
SA-AKI
import dask.dataframe as dd
import pandas as pd
import numpy as np

sepsis_data = pd.read_parquet(r'E:\MIMIC\MIMICIV3.1_Parquet\MIMIC_derived\sepsis3.parquet')

sepsis_data

sepsis_data.loc[:,'suspected_infection_time'] = pd.to_datetime(sepsis_data['suspected_infection_time'], dayfirst=True)
sepsis_data['suspected_infection_time'] = sepsis_data['suspected_infection_time'].astype('datetime64[ns]')

sepsis_data.loc[:,'sofa_time'] = pd.to_datetime(sepsis_data['sofa_time'], dayfirst=True)
sepsis_data['sofa_time'] = sepsis_data['sofa_time'].astype('datetime64[ns]')

sepsis_data.loc[:,'antibiotic_time'] = pd.to_datetime(sepsis_data['antibiotic_time'], dayfirst=True)
sepsis_data['antibiotic_time'] = sepsis_data['antibiotic_time'].astype('datetime64[ns]')

sepsis_data.loc[:,'culture_time'] = pd.to_datetime(sepsis_data['culture_time'], dayfirst=True)
sepsis_data['culture_time'] = sepsis_data['culture_time'].astype('datetime64[ns]')

sepsis_data['infection_time'] = sepsis_data.apply(lambda row: min(row['antibiotic_time'], row['suspected_infection_time'], row['culture_time']), axis=1)

sepsis_data['los_anti-infe'] = sepsis_data['antibiotic_time'] - sepsis_data['infection_time']

sepsis_data.head()

subject_id stay_id antibiotic_time culture_time suspected_infection_time sofa_time sofa_score respiration coagulation liver cardiovascular cns renal sepsis3 infection_time los_anti-
infe

0 18421337 30000484 2136-01-14
21:00:00

2136-01-14
18:10:00 2136-01-14 18:10:00

2136-01-
14

19:00:00
3 0 0 0 0 3 0 t 2136-01-14

18:10:00
0 days

02:50:00

1 12207593 30000646 2194-04-29
07:00:00

2194-04-29
01:00:00 2194-04-29 01:00:00

2194-04-
29

11:00:00
3 2 0 0 1 0 0 t 2194-04-29

01:00:00
0 days

06:00:00

2 15726459 30000831 2140-04-18
18:00:00

2140-04-18
05:11:00 2140-04-18 05:11:00

2140-04-
17

22:00:00
5 0 0 0 0 3 2 t 2140-04-18

05:11:00
0 days

12:49:00

3 16513856 30001446 2186-04-12
04:00:00

2186-04-11
08:20:00 2186-04-11 08:20:00

2186-04-
12

04:00:00
8 0 3 3 0 0 2 t 2186-04-11

08:20:00
0 days

19:40:00

4 10656173 30001555 2177-09-27
16:00:00

2177-09-27
07:21:00 2177-09-27 07:21:00

2177-09-
27

12:00:00
8 0 3 4 0 1 0 t 2177-09-27

07:21:00
0 days

08:39:00

sepsis_data = sepsis_data.drop(['culture_time', 'antibiotic_time', 'suspected_infection_time'], axis=1)

sepsis_data.columns

Index(['subject_id', 'stay_id', 'sofa_time', 'sofa_score', 'respiration',
 'coagulation', 'liver', 'cardiovascular', 'cns', 'renal', 'sepsis3',
 'infection_time', 'los_anti-infe'],
 dtype='object')

sepsis_data1 = sepsis_data.drop(['respiration', 'coagulation', 'liver', 'cardiovascular', 'cns', 'renal'], axis=1)

sepsis_data1.shape

(41295, 7)

sepsis_data1.stay_id.nunique()

41295

sepsis_data1.subject_id.nunique()

31910

result = sepsis_data1.sort_values(by='stay_id')

result.head()

subject_id stay_id sofa_time sofa_score sepsis3 infection_time los_anti-infe

0 18421337 30000484 2136-01-14 19:00:00 3 t 2136-01-14 18:10:00 0 days 02:50:00

1 12207593 30000646 2194-04-29 11:00:00 3 t 2194-04-29 01:00:00 0 days 06:00:00

2 15726459 30000831 2140-04-17 22:00:00 5 t 2140-04-18 05:11:00 0 days 12:49:00

3 16513856 30001446 2186-04-12 04:00:00 8 t 2186-04-11 08:20:00 0 days 19:40:00

4 10656173 30001555 2177-09-27 12:00:00 8 t 2177-09-27 07:21:00 0 days 08:39:00

result.groupby('subject_id')['stay_id'].value_counts()

first_sta_id = result.groupby('subject_id')['stay_id'].min().reset_index()

first_sta_id.head()

first_sta_id.stay_id.nunique()

31910

first_sta_id.subject_id.nunique()

31910

合并两个表格共同的部分
final_result = result.merge(first_sta_id, on=['stay_id','subject_id'])

final_result.head()

In [1]:

In [2]:

In []:

In [4]:

In [5]:

In [6]:

In [7]:

Out[7]:

In [8]:

In [9]:

Out[9]:

In [10]:

In [11]:

Out[11]:

In [12]:

Out[12]:

In [13]:

Out[13]:

In [14]:

In [15]:

Out[15]:

In []:

In [17]:

In []:

In [19]:

Out[19]:

In [20]:

Out[20]:

In [21]:

In [22]:

2025/8/12 19:48 MIMIC_saki

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/MIMIC_saki.html 1/26

subject_id stay_id sofa_time sofa_score sepsis3 infection_time los_anti-infe

0 18421337 30000484 2136-01-14 19:00:00 3 t 2136-01-14 18:10:00 0 days 02:50:00

1 12207593 30000646 2194-04-29 11:00:00 3 t 2194-04-29 01:00:00 0 days 06:00:00

2 15726459 30000831 2140-04-17 22:00:00 5 t 2140-04-18 05:11:00 0 days 12:49:00

3 16513856 30001446 2186-04-12 04:00:00 8 t 2186-04-11 08:20:00 0 days 19:40:00

4 10656173 30001555 2177-09-27 12:00:00 8 t 2177-09-27 07:21:00 0 days 08:39:00

final_result.shape

(31910, 7)

final_result = final_result.query('sofa_score> =2')

final_result.shape

(31910, 7)

final_result=final_result.drop('sepsis3',axis=1)

final_result.shape

(31910, 6)

以上数据为因脓毒症第一次住院治疗的患者

1

获取基线资料
icu_stays = pd.read_parquet(r'E:\MIMIC\MIMICIV3.1_Parquet\MIMIC_derived\icustay_detail.parquet')

icu_stays.head()

icu_stays['admittime'] = pd.to_datetime(icu_stays['admittime'], dayfirst=True)
icu_stays['dischtime'] = pd.to_datetime(icu_stays['dischtime'], dayfirst=True)
icu_stays['icu_intime'] = pd.to_datetime(icu_stays['icu_intime'], dayfirst=True)
icu_stays['icu_outtime'] = pd.to_datetime(icu_stays['icu_outtime'], dayfirst=True)
icu_stays['admittime'] = icu_stays['admittime'].astype('datetime64[ns]')
icu_stays['dischtime'] = icu_stays['dischtime'].astype('datetime64[ns]')
icu_stays['icu_intime'] = icu_stays['icu_intime'].astype('datetime64[ns]')
icu_stays['icu_outtime'] = icu_stays['icu_outtime'].astype('datetime64[ns]')
icu_stays['dod'] = pd.to_datetime(icu_stays['dod'], dayfirst=True)
icu_stays['dod'] = icu_stays['dod'].astype('datetime64[ns]')

df = pd.merge(icu_stays, final_result, on=['subject_id','stay_id'])

df.shape

(31910, 22)

df.stay_id.nunique()

31910

df.subject_id.nunique()

31910

df.hadm_id.nunique()

31910

df['first_icu_stay'].value_counts()

first_icu_stay
t 29878
f 2032
Name: count, dtype: int64

df0 = df.query('first_icu_stay == "t"')

df0.shape

(29878, 22)

df0 = df0.sort_values(by='admittime')

df0.head()

first_index = df0.groupby('hadm_id')['admittime'].min().reset_index()

first_index

df0 = pd.merge(df0,first_index,on=['hadm_id','admittime'])

df0.shape

(29878, 22)

df_icu = df0.query('los_icu >= 0')

df_icu.subject_id.nunique()

29878

df_icu.stay_id.nunique()

29878

df_icu.shape

(29878, 22)

年龄大于18岁

df1 = df_icu.query('admission_age > 18')

df1.shape

(29878, 22)

Out[22]:

In [23]:

Out[23]:

In [24]:

In [25]:

Out[25]:

In [26]:

In [27]:

Out[27]:

In [28]:

In []:

In [30]:

In [31]:

In [32]:

Out[32]:

In [33]:

Out[33]:

In [34]:

Out[34]:

In [35]:

Out[35]:

In [36]:

Out[36]:

In [37]:

In [38]:

Out[38]:

In [39]:

In []:

In [41]:

In []:

In [43]:

In [44]:

Out[44]:

In [45]:

In [46]:

Out[46]:

In [47]:

Out[47]:

In [48]:

Out[48]:

In [49]:

In [50]:

Out[50]:

2025/8/12 19:48 MIMIC_saki

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/MIMIC_saki.html 2/26

 

df1 = df1.drop(['icustay_seq','first_icu_stay','first_hosp_stay'], axis=1)

df1.columns

Index(['subject_id', 'hadm_id', 'stay_id', 'gender', 'dod', 'admittime',
 'dischtime', 'los_hospital', 'admission_age', 'race',
 'hospital_expire_flag', 'hospstay_seq', 'icu_intime', 'icu_outtime',
 'los_icu', 'sofa_time', 'sofa_score', 'infection_time',
 'los_anti-infe'],
 dtype='object')

df1 = df1.drop(['los_hospital','hospital_expire_flag','hospstay_seq'], axis=1)

df1.head()

subject_id hadm_id stay_id gender dod admittime dischtime admission_age race icu_intime icu_outtime los_icu sofa_time sofa_score infection_time los_anti-
infe

0 18106347 24305596 30588857 F NaT 2110-01-11
10:14:00

2110-01-15
17:31:00 48.028547 WHITE 2110-01-11

10:16:06
2110-01-12

17:17:47 1.29 2110-01-11
17:00:00 3 2110-01-11

12:00:00
0 days

00:00:00

1 16800952 22641185 31337458 M 2112-
04-12

2110-01-16
04:04:00

2110-02-04
17:50:00 26.041533 OTHER 2110-01-16

04:28:00
2110-01-17

17:51:08 1.56 2110-01-16
07:00:00 3 2110-01-16

02:17:00
0 days

04:43:00

2 13201095 28453791 39953418 F 2110-
01-25

2110-01-18
14:46:00

2110-01-25
09:40:00 88.048229 UNKNOWN 2110-01-18

14:46:27
2110-01-25

12:42:11 6.91 2110-01-18
16:00:00 5 2110-01-18

15:21:00
0 days

01:39:00

3 12770182 20446666 34901199 M NaT 2110-01-18
17:46:00

2110-01-21
16:30:00 53.048571 WHITE 2110-01-18

17:47:47
2110-01-20

22:25:09 2.19 2110-01-19
00:00:00 2 2110-01-19

00:00:00
0 days

00:00:00

4 12106780 25661012 37081503 M 2110-
09-08

2110-01-31
00:00:00

2110-02-12
12:15:00 91.082137 WHITE 2110-02-04

10:31:02
2110-02-06

18:33:23 2.33 2110-02-04
13:00:00 6 2110-02-03

17:04:00
0 days

20:56:00

AKI
kdigo_stages = pd.read_parquet(r'E:\MIMIC\MIMICIV3.1_Parquet\MIMIC_derived\kdigo_stages.parquet')
kdigo_stages.head()

subject_id hadm_id stay_id charttime creat_low_past_7day creat_low_past_48hr creat aki_stage_creat uo_rt_6hr uo_rt_12hr uo_rt_24hr aki_stage_uo aki_stage_crrt aki_stage aki_stage_sm

0 10000032 29079034 39553978 23/7/2180
06:39:00 NaN NaN 0.7 0.0 NaN NaN NaN NaN NaN 0

1 10000032 29079034 39553978 23/7/2180
15:00:00 NaN NaN NaN NaN NaN NaN NaN NaN NaN 0

2 10000032 29079034 39553978 23/7/2180
21:45:00 0.7 0.7 0.5 0.0 NaN NaN NaN NaN NaN 0

3 10000690 25860671 37081114 2/11/2150
12:10:00 NaN NaN 1.0 0.0 NaN NaN NaN NaN NaN 0

