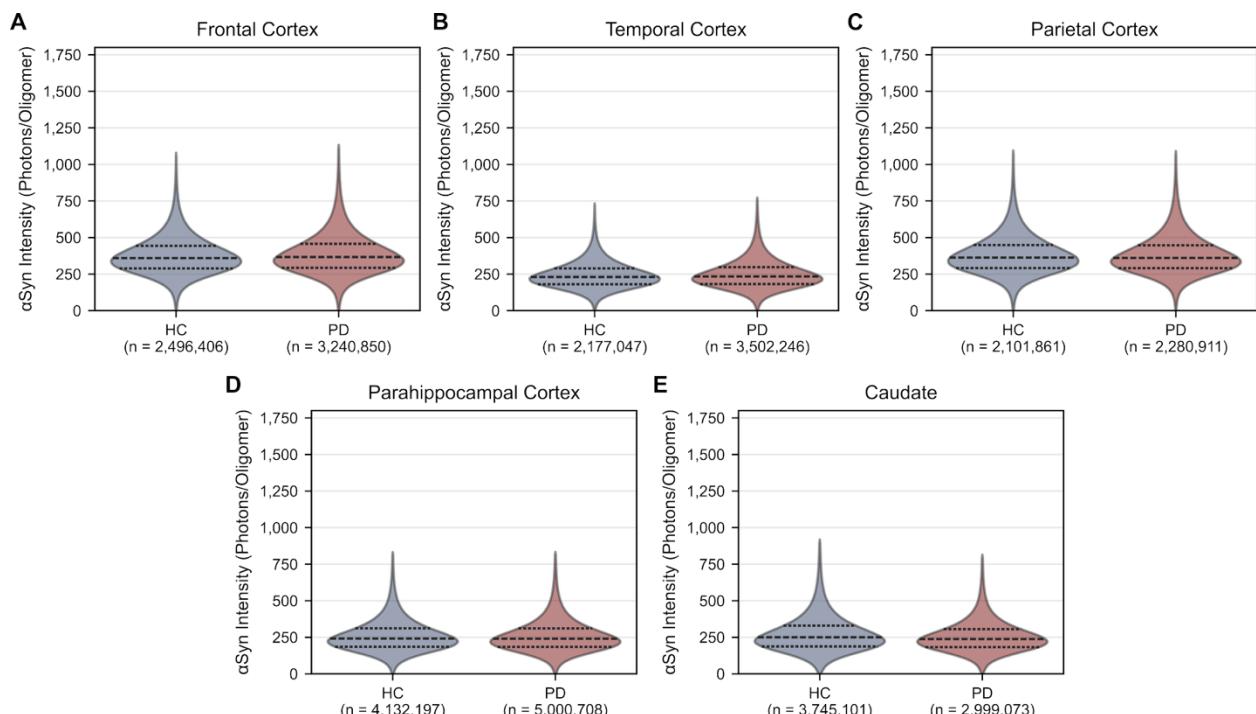
⁴The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 3BG, U.K.

⁵The Francis Crick Institute, 1 Midland Road, London, UK

⁶Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG U.K.

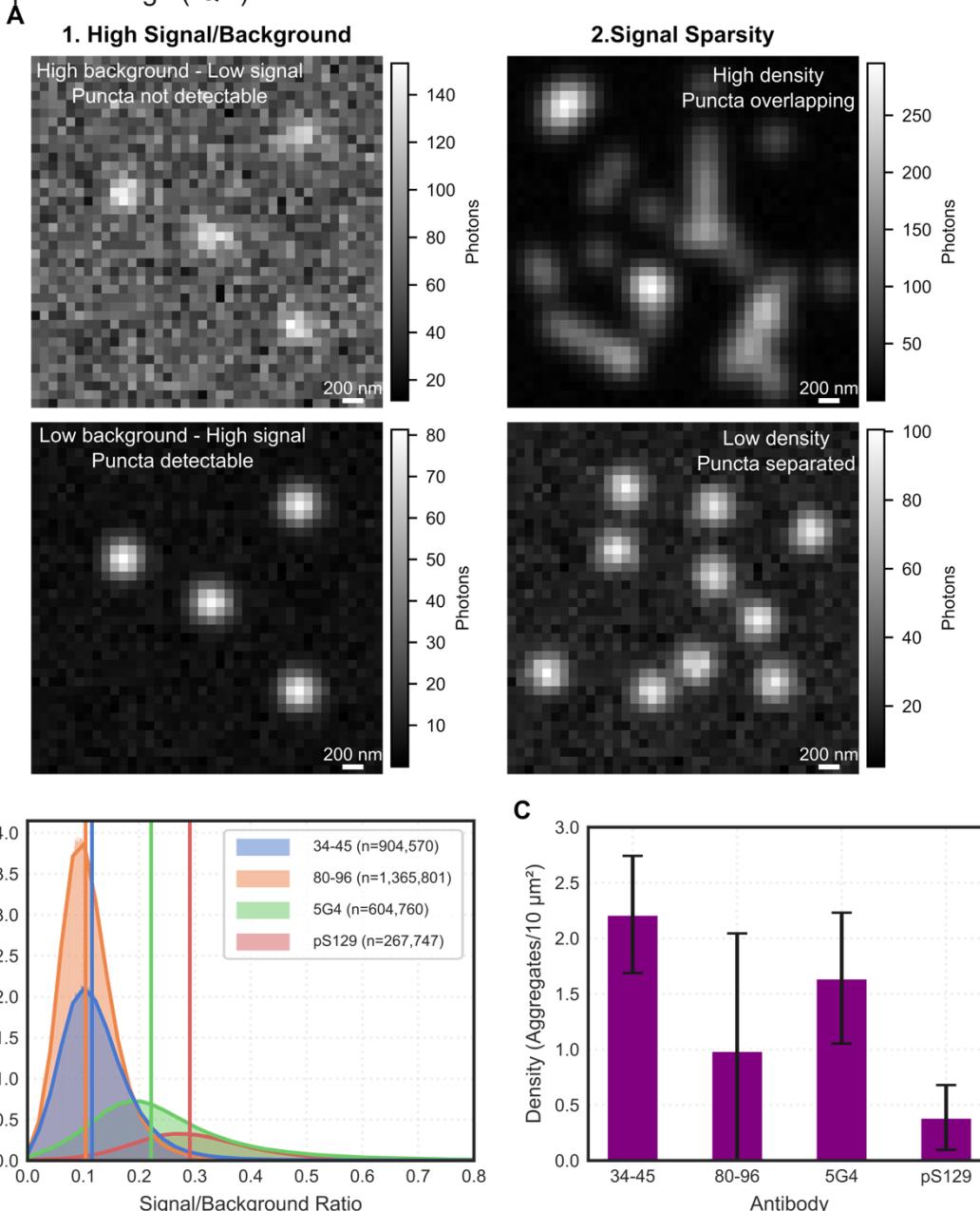
⁷UK Dementia Research Institute at the University of Cambridge, Cambridge CB2 0AH, U.K.

