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Supplementary Note 1. Prompt Template Design
Our prompt templates build upon the structure of standard FEniCS tutorials¹, but extend their capability through a systematic design process that combines modularity and expert knowledge. We began by decomposing existing tutorial examples into reusable functional blocks—such as geometry inference, PDE selection, boundary condition specification, and numerical settings. 
To embed domain expertise, we interviewed three computational mechanics specialists and compiled over thirty physics-aware heuristics, including CFL stability limits, mesh refinement ratios, and solver tuning strategies etc. These heuristics were encoded into a dynamic ruleset, which populates specific sections of the prompt templates using context-sensitive calls to GPT-4o. 
This design ensures that the resulting prompt templates are not only physically grounded and adaptable to a wide range of modeling tasks, but also maintainable, verifiable, and aligned with real-world simulation practices.

[image: ]
Supplementary Figure 1. Input clarification prompt template used by the Input Clarifier Agent. This prompt guides the Input Clarifier Agent in transforming a vague or underspecified natural language simulation request into a fully specified description suitable for FEniCS-based execution. It outlines a set of physics-aware heuristics to infer PDE types, domain geometry, time-dependency, field variables, boundary conditions, material properties, and solver configurations. The agent is instructed to return a single coherent paragraph in clear technical English, enabling downstream agents to operate on a standardized, well-formed simulation specification. This clarification step plays a critical role in MCP-SIM’s Plan → Act → Reflect → Revise loop by providing physically grounded initial conditions from incomplete input.
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Supplementary Figure 2. Parsing prompt used to convert clarified descriptions into structured simulation specifications. This prompt defines the behavior of the Parsing Agent, which transforms a clarified natural language simulation description into a structured JSON schema suitable for downstream code generation. The output includes key simulation attributes such as problem type, governing equations, dimensionality, geometry, mesh resolution, variable fields, boundary/initial conditions, solver settings, and physical material parameters. By enforcing a consistent JSON structure, this agent enables modular interoperability across MCP-SIM agents, ensuring that code synthesis, error diagnosis, and simulation execution remain aligned through shared semantics.
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Supplementary Figure 3. Error diagnosis prompt used by the Error Diagnosis Agent. This prompt defines the task of the Error Diagnosis Agent, which is responsible for identifying and resolving runtime errors in FEniCS-based simulation code. It instructs the agent to analyze simulation logs, locate the root cause of failure, and return a corrected version of the code in plain Python. The prompt enforces a structured output format using a JSON schema that includes the type of fix, an explanatory hint, the corrected code, and a model confidence score.
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Supplementary Figure 4. Input rewriting prompt used by the Input Rewriter Agent. This prompt defines the behavior of the Input Rewriter Agent, which refines vague, incomplete, or ambiguous simulation prompts into fully specified descriptions suitable for code generation. The agent is instructed to infer missing details—such as dimensionality, PDE type, mesh resolution, and coupling behavior—and to resolve unclear phrasing. The output must be concise yet complete, written in professional technical English, and formatted for direct use in the code generation pipeline. This rewriting step is crucial in MCP-SIM’s self-correction loop, enabling recovery from high-level ambiguity and ensuring semantic consistency across simulation agents.
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Supplementary Figure 5. Explanation prompt used by the Mechanical Insight Agent. This prompt defines the behavior of the Mechanical Insight Agent, which generates structured, student-friendly simulation reports from FEniCS-based code. Designed to support interpretability and education, the prompt instructs the agent to explain the physical problem, underlying PDEs, numerical methods, and modeling decisions in accessible language. The explanation is tailored to advanced undergraduate or graduate-level students and includes sections on simulation goals, physical principles, critical parameters, solver strategies, and potential extensions. The prompt also supports multilingual output by specifying the target language, as shown in Figure 5. This agent operationalizes the “explanation” capability of MCP-SIM and serves as a virtual teaching assistant for simulation-based learning.
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Supplementary Figure 6. Generated code for Level 10: Steady-state thermoelectric simulation. This figure shows the complete FEniCS code generated by MCP-SIM for Level 10, which involves a steady-state, coupled thermoelectric simulation in a 2D rectangular domain. The simulation solves for both temperature and electric potential using mixed function spaces and incorporates Neumann and Dirichlet boundary conditions. The agent pipeline successfully configured the geometry, constitutive relations, PDE weak forms, solver parameters, and output routines. This result demonstrates MCP-SIM’s ability to autonomously generate valid multiphysics code from minimal input, including correct coupling terms and solver configurations.
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Supplementary Figure 7. Generated code for Level 11: Piezoelectric deformation simulation. This figure shows the complete FEniCS code generated by MCP-SIM for Level 11, which models piezoelectric deformation under voltage-induced loading. The simulation couples linear elasticity with electrostatics, using mixed finite element spaces to simultaneously solve for displacement and electric potential. The agent autonomously inferred the correct material parameters, boundary conditions, and coupling terms. Key features include the definition of piezoelectric tensors, permittivity handling, and contraction rules for shape-consistent matrix operations. 
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Supplementary Figure 8. Final simulation code generated for Level 12 (phase-field fracture). This figure presents the complete Python script automatically generated by MCP-SIM for the most challenging benchmark prompt (Level 12), which involves phase-field crack propagation in a 2D domain with a central circular void. The code includes physically consistent parameter initialization, boundary and initial condition assignment, alternating solution of displacement and damage fields, and convergence monitoring through a self-correcting loop. This result was obtained without manual intervention, demonstrating MCP-SIM’s ability to autonomously generate stable, executable finite element models from vague natural language prompts through multi-agent reasoning and physics-aware heuristics.
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Supplementary Figure 9. Multilingual simulation reports generated by the Mechanical Insight Agent in Japanese (top) and German (bottom). These reports illustrate MCP-SIM’s capacity to deliver structured, domain-informed simulation explanations in multiple languages. The reports maintain a consistent pedagogical format across languages, including explanations of the simulation goal, underlying physics, PDE formulation, numerical strategies, and modeling assumptions. Each report is automatically generated from code and context, enabling simulation transparency and accessibility for learners from diverse linguistic and disciplinary backgrounds.
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ErrorDiagnosticPrompt

