Title of the manuscript:

Outcomes and Efficacy of Neuroendoscopic Resection of Intraventricular Tumors: A Systematic Review and Meta-Analysis

Journal: Neurosurgical Reviews

Authors:

Muhammad Talha Khan ¹ mtalhakhan@kemu.edu.pk , Undergraduate medical student

Arham Khalid Farooq ¹ arhamkhalid@kemu.edu.pk, Undergraduate medical student

Bardia Hajikarimloo² Bardii47@yahoo.com, Postdoctoral Research fellow

Shafin bin Amin ³ shafin10th@gmail.com, Postgraduate resident

Sara M. Darawish 4drawyshsart@gmail.com, Undergraduate medical student

Mohammed Huzaifa Khalid ¹ mhuzaifakhalid@kemu.edu.pk ,Undergraduate medical student

Tooba Adil 5 tooba.adil@jsmu.edu.pk, Postgraduate Student

Elaf Ahmed Basha ⁶ <u>elafbasha44@gmail.com</u>, Undergraduate medical student

Hamza Abid¹ hamzaabid@kemu.edu.pk, Undergraduate medical student

Affiliations:

¹ King Edward Medical University, Lahore, Pakistan

² Department of Neurosurgery, University of Virginia, Charlottesville, VA, USA

³ Jinnah Postgraduate Medical Center, Karachi, Pakistan

⁴Al-Quds University, Faculty of Medicine, Jerusalem, Palestine

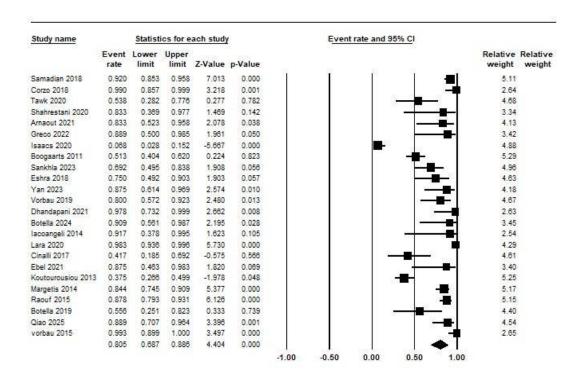
⁵ Jinnah Sindh Medical University, Karachi, Pakistan

⁶ Faculty of Medicine and Health Sciences, Omdorman Islamic University, Khartoum, Sudan

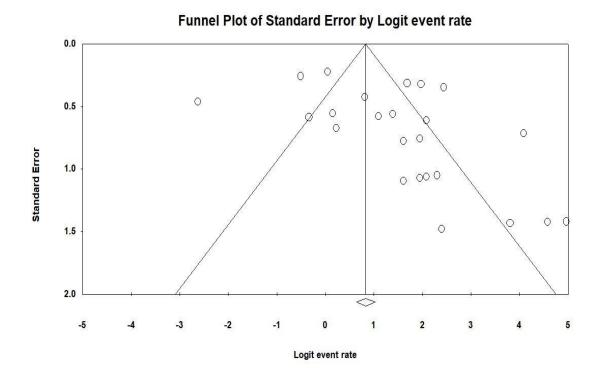
Corresponding Author:

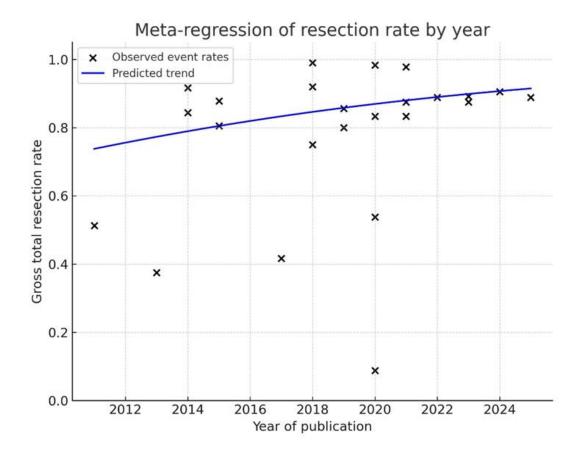
Muhammad Talha Khan

King Edward Medical University, Lahore, Pakistan

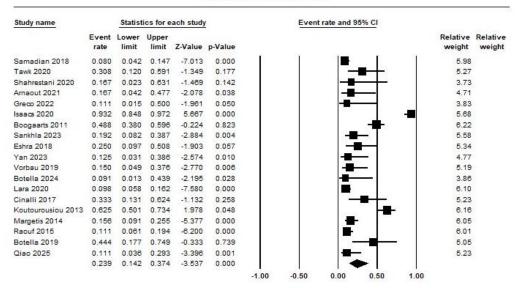

mtalhakhan@kemu.edu.pk

ORCID:0009-0005-5375-4046




Supplementary Figure 1: Joanna Briggs Institute (JBI) Critical

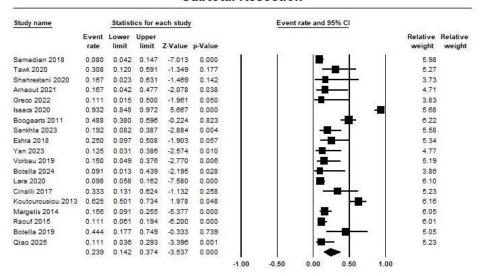
Supplementary Figure 2: Sensitivity analysis of Gross total resection



Supplementary Figure 3: Funnel plot of Gross total resection

Supplementary Figure 4:Meta-regression analysis of Gross total resection

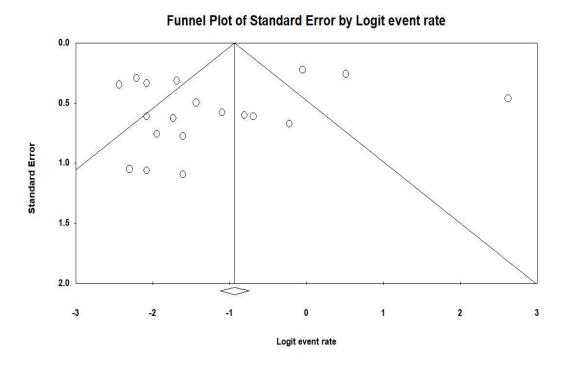
Subtotal Resection



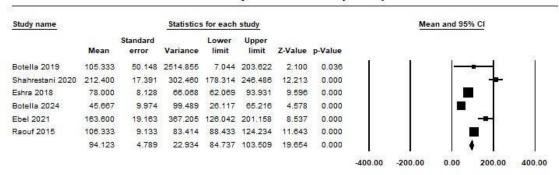
Supplementary Figure 5: Forest plot of Subtotal resection

Model		Effect siz	ze and 95%	interval	Test of nu	ıll (2-Tail)		Hetero	geneity			Tau-se	quared	
Model	Number Studies	Point estimate	Lower limit	Upper limit	Z-value	P-value	Q-value	df (Q)	P-value	l-squared	Tau Squared	Standard Error	Variance	Tau
Fixed Random	19 19		0.245 0.142	0.322 0.374	-9.566 -3.537	0.000	174.684	18	0.000	89.696	1.665	0.804	0.647	1.290

Supplementary Figure 6: Heterogeneity statistics of Subtotal resection


Subtotal Resection

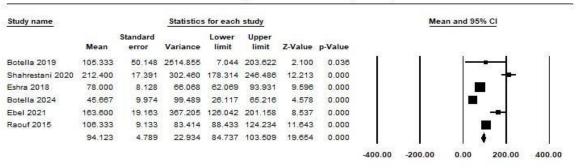
Supplementary Figure 7:Sensitivity analysis of Subtotal resection