⁸Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, U.K.

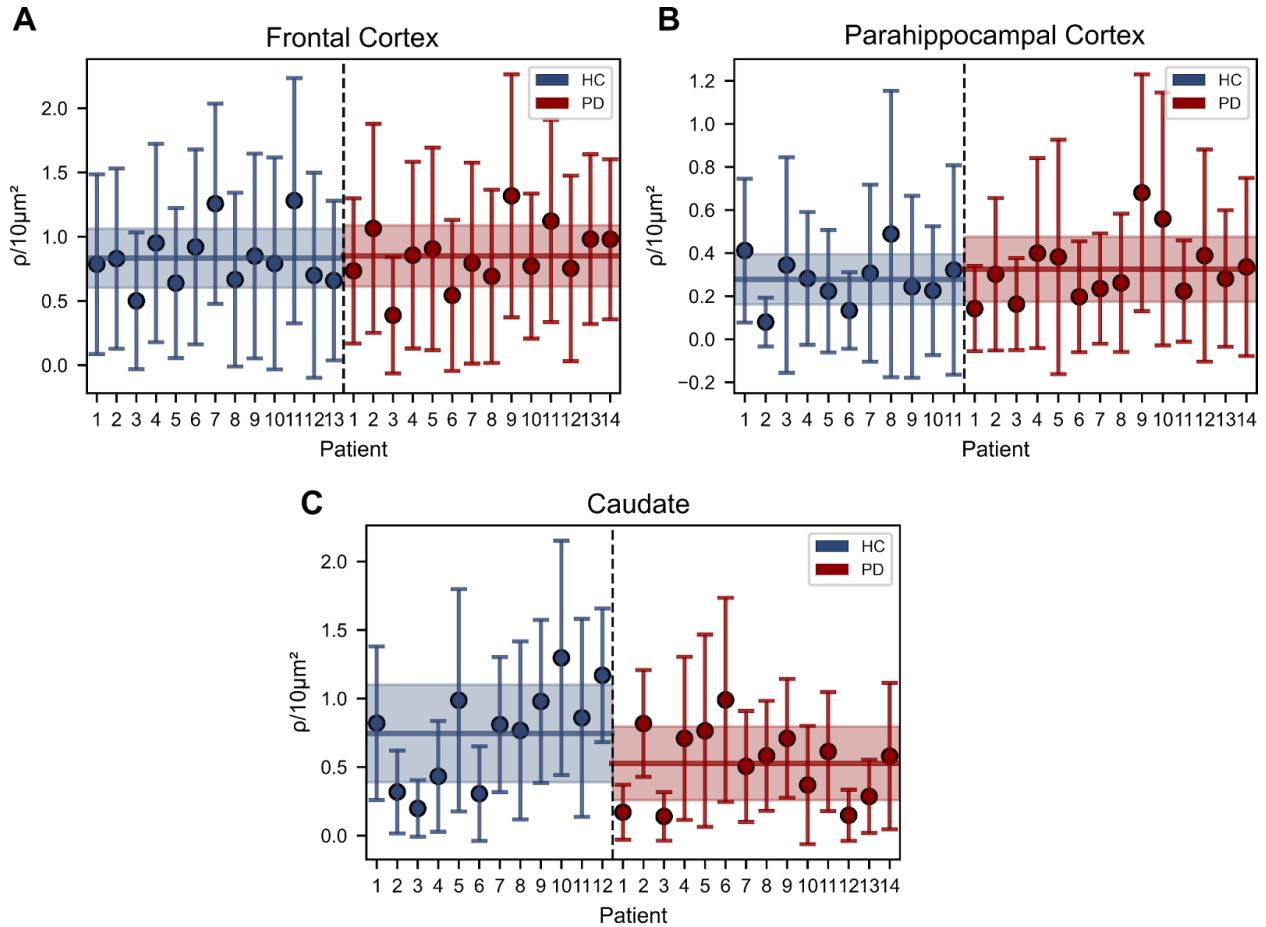

⁹Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK.

¹⁰Department of Engineering Physics, Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada

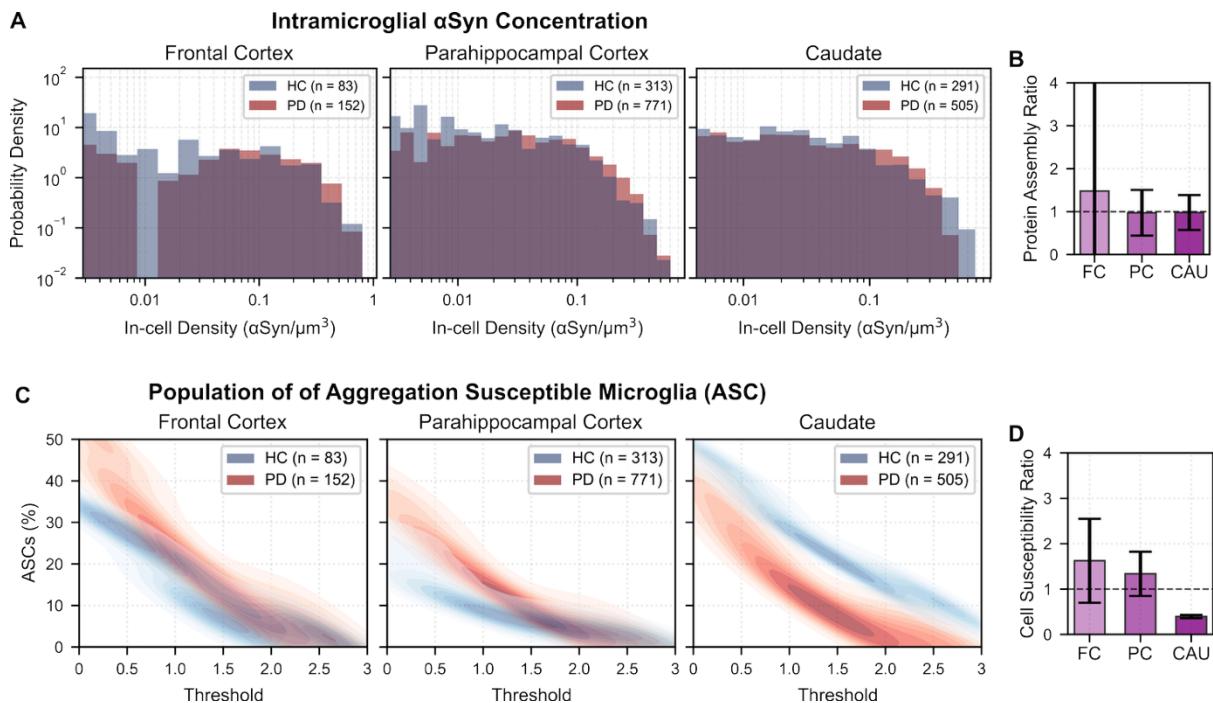
¹¹Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, U.K.


[†]Contributed equally to this work

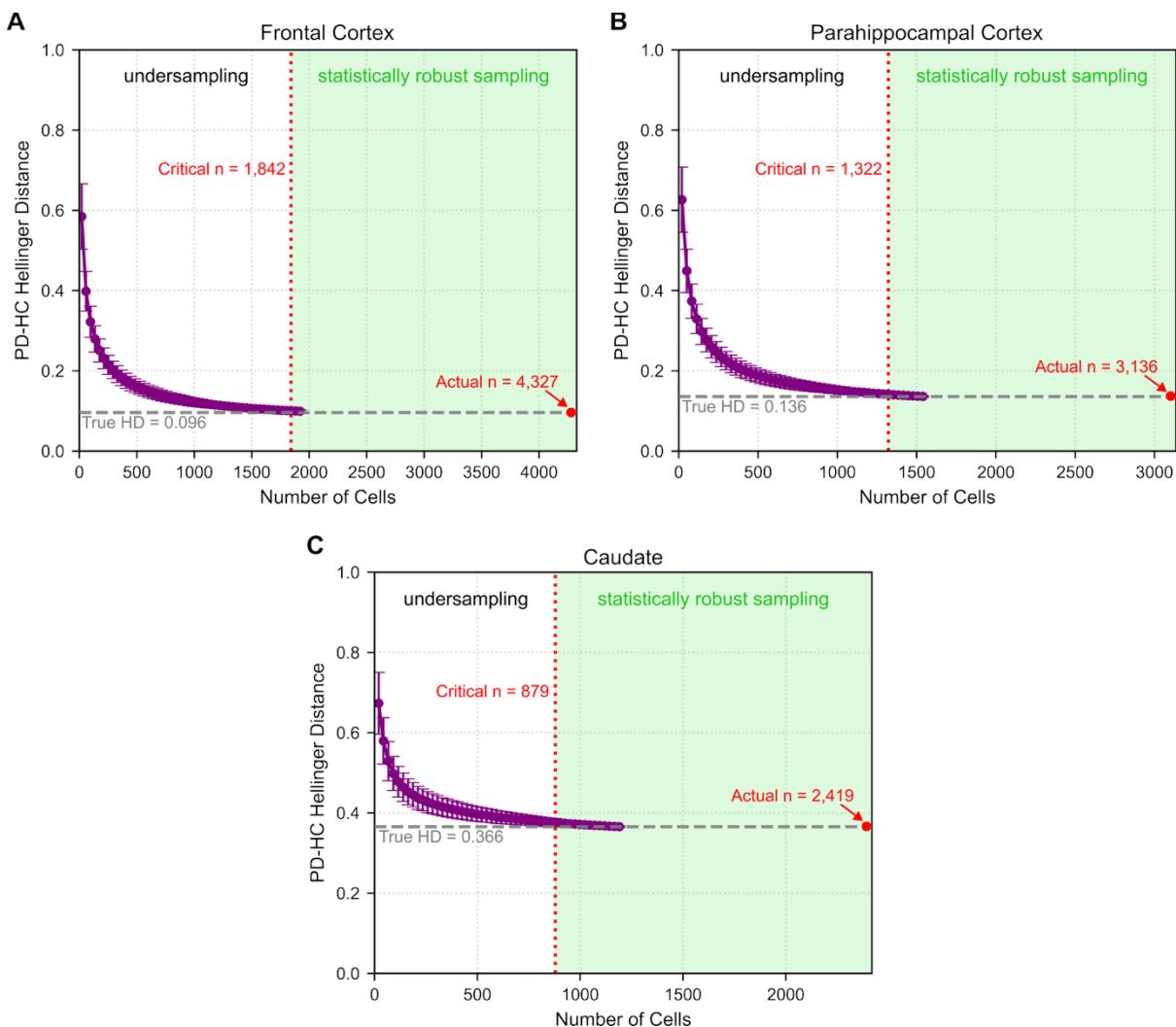
*Corresponding Authors: sl591@cam.ac.uk, mv245@cam.ac.uk