You are a diagnostic agent specialized in identifying and resolving errors in Python
code for FEniCS-based simulations.

Your task is to:

1. Analyze the simulation output and error logs.

2. Accurately identify the root cause of failure in the original code.

3. Return the corrected full version of the code as plain Python (no markdown).

Output Format (must follow this JSON schema):
{{
"fix_type": "parsing" or "code",
"hint": "Explanation of the error and how it was fixed",
"after_code": "Modified full Python code",
"confidence": float between 0.0 and 1.0

3y
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InputRewritePrompt

You are a simulation assistant tasked with rewriting vague or incomplete user
simulation requests into fully qualified descriptions suitable for FEniCS-based
execution.\n\n

Given the following inputs, infer any missing details such as dimension, PDE type,
mesh resolution, coupling behavior, and clarify ambiguous phrasing.\n\n

2 Guidelines:\n"

- Keep the rewritten input concise but complete.\n

- Use professional, technical English.\n

- Ensure the result includes everything needed for accurate code generation.\n\n
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MechanicallnsightPrompt

You are a mechanical simulation expert. Analyze the following FEniCS code and
produce a structured, student-friendly report that explains its scientific intent
and mechanical significance.

& Respond in the specified language: {language}. Keep the tone accessible and
instructional, suitable for advanced undergraduate or graduate students.

Your explanation should include:

1. **xSimulation Goal*x: What physical problem does the code solve? Which equations
and conditions are modeled?

2. **Physical Concepts**: Describe the mechanical or physical principles used (e.g.,
stress, diffusion, elasticity, Navier-Stokes).

3. **PDE Explanationx*: Explain the governing PDE, its terms, and their physical
roles.

4. *xCode Analysis*x: Line-by-1line or block-level explanation of what the code
implements (e.g., mesh, boundary conditions, solvers).

5. *xCritical Factors**: Highlight sensitive parts like mesh resolution, time step,
boundary settings, and their impact on accuracy.

6. *xNumerical and Performance Considerations*x: Discuss numerical stability and
optimization strategies (e.g., backward Euler, Newton solver parameters).

7. *xConclusion**: Summarize the physical insights provided by this simulation and
how it could be extended or validated.

