Supplementary Materials

Table S1. Regions with significant differences identified in all ASD

vs. TD.
MNI Coordinat
Brain regions COTCINAtES 4 alues Cluster size (voxels)
X y z
ASD>TD
Thalamus.R 19.5  -27 13.5 5.66 3753
Temporal.Sup.R 60 -4.5 0 5.42 6021
Lingual.L -10.5 -31.5 -4.5 5.25 3412
Temporal.Sup.L -60 -6 1.5 5.07 4145
Lingual.R 12 -73.5 0 4.30 172
Hippocampus.R 33 -12 -25.5 4.28 705
Fusiform.R 33 -54 -9 3.98 168
Precentral.R 33 -21 54 3.74 179
ASD<TD
ParaHippocampal.R 24 4.5 -21 -3.94 209

Table S2. Regions with significant differences identified in two
subtypes ASD vs. TD

MNI Coordinates

Subtype Brain regions N v ” t values Cluster size (voxels)

Subtype 1

ASD<TD
Insula.R 46.5 4.5 0 -8.28 30952
Frontal.Sup.2.R 30 22.5 57 -6.82 638
Temporal.Sup.R 69 -27 0 -6.53 515
Angular.L -52.5  -69 27 -6.30 715
Angular.R 57 -61.5 27 -6.21 703
ParaHippocampal.R 21 -34.5 -13.5 -6.19 176
Frontal.Mid.2.L -33 25.5 54 -6.15 283
Occipital.Mid.R 375 -91.5 4.5 -6.15 157
Precuneus.L 4.5 -55.5 7.5 -6.10 458
Cingulate.Mid.L -1.5 12 39 -5.96 202
Thal. MDm.R 1.5 -19.5 4.5 -5.92 143
Frontal.Inf.Tri.L -49.5 39 10.5 -5.76 59
ParaHippocampal. L.  -21 -39 -13.5 -5.68 53
Cingulate.Mid.R 1.5 10.5 37.5 -5.64 57
Cerebellum.8.L -39 -54  -58.5 -5.63 214

Subtype 2

ASD>TD
Temporal.Sup.R 60 -4.5 0 11.42 8298
Temporal.Sup.L -51 -15 3 10.31 6751
Thal.Pul.L -12 -30 -3 8.72 1334
Thal. PuM.R 10.5 -28.5 -4.5 8.35 1432
Precuneus.L -6 -64.5 27 7.05 1011
Fusiform.L 31.5 -54  -10.5 6.55 141
Fusiform.R 34.5 -31.5 -24 6.53 384
Lingual.R 19.5 -64.5 -7.5 6.02 66

Cingulate.Post.L -6 -46.5 30 5.52 60
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Fig. S1. The correlation analysis results between all clusters and scale scores (p < 0.05 with FDR correction).
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Fig. S2. Supplementary Neurobiological mechanism underlying the structural differences of the two distinct ASD subtypes. (A) Gene enrichment analyses
were performed for genes associated with the structural alterations specific to each ASD subtype, with enrichment results ranked by gene count. (B)
Variance explained by partial least squares (PLS) regression models. (C) Significant correlations between PLS scores and structural differences of the

two ASD subtypes, with Subtype 1 and Subtype 2 plotted together in a single graph to enhance visual comparison.
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