Model		Effect siz	ze and 95%	interval	Test of nu	ıll (2-Tail)	<u> </u>	Hetero	geneity		2	Tau-sc	quared	
Model	Number Studies	Point estimate	Lower limit	Upper limit	Z-value	P-value	Q-value	df (Q)	P-value	I-squared	Tau Squared	Standard Error	Variance	Tau
Fixed	11	8 0.250	0.215	0.288	-11.010	0.000	112.848	17	0.000	84.935	1.075	0.557	0.310	1.037
Random	1:	8 0.203	0.128	0.306	-4.863	0.000								

Supplementary Figure 8: Heterogeneity statistics of the Sensitivity analysis of Subtotal resection

Supplementary Figure 9: Funnel plot of Subtotal resection

Mean Operative time (mins)

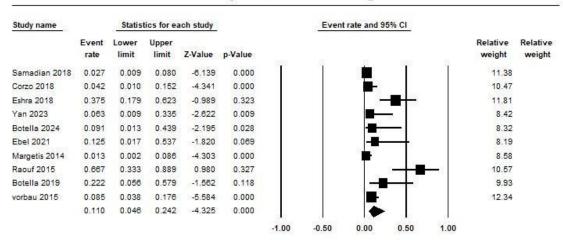


Supplementary Figure 10: Forest plot of mean operative time

Model			Effect size	and 95% confi	idence inter	val	Test of nu	ıll (2-Tail)		Heter	ogeneity			Tau-s	quared		
Model	Number Studies	Poin estima	7007077	d Variance	Lower limit	Upper limit	Z-value	P-value	Q-value	df (Q)	P-value	I-squared	Tau Squared	Standard Error	Variance	Tau	
Fixed	6	94	123 4.7	89 22.934	84.737	103.509	19.654	0.000	88.770	5	0.000	94.367	2592.619	2147.889	4613428.46	50.918	
Random	ë	117	30 22.3	59 499,917	73.808	161,453	5.261	0.000									

Supplementary Figure 11:Heterogeneity statistics of mean operative time

Mean Operative time (mins)

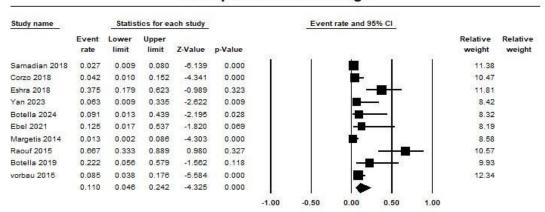


Supplementary Figure 12: Sensitivity analysis of mean operative time

Model				val	Test of nu	ıll (2-Tail)		Heter	ogeneity	<u>19</u>		Tau-s	quared			
Model	Number Studies	Point estimate	Standard error	Variance	Lower limit	Upper limit	Z-value	P-value	Q-value	df (Q)	P-value	l-squared	Tau Squared	Standard Error	Variance	Tau
Fixed	ļ	5 84.41	9 4.982	24.816	74.655	94.183	16.946	0.000	38.723	4	0.000	89.670	1224.825	1165.852	1359210.87	34.998
Bandom	į	5 96.28	4 17.706	313 511	61 580	130 987	5 438	0.000								

Supplementary Figure 13:Heterogeneity statistics of the Sensitivity analysis of mean operative time

Intraoperative Hemorrhage

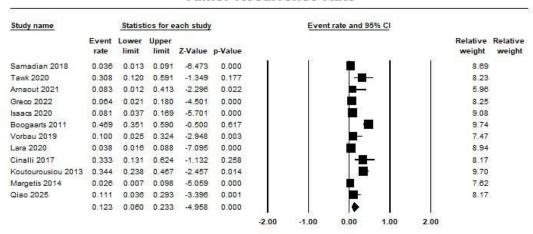


Supplementary Figure 14: Forest plot of Intraoperative time

Model		Effect siz	e and 95%	interval	Test of nu	ıll (2-Tail) — ——		Hetero	geneity			Tau-sq	uared		
Model	Number Studies	Point estimate	Lower limit	Upper limit	Z-value	P-value	Q-value	df (Q)	P-value	l-squared	Tau Squared	Standard Error	Variance	Tau	
Fixed	10	0.086	0.060	0.123	-11.781	0.000	24.858	9	0.003	63.795	0.748	0.603	0.364	0.865	
Random	10	0.081	0.042	0.152	-6.753	0.000									

