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	Figure S1: Morphology and spectroscopic characterization of GaSe grown at 450 °C on sapphire:
(a) AFM image of a cluster consisting of a central grain with layered flakes growing outward.
(b) AFM image showing a grain from which an in-plane layered structure grows, featuring visible screw dislocations, with a 3.0× magnified inset of an individual screw dislocation.
(c) AFM image of hexagonal flakes that are still not coalesced.
(d) Raman spectra corresponding to (a–c), showing only GaSe- and substrate-related Raman modes.[1–7]
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	Figure S2: Morphology and spectroscopic characterization of GaSe grown at 500 and 550 °C on sapphire:
(a) AFM image of out-of-plane flakes.
(b) AFM image of non-coalesced hexagonal and trigonal flakes showing screw dislocations, with a 2.3× magnified inset of an individual screw dislocation.
(c) AFM image of hexagonal flakes that are still not coalesced.
(d) AFM image of screw dislocations in hexagonal and trigonal flakes with a fully coalesced underlying layer.
(e) Raman spectra corresponding to (a–d), showing only GaSe- and substrate-related Raman modes.[1–7]
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	Figure S3: Morphology and spectroscopic characterization of Ga₂Se₃ grown at 450 and 550 °C on sapphire:
(a) AFM image of Ga2Se3 clusters.
(b) AFM image of a coalesced layer with clusters and rod-like structures on it.
(c) AFM image of Ga2Se3 clusters.
(d) AFM image of Ga2Se3 clusters.
(e) AFM image of layered Ga2Se3 and rod-like structures.
(f) AFM image of layered and clustered Ga2Se3 structures.
(g) Raman spectra corresponding to (a) and (b), showing only Ga2Se3- and substrate-related Raman modes.[2,3,8–11]
(h) Raman spectra corresponding to (c–f), showing only Ga2Se3- and substrate-related Raman modes.[2,3,8–11]
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	Figure S4. Morphology and spectroscopic characterization of Ga2Se3 grown at 600 °C on GaP/Si:
(a) AFM image of Ga2Se3 clusters with rod-like features.
(b) AFM image of Ga2Se3 clusters with rod-like features oriented in two perpendicular directions.
(c) AFM image of coalesced Ga2Se3 layers and clusters.
(d) AFM of small Ga2Se3 patches.
(e) Raman spectra corresponding to (a–d), showing only Ga2Se3- and substrate-related Raman modes.[8–15]
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	Figure S5: Morphology and spectroscopic characterization of GaP/Si and sapphire substrates:
(a) AFM image of GaP steps on the GaP/Si substrate.
(b) AFM image of the sapphire substrate showing polishing lines and a localized surface contamination.
(c) Raman spectra of the GaP/Si substrate, showing GaP peaks (marked) and additional signals from Si.[12–15]
(d) Raman spectra of sapphire, showing four characteristic sapphire-related Raman peaks (marked).[2,3]
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	Figure S6: EDX Analysis of the Covalently bonded Ga2Se3 Layer on GaP/Si:
(a) Zoomed-out HAADF image of the Ga2Se3 layer from Figure 2(e) of thin Ga2Se3 layer.
(b) EDX map corresponding to (a).
(c) Averaged EDX line profile across the Ga2Se3, GaP, and Si interface extracted from the EDX map shown in (b), illustrating the 2:3 ratio of Ga and Se in the covalently bonded layer.













 [image: ]
	Figure S7: EDX Analysis of the 2D GaSe on GaP/Si:
(a) HAADF image of GaSe on GaP/Si from Figure 3(a,c)
(b) EDX map corresponding to (a).
(c) Averaged EDX line profile across the GaSe and GaP interface extracted from the EDX map shown in (b), illustrating a 1:1 ratio of Ga and Se in the van der Waals bonded layeres.
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	Figure S8: MOCVD reactor setup
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