

Supplementary Table S1. Distribution of OCT Types on *RS1* Variants.

Variants No.	Complementary DNA	Protein	Mutation type	1A	1B	2	3	4	5A	5B
1	c.78+1G>T	Splice_donor_variant & intron_variant	Truncated	1	1	0	0	0	0	0
2	c.97delT	p.Trp33fs	Truncated	2	0	0	0	0	0	0
3	c.130_140del	p.Gly44fs	Truncated	2	0	0	0	0	0	0
4	c.150G>A	p.Trp50* premature stop	Truncated	2	0	0	0	0	0	0
5	Exon 4 deletion		Truncated	2	0	0	0	0	0	0
6	c.306_308dupGCT	p.Leu103dup	Truncated	0	2	0	0	0	0	0
7	c.326+2T>G	Splice_donor_variant & intron_variant	Truncated	0	1	0	0	0	0	1
8	c.522+1G>T	Splice_donor_variant & intron_variant	Truncated	2	0	0	0	0	0	0
9	c.188G>A	p.Cys63Tyr	Missense	0	0	0	0	2	0	0
10	c.214G>A	p.Glu72Lys	Missense	1	0	0	0	5	0	0
11	c.286T>C	p.Trp96Arg	Missense	0	4	3	1	1	1	3
12	c.302C>A	p.Ala101Asp	Missense	2	0	0	0	0	0	0
13	c.305G>A	p.Arg102Gln	Missense	0	0	0	1	0	0	1
14	c.325G>A	p.Gly109Arg	Missense	0	0	0	0	0	2	0
15	c.328T>C	p.Cys110Arg	Missense	2	0	0	0	0	0	0
16	c.331G>A	p.Ala111Thr	Missense	0	0	0	0	0	2	0
17	c.404G>A	p.Gly135Glu	Missense	0	0	1	0	0	0	0
18	c.410T>C	p.Leu137Pro	Missense	2	6	2	0	0	0	0
19	c.421C>T	p.Arg141Cys	Missense	3	1	0	0	0	0	0
20	c.422G>A	p.Arg141His	Missense	6	4	0	0	0	0	0
21	c.426T>G	p.Cys142Trp	Missense	0	1	1	0	0	0	0
22	c.433G>T	p.Asp145Tyr	Missense	0	0	1	0	0	0	1
23	c.499A>G	p.Lys167Glu	Missense	0	0	0	0	0	0	2

24	c.544C>T	p.Arg182Cys	Missense	1	0	0	0	0	1	2
25	c.574C>T	p.Pro192Ser	Missense	0	0	2	0	0	2	0
26	c.577C>T	p.Pro193Ser	Missense	2	0	0	0	0	0	0
27	c.578C>G	p.Pro193Arg	Missense	0	0	0	0	0	2	0
28	c.589C>T	p.Arg197Cys	Missense	6	4	1	2	0	0	0
29	c.590G>A	p.Arg197His	Missense	9	1	1	0	0	1	0
30	c.608C>T	p.Pro203Leu	Missense	1	0	0	0	0	0	0
31	c.617G>C	p.Trp206Ser	Missense	0	0	0	0	0	2	0
32	c.625C>T	p.Arg209Cys	Missense	4	2	1	0	0	1	1
33	c.638G>A	p.Arg213Gln	Missense	0	0	2	0	0	0	0
34	c.647T>C	p.Leu216Pro	Missense	0	4	0	0	1	0	3
35	c.668G>A	p.Cys223Tyr	Missense	1	0	0	0	0	0	1
Total (139 eyes)				51	31	15	4	9	14	15

A = adenine; Ala = Alanine; Arg = Arginine; Asp = Aspartic acid; C = cytosine; Cys = Cysteine; del = deletion; DS domain = discoidin domain; dup = duplication; fs = frameshift; G = guanine; Gln = Glutamine; Glu = Glutamic acid; Gly = Glycine; His = Histidine ; Leu = Leucine; Lys = Lysine; n = number; Pro = Proline; RS domain = Retinoschisin 1 domain; Ser = Serine; T = thymine; Thr = Threonine; Trp = Tryptophan; Tyr = Tyrosine; Val = Valine

Supplementary Table S2. Comparison of BCVA, Age, OCT Types Between the Truncating and Missense Variants in X-linked Retinoschisis Patients.

	Group 1 (Truncating mutation)	Group 2 (Missense mutation)	P-value
Mean \pm SD in logMAR	0.64 \pm 0.42	0.70 \pm 0.39	0.692
Mean \pm SD in age	18.43 \pm 10.76	15.16 \pm 9.09	0.559
1A (n=51 eyes)	11 (21.6%)	40 (78.4%)	0.042
Mean \pm SD in logMAR	0.53 \pm 0.20	0.44 \pm 0.18	0.233
Mean \pm SD in age	15.76 \pm 8.87	11.06 \pm 5.27	0.119
1B (n=31 eyes)	4 (12.9%)	27 (87.1%)	0.814
Mean \pm SD in logMAR	0.60 \pm 0.27	0.71 \pm 0.34	0.479
Mean \pm SD in age	24.73 \pm 15.21	13.59 \pm 6.14	0.239
2 (n=15 eyes)	0 (0.0%)	15 (100.0%)	<0.001
Mean \pm SD in logMAR	-	0.77 \pm 0.27	-
Mean \pm SD in age	-	15.06 \pm 6.29	-
3 (n=4 eyes)	0 (0.0%)	4 (100.0%)	<0.001
Mean \pm SD in logMAR	-	1.35 \pm 0.47	-
Mean \pm SD in age	-	13.61 \pm 4.92	-
4 (n=9 eyes)	0 (0.0%)	9 (100.0%)	<0.001
Mean \pm SD in logMAR	-	1.17 \pm 0.44	-
Mean \pm SD in age	-	13.29 \pm 5.32	-
5A (n=14 eyes)	0 (0.0%)	14 (100.0%)	<0.001
Mean \pm SD in logMAR	-	0.48 \pm 0.27	-
Mean \pm SD in age	-	20.64 \pm 14.75	-
5B (n=15 eyes)	1 (6.7%)	14 (93.3%)	0.535
Mean \pm SD in logMAR	2.00 \pm 0.00	0.96 \pm 0.40	0.159
Mean \pm SD in age	22.65 \pm 0.00	26.32 \pm 10.52	0.908

BCVA = best corrected visual acuity; logMAR = logarithm of the minimum angle of resolution; n = number; OCT = optical coherence tomography SD = standard deviation; XLRs = X-linked retinoschisis