Supplementary Figure 15:Heterogeneity statistics of Intraoperative time

Intraoperative Hemorrhage

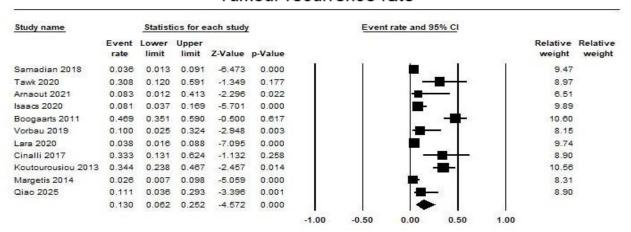


Supplementary Figure 16: Sensitivity analysis of Intraoperative time

Model		Effect s	ize and 95%	interval	Test of nu	ıll (2-Tail)	10	Hetero	ogeneity			Tau-so	quared	
Model	Number Studies	Point estimate	Lower limit	Upper limit	Z-value	P-value	Q-value	df (Q)	P-value	l-squared	Tau Squared	Standard Error	Variance	Tau
Fixed		9 0.064	0.043	0.094	-12.365	0.000	9.784	8	0.280	18.237	0.102	0.283	0.080	0.320
Random		9 0.063	0.039	0.100	-10.674	0.000								

Supplementary Figure 17:Heterogeneity statistics of the Sensitivity analysis of intraoperative time

Tumor Recurrence Rate

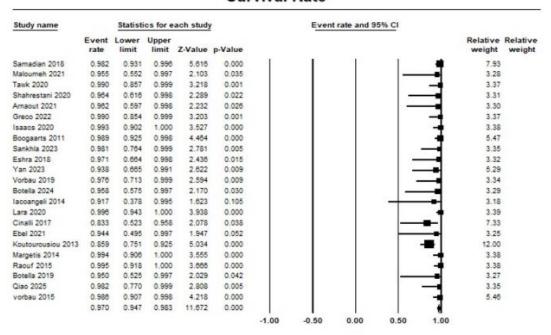


Supplementary Figure 18: Forest plot of Tumour recurrence rate

Model		Effect siz	e and 95%	interval	Test of nu	ll (2-Tail) — ——		Hetero	geneity			Tau-so	quared		
Model	Number Studies	Point estimate	Lower limit	Upper limit	Z-value	P-value	Q-value	df (Q)	P-value	I-squared	Tau Squared	Standard Error	Variance	Tau	
Fixed Random	12 12		0.163 0.060	0.243 0.233	-10.753 -4.958	0.000 0.000	89.828	11	0.000	87.754	1.555	0.950	0.902	1.247	

Supplementary Figure 19: Heterogeneity statistics of Tumour recurrence rate

Tumour recurrence rate

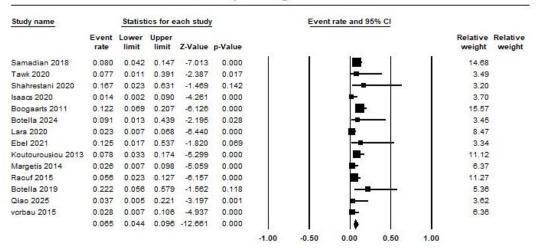


Supplementary Figure 20: Sensitivity analysis of Tumour recurrence rate

Model		Effect siz	ze and 95%	interval	Test of nu	ıll (2-Tail)	84	Hetero	geneity	201	84	Tau-se	quared	
Model	Number Studies	Point estimate	Lower limit	Upper limit	Z-value	P-value	Q-value	df (Q)	P-value	l-squared	Tau Squared	Standard Error	Variance	Tau
Fixed	1	1 0.137	0.106	0.176	-12.243	0.000	55.317	10	0.000	81.922	1.222	0.776	0.602	1.106
Random	1	0.103	0.052	0.195	-5.701	0.000								