4 10000690 25860671 37081114 2/11/2150
21:27:00 NaN NaN NaN NaN NaN NaN NaN NaN NaN 0

kdigo_stages.shape

(5099899, 15)

kdigo_stages =kdigo_stages.drop(['creat_low_past_7day','creat_low_past_48hr','aki_stage_creat','uo_rt_6hr','uo_rt_12hr','uo_rt_24hr'], axis=1)

kdigo_stages.head()

subject_id hadm_id stay_id charttime creat aki_stage_uo aki_stage_crrt aki_stage aki_stage_smoothed

0 10000032 29079034 39553978 23/7/2180 06:39:00 0.7 NaN NaN 0 0

1 10000032 29079034 39553978 23/7/2180 15:00:00 NaN NaN NaN 0 0

2 10000032 29079034 39553978 23/7/2180 21:45:00 0.5 NaN NaN 0 0

3 10000690 25860671 37081114 2/11/2150 12:10:00 1.0 NaN NaN 0 0

4 10000690 25860671 37081114 2/11/2150 21:27:00 NaN NaN NaN 0 0

kdigo_stages.head()

subject_id hadm_id stay_id charttime creat aki_stage_uo aki_stage_crrt aki_stage aki_stage_smoothed

0 10000032 29079034 39553978 23/7/2180 06:39:00 0.7 NaN NaN 0 0

1 10000032 29079034 39553978 23/7/2180 15:00:00 NaN NaN NaN 0 0

2 10000032 29079034 39553978 23/7/2180 21:45:00 0.5 NaN NaN 0 0

3 10000690 25860671 37081114 2/11/2150 12:10:00 1.0 NaN NaN 0 0

4 10000690 25860671 37081114 2/11/2150 21:27:00 NaN NaN NaN 0 0

kdigo_stages =kdigo_stages.drop(['creat','aki_stage_uo','aki_stage_crrt','aki_stage'], axis=1)

mask = kdigo_stages[['subject_id', 'hadm_id', 'stay_id']].isin(df1[['subject_id', 'hadm_id', 'stay_id']].to_dict('list')).all(axis=1)
kdigo_stages1 = kdigo_stages[mask]

kdigo_stages1.shape

(2519230, 5)

kdigo_stages1.head()

subject_id hadm_id stay_id charttime aki_stage_smoothed

3 10000690 25860671 37081114 2/11/2150 12:10:00 0

4 10000690 25860671 37081114 2/11/2150 21:27:00 0

5 10000690 25860671 37081114 2/11/2150 22:00:00 0

6 10000690 25860671 37081114 2/11/2150 23:00:00 0

7 10000690 25860671 37081114 3/11/2150 00:00:00 0

kdigo_stages1.rename(columns={'aki_stage_smoothed': 'aki_stage'}, inplace=True)

kdigo_stages1.head()

In [51]:

In [52]:

Out[52]:

In [53]:

In [54]:

Out[54]:

In [55]:

Out[55]:

In [56]:

Out[56]:

In [57]:

In [58]:

Out[58]:

In [59]:

Out[59]:

In [60]:

In [61]:

In [62]:

Out[62]:

In [63]:

Out[63]:

In []:

In [65]:

2025/8/12 19:48 MIMIC_saki

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/MIMIC_saki.html 3/26

 

subject_id hadm_id stay_id charttime aki_stage

3 10000690 25860671 37081114 2/11/2150 12:10:00 0

4 10000690 25860671 37081114 2/11/2150 21:27:00 0

5 10000690 25860671 37081114 2/11/2150 22:00:00 0

6 10000690 25860671 37081114 2/11/2150 23:00:00 0

7 10000690 25860671 37081114 3/11/2150 00:00:00 0

kdigo_stages1.subject_id.nunique()

29878

kdigo_stages2= kdigo_stages1.groupby('stay_id').filter(lambda x: (x['aki_stage'] != 0).any())

kdigo_stages2.subject_id.nunique()

24364

kdigo_stages2.head()

subject_id hadm_id stay_id charttime aki_stage

3 10000690 25860671 37081114 2/11/2150 12:10:00 0

4 10000690 25860671 37081114 2/11/2150 21:27:00 0

5 10000690 25860671 37081114 2/11/2150 22:00:00 0

6 10000690 25860671 37081114 2/11/2150 23:00:00 0

7 10000690 25860671 37081114 3/11/2150 00:00:00 0

全是AKI时间

kdigo_stages3= kdigo_stages2.query('aki_stage >=1')

kdigo_stages= kdigo_stages3

kdigo_stages.shape

(1102255, 5)

kdigo_stages.head()

subject_id hadm_id stay_id charttime aki_stage

13 10000690 25860671 37081114 3/11/2150 09:00:00 1

14 10000690 25860671 37081114 3/11/2150 10:00:00 1

15 10000690 25860671 37081114 3/11/2150 12:00:00 2

16 10000690 25860671 37081114 3/11/2150 13:00:00 2

17 10000690 25860671 37081114 3/11/2150 14:00:00 2

kdigo_stages=kdigo_stages.drop('hadm_id',axis=1)

kdigo_stages.head()

subject_id stay_id charttime aki_stage

13 10000690 37081114 3/11/2150 09:00:00 1

14 10000690 37081114 3/11/2150 10:00:00 1

15 10000690 37081114 3/11/2150 12:00:00 2

16 10000690 37081114 3/11/2150 13:00:00 2

17 10000690 37081114 3/11/2150 14:00:00 2

kdigo_stages1 = pd.merge(kdigo_stages, df1, on=['subject_id','stay_id'])

kdigo_stages1.shape

(1102255, 18)

kdigo_stages1.head()

subject_id stay_id charttime aki_stage hadm_id gender dod admittime dischtime admission_age race icu_intime icu_outtime los_icu sofa_time sofa_score infection_time los_ant
inf

0 10000690 37081114 3/11/2150
09:00:00 1 25860671 F 2152-

01-30

2150-11-
02

18:02:00

2150-11-
12

13:45:00
86.83712 WHITE

2150-11-
02

19:37:00

2150-11-06
17:03:17 3.89

2150-11-
02

20:00:00
3 2150-11-02

12:10:00
0 day

12:50:0

1 10000690 37081114 3/11/2150
10:00:00 1 25860671 F 2152-

01-30

2150-11-
02

18:02:00

2150-11-
12

13:45:00
86.83712 WHITE

2150-11-
02

19:37:00

2150-11-06
17:03:17 3.89

2150-11-
02

20:00:00
3 2150-11-02

12:10:00
0 day

12:50:0

2 10000690 37081114 3/11/2150
12:00:00 2 25860671 F 2152-

01-30

2150-11-
02

18:02:00

2150-11-
12

13:45:00
86.83712 WHITE

2150-11-
02

19:37:00

2150-11-06
17:03:17 3.89

2150-11-
02

20:00:00
3 2150-11-02

12:10:00
0 day

12:50:0

3 10000690 37081114 3/11/2150
13:00:00 2 25860671 F 2152-

01-30

2150-11-
02

18:02:00

2150-11-
12

13:45:00
86.83712 WHITE

2150-11-
02

19:37:00

2150-11-06
17:03:17 3.89

2150-11-
02

20:00:00
3 2150-11-02

12:10:00
0 day

12:50:0

4 10000690 37081114 3/11/2150
14:00:00 2 25860671 F 2152-

01-30

2150-11-
02

18:02:00

2150-11-
12

13:45:00
86.83712 WHITE

2150-11-
02

19:37:00

2150-11-06
17:03:17 3.89

2150-11-
02

20:00:00
3 2150-11-02

12:10:00
0 day

12:50:0

kdigo_stages1.loc[:,'charttime'] = pd.to_datetime(kdigo_stages1['charttime'], dayfirst=True)
kdigo_stages1['charttime'] = kdigo_stages1['charttime'].astype('datetime64[ns]')

kdigo_stages1.rename(columns={'charttime':'aki_charttime'},inplace=True)

kdigo_stages1.shape

(1102255, 18)

kdigo_stages1.subject_id.nunique()

24364

kdigo_stages1.stay_id.nunique()

Out[65]:

In [66]:

Out[66]:

In [67]:

In [68]:

Out[68]:

In [69]:

Out[69]:

In [70]:

In [71]:

In [72]:

Out[72]:

In [73]:

Out[73]:

In [74]:

In [75]:

Out[75]:

In [76]:

In [77]:

Out[77]:

In [78]:

Out[78]:

In [79]:

In [80]:

In [81]:

Out[81]:

In [82]:

Out[82]:

In [83]:

2025/8/12 19:48 MIMIC_saki

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/MIMIC_saki.html 4/26

24364

kdigo_stages1.hadm_id.nunique()

24364

SAKI诊断标准：1.SA-AKI定义为在脓毒症确诊后7天内发生的AKI；2.脓毒症发生后48小时内确诊的AKI为
早期SA-AKI，而48小时至7天内确诊的AKI应视为晚期SA-AKI
result = kdigo_stages1.query('aki_charttime >= infection_time')

result = result.query('aki_charttime >=sofa_time')

result.shape

(1023726, 18)

result.subject_id.nunique()

23920

result.stay_id.nunique()

23920

result.hadm_id.nunique()

23920

aki= result.query('aki_stage >=1')

aki.shape

(1023726, 18)

aki.stay_id.nunique()

23920

aki['aki_charttime'] = pd.to_datetime(aki['aki_charttime'])
aki['infection_time'] = pd.to_datetime(aki['infection_time'])
aki['sofa_time'] = pd.to_datetime(aki['sofa_time'])

aki['max_time'] = aki[['infection_time', 'sofa_time']].max(axis=1)#确定脓毒症时间

aki['window_end'] = aki['max_time'] + pd.Timedelta(days=7)

filtered_aki = aki[(aki['aki_charttime'] > aki['max_time']) & (aki['aki_charttime'] <= aki['window_end'])]

filtered_aki.shape#脓毒症相关急性肾损伤数据

(757223, 20)

filtered_aki.stay_id.nunique()

23729

min_indices = filtered_aki.groupby(['stay_id'])['aki_charttime'].idxmin()
min_aki = filtered_aki.loc[min_indices]

min_aki.shape

(23729, 20)

min_aki.head()

min_aki.subject_id.nunique()

23729

min_aki.hadm_id.nunique()

23729

min_aki.stay_id.nunique()

23729

def assign_saki(row):
 max_time = row['max_time']
 aki_charttime = row['aki_charttime']

 if aki_charttime <= max_time + pd.Timedelta(days=2):
 return 'early'
 elif aki_charttime <= max_time + pd.Timedelta(days=7):
 return 'late'
 else:
 return None

min_aki['saki'] = min_aki.apply(assign_saki, axis=1)

min_aki.stay_id.nunique()

23729

min_aki.shape

(23729, 21)

min_aki.saki.value_counts()

saki
early 22524
late 1205
Name: count, dtype: int64

min_aki.head()

持续性AKI
cxxakimax=filtered_aki.groupby(['stay_id'])['aki_charttime'].idxmax()
cxxaki = filtered_aki.loc[cxxakimax]

Out[83]:

In [84]:

Out[84]:

In [85]:

In [86]:

In [87]:

Out[87]:

In [88]:

Out[88]:

In [89]:

Out[89]:

In [90]:

Out[90]:

In [91]:

In [92]:

Out[92]:

In [93]:

Out[93]:

In [94]:

In [95]:

Out[95]:

In [96]:

Out[96]:

In [97]:

In [98]:

Out[98]:

In []:

In [100…

Out[100…

In [101…

Out[101…

In [102…

Out[102…

In [103…

In [104…

Out[104…

In [105…

Out[105…

In [106…

Out[106…

In []:

In [108…

2025/8/12 19:48 MIMIC_saki

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/MIMIC_saki.html 5/26

 

cxxaki=cxxaki[['stay_id','subject_id','aki_charttime']]

cxxaki.shape

(23729, 3)

cxxaki.rename(columns={'aki_charttime':'aki_charttime_max'},inplace=True)

akimax = pd.merge(cxxaki,min_aki,on=['stay_id','subject_id'])

akimax.shape

(23729, 22)

akimax.head()

akimax['los_aki'] = akimax['aki_charttime_max'] - akimax['aki_charttime']

akimax.shape

(23729, 23)

akimax.head()

排除sepsis之前就已经发生AKI的数据
aki_se = akimax[['subject_id', 'stay_id', 'max_time']]

aki_se1= pd.merge(kdigo_stages1, aki_se, on=['subject_id','stay_id'])

aki_se1.shape

(1093839, 19)

aki_se1 = aki_se1.query('aki_charttime < max_time')

aki_se1.shape

(74188, 19)

aki_se1.subject_id.nunique()

7169

aki_se1max = aki_se1.groupby(['stay_id'])['aki_charttime'].idxmax()
aki_sep = aki_se1.loc[aki_se1max]

aki_sep.shape

(7169, 19)

aki_sep= aki_sep.query('aki_stage >=1')

aki_sep.shape

(7169, 19)

aki_sep = aki_sep[['subject_id', 'stay_id']]

aki_sep.shape

(7169, 2)

aki_sep.head()

subject_id stay_id

917564 18421337 30000484

624368 15726459 30000831

715541 16513856 30001446

194656 11823540 30002012

153921 11423795 30003226

akimax.shape

(23729, 23)

min_aki_filtered = pd.merge(akimax, aki_sep, on=['subject_id', 'stay_id'], how='outer', indicator=True)
min_aki_filtered = min_aki_filtered[min_aki_filtered['_merge'] == 'left_only']
min_aki_filtered = min_aki_filtered.drop(columns=['_merge'])
min_aki_filtered.shape

(16560, 23)

排除标准
charlson = pd.read_parquet(r'E:\MIMIC\MIMICIV3.1_Parquet\MIMIC_derived\charlson.parquet')
charlson.head()

subject_id hadm_id age_score myocardial_infarct congestive_heart_failure peripheral_vascular_disease cerebrovascular_disease dementia chronic_pulmonary_disease rheumatic_disease ... mil

0 10467237 20000019 3 0 0 0 0 0 1 0 ...

