Supplementary Information:

Background-free quantitative phase imaging with adaptive-optics surface plasmon resonance holographic microscopy
Siqing Dai1, Mengmeng Zhang1, Yushan Shen2, Haoyu Xu1, Li Ren2, Hua Lu1, Jiwei Zhang1*, Gerd Ulrich Nienhaus3,4,5*, and Jianlin Zhao1*

1Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an, 710129, China
2Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi’an, 710072, China
3Institute of Applied Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
4Institute of Biological and Chemical Systems and Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
5Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
Email addresses of the corresponding authors:
*jwzhang@nwpu.edu.cn;
*uli@uiuc.edu;
*jlzhao@nwpu.edu.cn.



Supplementary Notes
Note 1: Hologram recording and reconstruction 
1. Hologram recording
In the hologram recording plane, the complex amplitude distributions of the object wave, O(x, y), and the reference wave, R(x, y), can be written as

	                       (S1)
respectively, where AO(x, y) (AR(x, y)) and O (x, y) (R(x, y)) are the amplitudes and phases of the object (reference) wave, respectively. The object and reference waves interfere in the overlap region, yielding an intensity distribution

		     (S2)
2. Hologram reconstruction
In traditional optical holography, the same reference wave illuminates the interference pattern on the recording plate, so the complex amplitude of the transmitted light wave is given by 

		   (S3)
Notably, u3 is the complex amplitude of the recovered object wave multiplied by a constant. In off-axis holography, u3 and u4 are well separated from u1 and u2 and can thus be easily measured.
[bookmark: OLE_LINK3]In digital holography, the hologram is recorded by a CCD camera, and the reconstruction of the object wave is performed by a computer. Here, we utilize the convolution method for numerical reconstruction, which analyzes light wave propagation in the Fourier domain1, 2. Specifically, treating the complex amplitude distribution of the light wave in the hologram plane as a coherent superposition of plane waves propagating in different directions, the convolution method regards the complex amplitude distribution of the light wave in the image plane as a linear combination of plane waves with phase shifts. The magnitude of the phase shift of the plane waves depends on the optical transfer function (OTF), i.e., the Fourier transform of the point spread function (impulse response) of the optical system.
The complex amplitude of the light in the image plane (coordinates ξ, η) at a distance, d, from the hologram plane (coordinates x, y) is given by

                   (S4)
where h(, , x, y,) is the impulse response function in the paraxial approximation,

          ,	             (S5)
and  is the wavelength of the light.
According to the convolution method1, 2, Eq. S4 can also be written as

           ,	  (S6)
with H representing the discretized OTF,

	.	     (S7)
[bookmark: OLE_LINK4]Here, X and Y denote the pixel numbers of the CCD camera in the horizontal and vertical directions, respectively, and the corresponding pixel sizes are x and y, respectively, x = 1, 2, … X, y = 1, 2, … Y.
In practice, the reference wave is not a priori known. Rather, a plane wave is taken in the reconstruction, so that Eq. S6 simplifies to 

[bookmark: _Hlk205478717] 	                        (S8)
Accordingly, the object wave is calculated by first taking the fast Fourier transform of the digital hologram. After extracting the ± first orders of the Fourier spectrum and multiplying with H, the inverse Fourier transform finally yields the object wave distribution. The intensity and phase distributions, I(ξ, η) and j(ξ, η), of the object wave can be calculated by

 	                     (S9)
in which Re[Ud(ξ, η)] and Im[Ud(ξ, η)] are the real and imaginary parts of the complex amplitude of the object wave, respectively. Notably, the image plane holography was used in this work, with the reconstruction distance d = 0. Thus, the hologram plane and image plane are actually the same plane.
Importantly, the reference wave is not an ideal plane wave in practice. As a result, the phase distribution reconstructed from the hologram is the phase difference between the object and reference waves, and not the phase of the object wave itself. Therefore, the phase image measured by SPRHM is

	   		(S10)
where we substituted SPR(x, y) using Eq. 1 in the main text. Accordingly, the phase pattern that we need to upload to the SLM to compensate aberrations is

       	                (S11)
When the wavefront of the object wave is modulated by the SLM phase pattern, the phase difference between object and reference waves of the digital hologram is given by


    	(S12)
Therefore, after AO correction, the numerically reconstructed phase distribution is the correct SPR phase image of the sample. Note that this conclusion only holds true if the reference beam is not phase-modulated by the SLM.


Note 2: Mapping the phase to the cell adhesion gap width based on a six-layer SPR model
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Under SPR excitation, the surface plasmon polariton propagates along the interface, with its intensity perpendicular to the gold surface decaying exponentially, with a characteristic length of 100 – 200 nm at the HeNe laser wavelength of 632.8 nm. Consequently, the extension of the evanescent wave is small against the overall thickness of adherent cells (typically several micrometer) yet perfectly matched to the thickness of the adhesion cleft. To map the phase shift to a gap thickness, we use the SPR model sketched in Fig. S3(a), which includes six layers, (1) coverslip, (2) Cr layer, (3) Au layer, (4) cell adhesion gap containing culturing medium in varying thickness, (5) cell membrane and (6) cytoplasm. For this model, we calculate the reflection coefficient of the light wave as a function of the cell adhesion gap according to Fresnel’s equations3. Notably, all physical parameters (thickness and dielectric constant) are known for each layer except for the gap thickness4. The resulting dependence of the SPR phase, obtained from the complex reflection coefficient, on the cell adhesion gap is plotted in Fig. S3(b). This monotonically decaying curve allows us to convert the measured phases into the adhesion gap for each pixel, as described in our previous work4.