Supplementary Figure 21:Heterogeneity statistics of the Sensitivity analysis of Tumour recurrence rate

Survival Rate

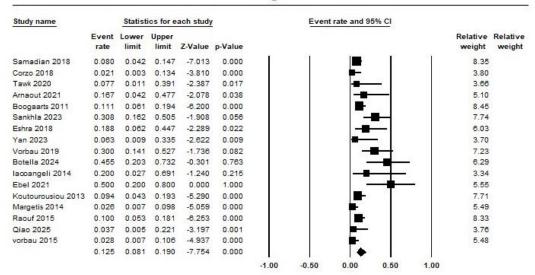


Supplementary Figure 22: Forest plot of survival rate

Model		Effect siz	e and 95%	interval	Test of nu	ıll (2-Tail)		Heter	ogeneity			Tau-so	quared	
Model	Number Studies	Point estimate	Lower limit	Upper limit	Z-value	P-value	Q-value	df (Q)	P-value	I-squared	Tau Squared	Standard Error	Variance	Tau
Fixed	23	0.953	0.931	0.969	14.313	0.000	33.763	22	0.052	34.840	0.610	0.572	0.328	0.781
Random	23	0.970	0.947	0.983	11.672	0.000								

Supplementary Figure 23:Heterogeneity statistics of survival rate

Infection (meningitis/Abscess

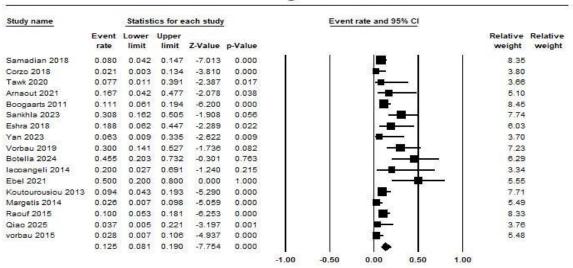


Supplementary Figure 24: Forest plot of post-surgery infection

Model		Effect siz	e and 95%	interval	Test of nu	ll (2-Tail) — ———		Hetero	geneity			Tau-sq	juared		
Model	Number Studies	Point estimate	Lower limit	Upper limit	Z-value	P-value	Q-value	df (Q)	P-value	I-squared	Tau Squared	Standard Error	Variance	Tau	
Fixed Random	14 14	0.071 0.065	0.053 0.044	0.094 0.096	-16.479 -12.661	0.000 0.000	19.393	13	0.111	32.965	0.180	0.223	0.050	0.424	

Supplementary Figure 25:Heterogeneity statistics of post-surgery infection

New Neurological Deficits

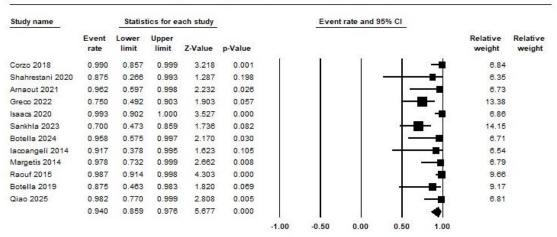


Supplementary Figure 26: Forest plot of New Neurologic deficits

Model		Effect siz	e and 95%	interval	Test of nu	ll (2-Tail)		Hetero	geneity			Tau-sq	juared		
Model	Number Studies	Point estimate	Lower limit	Upper limit	Z-value	P-value	Q-value	df (Q)	P-value	l-squared	Tau Squared	Standard Error	Variance	Tau	
Fixed Random	17 17		0.103 0.081	0.161 0.190	-14.524 -7.754	0.000 0.000	48.879	16	0.000	67.266	0.630	0.375	0.140	0.794	