1 16925328 20000024 4 0 0 0 0 0 0 0 ...

2 19430048 20000034 3 0 0 0 0 0 1 0 ...

3 18910522 20000041 2 0 0 0 0 0 0 0 ...

4 13413708 20000045 1 0 0 0 0 0 0 0 ...

5 rows × 21 columns

charlson.columns

In [109…

In [110…

Out[110…

In [111…

In [112…

In [113…

Out[113…

In []:

In [115…

In [116…

Out[116…

In []:

In [118…

In [119…

In [120…

Out[120…

In [121…

In [122…

Out[122…

In [123…

Out[123…

In [124…

In [125…

Out[125…

In [126…

In [127…

Out[127…

In [128…

In [129…

Out[129…

In [130…

Out[130…

In [131…

Out[131…

In [132…

Out[132…

In [133…

Out[133…

In [134…

2025/8/12 19:48 MIMIC_saki

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/MIMIC_saki.html 6/26

Index(['subject_id', 'hadm_id', 'age_score', 'myocardial_infarct',
 'congestive_heart_failure', 'peripheral_vascular_disease',
 'cerebrovascular_disease', 'dementia', 'chronic_pulmonary_disease',
 'rheumatic_disease', 'peptic_ulcer_disease', 'mild_liver_disease',
 'diabetes_without_cc', 'diabetes_with_cc', 'paraplegia',
 'renal_disease', 'malignant_cancer', 'severe_liver_disease',
 'metastatic_solid_tumor', 'aids', 'charlson_comorbidity_index'],
 dtype='object')

print(np.intersect1d(min_aki_filtered.columns,charlson.columns))

['hadm_id' 'subject_id']

dfa = pd.merge(charlson, min_aki_filtered, on=['subject_id','hadm_id'])
dfa.head()

dfa.shape

(16560, 42)

心肌梗死，充血性心力衰竭，周围血管疾病，脑血管疾病，痴呆，慢性肺病，类风湿性疾病，消化性溃疡病，轻度肝病，糖尿病无并发症，糖尿病有并发症，截瘫，肾疾病，恶性肿瘤，严重肝病，转移性实体瘤，艾滋
病，查尔森合并症指数

d_icd_diagnoses1 = pd.read_parquet(r'D:\MIMIC\MIMICIV3.1_Parquet\MIMICIV_HOSP\d_icd_diagnoses.parquet')
d_icd_diagnoses1

icd_code icd_version long_title

0 0010 9 Cholera due to vibrio cholerae

1 0011 9 Cholera due to vibrio cholerae el tor

2 0019 9 Cholera, unspecified

3 0020 9 Typhoid fever

4 0021 9 Paratyphoid fever A

...

112102 Z992 10 Dependence on renal dialysis

112103 Z993 10 Dependence on wheelchair

112104 Z998 10 Dependence on other enabling machines and devices

112105 Z9981 10 Dependence on supplemental oxygen

112106 Z9989 10 Dependence on other enabling machines and devices

112107 rows × 3 columns

def id_search_mimic(disease_select_longtitle): #确定符合疾病的subject_id和hadm_id

 rows_result = d_icd_diagnoses1[d_icd_diagnoses1['long_title'].str.contains(disease_select_longtitle, case=False)]
获取这些行的行号
 row_indices_icd = rows_result.index.tolist()

 print("请注意，根据您提供的疾病查询关键字，\n搜索到的如果不匹配，需进一步筛选，或者重新筛选\n",d_icd_diagnoses1.loc[row_indices_icd,'long_title'])

 return d_icd_diagnoses1.loc[row_indices_icd,'icd_code']

diagnoses = pd.read_parquet(r'E:\MIMIC\MIMICIV3.1_Parquet\MIMICIV_HOSP\diagnoses_icd.parquet')

diagnoses.head()

subject_id hadm_id seq_num icd_code icd_version

0 10000032 22595853 1 5723 9

1 10000032 22595853 2 78959 9

2 10000032 22595853 3 5715 9

3 10000032 22595853 4 07070 9

4 10000032 22595853 5 496 9

diagnoses.shape

(6364488, 5)

def data_filter_disease(icd_code_exclue,diagnoses_label): result = diagnoses.icd_code[~diagnoses.icd_code.isin(icd_code_exclue)].index subject_id = diagnoses.loc[result,'subject_id'] return subject_id

def data_filter_disease(icd_code_exclue, diagnoses_label):
 result = diagnoses_label.icd_code[~diagnoses_label.icd_code.isin(icd_code_exclue)].index
 subject_id = diagnoses_label.loc[result, 'subject_id']
 return subject_id

icd_code_hyper = id_search_mimic('hypertension')

请注意，根据您提供的疾病查询关键字，

搜索到的如果不匹配，需进一步筛选，或者重新筛选

 3527 Benign intracranial hypertension
3853 Ocular hypertension
4651 Malignant essential hypertension
4652 Benign essential hypertension
4653 Unspecified essential hypertension
 ...
39076 Unspecified maternal hypertension, unspecified...
42059 Neonatal hypertension
42061 Pulmonary hypertension of newborn
43372 Elevated blood-pressure reading, without diagn...
103946 Screening for hypertension
Name: long_title, Length: 160, dtype: object

def retain_disease_data(icd_code_retain, diagnoses):
 # 筛选出那些包含在 icd_code_retain 列表中的 ICD 代码的行
 result = diagnoses[diagnoses['icd_code'].isin(icd_code_retain)]
 return result

retain_hyper=retain_disease_data(icd_code_hyper, diagnoses)

retain_hyper

Out[134…

In [135…

In []:

In [137…

Out[137…

In [148…

Out[148…

In [149…

In [150…

In [151…

Out[151…

In [152…

Out[152…

In [153…

In [154…

In [155…

In [156…

In [157…

2025/8/12 19:48 MIMIC_saki

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/MIMIC_saki.html 7/26

subject_id hadm_id seq_num icd_code icd_version

0 10000032 22595853 1 5723 9

91 10000635 20642640 4 I10 10

99 10000635 26134563 3 4019 9

111 10000690 23280645 12 4019 9

135 10000690 25860671 21 4019 9

...

6364408 19999784 29889147 8 I10 10

6364425 19999828 25744818 9 I10 10

6364444 19999828 29734428 9 I10 10

6364465 19999840 21033226 8 4019 9

6364474 19999840 26071774 5 4019 9

217853 rows × 5 columns

hyper=retain_hyper[['subject_id','hadm_id']]

hyper= hyper.drop_duplicates()

hyper['HTN'] = 1

将 df1 和 hyper 根据 subject_id 和 hadm_id 进行合并
dfa = pd.merge(dfa, hyper[['subject_id', 'hadm_id', 'HTN']], on=['subject_id', 'hadm_id'], how='left')

填充缺失值为0，表示这些患者没有高血压
dfa['HTN'] = dfa['HTN'].fillna(0)

dfa.head()

dfa.HTN.value_counts()

HTN
0.0 8474
1.0 8086
Name: count, dtype: int64

sepsis诊断标准：1.确诊感染或疑似感染；2.SOFA评分较基线增加>=2分
icd_code_rs = id_search_mimic('pregnancy')
subject_id_exclude_rs = data_filter_disease(icd_code_rs,diagnoses)

subject_id_exclude_rs

df_merged = dfa[dfa['subject_id'].isin(subject_id_exclude_rs)]

df_merged.shape

(16557, 43)

df_merged.columns

Index(['subject_id', 'hadm_id', 'age_score', 'myocardial_infarct',
 'congestive_heart_failure', 'peripheral_vascular_disease',
 'cerebrovascular_disease', 'dementia', 'chronic_pulmonary_disease',
 'rheumatic_disease', 'peptic_ulcer_disease', 'mild_liver_disease',
 'diabetes_without_cc', 'diabetes_with_cc', 'paraplegia',
 'renal_disease', 'malignant_cancer', 'severe_liver_disease',
 'metastatic_solid_tumor', 'aids', 'charlson_comorbidity_index',
 'stay_id', 'aki_charttime_max', 'aki_charttime', 'aki_stage', 'gender',
 'dod', 'admittime', 'dischtime', 'admission_age', 'race', 'icu_intime',
 'icu_outtime', 'los_icu', 'sofa_time', 'sofa_score', 'infection_time',
 'los_anti-infe', 'max_time', 'window_end', 'saki', 'los_aki', 'HTN'],
 dtype='object')

Chronic kidney disease, unspecified End stage renal disease Dependent on dialysis Kidney transplant status

将疾病描述列表作为单个参数传递
icd_code_esrd = id_search_mimic('End stage renal disease')
subject_id_exclude_esrd = data_filter_disease(icd_code_esrd, diagnoses)

df_merged1 = df_merged[df_merged['subject_id'].isin(subject_id_exclude_esrd)]

df_merged1.shape

(16557, 43)

icd_code_esrd = id_search_mimic('Chronic kidney disease, stage 5')
subject_id_exclude_esrd = data_filter_disease(icd_code_esrd, diagnoses)

df_merged2 = df_merged1[df_merged1['subject_id'].isin(subject_id_exclude_esrd)]

df_merged2.shape

(16557, 43)

icd_code_esrd = id_search_mimic('uremia')
subject_id_exclude_esrd = data_filter_disease(icd_code_esrd, diagnoses)

df_merged2 = df_merged2[df_merged2['subject_id'].isin(subject_id_exclude_esrd)]

df_merged2.shape

(16557, 43)

icd_code_esrd = id_search_mimic('uremic')
subject_id_exclude_esrd = data_filter_disease(icd_code_esrd, diagnoses)

df_merged2 = df_merged2[df_merged2['subject_id'].isin(subject_id_exclude_esrd)]

df_merged2.shape

(16557, 43)

AKD
aki.shape

Out[157…

In [158…

In [159…

In [160…

In []:

In [162…

Out[162…

In []:

In []:

In [165…

In [166…

Out[166…

In [167…

Out[167…

In []:

In [169…

In [170…

Out[170…

In []:

In [172…

In [173…

Out[173…

In []:

In [175…

In [176…

Out[176…

In []:

In [178…

In [179…

Out[179…

In [180…

2025/8/12 19:48 MIMIC_saki

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/MIMIC_saki.html 8/26

(1023726, 20)

aki.stay_id.nunique()

23920

aki.columns

Index(['subject_id', 'stay_id', 'aki_charttime', 'aki_stage', 'hadm_id',
 'gender', 'dod', 'admittime', 'dischtime', 'admission_age', 'race',
 'icu_intime', 'icu_outtime', 'los_icu', 'sofa_time', 'sofa_score',
 'infection_time', 'los_anti-infe', 'max_time', 'window_end'],
 dtype='object')

df_merged2.shape

(16557, 43)

df_merged2.stay_id.nunique()

16557

print(list(df_merged2.columns))

['subject_id', 'hadm_id', 'age_score', 'myocardial_infarct', 'congestive_heart_failure', 'peripheral_vascular_disease', 'cerebrovascular_disease', 'dementia', 'chronic_pulmonary_disease', 'rhe
umatic_disease', 'peptic_ulcer_disease', 'mild_liver_disease', 'diabetes_without_cc', 'diabetes_with_cc', 'paraplegia', 'renal_disease', 'malignant_cancer', 'severe_liver_disease', 'metastatic
_solid_tumor', 'aids', 'charlson_comorbidity_index', 'stay_id', 'aki_charttime_max', 'aki_charttime', 'aki_stage', 'gender', 'dod', 'admittime', 'dischtime', 'admission_age', 'race', 'icu_inti
me', 'icu_outtime', 'los_icu', 'sofa_time', 'sofa_score', 'infection_time', 'los_anti-infe', 'max_time', 'window_end', 'saki', 'los_aki', 'HTN']

aki_min = df_merged2.groupby(['subject_id', 'stay_id']).agg({'aki_charttime': 'min'}).reset_index()
aki_min.rename(columns={'aki_charttime': 'min_aki_charttime'}, inplace=True)