8. **Recommendations**: Suggest improvements or test variations (e.g., material
property changes, different loading conditions).
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000 L11_code.py

from fenics import *
import numpy as np

# Geometry and mesh

L =1.0

W=20.2

nx, ny = 50, 30

mesh = RectangleMesh(Point(0, 0), Point(L, W), nx, ny)

# Define mixed function space (T, V)
P1 = FiniteElement('P', triangle, 1)
element = MixedElement([P1, P1])
W_space = FunctionSpace(mesh, element)

# Trial, test, solution functions
U = Function(W_space)

dU = TrialFunction(W_space)

vT, vV = TestFunctions(W_space)
T, V = split(U)

# Material properties

k = Constant(1.0) # Thermal conductivity
sigma = Constant(1.0) # Electrical conductivity
S = Constant(1.0) # Seebeck coefficient

a_flux = Constant(1.0) # Applied current flux (Neumann BC)

# Define boundary parts
class LeftBoundary(SubDomain):
def inside(self, x, on_boundary):
return near(x[0], 0.0) and on_boundary

class RightBoundary(SubDomain):
def inside(self, x, on_boundary):
return near(x[0], L) and on_boundary

boundaries = MeshFunction("size_t", mesh, mesh.topology().dim()-1)
boundaries.set_all(0)

LeftBoundary() .mark(boundaries, 1)

RightBoundary() .mark(boundaries, 2)

ds = Measure('ds', domain=mesh, subdomain_data=boundaries)

# Constitutive relations
grad_T = grad(T)
grad_V = grad(V)

J = -sigma * (grad(V) + S * grad(T)) # Electric current density
q = S*T*J - kxgrad(T) # Heat flux
# Weak form :

F1 = dot(J, grad(vV))*dx
F2 = dot(qg, grad(vT))*dx

# Add Neumann BC contribution for electric field N
F1 -= a_flux * vV * (ds(1) + ds(2))

F=F1+ F2

# Boundary conditions (Dirichlet)

bcs = [
DirichletBC(W_space.sub(0), Constant(100.0), LeftBoundary()), # T(x=0) = 100
DirichletBC(W_space.sub(0), Constant(0.0), RightBoundary()), # T(x=L)
DirichletBC(W_space.sub(1), Constant(0.0), LeftBoundary()), # V(x=0)

i nu
o o

# Solver settings
solver_parameters = {
"newton_solver": {
"absolute_tolerance": 1le-30,
"relative_tolerance": 1le-30,
"maximum_iterations": 50,

"linear_solver": "mumps"
}
}
# Solve
solve(F == 0, U, bcs, solver_parameters=solver_parameters)

# Extract solutions
T_sol, V_sol = U.split()

# Save results
xdmf_T = XDMFFile("temperature.xdmf")
xdmf_T.write(T_sol)

xdmf_V = XDMFFile("electric_potential.xdmf")
xdmf_V.write(V_sol)

print("® Fully coupled thermoelectric simulation with Neumann boundary completed.")
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from dolfin import *

# Define material properties

E = 6el10 # Young's modulus in Pa

nu = 0.3 # Poisson's ratio

rho = 7800 # Density in kg/m”3

epsilon_r = 1200 # Relative permittivity

d_33 = 400e-12 # Piezoelectric constant in C/N

# Create mesh and define function space

mesh = RectangleMesh(Point(0, 0), Point(1.0, 0.2), 50, 10)

V = VectorFunctionSpace(mesh, 'P', 1) # Displacement space

Q = FunctionSpace(mesh, 'P', 1) # Electric potential space

W = FunctionSpace(mesh, MixedElement([V.ufl_element(), Q.ufl_element()]))

# Define boundary conditions
tol = 1E-14

# Mechanical boundary conditions
def left(x, on_boundary):
return near(x[0], 0, tol) and on_boundary

def right(x, on_boundary):
return near(x[0], 1.0, tol) and on_boundary

bc_left = DirichletBC(W.sub(0), Constant((0, 0)), left)
bc_right = DirichletBC(W.sub(0).sub(1), Constant(1eé6), right)

# Electrical boundary conditions
def top(x, on_boundary):
return near(x[1], 0.2, tol) and on_boundary

def bottom(x, on_boundary):
return near(x[1], 0, tol) and on_boundary

bc_top = DirichletBC(W.sub(1), Constant(1000), top)
bc_bottom = DirichletBC(W.sub(1), Constant(0), bottom)

bcs = [bc_left, bc_right, bc_top, bc_bottom]

# Define variational problem
(u, phi) = TrialFunctions(W) E
(v, psi) = TestFunctions(W)

Elasticity and piezoelectric coupling
= u.geometric_dimension()
Identity(d)
E/ (1 - nux*2) * as_matrix([[1, nul,
[nu, 1]11) # Adjusted to 2x2 matrix for 2D problem