Supplementary Figure 27:Heterogeneity statistics of New Neurologic deficits

New Neurological Deficits

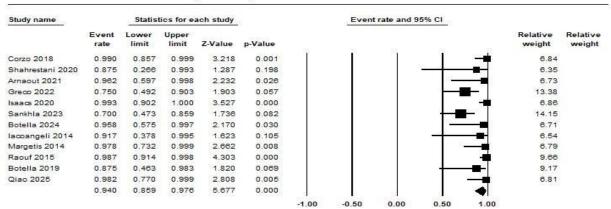


Supplementary Figure 28: Sensitivity analysis of New Neurologic Deficits

Model		Effect siz	e and 95%	interval	Test of nu	(2-Tail)	12	Hetero	geneity			Tau-so	quared	
Model	Number Studies	Point estimate	Lower limit	Upper limit	Z-value	P-value	Q-value	df (Q)	P-value	I-squared	Tau Squared	Standard Error	Variance	Tau
Fixed	16		0.094	0.150	-14.812	0.000	40.327	15	0.000	62.804	0.514	0.334	0.112	0.717

Supplementary Figure 29:Heterogeneity statistics of *the* Sensitivity analysis of New Neurologic deficits

Hydrocephalus Resolution Rate

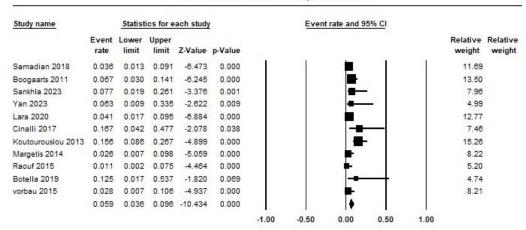


Supplementary Figure 30: Forest plot of resolution of hydrocephalus

Model		Effect siz	ze and 95%	interval	Test of nu	ıll (2-Tail)		Hetero	geneity		Tau-squared				
Model	Number Studies	Point estimate	Lower limit	Upper limit	Z-value	P-value	Q-value	df (Q)	P-value	I-squared	Tau Squared	Standard Error	Variance	Tau	
Fixed	12	2 0.886	0.818	0.931	7.356	0.000	26.095	11	0.006	57.847	1.431	1.210	1.464	1.196	
Random	12	0.940	0.859	0.976	5.677	0.000									

Supplementary Figure 31: Heterogeneity statistics resolution of hydrocephalus

Hydrocephalus Resolution Rate



Supplementary Figure 32: sensitivity analysis of the resolution of hydrocephalus

Model		Test of null (2-Tail)		Heterogeneity				T au-squared						
Model	Number Studies	Point estimate	Lower limit	Upper limit	Z-value	P-value	Q-value	df (Q)	P-value	I-squared	Tau Squared	Standard Error	Variance	Tau
Fixed	11	0.933	0.877	0.964	7.752	0.000	17.098	10	0.072	41.513	0.980	1.100	1.211	0.990
Random	11	0.954	0.890	0.981	6.307	0.000								

Supplementary Figure 33: Heterogeneity statistics sensitivity analysis of the resolution of hydrocephalus

Permanent shunt requirement

Supplementary Figure 34: Forest plot of permanent shunt requirement

Model		Effect size and 95% interval			Test of null (2-Tail)			Heterogeneity				Tau-squared		
Model	Number Studies	Point estimate	Lower limit	Upper limit	Z-value	P-value	Q-value	df (Q)	P-value	l-squared	Tau Squared	Standard Error	Variance	Tau
Fixed	11	0.067	0.048	0.092	-15.114	0.000	19.634	10	0.033	49.069	0.343	0.331	0.110	0.585
Random	11	0.059	0.036	0.096	-10.434	0.000								

Supplementary Figure 35: Heterogeneity statistics of permanent shunt requirement