步骤2: 筛选出在最小值之后7天至90天内的数据
aki_min['window_start7'] = aki_min['min_aki_charttime'] + pd.Timedelta(days=7)
aki_min['window_end90'] = aki_min['min_aki_charttime'] + pd.Timedelta(days=90)

合并aki_min和aki以便进行筛选
aki_merged = pd.merge(aki, aki_min, on=['subject_id', 'stay_id'])

筛选条件
final_filtered_aki = aki_merged[(aki_merged['aki_charttime'] > aki_merged['window_start7'])]

显示结果
print(final_filtered_aki.head())

aki_min.head()

subject_id stay_id min_aki_charttime window_start7 window_end90

0 10000690 37081114 2150-11-03 09:00:00 2150-11-10 09:00:00 2151-02-01 09:00:00

1 10001843 39698942 2134-12-06 03:29:00 2134-12-13 03:29:00 2135-03-06 03:29:00

2 10001884 37510196 2131-01-12 19:00:00 2131-01-19 19:00:00 2131-04-12 19:00:00

3 10002013 39060235 2160-05-19 04:00:00 2160-05-26 04:00:00 2160-08-17 04:00:00

4 10002155 31090461 2130-09-24 18:00:00 2130-10-01 18:00:00 2130-12-23 18:00:00

final_filtered_aki.shape

(146716, 23)

final_filtered_aki.head()

final_filtered_aki['AKD'] = 1

final_filtered_aki.head()

akd=final_filtered_aki[['stay_id','AKD']]

akd.shape

(146716, 2)

akd.head()

akd.stay_id.nunique()

2498

akd= akd.drop_duplicates(subset='stay_id')

akd.shape

(2498, 2)

df_merged2.shape

(16557, 43)

SAKI
saki = df_merged2.merge(akd, on='stay_id', how='left').fillna({'AKD': 0})

saki.shape

(16557, 44)

saki.AKD.value_counts()

AKD
0.0 14059
1.0 2498
Name: count, dtype: int64

saki.saki.value_counts()

saki
early 15534
late 1023
Name: count, dtype: int64

zakd = saki[['AKD', 'saki']]

zakd.head()

zakd.shape

Out[180…

In [181…

Out[181…

In [182…

Out[182…

In [183…

Out[183…

In [184…

Out[184…

In [185…

In []:

In [187…

Out[187…

In [188…

Out[188…

In []:

In []:

In []:

In [192…

In [193…

Out[193…

In []:

In [195…

Out[195…

In [196…

In [197…

Out[197…

In [198…

Out[198…

In [199…

In [200…

Out[200…

In [201…

Out[201…

In [202…

Out[202…

In [203…

In []:

In [205…

2025/8/12 19:48 MIMIC_saki

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/MIMIC_saki.html 9/26

(16557, 2)

zakd=zakd.query('AKD==1.0')

zakd.shape

(2498, 2)

zakd = zakd.query('saki == "early"')

zakd.shape

(2309, 2)

saki= saki.query('los_icu >= 2')

saki.AKD.value_counts()

AKD
0.0 9271
1.0 2498
Name: count, dtype: int64

saki.shape

(11769, 44)

saki.columns

Index(['subject_id', 'hadm_id', 'age_score', 'myocardial_infarct',
 'congestive_heart_failure', 'peripheral_vascular_disease',
 'cerebrovascular_disease', 'dementia', 'chronic_pulmonary_disease',
 'rheumatic_disease', 'peptic_ulcer_disease', 'mild_liver_disease',
 'diabetes_without_cc', 'diabetes_with_cc', 'paraplegia',
 'renal_disease', 'malignant_cancer', 'severe_liver_disease',
 'metastatic_solid_tumor', 'aids', 'charlson_comorbidity_index',
 'stay_id', 'aki_charttime_max', 'aki_charttime', 'aki_stage', 'gender',
 'dod', 'admittime', 'dischtime', 'admission_age', 'race', 'icu_intime',
 'icu_outtime', 'los_icu', 'sofa_time', 'sofa_score', 'infection_time',
 'los_anti-infe', 'max_time', 'window_end', 'saki', 'los_aki', 'HTN',
 'AKD'],
 dtype='object')

saki.head()

saki['los_icu-aki'] = saki['aki_charttime'] - saki['icu_intime']

saki['window_start7'] = saki['aki_charttime'] + pd.Timedelta(days=7)

saki['window_start-1'] = saki['aki_charttime'] - pd.Timedelta(days=1)

saki.head()

saki['icu_intime']

saki['los_dod'] = saki['dod'] - saki['aki_charttime']

def convert_to_hours(time_str):
 try:
 # 将字符串转为 Timedelta 类型
 td = pd.to_timedelta(time_str)
 # 计算总秒数，再除以 3600 得到小时
 return td.total_seconds() / 3600
 except:
 return None # 异常值处理（如空值或无效格式）

应用转换函数到指定列
saki['los_dod'] = saki['los_dod'].apply(convert_to_hours)/24

saki = saki.query('los_dod > 7 or los_dod.isnull()')

saki.shape

(10269, 48)

saki.subject_id.nunique()

10269

saki.stay_id.nunique()

10269

saki.hadm_id.nunique()

10269

saki.AKD.value_counts()

AKD
0.0 7795
1.0 2474
Name: count, dtype: int64

实验室指标

临床参数：体温、心率、呼吸频率、收缩压、脉压、是否用升压药、吸入氧浓度、吸氧流量、GCS评分、SOFA评分（或
qSOFA评分）

bg = pd.read_parquet(r'E:\MIMIC\MIMICIV3.1_Parquet\MIMIC_derived\bg.parquet')
bg.head()

bg.shape

(697418, 27)

bg1 = bg.query('specimen == "ART."')
bg1.shape

(514972, 27)

bg1 =bg1.drop(['specimen'], axis=1)

Out[205…

In [206…

In [207…

Out[207…

In [208…

In [209…

Out[209…

In [210…

In [211…

Out[211…

In [212…

Out[212…

In [213…

Out[213…

In []:

In [215…

In [216…

In [217…

In []:

In []:

In [220…

In [221…

In [222…

In [223…

Out[223…

In [224…

Out[224…

In [225…

Out[225…

In [226…

Out[226…

In [227…

Out[227…

In []:

In [229…

Out[229…

In [230…

Out[230…

In [231…

2025/8/12 19:48 MIMIC_saki

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/MIMIC_saki.html 10/26

bg1 = bg1.dropna(subset=['hadm_id'])
bg1['hadm_id'] = bg1['hadm_id'].astype('int64')

bg1['charttime'] = pd.to_datetime(bg1['charttime'], dayfirst=True)
bg1['charttime'] = bg1['charttime'].astype('datetime64[ns]')

print(np.intersect1d(saki.columns,bg1.columns))

['hadm_id' 'subject_id']

print(list(bg1.columns))

['subject_id', 'hadm_id', 'charttime', 'so2', 'po2', 'pco2', 'fio2_chartevents', 'fio2', 'aado2', 'aado2_calc', 'pao2fio2ratio', 'ph', 'baseexcess', 'bicarbonate', 'totalco2', 'hematocrit', 'h
emoglobin', 'carboxyhemoglobin', 'methemoglobin', 'chloride', 'calcium', 'temperature', 'potassium', 'sodium', 'lactate', 'glucose']

import matplotlib.pyplot as plt
from missingno import missingno as msno
msno.bar(bg1)

计算每列的缺失率
missing_rate = bg1.isnull().mean()

找出缺失率大于30%的列
cols_to_drop = missing_rate[missing_rate > 0.50].index

cols_to_drop
显示结果

Index(['so2', 'fio2', 'aado2', 'bicarbonate', 'hematocrit', 'hemoglobin',
 'carboxyhemoglobin', 'methemoglobin', 'chloride', 'temperature',
 'potassium', 'sodium', 'glucose'],
 dtype='object')

bg1.drop(cols_to_drop, axis=1, inplace=True)

bg1.drop(['fio2_chartevents','calcium'], axis=1, inplace=True)

bg1.head()

subject_id hadm_id charttime po2 pco2 aado2_calc pao2fio2ratio ph baseexcess totalco2 lactate

1 10000690 25860671 2150-11-08 05:43:00 68 52.0 NaN NaN 7.45 9.0 37.0 NaN

2 10000935 25849114 2187-10-22 15:40:00 86 33.0 NaN NaN 7.41 -2.0 22.0 2.8

14 10001884 26184834 2131-01-10 13:15:00 72 49.0 NaN NaN 7.42 5.0 33.0 2.0

17 10001884 26184834 2131-01-11 03:42:00 74 94.0 NaN NaN 7.22 6.0 40.0 NaN

23 10001884 26184834 2131-01-12 21:04:00 65 60.0 145.2 162.5 7.38 7.0 37.0 1.1

saki1=saki[['subject_id','hadm_id','window_start-1','window_start7']]

bg2 = pd.merge(bg1, saki1, on=['subject_id','hadm_id'],how='inner')

bg2.head()

subject_id hadm_id charttime po2 pco2 aado2_calc pao2fio2ratio ph baseexcess totalco2 lactate window_start-1 window_start7

0 10000690 25860671 2150-11-08 05:43:00 68 52.0 NaN NaN 7.45 9.0 37.0 NaN 2150-11-02 09:00:00 2150-11-10 09:00:00

1 10001884 26184834 2131-01-10 13:15:00 72 49.0 NaN NaN 7.42 5.0 33.0 2.0 2131-01-11 19:00:00 2131-01-19 19:00:00

2 10001884 26184834 2131-01-11 03:42:00 74 94.0 NaN NaN 7.22 6.0 40.0 NaN 2131-01-11 19:00:00 2131-01-19 19:00:00

3 10001884 26184834 2131-01-12 21:04:00 65 60.0 145.20 162.5 7.38 7.0 37.0 1.1 2131-01-11 19:00:00 2131-01-19 19:00:00

4 10001884 26184834 2131-01-13 02:28:00 69 53.0 149.95 172.5 7.42 7.0 36.0 1.2 2131-01-11 19:00:00 2131-01-19 19:00:00

bg2.hadm_id.nunique()

8075

condition = (bg2['window_start-1'] < bg2['charttime']) & \
 (bg2['charttime'] < bg2['window_start7'])
bg3 = bg2[condition]

bg3.hadm_id.nunique()

7388

bg3.head()

subject_id hadm_id charttime po2 pco2 aado2_calc pao2fio2ratio ph baseexcess totalco2 lactate window_start-1 window_start7

0 10000690 25860671 2150-11-08 05:43:00 68 52.0 NaN NaN 7.45 9.0 37.0 NaN 2150-11-02 09:00:00 2150-11-10 09:00:00

3 10001884 26184834 2131-01-12 21:04:00 65 60.0 145.20 162.500000 7.38 7.0 37.0 1.1 2131-01-11 19:00:00 2131-01-19 19:00:00

4 10001884 26184834 2131-01-13 02:28:00 69 53.0 149.95 172.500000 7.42 7.0 36.0 1.2 2131-01-11 19:00:00 2131-01-19 19:00:00

5 10001884 26184834 2131-01-14 07:05:00 91 49.0 132.95 227.500000 7.46 9.0 36.0 NaN 2131-01-11 19:00:00 2131-01-19 19:00:00

6 10002155 28994087 2130-09-24 09:25:00 69 37.0 547.84 74.193548 7.37 -3.0 22.0 NaN 2130-09-23 18:00:00 2130-10-01 18:00:00

min_chartoffsets = bg3.groupby('hadm_id')['charttime'].min().reset_index()

步骤2和3: 检查缺失值并替换
def fill_missing_values(row, df):
 for col in ['po2','pco2','aado2_calc','pao2fio2ratio','ph','baseexcess','totalco2','lactate']:
 if pd.isna(row[col]):
 # 获取该patientunitstayid的下一个chartoffset的行
 next_rows = df[(df['hadm_id'] == row['hadm_id']) & (df['charttime'] > row['charttime'])]
 for _, next_row in next_rows.iterrows():
 if not pd.isna(next_row[col]):
 row[col] = next_row[col]
 break
 return row