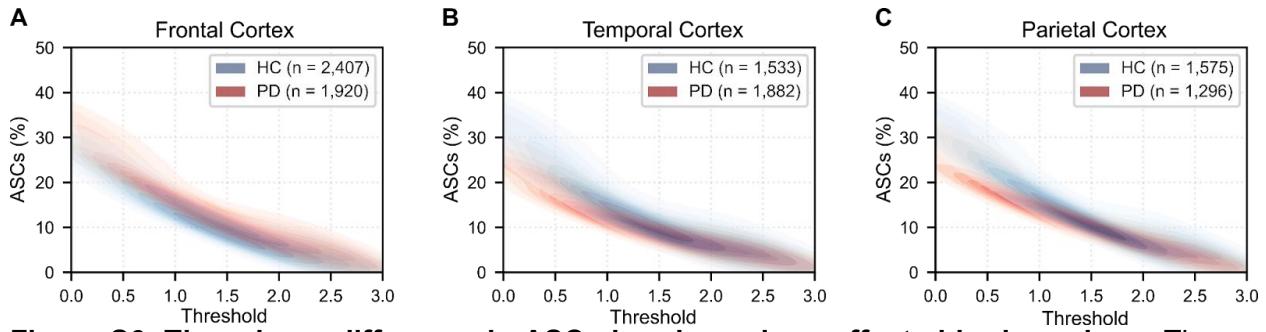

Figure S1. There is no difference in aggregate intensity between PD and HC. Intensity distributions of diffraction-limited α Syn aggregates detected in $n = 13$ HCs and $n = 14$ PD patients in **A.** frontal cortex **B.** temporal cortex **C.** parietal cortex **D.** parahippocampal cortex and **E.** caudate across two repeat imaging runs for each region each disease state. N-numbers represent the total number of aggregates detected across both repeats per region.

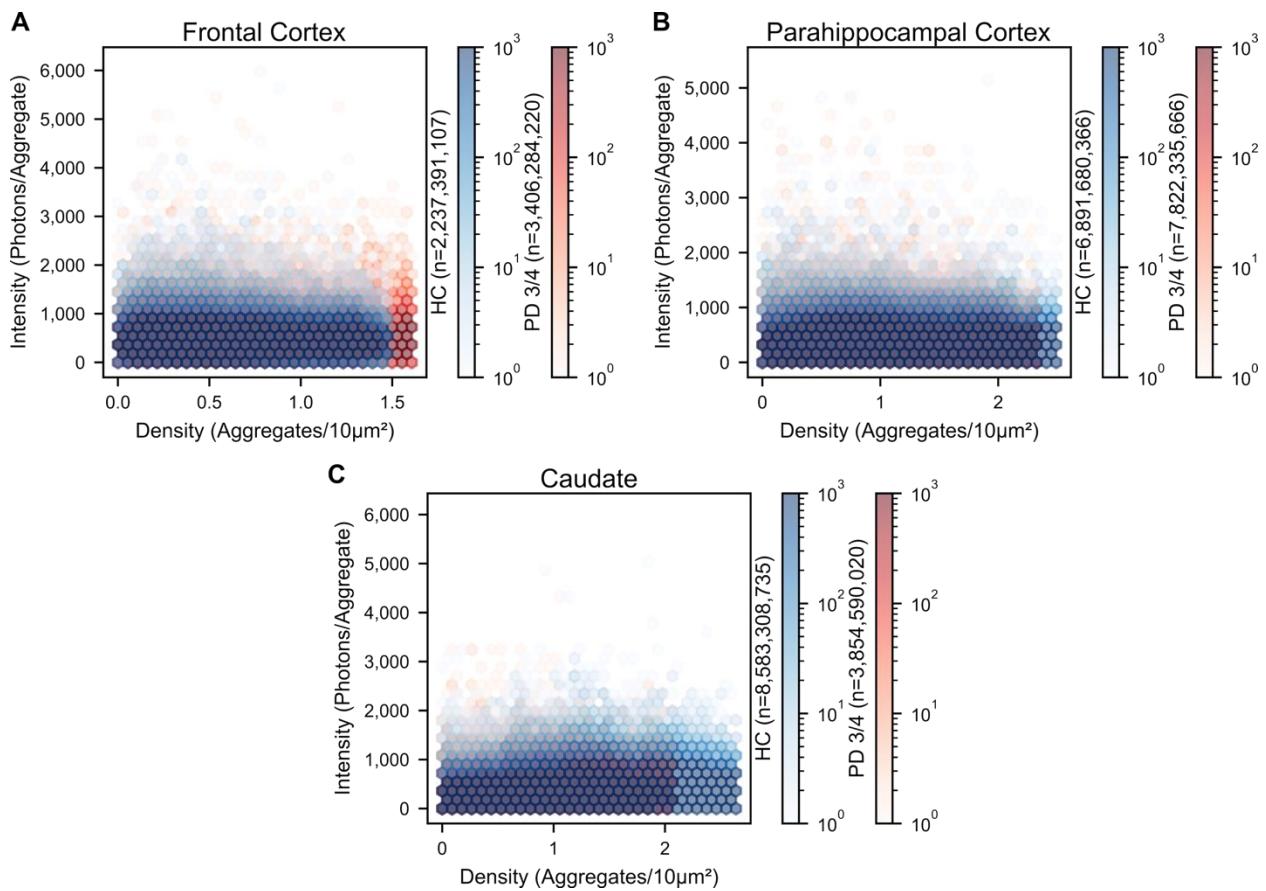
38 The dotted horizontal line in violins represents the median, with the upper and lower lines as
39 the interquartile range (IQR).