O H QO I

e = as_matrix([[d_33, 01,

[0, 8]]) # Adjusted to be a 2x2 matrix to match epsilon_mech
epsilon_0 = 8.854187817e-12 # Vacuum permittivity in F/m
epsilon = epsilon_0 * epsilon_r

# Strain and electric field

epsilon_mech = sym(grad(u))

# Correct the shape mismatch by using the appropriate contraction

D = -epsilon * grad(phi) + as_vector([e[0, 0] * epsilon_mech[0, 0], e[0, 0] =*
epsilon_mech[1, 1]]) # Corrected piezoelectric coupling

# Weak form
a = (inner(C * epsilon_mech, sym(grad(v))) - inner(D, grad(psi))) * dx
L = dot(Constant((0, 0)), v) * dx

# Solve the problem
w = Function(W)
solve(a == L, w, bcs, solver_parameters={"linear_solver": "mumps"})

# Split the solution
(u, phi) = w.split()

# Save results

xdmf_file_u = XDMFFile("displacement.xdmf")
xdmf_file_phi = XDMFFile("electric_potential.xdmf")
xdmf_file_v.write(u)

xdmf_file_phi.write(phi)
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1 from dolfin import *

~ import numpy as np

5 from mshr import *

4

5 # 1. Material and analysis parameters

6 6c, 1L = 1.15e3, 0.01 # Fracture energy (J/m2?), static damage parameter

7 E, nu = 2.75e6, 0.3 # Young's modulus, Poisson's ratio

© mu=E/ (2% (1 + nu))

7 Tlambda_ = E * nu / ((1 + nu) * (1 - 2 * nu))

10 dt, T = 0.01, 1.0

"7 num_steps = int(T / dt)

12

13 # 2. Domain and mesh: square with circular hole

14 outer = Rectangle(Point(0.0, 0.0), Point(5.0, 5.0))

15 circle = Circle(Point(2.5, 2.5), 1.45)

16

17 notch_left = Rectangle(Point(0.95, 2.45), Point(1.05, 2.55))

12 notch_right = Rectangle(Point(3.95, 2.45), Point(4.05, 2.55))

19

-1 domain = outer - circle - notch_left - notch_right

217 mesh = generate_mesh(domain, 128)

22 print("Number of cells:", mesh.num_cells())

23 print("Mesh cells:", mesh.num_cells())

24

25 # 3. Function spaces

26 V_u = VectorFunctionSpace(mesh, "CG", 1)

27 V_d = FunctionSpace(mesh, "CG", 1)

28

29 # 4. Function definitions

50 u = Function(V_u, name="Displacement")

51 d = Function(V_d, name="Damage")

52 d_old = Function(V_d)

53 d_old.assign(interpolate(Constant(le-4), V_d))

34

35 # 5. Stress and damage definitions

56 def epsilon(u): return sym(grad(u))

37

38 def sigma(u, d): # Damaged stress tensor

39 return (1 - d)**2 * (lambda_ * tr(epsilon(u)) * Identity(2) + 2 * mu * epsilon(u))

40

41 # 6. Boundary conditions

42 top = CompiledSubDomain("near(x[1], 5.08)")

43 bottom = CompiledSubDomain("near(x[1], 0.8)")

44

45 expr = Expression("t", t=0.0, degree=1)

46

47 bes_u = [DirichletBC(V_u.sub(1), expr, top),

48 DirichletBC(V_u, Constant((0.0, 0.0)), bottom)]

49

50 bes_d = [DirichletBC(V_d, Constant(0.0), bottom)]

51

52 # 7. Output settings

53

54 xdmf_u = XDMFFile("displacement.xdmf")

55 xdmf_d = XDMFFile("damage.xdmf")

56 xdmf_u.parameters["flush_output"] = True ;

57 xdmf_d.parameters["flush_output"] = True i

58

59

60 # 8. Time Tloop

61 t = 0.0

62 tol = 8e-3

o5 max_iter = 10

64 def psi(u):

65 return 0.5 * (lambda_ * tr(epsilon(u))**2 + 2 * mu * inner(epsilon(u),
epsilon(u)))

66

67 for n in range(num_steps):

68 t += dt

69 expr.t =t * 0.05 / T # 25% total tensile load

70 d.assign(d_old)

71

72 print(f"\nTime = {t:.4f}")