应用函数
result_list = []

for _, row in min_chartoffsets.iterrows():
 patient_data =bg3[bg3['hadm_id'] == row['hadm_id']]
 min_chartoffset_row = patient_data[patient_data['charttime'] == row['charttime']].iloc[0]
 filled_row = fill_missing_values(min_chartoffset_row, patient_data)
 result_list.append(filled_row)

使用concat合并DataFrame
bg4= pd.concat(result_list, axis=1).transpose()

bg4.hadm_id.nunique()

In [232…

In [233…

In [234…

In [235…

In []:

In [237…

Out[237…

In [238…

In [239…

In [240…

Out[240…

In [241…

In [242…

In [243…

Out[243…

In [244…

Out[244…

In [245…

In [246…

Out[246…

In [247…

Out[247…

In []:

In []:

2025/8/12 19:48 MIMIC_saki

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/MIMIC_saki.html 11/26

7388

bg5 = bg4.drop(columns=['charttime', 'window_start-1', 'window_start7'])

print(np.intersect1d(saki.columns,bg5.columns))

['hadm_id' 'subject_id']

df2= saki.merge(bg5, on=['subject_id','hadm_id'], how='left')

df2.hadm_id.nunique()

10269

df2.shape

(10269, 55)

blood_differential = pd.read_parquet(r'E:\MIMIC\MIMICIV3.1_Parquet\MIMIC_derived\blood_differential.parquet')
blood_differential.head()

blood_differential =blood_differential.drop(['specimen_id'], axis=1)
blood_differential = blood_differential.dropna(subset=['hadm_id'])
blood_differential['hadm_id'] = blood_differential['hadm_id'].astype('int64')
blood_differential['charttime'] = pd.to_datetime(blood_differential['charttime'], dayfirst=True)
blood_differential['charttime'] = blood_differential['charttime'].astype('datetime64[ns]')
print(np.intersect1d(df2.columns,blood_differential.columns))

['hadm_id' 'subject_id']

blood_differential2=blood_differential[['subject_id','hadm_id','charttime','wbc','basophils_abs','eosinophils_abs','lymphocytes_abs','monocytes_abs','neutrophils_abs']]

blood_differential2.head()

subject_id hadm_id charttime wbc basophils_abs eosinophils_abs lymphocytes_abs monocytes_abs neutrophils_abs

3 15637323 21539156 2128-10-07 05:16:00 27.9 NaN NaN NaN NaN NaN

4 11375469 26645160 2128-07-05 06:21:00 4.8 NaN NaN NaN NaN NaN

5 16182726 26238489 2171-09-05 06:30:00 7.7 NaN NaN NaN NaN NaN

7 19881575 29284557 2124-06-09 06:15:00 6.3 NaN NaN NaN NaN NaN

8 12288954 24694399 2124-02-15 13:20:00 10.6 NaN NaN NaN NaN NaN

missing_per_row = blood_differential2.isnull().mean(axis=1)

保留缺失值比例<=50%的行
blood_differentialv= blood_differential2[missing_per_row <= 0.5]

blood_differentialv.head()

subject_id hadm_id charttime wbc basophils_abs eosinophils_abs lymphocytes_abs monocytes_abs neutrophils_abs

14 19381331 27606319 2125-06-21 06:50:00 13.6 0.0136 2.9784 1.1968 0.408 9.0168

16 11111901 26267238 2164-04-12 00:57:00 0.1 0.0000 0.0000 0.0300 0.000 0.0700

27 17468647 21124037 2123-11-18 06:30:00 7.9 0.0200 0.0700 0.9200 0.680 6.1100

31 18286929 23683319 2153-04-29 05:45:00 13.3 0.0700 0.0300 1.4400 0.730 10.8000

34 19933583 29391119 2144-01-13 16:28:00 19.0 0.0760 0.1900 1.2730 0.608 16.8530

blood_differentialv.hadm_id.nunique()

183919

blood_differentialv1= pd.merge(blood_differentialv, saki1, on=['subject_id','hadm_id'],how='inner')

condition = (blood_differentialv1['window_start-1'] <blood_differentialv1['charttime']) & \
 (blood_differentialv1['charttime'] < blood_differentialv1['window_start7'])
blood_differentialv2 = blood_differentialv1[condition]

blood_differentialv3 =blood_differentialv2.groupby('hadm_id')['charttime'].idxmin()
blood_differentialv4= blood_differentialv2.loc[blood_differentialv3]
blood_differentialv4.shape

(6254, 11)

blood_differentialv5= blood_differentialv4.drop(columns=['charttime', 'window_start-1', 'window_start7'])
print(np.intersect1d(df2.columns,blood_differentialv5.columns))

['hadm_id' 'subject_id']

df3= df2.merge(blood_differentialv5, on=['subject_id','hadm_id'], how='left')

cardiac_marker = pd.read_parquet(r'E:\MIMIC\MIMICIV3.1_Parquet\MIMIC_derived\cardiac_marker.parquet')
cardiac_marker.head()

subject_id hadm_id charttime specimen_id troponin_t ck_mb ntprobnp

0 13448204 24480863.0 1/12/2164 13:10:00 538 NaN 3.0 NaN

1 12559662 27181478.0 19/9/2151 06:10:00 551 NaN 2.0 NaN

2 17932295 27965144.0 29/5/2125 16:50:00 672 0.09 6.0 NaN

3 17838140 26310561.0 25/6/2122 17:09:00 898 NaN 5.0 NaN

4 14361990 NaN 28/11/2161 13:40:00 1125 0.04 3.0 NaN

cardiac_marker =cardiac_marker.drop(['specimen_id'], axis=1)
cardiac_marker = cardiac_marker.dropna(subset=['hadm_id'])
cardiac_marker['hadm_id'] = cardiac_marker['hadm_id'].astype('int64')
cardiac_marker['charttime'] = pd.to_datetime(cardiac_marker['charttime'], dayfirst=True)
cardiac_marker['charttime'] = cardiac_marker['charttime'].astype('datetime64[ns]')
print(np.intersect1d(df3.columns,cardiac_marker.columns))

['hadm_id' 'subject_id']

merged_df = pd.merge(cardiac_marker, df3, on=['subject_id','hadm_id'],how='left')
condition = (merged_df['window_start-1'] < merged_df['charttime']) & \
 (merged_df['charttime'] < merged_df['window_start7'])
filtered_df = merged_df[condition]
filtered_df= filtered_df.groupby('hadm_id')['charttime'].min().reset_index()
cardiac_marker1= filtered_df.merge(cardiac_marker, on=['hadm_id','charttime'], how='left')
cardiac_marker1 = cardiac_marker1.drop_duplicates(subset=['hadm_id', 'charttime'])

cardiac_marker1 =cardiac_marker1 .drop(['charttime'], axis=1)
df4 = df3.merge(cardiac_marker1 , on=['subject_id','hadm_id'], how='left')
df4.shape

Out[]:

In []:

In []:

In []:

In []:

Out[]:

In []:

Out[]:

In []:

In []:

In []:

In []:

Out[]:

In []:

In []:

Out[]:

In []:

Out[]:

In []:

In []:

In []:

Out[]:

In []:

In []:

In []:

Out[]:

In []:

In []:

In []:

2025/8/12 19:48 MIMIC_saki

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/MIMIC_saki.html 12/26

 

(10269, 64)

df4.head()

subject_id hadm_id age_score myocardial_infarct congestive_heart_failure peripheral_vascular_disease cerebrovascular_disease dementia chronic_pulmonary_disease rheumatic_disease ... lact

0 14577567 20001361 0 0 0 0 0 0 0 0 ...

1 10117812 20001770 0 0 0 0 0 0 0 0 ... N

2 18953418 20003543 2 0 0 0 0 0 0 0 ... N

3 19657904 20004357 3 0 1 0 0 0 1 0 ...

4 17912752 20005024 3 0 0 0 0 0 0 0 ...

5 rows × 64 columns

chemistry = pd.read_parquet(r'E:\MIMIC\MIMICIV3.1_Parquet\MIMIC_derived\chemistry.parquet')
chemistry.head()

subject_id hadm_id charttime specimen_id albumin globulin total_protein aniongap bicarbonate bun calcium chloride creatinine glucose sodium potassium

0 17518964 20219416.0 11/2/2143 06:07:00 15 NaN NaN NaN 14.0 24.0 13.0 8.8 103.0 1.3 134.0 141.0 3.0

1 17208408 NaN 16/8/2190 17:50:00 18 NaN NaN NaN 13.0 23.0 23.0 NaN 106.0 0.7 100.0 142.0 4.6

2 15314300 25539343.0 17/12/2126 16:15:00 22 NaN NaN NaN 14.0 22.0 10.0 7.8 103.0 0.7 96.0 139.0 4.8

3 19681724 NaN 17/11/2182 16:30:00 69 NaN NaN NaN 18.0 21.0 29.0 NaN 100.0 1.2 115.0 139.0 4.7

4 19810410 NaN 21/1/2170 12:30:00 80 NaN NaN NaN 18.0 26.0 54.0 9.4 99.0 1.6 NaN 140.0 3.4

chemistry =chemistry.drop(['specimen_id'], axis=1)
chemistry = chemistry.dropna(subset=['hadm_id'])
chemistry['hadm_id'] = chemistry['hadm_id'].astype('int64')
chemistry['charttime'] = pd.to_datetime(chemistry['charttime'], dayfirst=True)
chemistry['charttime'] = chemistry['charttime'].astype('datetime64[ns]')
print(np.intersect1d(df4.columns,chemistry.columns))

['hadm_id' 'subject_id']

msno.bar(chemistry)

missing_rate = chemistry.isnull().mean()

找出缺失率大于30%的列
cols_to_drop = missing_rate[missing_rate > 0.50].index

cols_to_drop

Index(['albumin', 'globulin', 'total_protein'], dtype='object')

chemistry.drop(cols_to_drop, axis=1, inplace=True)

chemistry2 = pd.merge(chemistry,saki1, on=['subject_id','hadm_id'],how='inner')

chemistry2.hadm_id.nunique()

10269

condition = (chemistry2['window_start-1'] < chemistry2['charttime']) & \
 (chemistry2['charttime'] < chemistry2['window_start7'])
chemistry3 = chemistry2[condition]

chemistry3.hadm_id.nunique()

10262

min_chartoffsets = chemistry3.groupby('hadm_id')['charttime'].min().reset_index()

步骤2和3: 检查缺失值并替换
def fill_missing_values(row, df):
 for col in ['aniongap','bicarbonate','bun','calcium','chloride','creatinine','glucose','sodium','potassium']:
 if pd.isna(row[col]):
 # 获取该patientunitstayid的下一个chartoffset的行
 next_rows = df[(df['hadm_id'] == row['hadm_id']) & (df['charttime'] > row['charttime'])]
 for _, next_row in next_rows.iterrows():
 if not pd.isna(next_row[col]):
 row[col] = next_row[col]
 break
 return row

应用函数
result_list = []

for _, row in min_chartoffsets.iterrows():
 patient_data =chemistry3[chemistry3['hadm_id'] == row['hadm_id']]
 min_chartoffset_row = patient_data[patient_data['charttime'] == row['charttime']].iloc[0]
 filled_row = fill_missing_values(min_chartoffset_row, patient_data)
 result_list.append(filled_row)

使用concat合并DataFrame
chemistry4= pd.concat(result_list, axis=1).transpose()

chemistry4.hadm_id.nunique()

10262

chemistry5= chemistry4.drop(columns=['charttime', 'window_start-1', 'window_start7'])
df5 = df4.merge(chemistry5 , on=['subject_id','hadm_id'], how='left')
df5.shape

(10269, 73)

coagulation = pd.read_parquet(r'E:\MIMIC\MIMICIV3.1_Parquet\MIMIC_derived\coagulation.parquet')
coagulation.head()

subject_id hadm_id charttime specimen_id d_dimer fibrinogen thrombin inr pt ptt

0 10522669 NaN 28/7/2169 16:59:00 21 NaN NaN NaN 1.0 11.2 NaN

1 15560336 NaN 11/12/2170 09:24:00 120 NaN NaN NaN 1.0 11.1 NaN

2 12664423 28224503.0 29/10/2165 13:58:00 146 NaN NaN NaN 1.2 13.2 27.5

3 14169173 NaN 30/12/2175 03:34:00 184 NaN NaN NaN 1.5 15.9 25.2

4 10397642 NaN 7/6/2173 09:35:00 206 NaN NaN NaN 1.1 11.7 32.3

coagulation =coagulation.drop(['specimen_id'], axis=1)
coagulation = coagulation.dropna(subset=['hadm_id'])

Out[]:

In []:

Out[]:

In []:

Out[]:

In []:

In []:

In []:

Out[]:

In []:

In []:

In []:

Out[]:

In []:

In []:

Out[]:

In []:

In []:

Out[]:

In []:

Out[]:

In []:

Out[]:

In []:

2025/8/12 19:48 MIMIC_saki

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/MIMIC_saki.html 13/26

coagulation['hadm_id'] = coagulation['hadm_id'].astype('int64')
coagulation['charttime'] = pd.to_datetime(coagulation['charttime'], dayfirst=True)
coagulation['charttime'] = coagulation['charttime'].astype('datetime64[ns]')
print(np.intersect1d(df5.columns,coagulation.columns))

['hadm_id' 'subject_id']

msno.bar(coagulation)

missing_rate = coagulation.isnull().mean()
cols_to_drop = missing_rate[missing_rate > 0.50].index
cols_to_drop

Index(['d_dimer', 'fibrinogen', 'thrombin'], dtype='object')

coagulation.drop(cols_to_drop, axis=1, inplace=True)

coagulation2 = pd.merge(coagulation,saki1, on=['subject_id','hadm_id'],how='inner')

coagulation2 .hadm_id.nunique()

10079

condition = (coagulation2 ['window_start-1'] < coagulation2 ['charttime']) & \
 (coagulation2 ['charttime'] < coagulation2 ['window_start7'])
coagulation3 = coagulation2 [condition]

coagulation3.hadm_id.nunique()

9816

min_chartoffsets = coagulation3.groupby('hadm_id')['charttime'].min().reset_index()

步骤2和3: 检查缺失值并替换
def fill_missing_values(row, df):
 for col in ['inr','pt','ptt']:
 if pd.isna(row[col]):
 # 获取该patientunitstayid的下一个chartoffset的行
 next_rows = df[(df['hadm_id'] == row['hadm_id']) & (df['charttime'] > row['charttime'])]
 for _, next_row in next_rows.iterrows():
 if not pd.isna(next_row[col]):
 row[col] = next_row[col]
 break
 return row

应用函数
result_list = []

for _, row in min_chartoffsets.iterrows():
 patient_data =coagulation3[coagulation3['hadm_id'] == row['hadm_id']]
 min_chartoffset_row = patient_data[patient_data['charttime'] == row['charttime']].iloc[0]
 filled_row = fill_missing_values(min_chartoffset_row, patient_data)
 result_list.append(filled_row)

使用concat合并DataFrame
coagulation4= pd.concat(result_list, axis=1).transpose()

coagulation4.hadm_id.nunique()

9816

coagulation5= coagulation4.drop(columns=['charttime', 'window_start-1', 'window_start7'])
df6= df5.merge(coagulation5, on=['subject_id','hadm_id'], how='left')
df6.shape

(10269, 76)

complete_blood = pd.read_parquet(r'E:\MIMIC\MIMICIV3.1_Parquet\MIMIC_derived\complete_blood_count.parquet')
complete_blood.head()

subject_id hadm_id charttime specimen_id hematocrit hemoglobin mch mchc mcv platelet rbc rdw rdwsd wbc

0 19050791 NaN 25/2/2151 13:35:00 31 38.1 12.8 32.7 33.6 97.0 97.0 3.92 16.6 None 4.2

1 19903398 NaN 24/7/2149 12:50:00 41 38.8 12.6 28.2 32.4 87.0 314.0 4.46 12.7 None 9.1

2 11641458 NaN 19/9/2146 09:10:00 47 35.8 12.3 30.8 34.4 90.0 121.0 3.99 12.9 None 4.5

3 15637323 21539156.0 7/10/2128 05:16:00 48 24.9 8.3 31.7 33.3 95.0 86.0 2.62 18.6 None 27.9

4 11375469 26645160.0 5/7/2128 06:21:00 57 28.5 8.9 39.6 31.2 127.0 45.0 2.25 17.4 None 4.8

complete_blood =complete_blood.drop(['specimen_id'], axis=1)
complete_blood = complete_blood.dropna(subset=['hadm_id'])
complete_blood['hadm_id'] = complete_blood['hadm_id'].astype('int64')
complete_blood['charttime'] = pd.to_datetime(complete_blood['charttime'], dayfirst=True)
complete_blood['charttime'] = complete_blood['charttime'].astype('datetime64[ns]')
print(np.intersect1d(df6.columns,complete_blood.columns))

['hadm_id' 'subject_id' 'wbc']

complete_blood.rename(columns={'wbc': 'WBC1'}, inplace=True)

msno.bar(complete_blood)

complete_blood1=complete_blood.drop(['rdwsd'], axis=1)

merged_df = pd.merge(complete_blood1, df6, on=['subject_id','hadm_id'],how='left')
condition = (merged_df['window_start-1'] < merged_df['charttime']) & \
 (merged_df['charttime'] < merged_df['window_start7'])
filtered_df = merged_df[condition]
filtered_df= filtered_df.groupby('hadm_id')['charttime'].min().reset_index()
complete_blood1= filtered_df.merge(complete_blood1, on=['hadm_id','charttime'], how='left')
complete_blood1 = complete_blood1.drop_duplicates(subset=['hadm_id', 'charttime'])

complete_blood1 =complete_blood1.drop(['charttime'], axis=1)
df7= df6.merge(complete_blood1, on=['subject_id','hadm_id'], how='left')
df7.shape

(10269, 85)

gcs = pd.read_parquet(r'E:\MIMIC\MIMICIV3.1_Parquet\MIMIC_derived\gcs.parquet')
gcs.head()

In []:

In []:

Out[]:

In []:

In []:

In []:

Out[]:

In []:

In []:

Out[]:

In []:

In []:

Out[]:

In []:

Out[]:

In []:

Out[]:

In []:

In []:

In []:

In []:

In []:

In []:

Out[]:

In []:

2025/8/12 19:48 MIMIC_saki

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/MIMIC_saki.html 14/26

subject_id stay_id charttime gcs gcs_motor gcs_verbal gcs_eyes gcs_unable

0 12466550 30000153 29/9/2174 12:45:00 15 5.0 0.0 3.0 1

1 12466550 30000153 29/9/2174 16:26:00 15 6.0 0.0 4.0 1

2 12466550 30000153 29/9/2174 17:37:00 15 6.0 0.0 4.0 1

3 12466550 30000153 29/9/2174 18:00:00 9 5.0 1.0 3.0 0

4 12466550 30000153 29/9/2174 19:00:00 9 5.0 1.0 3.0 0

gcs1 =gcs.drop(['gcs_motor','gcs_verbal','gcs_eyes','gcs_unable'], axis=1)

gcs1['charttime'] = pd.to_datetime(gcs1['charttime'], dayfirst=True)
gcs1['charttime'] = gcs1['charttime'].astype('datetime64[ns]')
print(np.intersect1d(df7.columns,gcs1.columns))

['stay_id' 'subject_id']

merged_df = pd.merge(gcs1, df7, on=['subject_id','stay_id'],how='left')
condition = (merged_df['window_start-1'] < merged_df['charttime']) & \
 (merged_df['charttime'] < merged_df['window_start7'])
filtered_df = merged_df[condition]
filtered_df= filtered_df.groupby('stay_id')['charttime'].min().reset_index()
gcs12= filtered_df.merge(gcs1, on=['stay_id','charttime'], how='left')
gcs12= gcs12.drop_duplicates(subset=['stay_id', 'charttime'])

gcs12=gcs12.drop(['charttime'], axis=1)
df8= df7.merge(gcs12, on=['subject_id','stay_id'], how='left')
df8.shape

(10269, 86)

inflammation= pd.read_parquet(r'E:\MIMIC\MIMICIV3.1_Parquet\MIMIC_derived\inflammation.parquet')
inflammation.head()

subject_id hadm_id charttime specimen_id crp

0 19681724 NaN 17/11/2182 16:30:00 69 197.4

1 10725595 NaN 4/11/2163 15:35:00 619 12.7

2 11932181 NaN 8/4/2141 12:20:00 841 43.0

3 17847714 NaN 16/9/2136 15:54:00 1484 127.4

4 19010070 NaN 16/10/2125 13:45:00 1570 16.9

inflammation =inflammation.drop(['specimen_id'], axis=1)
inflammation = inflammation.dropna(subset=['hadm_id'])
inflammation['hadm_id'] = inflammation['hadm_id'].astype('int64')
inflammation['charttime'] = pd.to_datetime(inflammation['charttime'], dayfirst=True)
inflammation['charttime'] = inflammation['charttime'].astype('datetime64[ns]')
print(np.intersect1d(df8.columns,inflammation.columns))

['hadm_id' 'subject_id']

merged_df = pd.merge(inflammation, df8, on=['subject_id','hadm_id'],how='left')
condition = (merged_df['window_start-1'] < merged_df['charttime']) & \
 (merged_df['charttime'] < merged_df['window_start7'])
filtered_df = merged_df[condition]
filtered_df= filtered_df.groupby('hadm_id')['charttime'].min().reset_index()
inflammation1= filtered_df.merge(inflammation, on=['hadm_id','charttime'], how='left')
inflammation1 = inflammation1.drop_duplicates(subset=['hadm_id', 'charttime'])

inflammation1=inflammation1.drop(['charttime'], axis=1)
df9= df8.merge(inflammation1, on=['subject_id','hadm_id'], how='left')
df9.shape

(10269, 87)

vitalsign= pd.read_parquet(r'E:\MIMIC\MIMICIV3.1_Parquet\MIMIC_derived\vitalsign.parquet')
vitalsign.head()

subject_id stay_id charttime heart_rate sbp dbp mbp sbp_ni dbp_ni mbp_ni resp_rate temperature temperature_site spo2 glucose

0 10000032 39553978 23/7/2180 14:00:00 NaN NaN NaN NaN NaN NaN NaN NaN 37.06 Oral NaN NaN

1 10000032 39553978 23/7/2180 14:11:00 NaN 84.0 48.0 56.0 84.0 48.0 56.0 NaN NaN None NaN NaN

2 10000032 39553978 23/7/2180 14:12:00 91.0 NaN NaN NaN NaN NaN NaN 24.0 NaN None NaN NaN

3 10000032 39553978 23/7/2180 14:13:00 NaN NaN NaN NaN NaN NaN NaN NaN NaN None 98.0 NaN

4 10000032 39553978 23/7/2180 14:30:00 93.0 95.0 59.0 67.0 95.0 59.0 67.0 21.0 NaN None 97.0 NaN

vitalsign.shape

(13519533, 15)

vitalsign=vitalsign.drop(['glucose','sbp_ni','dbp_ni','mbp_ni','temperature_site'], axis=1)

vitalsign.head()

subject_id stay_id charttime heart_rate sbp dbp mbp resp_rate temperature spo2

0 10000032 39553978 23/7/2180 14:00:00 NaN NaN NaN NaN NaN 37.06 NaN

1 10000032 39553978 23/7/2180 14:11:00 NaN 84.0 48.0 56.0 NaN NaN NaN

2 10000032 39553978 23/7/2180 14:12:00 91.0 NaN NaN NaN 24.0 NaN NaN

3 10000032 39553978 23/7/2180 14:13:00 NaN NaN NaN NaN NaN NaN 98.0

4 10000032 39553978 23/7/2180 14:30:00 93.0 95.0 59.0 67.0 21.0 NaN 97.0

unique_patientunitstayid_df14 = df9['stay_id'].unique()
vitalsign= vitalsign[vitalsign['stay_id'].isin(unique_patientunitstayid_df14)]
vitalsign.shape

(2967455, 10)

vitalsign_cleaned = vitalsign

vitalsign_cleaned.shape

(2967455, 10)

print(np.intersect1d(df9.columns,vitalsign_cleaned.columns))

['stay_id' 'subject_id']

vitalsign_cleaned['charttime'] = pd.to_datetime(vitalsign_cleaned['charttime'], dayfirst=True)
vitalsign_cleaned['charttime'] = vitalsign_cleaned['charttime'].astype('datetime64[ns]')

Out[]:

In []:

In []:

In []:

In []:

Out[]:

In []:

Out[]:

In []:

In []:

In []:

Out[]:

In []:

Out[]:

In []:

Out[]:

In []:

In []:

Out[]:

In []:

Out[]:

In []:

In []:

Out[]:

In []:

In []:

2025/8/12 19:48 MIMIC_saki

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/MIMIC_saki.html 15/26

print(np.intersect1d(df9.columns,vitalsign_cleaned.columns))

['stay_id' 'subject_id']

merged_df = pd.merge(vitalsign_cleaned, df9, on=['subject_id','stay_id'],how='left')
condition = (merged_df['window_start-1'] < merged_df['charttime']) & \
 (merged_df['charttime'] < merged_df['window_start7'])
filtered_df = merged_df[condition]

min_chartoffsets = filtered_df.groupby('stay_id')['charttime'].min().reset_index()