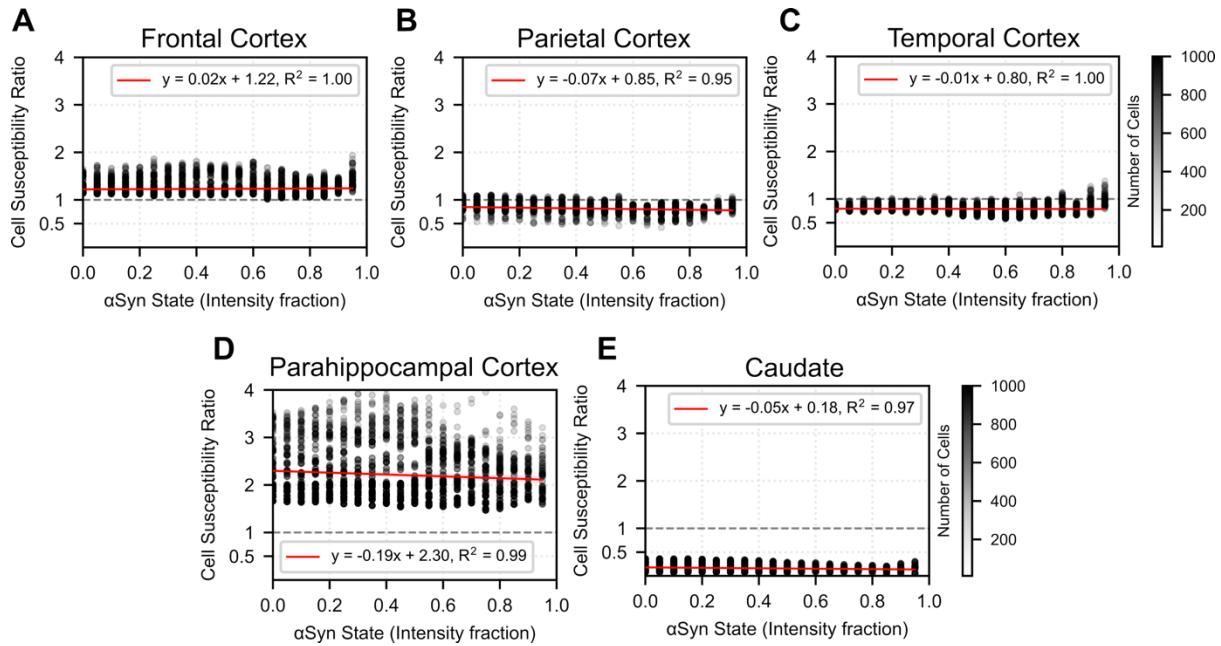


40


41 **Figure S2. Anti-pS129 antibody is most suitable for ASA-PD. A.** Simulated microscopy
42 image-representation highlighting the two data quality requirements for ASA-PD and RASP.^{1,2}
43 Firstly, signal needs to be clearly separated from background intensity with a high
44 signal/background ratio to detect individual diffraction-limited puncta. Secondly, signal needs
45 to be sparse enough for spatial separation between point spread functions for accurate
46 resolution of the location and quantity of puncta. **B.** Four α Syn antibodies tested in PD Braak
47 3/4 (n = 1) and HC (n = 1) brain. Signal over background ratio of oligomeric protein assemblies
48 as detected by antibodies 34-45 (AB_2650701), 80-96 (AB_2650688), 5G4 (AB_2716647)
49 and pS129 (AB_2270761). Vertical lines represent the median of each distribution. N-numbers
50 represent the total number of aggregates detected by the antibody. **C.** Mean \pm standard
51 deviation density of aggregates produced by the four antibodies in the human brain. The
52 pS129 antibody shows the highest signal/background ratio and the lowest density of
53 diffraction-limited α Syn aggregates. Low background and high spatial separation of local
54 maxima is essential for successful small aggregate detection.¹ Additional quantitative
55 information on the requirements for the antibody election can be found in our previous work.²


58 **Figure S3. Brain region aggregate density does not vary between PD and HC.** Per patient
 59 average density of α Syn oligomers per $10 \mu\text{m}^2$ in the frontal cortex (A.), parahippocampal
 60 cortex (B.) and caudate (C.). Horizontal lines represent the mean \pm SD across patient means.
 61 No significant difference is observed between individuals within the HC or PD group per region
 62 or between the HC and PD group averages in each region.


65 **Figure S4. Evidence for ASCs in microglia. A.** Probability density distributions of the
 66 aggregate concentration per microglia across three brain regions. **B.** The summary plot shows
 67 the Mean \pm SD ratio of PD/HC aggregate concentration as the protein assembly ratio inside
 68 microglia. **C.** The sub-population of Aggregation Susceptible Cells (ASCs) of microglia as a
 69 function of a changing threshold on aggregate concentration, where increasing threshold
 70 corresponds to more extreme values within the aggregate concentration distribution (See
 71 **Figure 2 C**). **D.** The summary plot shows the Mean \pm SD ratio PD/HC of ASCs of microglia as
 72 the cell susceptibility ratio.
 73
 74


75 **Figure S5. Statistical determination of minimal critical sample size.** Hellinger Distance
 76 (HD) between PD and HC distributions in Figure 3 (B.) as a function of subsampled cells
 77 according to parametric HD^{3,4} in frontal cortex (A.), parahippocampal cortex (B.) and caudate
 78 (C.). The minimum number of cells required to observe the true Hellinger distance between
 79 HC and PD is determined by subsampling the cell aggregate concentration distributions at
 80 decreasing n-numbers with 5,000 iterations per step and determining the initial intersection of
 81 mean \pm SD across iterations of a subsampling step with the true observed HD. This shows
 82 the minimum number of neurons that need to be observed and quantified across PD and HC
 83 groups to power the observations made in **Figure 3 B**. Some points on true HD line are omitted
 84 for clarity to guide the eye.
 85