Supplementary figures
[image: ]

Fig. S1. Two examples of background-corrected SPR phase images of dense layers of breast cancer cells. AO-SPRHM with HC optimization was employed for correction. Scale bar: 5 m.
[image: ]

Fig. S2. SPR phase images of mouse osteoblast cells, background-corrected with different numbers of Zernike modes. a, b Two exemplary images, with background corrected by using the first six Zernike modes (piston, x- and y-tilt, defocus and oblique/vertical astigmatism). c, d Alternative background correction with the first eleven Zernike modes (including, in addition, oblique/vertical coma, oblique/vertical trefoil and primary spherical aberration). The HC algorithm was employed for optimizing the adaptive correction. Scale bar: 5 m.
[image: ]
Fig. S3. Mapping the phases of the measured phase image to the cell adhesion gap. a Six-layer SPR model, E: electric field, d: penetration depth of the evanescent wave. b Dependence of the SPR phase on the cell adhesion gap, as calculated with the SPR model.

[image: ]
Fig. S4. Exemplary background-corrected SPR phase images of two breast cancer cells. a, b AO-SPRHM with HC optimization. c, d DE method. Scale bar: 5 m.

[image: ]
Fig. S5. Exemplary aberration-corrected SPR phase images of four breast cancer cells. The different optimization algorithms are indicated on top. Scale bar: 5 m.


[image: ]
Fig. S6. Optical setup of AO-SPRHM. A HeNe laser beam, linearly polarized at 45°, is reflected off a phase-only spatial light modulator (SLM). Importantly, only the p-polarized component is phase-modulated and diffracted into the first order, the s-polarized component only reflected. Both components pass a pinhole positioned such that higher orders of the p-polarized component are rejected. The beam illuminates the SPR chip. Since SPR can only be excited by the p-polarized component, this component carries the sample information and so serves as the object beam, and the unmodulated s-polarized beam is the reference beam. The two components propagate on a common path up to the Wollaton prism, which splits them with a small angle (~2.1°at 632.8 nm). After the polarizer at 45°, the two beams have the same linear polarization and interfere to generate an off-axis hologram. Compared to traditional interferometers using different pathways, the common-path structure minimizes mechanical instability of the imaging system.
[image: ]
Fig. S7. Imaging path of our AO-SPRHM system with three telescopes in sequence. In the first 4f system consisting of Lens1 and Lens 2, the SLM plane is conjugated to Plane 1. This plane is imaged onto the sample plane by the second 4f system consisting of Lens3 and microscope objective (MO). The third 4f system consisting of MO and Lens 4 conjugates the sample plane to the CCD plane.
[image: ]
[bookmark: OLE_LINK5]Fig. S8. HC algorithm for Zernike coefficient determination. a Illustration of the principle of the algorithm. b Input parameters. c Flow chart. randn: a random value drawn from a Gaussian distribution ( = 0;  = 1). Since the loss function was minimized in this work, we employed this method to search for a minimum rather than a hilltop.
[image: ]
Fig. S9. SPGD algorithm for Zernike coefficient determination. a Input parameters. b Flow chart. rand: a random value evenly distributed in [0, 1].

[image: ]
Fig. S10. SA algorithm for Zernike coefficient determination. a Illustration of the principle of the algorithm. b Input parameters. c Flow chart.
[image: ]
Fig. S11. PSO algorithm for Zernike coefficient determination. a Illustration of the principle of the algorithm. b Input parameters. c Flow chart. 

[image: ]
Fig. S12. GA algorithm for Zernike coefficient determination. a Illustration of the principle of the algorithm. b Input parameters. c Flow chart. randi(N): pseudo-random integer evenly distributed in [0, N].


Supplementary Tables
Table S1. Best-fit Zernike coefficients from the five algorithms
	Zernike coeff.
(rad)
Algorithm
	C0 0 
	C1 1
	C-1 1
	C0 2
	C2 2
	C-2 2

	HC
	–0.11
	3.64
	5.08
	0.15
	–0.07
	0.24

	SPGD
	–0.13
	4.07
	4.66
	0.43
	0.28
	0.40

	SA
	–0.08
	3.84
	4.87
	0.29
	0.24
	0.37

	PSO
	–0.12
	3.90
	4.81
	0.37
	0.23
	0.42

	GA
	0.00
	3.50
	4.83
	0.15
	0.27
	0.26



Table S2. Background parameters of SPR phase images for different algorithms
	  Correction method
Parameter
	DE
	HC
	SPGD
	SA
	PSO
	GA

	Mean value (rad)1
	0.04
	–0.05
	–0.03
	–0.04
	–0.05
	–0.03

	Standard deviation (rad)1
	0.18
	0.18
	0.18
	0.19
	0.18
	0.19


1 as calculated from the background region of the SPR phase image.
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