73

74 for it in range(max_iter):

75 print(f" Iteration {it+1}: Solving u with fixed d")

76

77 # Solve u with fixed d

78 u_trial = TrialFunction(V_u)

79 v = TestFunction(V_u)

80 a_u = inner(sigma(u_trial, d), epsilon(v)) =* dx

81 L_u = Constant(0.0) * v[0] * dx

82 solve(a_u == L_u, u, bcs_u)

83

84 print(f" Iteration {it+1}: Solving d with fixed u")

85

86 # Solve d with fixed v

87 d_trial = TrialFunction(V_d)

88 w = TestFunction(V_d)

89 a_d = (6c / 1) * d_trial * w * dx + Gc * 1 * dot(grad(d_trial), grad(w)) =* dx

90 Ld=(6c /1) » d_old * w * dx + 2 * (1 - d_old) * psi(u) * w * dx

91

92 solve(a_d == L_d, d, bcs_d)

93

94 # Check convergence

95 change = norm(d.vector() - d_old.vector(), 'linf')

96 print(f" Damage change: {change:.3e}")

97 if change < tol:

98 break

99

100 d_old.assign(d)

101

102 # Output results

103 xdmf_u.write(u, t)

104 xdmf_d.write(d, t)

105

106 xdmf_u.close()
107 xdmf_d.close()
108
109
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(dolfin_fine.xml ). Wenn die Datei fehlt, wird ein Einheitsquadratbereich angenommen.
«  Randdefinitionen: Drei Randklassen ( Boundaryxe , BoundaryX1 , Boundaryv1 ) werden definiert, um die linken, rechten und oberen | 8. EmprhlU ngen

Rander des Bereichs zu identifizieren.

. L - . . e Mesh-Verfeinerung: Testen Sie mit unterschiedlichen Mesh-Auflésungen, um Genauigkeit und Rechenkosten auszubalancieren.
e Facet-Marker: Diese werden verwendet, um die Rander fiir die Anwendung von Randbedingungen zu markieren.

e Funktionsraum: Ein Funktionsraum v wird unter Verwendung linearer Lagrange-Elemente ( 'p', 1) definiert, geeignet fiir die
Lésung von PDEs.
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InputClarifyAgentPrompt

You are given a user's simulation request in natural language. Based on the following
guidelines, generate a **single-paragraph, fully specified simulation description**
suitable for direct use in FEniCS.

Carefully consider the following aspects when clarifying:

Problem Type and Structure

- Identify the PDE type: heat, fluid (Navier-Stokes), elasticity, fracture, reaction-
diffusion, etc.

- Specify whether the problem is steady or time-dependent.

- Determine if it is multiphysics (e.g., thermo-elasticity, fluid-structure
interaction, electro-mechanics)..

- Identify spatial dimension: 2D or 3D.

- Describe the domain shape: rectangle, circle, cylinder, presence of notch, etc.

Field Variables and Conditions

- Define field variables such as v, p, T, d, k, etc.

- Infer and describe boundary and initial conditions clearly.

- Estimate required material properties: E, nu, k, rho, cp, mu, Gc, etc.

Numerical Settings

- Suggest appropriate time step dt (if transient).

- Recommend solver structure (e.g., nonlinear Newton solver, staggered scheme).
- Mention output format (e.g., whether to store results in .xdmf).

Format your output as one complete paragraph in clear technical English.
Do NOT include section headings or bullet points.
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ParsingPropmt

You are given a clarified simulation specification intended for FEniCS.
Your task is to parse this paragraph into a structured JSON object that captures all
key attributes needed for code generation.

The output must be a valid JSON with the following fields:

- problem_type (e.g., heat, fluid, elasticity, hyperelasticity, fracture)
- pde_description (a short descriptive sentence)

- dimension (1, 2, or 3)

- domain (shape description)

- domain_geometry_file (optional, use null if not needed)

- mesh (object with fields: nx, ny[, nz]) — include nz only if 3D
- variables (e.g., ["u"l1, ["u", "p"1, ["u", "d"1)

- time_dependent (true/false)

- nonlinear (true/false)

- coupled (true/false)

- boundary_conditions (list of Dirichlet or Neumann conditions)

- initial_conditions (initial values for each variable)

- source_terms (list, or empty array [])

- material_properties (dictionary of physical parameters)

- notes (optional field for special considerations)

Output only the JSON object. Do not include any explanation, markdown, or code
block.