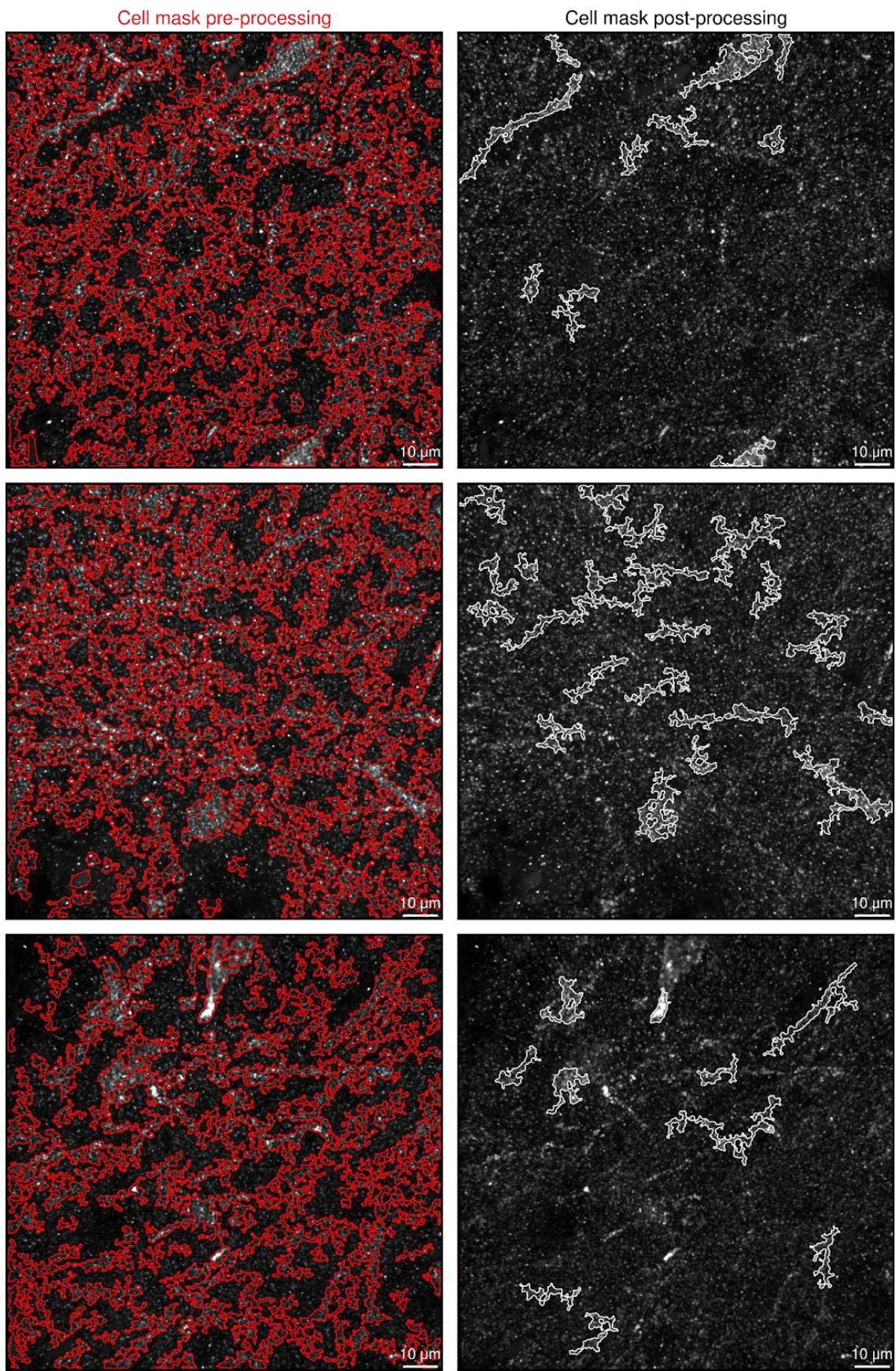

Figure S6. There is no difference in ASC abundance in unaffected brain regions. The percentage of Aggregation Susceptible Cells (ASCs) plotted against the scanning threshold set on the joint distribution of α Syn concentration per cell in the frontal (A.), temporal (B.) and parietal (C.) cortices in PD and HC samples. All three regions are considered to be unaffected by PD pathology in Braak stage 3/4.^{5,6}

Figure S7. Intensity and cellular density of aggregates show no correlation. Correlation between the local density of diffraction-limited α Syn aggregates and the intensity per aggregate in PD and HC frontal cortex (A.), parahippocampal cortex (B.) and caudate (C.). The number of aggregates per bin is shown by the lookup colour bar next to each graph.

99
100 **Figure S8. Cell susceptibility is not dependent on aggregate brightness.** Cell
101 susceptibility ratio (PD/HC) as a function of the intensity fraction of all observed intracellular
102 α Syn aggregates in **A.** frontal cortex **B.** parietal cortex **C.** temporal cortex **D.** parahippocampal
103 cortex and **E.** caudate. Lookup table indicates the number of cells per point on each graph.
104 Multiple points at each value on the x-axis are based on a scanning threshold (See **Section**
105 **S4**) from $T = 0$ to $T = 3$ in 0.05 steps. The y-axis represents the cell susceptibility ratio (See
106 **Figure 3 B**) as the ratio of the fraction of ASCs in PD/ ASCs in HC. Red lines represent simple
107 linear fits weighted by number of cells.

Figure S9. Cell segmentation is defined by size parameters. Comparison of un-processed cell mask (left) with processed cell mask (right). Independent unconnected objects of ≥ 150 and $\leq 700 \mu\text{m}^3$ are kept post processing, corresponding to assumed spherical diameters of 6.59–11.02 μm .

113
114

Section S1. Estimation of Lewy Body abundance in Cortical Brain regions

115 No conclusive quantification of the relative number of Lewy Bodies (LBs) in relation to
116 the number of neurons in neocortical brain regions such as the frontal cortex exists.
117 Few studies look at the fraction of neurons containing LBs, with evidence from the
118 *substantia nigra* showing an average of 3.7% of neurons containing a LB.⁷ Across 45
119 cases, Mattila *et. al.*⁸ counted LBs in neocortical regions. On average, they observed
120 9.22 LBs in the frontal gyrus, 13.8 in the temporal gyrus, 13.58 in the straight gyrus,
121 7.5 in the precentral gyrus and 6.24 in the angular gyrus, for a total of 50.34 LBs in
122 neocortical brain regions.⁸ According to estimates, the approximate number of neurons
123 in the neocortex is 21 billion.⁹ Assuming the total number of neurons in the neocortex
124 and the observed number of LBs in neocortical gyri, $2.397 \times 10^{-9}\%$ of neurons in the
125 neocortex contain a LB in Parkinson's Disease (*i.e.* 1 in ~400 million neurons). More
126 conservatively, using the total number of LBs observed by Mattila *et. al.*⁸ in not just
127 neocortical regions and presuming that all gyri mentioned contain 20% of the total
128 number of neurons in the neocortex, this fraction still is exceedingly small at
129 $79.33/4,200,000,000 = 1.888 \times 10^{-8}$ (*i.e.* 1 in ~50 million neurons). This evidence
130 shows that Lewy Bodies are an exceedingly rare event at the neuronal cell population
131 level. We urge caution in the interpretation of this value; however, it does serve to
132 demonstrate the rarity of LB formation.
133

134

Section S2. Brain region choice rationale after Braak

135 The brain regions Frontal Cortex (FC), Parahippocampal Cortex (PC) and Caudate
136 Nucleus (CAU) were chosen as representative brain regions for no Lewy pathology
137 (LP), mild LP and moderate LP, respectively, according to Braak.^{5,6} In the Braak
138 staging used for neuropathological characterization of the samples, the Caudate
139 Nucleus is moderately affected with substantial evidence of LP due to its direct
140 proximity to the *Substantia Nigra*. The Parahippocampal Cortex first becomes affected
141 in Braak stage 4, meaning LP deposition is currently ongoing in samples from patients
142 classified as Braak 3/4. Neocortical lobes, such as the frontal, parietal and temporal
143 cortices first show sparse LP in Braak stage 5–6, meaning very few to no LBs are
144 expected in Braak 3/4.
145

146

Section S3. Antibody requirements posed by ASA-PD

147 The previously established ASA-PD protocol for single diffraction-limited α Syn
148 aggregate detection necessitates specific probe characteristics in order to enable the
149 detection of these aggregates.² The detection of aggregates can only be possible if
150 local intensity maxima arise as a consequence of probe (here antibody) binding to
151 their targets. If an antibody binds α Syn with a high specificity and affinity, it is likely to
152 abundantly bind monomeric protein which is abundant in brain samples, thereby
153 effectively increasing the overall background signal. A sufficiently low background
154 signal is required in order to accurately detect dim local maxima produced by
155 antibodies binding nanoscale assemblies with approximately >3 antibody binding
156 events per oligomer. If the background produced by an antibody due to its binding of
157 monomeric protein is above the intensity of a nanoscale aggregate, the antibody is not
158 suitable for the ASA-PD protocol, despite its high sensitivity and affinity. Equally,
159 conditions for antibodies are set by the RASP pipeline which is used to detect and
160 quantify technical true positives from the raw microscopy data.¹ Accurate quantification
161 of diffraction-limited local maxima which are oligomers of α Syn necessitates sufficient
162 spatial separation between maxima, or sparsity. Selection of an antibody targeting
163 pS129 α Syn allowed for sub-setting of all possible α Syn epitopes in the sample which
164

165 increased the visual sparsity of signal compared to an antibody targeting a generic
166 epitope on the protein. This is shown in **Figure S2** which highlights that of the
167 antibodies tested, only anti-pS129 gives the sufficient sparsity necessary for our
168 imaging protocol. However, this evidence does not preclude the use of new probes
169 against α Syn with the abovementioned protocols, providing they meet the necessary
170 conditions.

171

Section S4. Summary bar graph computation

172 The summary bar graphs in **Figure 3 A + Figure 3 B** show the mean ratio of the HC
173 histogram over the PD histogram computed bin-by-bin with error bars are the standard
174 deviation across bins. For Figure 3 B, this is achieved by computing the histogram of
175 PD/HC ratios of ASCs (%).

176

Section S5. Scanning threshold application

177 **Figure 2 C.** shows the quantification of aggregation susceptible cells (ASCs) through
178 a scanning threshold on the distribution of intracellular α Syn concentrations of neurons
179 for each brain region in PD patients and HCs. Essentially, we aim to test whether there
180 are proportionately more cells containing a higher aggregate concentration in PD than
181 in HCs. Classically, the $1.5 \times$ interquartile range (IQR) rule has been used to define an
182 outlier, *i.e.* an unexpectedly high value, given an approximately normal distribution.¹⁰
183 However, $1.5 \times$ IQR presumes an approximately normal distribution and is less robust
184 to skewed distributions and lower n-numbers. Therefore, we chose to apply a scanning
185 threshold to the distribution of aggregate concentration per cell values in each brain
186 region. For each brain region, the scanning threshold starts at the mean value of a
187 joint PD + HC distribution of aggregates per neuron. Then, the threshold is increased
188 in increments of $\mu + (0.01 \times \text{IQR})$. At each increment of threshold, the proportion of
189 ASCs is quantified for both the PD and HC distributions separately by dividing the
190 number of cells above the current threshold value of aggregate concentration over all
191 cells observed in the patient group's brain region. This approach ultimately yields a
192 more robust observation of the overall degree of separation between the PD and HC
193 distributions and the relative abundance of high-concentration ASCs as a function of
194 the threshold that can be seen in **Figure 3 B.** Importantly, this data shows that the
195 determination and setting of a threshold to identify an ASC interacts with the relative
196 difference in prevalence of ASCs when comparing the PD and HC groups. As
197 thresholds are set at increasingly extreme values of the distribution ($\mu + \sim 2.0 \times \text{IQR}$),
198 very few cells have as extreme values in both groups, and the data becomes less
199 reliable and more error prone as sampling is limited. Reliably, $\mu + 1.5 \times \text{IQR}$ shows
200 the most robust difference observed between ASC abundance in PD and HC (**Figure**
201 **3 B.**).

202

Section S6. Kernel density estimates

203 In Fig. 3B we utilised a kernel density estimation (KDE) plot, specifically the kdeplot
204 function from seaborn.¹¹ This was utilised as, with the relatively low numbers of data
205 points for a 2D histogram, outliers visually skew the distribution observed whilst
206 contributing very little to the actual form of the distribution. A KDE plot is far less
207 sensitive to these issues, and highlights the underlying shape of the distribution
208 observed. KDEs are in essence the basis of violin plots, and due to their nonparametric
209 nature and reliability in presenting the underlying forms of distributions,¹² we chose to
210 use them here.

211

Section S7. Data processing code availability

216 Code used in this paper is available at (<https://doi.org/10.5281/zenodo.16411305>).
217 The code package, "pyRASP_copy_for_paper.zip", contains the python code used in
218 the paper for image analysis and for postprocessing of the image analysis. This
219 postprocessing involves determining if a single oligomer is inside or outside of a cell
220 and determining, for single cells, $[\alpha\text{Syn Aggregate}]_{\text{cell}}$. A notebook in this zip folder
221 takes the user through the process of loading in raw data and determining $[\alpha\text{Syn}$
222 Aggregate] $_{\text{cell}}$. A comprehensive database file of all analysed data is also provided.

Case ID	Sex	Age of Onset	Age at Death	Disease Duration	PMI	NPD	αSyn Braak	Tau Braak	AB Thal
PD1	F	65	75	10	14	LBDBS	4	2	NA
PD2	F	77	86	9	22	LBDBS	4	2	NA
PD3	M	66	72	6	9	LBDBS	4	2	NA
PD4	F	71	82	11	16	LBDBS	3	NA	NA
PD5	M	70	85	15	16	LBDBS	4	2	NA
PD6	M	62	78	16	11	LBDL	4	NA	NA
PD7	M	NA	86	19	16	LBDBS	3	1	NA
PD8	M	NA	81	17	22	LBDL	4	2	NA
PD9	F	NA	76	25	8	LBDL	4	1	1
PD10	M	NA	77	1	24	LBDL	4	2	3
PD11	M	NA	69	16	13	LBDBS	3	2	2
PD12	M	NA	73	7	24	LBDBS	3	1	3
PD13	M	NA	78	21	19	LBDL	4	1	1
PD14	M	NA	91	17	6	LBDBS	4	2	NA
HC1	M	NA	71	NA	29	Control	NA	NA	NA
HC2	M	NA	88	NA	8	Control	NA	NA	NA
HC3	F	NA	92	NA	24	Control	NA	NA	NA
HC4	F	NA	87	NA	12	Control	NA	NA	NA
HC5	M	NA	90	NA	12	Control	NA	NA	NA
HC6	M	NA	87	NA	31	Control	NA	NA	NA
HC7	M	NA	75	NA	24	Control	NA	NA	NA
HC8	F	NA	84	NA	22	Control	NA	NA	NA
HC9	M	NA	75	NA	17	Control	NA	NA	NA
HC10	F	NA	89	NA	13	Control	NA	NA	NA
HC11	M	NA	82	NA	48	Control	NA	NA	NA
HC12	M	NA	75	NA	12	Control	NA	NA	NA
HC13	F	NA	89	NA	20	Control	NA	NA	NA

223 **Table S1.** Case demographics of study cases. Parkinson's disease (PD) cases and
224 neurologically normal control (HC) cases. PMI – Post-mortem interval; NPD –
225 Neuropathological diagnosis; LBDBS – Lewy Body Disease Brainstem predominant; LBDL –
226 Lewy Body Disease Limbic predominant; NA – Data not available.
227
228

229 **Supplementary References**

230 1. Fu, B. *et al.* RASP: Optimal Single Puncta Detection in Complex Cellular
231 Backgrounds. *J. Phys. Chem. B* **128**, 3585–3597 (2024).

232 2. Andrews, R. *et al.* Large-scale visualisation of α -synuclein oligomers in Parkinson's
233 disease brain tissue. *bioRxiv : the preprint server for biology* 2024.02. 17.580698 (2024).

234 3. Marian, P. & Marian, T. A. Hellinger distance as a measure of Gaussian discord.
235 *Journal of Physics A: Mathematical and Theoretical* vol. 48 115301 (2015).

236 4. Kitsos, C. & Toulias, T. Hellinger distance between generalized normal distributions.
237 *Br. J. Math. Comput. Sci* vol. 21 1–16 (2017).

238 5. Dickson, D. W., Uchikado, H., Fujishiro, H. & Tsuboi, Y. Evidence in favor of Braak
239 staging of Parkinson's disease. *Movement Disorders* vol. 25 S78–S82 (2010).

240 6. Braak, H. *et al.* Staging of brain pathology related to sporadic Parkinson's disease.
241 *Neurobiology of aging* vol. 24 197–211 (2003).

242 7. Greffard, S. *et al.* A stable proportion of Lewy body bearing neurons in the substantia
243 nigra suggests a model in which the Lewy body causes neuronal death. *Neurobiology of
244 aging* vol. 31 99–103 (2010).

245 8. Mattila, P. *et al.* Alpha-synuclein-immunoreactive cortical Lewy bodies are associated
246 with cognitive impairment in Parkinson's disease. *Acta neuropathologica* vol. 100 285–
247 290 (2000).

248 9. Williams, R. W. & Herrup, K. The control of neuron number. *Annual review of
249 neuroscience* vol. 11 423–453 (1988).

250 10. Yang, J., Rahardja, S. & Fränti, P. Outlier detection: How to threshold outlier scores?
251 *Proceedings of the international conference on artificial intelligence, information
252 processing and cloud computing* 1–6.

253 11. Waskom, M. L. Seaborn: statistical data visualization. *Journal of open source
254 software* vol. 6 3021 (2021).

255 12. Chen, Y.-C. A tutorial on kernel density estimation and recent advances. *Biostat. &
256 Epidemiol.* **1**, 161–187 (2017).