步骤2和3: 检查缺失值并替换
def fill_missing_values(row, df):
 for col in ['heart_rate', 'sbp', 'dbp', 'mbp', 'resp_rate', 'temperature','spo2']:
 if pd.isna(row[col]):
 # 获取该patientunitstayid的下一个chartoffset的行
 next_rows = df[(df['stay_id'] == row['stay_id']) & (df['charttime'] > row['charttime'])]
 for _, next_row in next_rows.iterrows():
 if not pd.isna(next_row[col]):
 row[col] = next_row[col]
 break
 return row

应用函数
result_list = []

for _, row in min_chartoffsets.iterrows():
 patient_data =filtered_df[filtered_df['stay_id'] == row['stay_id']]
 min_chartoffset_row = patient_data[patient_data['charttime'] == row['charttime']].iloc[0]
 filled_row = fill_missing_values(min_chartoffset_row, patient_data)
 result_list.append(filled_row)

使用concat合并DataFrame
df10= pd.concat(result_list, axis=1).transpose()

df10.shape

(10269, 95)

df11=df10.drop(['charttime'], axis=1)

height= pd.read_parquet(r'E:\MIMIC\MIMICIV3.1_Parquet\MIMIC_derived\height.parquet')
height.head()

subject_id stay_id charttime height

0 10000032 39553978 23/7/2180 12:36:00 152.0

1 10001725 31205490 11/4/2110 15:52:00 157.0

2 10001884 37510196 11/1/2131 04:20:00 157.0

3 10002013 39060235 18/5/2160 10:00:00 157.0

4 10002114 34672098 17/2/2162 22:33:00 173.0

height1= height.drop(['charttime'], axis=1)

height1= height1.drop_duplicates(subset=['stay_id'])

df12 = pd.merge(height1,df11, on=['subject_id','stay_id'],how='right')
df12.shape

(10269, 95)

weight= pd.read_parquet(r'E:\MIMIC\MIMICIV3.1_Parquet\MIMIC_derived\weight_durations.parquet')
weight.head()

stay_id starttime endtime weight weight_type

0 30000153 29/9/2174 10:09:00 29/9/2174 16:00:00 70.0 admit

1 30000153 29/9/2174 16:00:00 1/10/2174 05:26:10 73.0 daily

2 30000213 21/6/2162 03:38:00 22/6/2162 00:00:00 84.7 admit

3 30000213 22/6/2162 00:00:00 22/6/2162 22:52:48 73.7 daily

4 30000484 14/1/2136 15:23:32 17/1/2136 06:53:08 68.5 admit

weight1= weight.drop(['starttime','endtime','weight_type'], axis=1)

weight1=weight1.drop_duplicates(subset=['stay_id'])

weight1.shape

(91163, 2)

weight1['stay_id'] = weight1['stay_id'].astype(str)
df12['stay_id'] = df12['stay_id'].astype(str)
df13 = pd.merge(weight1, df12, on=['stay_id'], how='right')
df13.shape

(10269, 96)

df13.head()

stay_id weight subject_id height heart_rate sbp dbp mbp resp_rate temperature ... hemoglobin mch mchc mcv platelet rbc rdw WBC1 gcs crp

0 30002654 75.0 15978672 NaN 75.0 116.0 65.0 77.0 15.0 37.11 ... 10.2 33.2 32.6 102.0 28.0 3.07 16.2 18.2 15.0 NaN

1 30003598 136.0 15332791 NaN 70.0 96.0 44.0 63.0 15.0 36.06 ... 10.3 28.4 32.4 88.0 449.0 3.62 17.6 17.6 15.0 NaN

2 30004144 80.0 10369174 NaN 60.0 132.0 53.0 78.0 27.0 36.39 ... 13.0 32.2 35.8 90.0 191.0 4.02 13.0 5.1 13.0 NaN

3 30004391 58.8 18730522 178.0 118.0 108.0 79.0 85.0 17.0 37.17 ... 8.5 36.5 33.5 109.0 130.0 2.33 12.5 8.1 15.0 NaN

4 30005085 101.4 14289094 183.0 84.0 123.0 59.0 81.0 14.0 36.0 ... 13.0 30.8 33.0 94.0 202.0 4.21 13.6 6.5 15.0 NaN

5 rows × 96 columns

df13['height_m'] = df13['height'] / 100

计算BMI：体重（公斤） / (身高（米）^2)
df13['BMI'] = df13['weight'] / (df13['height_m'] ** 2)
df13['BMI'] = df13['BMI'].round(2)
如果你不需要保留转换后的身高列，可以将其删除
df13.drop('height_m', axis=1, inplace=True)

df13.head()

In []:

In []:

In []:

Out[]:

In []:

In []:

Out[]:

In []:

In []:

In []:

Out[]:

In []:

Out[]:

In []:

In []:

In []:

Out[]:

In []:

Out[]:

In []:

Out[]:

In []:

In []:

2025/8/12 19:48 MIMIC_saki

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/MIMIC_saki.html 16/26

 

stay_id weight subject_id height heart_rate sbp dbp mbp resp_rate temperature ... mch mchc mcv platelet rbc rdw WBC1 gcs crp BMI

0 30002654 75.0 15978672 NaN 75.0 116.0 65.0 77.0 15.0 37.11 ... 33.2 32.6 102.0 28.0 3.07 16.2 18.2 15.0 NaN NaN

1 30003598 136.0 15332791 NaN 70.0 96.0 44.0 63.0 15.0 36.06 ... 28.4 32.4 88.0 449.0 3.62 17.6 17.6 15.0 NaN NaN

2 30004144 80.0 10369174 NaN 60.0 132.0 53.0 78.0 27.0 36.39 ... 32.2 35.8 90.0 191.0 4.02 13.0 5.1 13.0 NaN NaN

3 30004391 58.8 18730522 178.0 118.0 108.0 79.0 85.0 17.0 37.17 ... 36.5 33.5 109.0 130.0 2.33 12.5 8.1 15.0 NaN 18.56

4 30005085 101.4 14289094 183.0 84.0 123.0 59.0 81.0 14.0 36.0 ... 30.8 33.0 94.0 202.0 4.21 13.6 6.5 15.0 NaN 30.28

5 rows × 97 columns

urine_output= pd.read_parquet(r'E:\MIMIC\MIMICIV3.1_Parquet\MIMIC_derived\urine_output_rate.parquet')
urine_output.head()

stay_id charttime weight uo urineoutput_6hr urineoutput_12hr urineoutput_24hr uo_mlkghr_6hr uo_mlkghr_12hr uo_mlkghr_24hr uo_tm_6hr uo_tm_12hr uo_tm_24hr

0 30000153 29/9/2174 12:12:00 70.0 280.0 280.0 280.0 280.0 NaN NaN NaN 0.1 0.1 0.1

1 30000153 29/9/2174 14:00:00 70.0 45.0 325.0 325.0 325.0 NaN NaN NaN 1.9 1.9 1.9

2 30000153 29/9/2174 15:00:00 70.0 50.0 375.0 375.0 375.0 NaN NaN NaN 2.9 2.9 2.9

3 30000153 29/9/2174 16:00:00 70.0 50.0 425.0 425.0 425.0 NaN NaN NaN 3.9 3.9 3.9

4 30000153 29/9/2174 17:00:00 73.0 45.0 470.0 470.0 470.0 NaN NaN NaN 4.9 4.9 4.9

urine_output1=urine_output[['stay_id','charttime', 'urineoutput_24hr']]

urine_output1['charttime'] = pd.to_datetime(urine_output1['charttime'], dayfirst=True)
urine_output1['charttime'] = urine_output1['charttime'].astype('datetime64[ns]')
print(np.intersect1d(df13.columns,urine_output1.columns))

merged_df = pd.merge(urine_output1, df13, on=['stay_id'],how='left')
condition = (merged_df['window_start-1'] < merged_df['charttime']) & \
 (merged_df['charttime'] < merged_df['aki_charttime']+ pd.Timedelta(days=1))
filtered_df = merged_df[condition]

filtered_df = filtered_df.groupby('stay_id').agg({'urineoutput_24hr': 'max', 'charttime': 'first'}).reset_index()
urine_output12 = filtered_df.merge(urine_output1, on=['stay_id', 'charttime'], how='left')
urine_output12 = urine_output12.drop_duplicates(subset=['stay_id', 'charttime'])

urine_output12=urine_output12.drop(['charttime'], axis=1)
df14= df13.merge(urine_output12, on=['stay_id'], how='left')
df14.shape

(10269, 99)

df14.head()

stay_id weight subject_id height heart_rate sbp dbp mbp resp_rate temperature ... mcv platelet rbc rdw WBC1 gcs crp BMI urineoutput_24hr_x urineoutput_24hr_y

0 30002654 75.0 15978672 NaN 75.0 116.0 65.0 77.0 15.0 37.11 ... 102.0 28.0 3.07 16.2 18.2 15.0 NaN NaN 1370.0 60.0

1 30003598 136.0 15332791 NaN 70.0 96.0 44.0 63.0 15.0 36.06 ... 88.0 449.0 3.62 17.6 17.6 15.0 NaN NaN 1370.0 30.0

2 30004144 80.0 10369174 NaN 60.0 132.0 53.0 78.0 27.0 36.39 ... 90.0 191.0 4.02 13.0 5.1 13.0 NaN NaN 1652.0 240.0

3 30004391 58.8 18730522 178.0 118.0 108.0 79.0 85.0 17.0 37.17 ... 109.0 130.0 2.33 12.5 8.1 15.0 NaN 18.56 2732.0 1065.0

4 30005085 101.4 14289094 183.0 84.0 123.0 59.0 81.0 14.0 36.0 ... 94.0 202.0 4.21 13.6 6.5 15.0 NaN 30.28 2002.0 60.0

5 rows × 99 columns

df14.drop('urineoutput_24hr_y', axis=1, inplace=True)

df14.rename(columns={'urineoutput_24hr_x': 'urineoutput_24hr'}, inplace=True)

df14.shape

(10269, 98)

aspiii = pd.read_parquet(r'E:\MIMIC\MIMICIV3.1_Parquet\MIMIC_derived\apsiii.parquet')
aspiii.head()

subject_id hadm_id stay_id apsiii apsiii_prob hr_score mbp_score temp_score resp_rate_score pao2_aado2_score ... wbc_score creatinine_score uo_score bun_score sodium_score albu

0 14007982 25442966 36796773 29 0.044555 5.0 7.0 0.0 6.0 NaN ... 0.0 0.0 8.0 0.0 0.0

1 13630588 26564297 32994851 23 0.033927 0.0 7.0 0.0 8.0 NaN ... 0.0 0.0 5.0 0.0 0.0

2 14155916 20422432 34317467 41 0.075975 1.0 15.0 0.0 6.0 NaN ... 0.0 0.0 4.0 7.0 2.0

3 13264941 27604262 37567861 28 0.042586 1.0 7.0 0.0 8.0 NaN ... 5.0 0.0 NaN 0.0 0.0

4 10649299 23334742 35217255 45 0.090356 7.0 7.0 0.0 8.0 NaN ... 0.0 0.0 0.0 7.0 0.0

5 rows × 21 columns

print(np.intersect1d(df14.columns,aspiii.columns))

['hadm_id' 'stay_id' 'subject_id']

aspiii = aspiii.drop('hadm_id', axis=1)

aspiii1=aspiii[['subject_id', 'stay_id','apsiii']]

df14['stay_id'] = df14['stay_id'].astype(int)

df15= pd.merge(aspiii1, df14, on=['subject_id','stay_id'],how='inner')
df15.shape

(10269, 99)

sirs = pd.read_parquet(r'E:\MIMIC\MIMICIV3.1_Parquet\MIMIC_derived\sirs.parquet')
sirs.head()

subject_id hadm_id stay_id sirs temp_score heart_rate_score resp_score wbc_score

0 10000032 29079034 39553978 2 0.0 1.0 1.0 0.0

1 10000690 25860671 37081114 3 1.0 1.0 1.0 0.0

2 10000980 26913865 39765666 1 0.0 0.0 1.0 0.0

3 10001217 27703517 34592300 2 0.0 1.0 1.0 0.0

4 10001217 24597018 37067082 4 1.0 1.0 1.0 1.0

sirs=sirs[['subject_id', 'stay_id','sirs']]

Out[]:

In []:

Out[]:

In []:

In []:

In []:

In []:

Out[]:

In []:

Out[]:

In []:

In []:

In []:

Out[]:

In []:

Out[]:

In []:

In []:

In []:

In []:

In []:

Out[]:

In []:

Out[]:

In []:

2025/8/12 19:48 MIMIC_saki

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/MIMIC_saki.html 17/26

df16= pd.merge(sirs, df15, on=['subject_id','stay_id'],how='inner')
df16.shape

(10269, 100)

df16.head()

subject_id stay_id sirs apsiii weight height heart_rate sbp dbp mbp ... mchc mcv platelet rbc rdw WBC1 gcs crp BMI urineoutput_24hr

0 10000690 37081114 3 52 55.3 NaN 79.0 107.0 63.0 71.0 ... 33.2 93.0 199.0 3.07 16.4 7.5 15.0 NaN NaN 815.0

1 10001884 37510196 3 51 65.0 157.0 76.0 127.0 73.0 87.0 ... 31.0 91.0 149.0 3.68 17.6 12.0 15.0 NaN 26.37 1655.0

2 10002155 31090461 3 52 48.0 NaN 94.0 118.0 51.0 68.0 ... 31.1 74.0 263.0 2.61 16.2 9.5 15.0 NaN NaN 3500.0

3 10002443 35044219 4 41 156.1 178.0 92.0 121.0 79.0 92.0 ... 32.7 93.0 219.0 4.51 13.1 15.9 15.0 NaN 49.27 3450.0

4 10002495 36753294 3 54 64.1 170.0 114.0 160.0 78.0 94.0 ... 34.5 92.0 176.0 4.4 12.5 36.8 15.0 NaN 22.18 3400.0

5 rows × 100 columns

acei = pd.read_parquet(r'E:\MIMIC\MIMICIV3.1_Parquet\MIMIC_derived\acei.parquet')
acei.head()

subject_id hadm_id acei starttime stoptime

0 10000690 23280645 Lisinopril 17/9/2150 10:00:00 19/9/2150 17:00:00

1 10000690 23280645 Lisinopril 24/9/2150 10:00:00 24/9/2150 18:00:00

2 10000690 23280645 Lisinopril 22/9/2150 10:00:00 24/9/2150 10:00:00

3 10000690 23280645 Lisinopril 17/9/2150 10:00:00 17/9/2150 11:00:00

4 10000690 23280645 Lisinopril 24/9/2150 11:00:00 24/9/2150 18:00:00

acei['starttime'] = pd.to_datetime(acei['starttime'], dayfirst=True)
acei['starttime'] = acei['starttime'].astype('datetime64[ns]')

acei = acei.drop(['stoptime','acei'], axis=1)

acei.head()

subject_id hadm_id starttime

0 10000690 23280645 2150-09-17 10:00:00

1 10000690 23280645 2150-09-24 10:00:00

2 10000690 23280645 2150-09-22 10:00:00

3 10000690 23280645 2150-09-17 10:00:00

4 10000690 23280645 2150-09-24 11:00:00

acei= acei.drop_duplicates()

acei.shape

(125747, 3)

aceia = acei.groupby('hadm_id')['starttime'].min().reset_index()

aceia.head()

hadm_id starttime

0 20000041 2143-09-03 08:00:00

1 20000057 2190-01-15 22:00:00

2 20000180 2165-11-07 08:00:00

3 20000239 2170-04-13 10:00:00

4 20000298 2183-06-20 10:00:00

aceia.shape

(84369, 2)

merged_df = df11.merge(aceia, on=['hadm_id'], how='left')

检查时间条件
merged_df['starttime'] = pd.to_datetime(merged_df['starttime'])
merged_df['window_start7'] = pd.to_datetime(merged_df['window_start7'])
merged_df['acei'] = (merged_df['starttime'] < merged_df['window_start7']).astype(int)

保留 df11 原本的数据
df17 = df16.merge(merged_df[['hadm_id', 'acei']], on=['hadm_id'], how='left')

df17.head()

subject_id stay_id sirs apsiii weight height heart_rate sbp dbp mbp ... mcv platelet rbc rdw WBC1 gcs crp BMI urineoutput_24hr acei

0 10000690 37081114 3 52 55.3 NaN 79.0 107.0 63.0 71.0 ... 93.0 199.0 3.07 16.4 7.5 15.0 NaN NaN 815.0 1

1 10001884 37510196 3 51 65.0 157.0 76.0 127.0 73.0 87.0 ... 91.0 149.0 3.68 17.6 12.0 15.0 NaN 26.37 1655.0 0

2 10002155 31090461 3 52 48.0 NaN 94.0 118.0 51.0 68.0 ... 74.0 263.0 2.61 16.2 9.5 15.0 NaN NaN 3500.0 0

3 10002443 35044219 4 41 156.1 178.0 92.0 121.0 79.0 92.0 ... 93.0 219.0 4.51 13.1 15.9 15.0 NaN 49.27 3450.0 0

4 10002495 36753294 3 54 64.1 170.0 114.0 160.0 78.0 94.0 ... 92.0 176.0 4.4 12.5 36.8 15.0 NaN 22.18 3400.0 1

5 rows × 101 columns

df17.shape

(10269, 101)

df17.subject_id.nunique()

10269

df17.stay_id.nunique()

10269

df17.hadm_id.nunique()

10269

In []:

Out[]:

In []:

Out[]:

In []:

Out[]:

In []:

In []:

In []:

Out[]:

In []:

In []:

Out[]:

In []:

In []:

Out[]:

In []:

Out[]:

In []:

Out[]:

In []:

Out[]:

In []:

Out[]:

In []:

Out[]:

In []:

Out[]:

2025/8/12 19:48 MIMIC_saki

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/MIMIC_saki.html 18/26

sum(df17['acei'] == 1)

2000

arb = pd.read_parquet(r'E:\MIMIC\MIMICIV3.1_Parquet\MIMIC_derived\arb.parquet')
arb.head()

subject_id hadm_id arb starttime stoptime

0 10001401 20144849 Losartan Potassium 20/11/2136 15:00:00 23/11/2136 18:00:00

1 10001401 29250371 Losartan Potassium 5/1/2137 08:00:00 5/1/2137 20:00:00

2 10001667 22672901 Losartan Potassium 22/8/2173 08:00:00 24/8/2173 22:00:00

3 10001843 21728396 Losartan Potassium 9/11/2131 21:00:00 11/11/2131 15:00:00

4 10002013 21516558 Losartan Potassium 4/12/2169 08:00:00 5/12/2169 21:00:00

arb['starttime'] = pd.to_datetime(arb['starttime'], dayfirst=True)
arb['starttime'] = arb['starttime'].astype('datetime64[ns]')

arb = arb.drop(['stoptime','arb'], axis=1)

arb.head()

subject_id hadm_id starttime

0 10001401 20144849 2136-11-20 15:00:00

1 10001401 29250371 2137-01-05 08:00:00

2 10001667 22672901 2173-08-22 08:00:00

3 10001843 21728396 2131-11-09 21:00:00

4 10002013 21516558 2169-12-04 08:00:00

arb= arb.drop_duplicates()

arb.shape

(50516, 3)

arba = arb.groupby('hadm_id')['starttime'].min().reset_index()

arba.head()

hadm_id starttime

0 20000240 2148-12-17 20:00:00

1 20000343 2137-01-28 08:00:00

2 20000351 2145-06-15 17:00:00

3 20001135 2151-10-31 07:00:00

4 20001363 2177-09-08 18:00:00

arba.shape

(36594, 2)

merged_df1 = df17.merge(arba, on=['hadm_id'], how='left')

检查时间条件
merged_df1['starttime'] = pd.to_datetime(merged_df1['starttime'])
merged_df1['window_start7'] = pd.to_datetime(merged_df1['window_start7'])
merged_df1['arb'] = (merged_df1['starttime'] < merged_df1['window_start7']).astype(int)

保留 df11 原本的数据
df18= df17.merge(merged_df1[['hadm_id', 'arb']], on=['hadm_id'], how='left')

df18.head()

subject_id stay_id sirs apsiii weight height heart_rate sbp dbp mbp ... platelet rbc rdw WBC1 gcs crp BMI urineoutput_24hr acei arb

0 10000690 37081114 3 52 55.3 NaN 79.0 107.0 63.0 71.0 ... 199.0 3.07 16.4 7.5 15.0 NaN NaN 815.0 1 0

1 10001884 37510196 3 51 65.0 157.0 76.0 127.0 73.0 87.0 ... 149.0 3.68 17.6 12.0 15.0 NaN 26.37 1655.0 0 0

2 10002155 31090461 3 52 48.0 NaN 94.0 118.0 51.0 68.0 ... 263.0 2.61 16.2 9.5 15.0 NaN NaN 3500.0 0 0

3 10002443 35044219 4 41 156.1 178.0 92.0 121.0 79.0 92.0 ... 219.0 4.51 13.1 15.9 15.0 NaN 49.27 3450.0 0 0

4 10002495 36753294 3 54 64.1 170.0 114.0 160.0 78.0 94.0 ... 176.0 4.4 12.5 36.8 15.0 NaN 22.18 3400.0 1 0

5 rows × 102 columns

df18.shape

(10269, 102)

df18.hadm_id.nunique()

10269

df18.stay_id.nunique()

10269

sum(df18['arb'] == 1)

590

df18.shape

(10269, 102)

df18['ACEI/ARB'] = (df18['acei'] == 1) | (df18['arb'] == 1)
df18['ACEI/ARB'] = df18['ACEI/ARB'].astype(int)
删除原本的'ACEI'和'arb'列
df18.drop(['acei', 'arb'], axis=1, inplace=True)

sum(df18['ACEI/ARB'] == 1)

2533

df18.stay_id.nunique()

10269

In []:

Out[]:

In []:

Out[]:

In []:

In []:

In []:

Out[]:

In []:

In []:

Out[]:

In []:

In []:

Out[]:

In []:

Out[]:

In []:

Out[]:

In []:

Out[]:

In []:

Out[]:

In []:

Out[]:

In []:

Out[]:

In []:

Out[]:

In []:

In []:

Out[]:

In []:

Out[]:

2025/8/12 19:48 MIMIC_saki

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/MIMIC_saki.html 19/26

 

 

df18.subject_id.nunique()

10269

df18.hadm_id.nunique()

10269

creatinine_baselines = pd.read_parquet(r'E:\MIMIC\MIMICIV3.1_Parquet\MIMIC_derived\creatinine_baseline.parquet')
creatinine_baselines.head()

hadm_id gender age scr_min ckd mdrd_est scr_baseline

0 24016413 F 46.803035 NaN 0 0.565994 0.565994

1 22725460 F 77.917014 0.6 0 0.627694 0.600000

2 20940957 F 75.483055 0.6 0 0.623663 0.600000

3 21476780 F 75.156656 0.9 0 0.623114 0.900000

4 21743184 F 65.360090 0.8 0 0.605696 0.800000

print(np.intersect1d(creatinine_baselines.columns,df18.columns))

['gender' 'hadm_id']

creatinine_baselines = creatinine_baselines.drop(['gender','scr_baseline','age','mdrd_est'], axis=1)

creatinine_baselines['hadm_id'] = creatinine_baselines['hadm_id'].astype('int64')
df19 = pd.merge(df18, creatinine_baselines, on=['hadm_id'])

df19.shape

(10269, 103)

oasis = pd.read_parquet(r'E:\MIMIC\MIMICIV3.1_Parquet\MIMIC_derived\oasis.parquet')
oasis.head()

subject_id hadm_id stay_id oasis oasis_prob age age_score preiculos preiculos_score gcs ... resprate resp_rate_score temp temp_score urineoutput urineoutput_score mec

0 10000032 29079034 39553978 31 0.097783 52.559969 3 85.000000 3 14.0 ... 24.0 1.0 37.50 2.0 175.0 10.0

1 10000690 25860671 37081114 41 0.279468 86.837120 9 95.000000 3 12.0 ... 35.0 6.0 35.56 4.0 695.0 5.0

2 10000980 26913865 39765666 18 0.020241 76.486231 6 64.000000 3 15.0 ... 25.5 1.0 37.06 2.0 3900.0 0.0

3 10001217 27703517 34592300 17 0.017861 55.962942 6 1364.400000 0 15.0 ... 11.0 1.0 37.00 2.0 2475.0 1.0

4 10001217 24597018 37067082 18 0.020241 55.881486 6 2662.033333 2 15.0 ... 27.0 1.0 38.22 2.0 2645.0 0.0

5 rows × 25 columns

print(list(oasis.columns))

['subject_id', 'hadm_id', 'stay_id', 'oasis', 'oasis_prob', 'age', 'age_score', 'preiculos', 'preiculos_score', 'gcs', 'gcs_score', 'heartrate', 'heart_rate_score', 'meanbp', 'mbp_score', 'res
prate', 'resp_rate_score', 'temp', 'temp_score', 'urineoutput', 'urineoutput_score', 'mechvent', 'mechvent_score', 'electivesurgery', 'electivesurgery_score']

oasis=oasis[['subject_id','stay_id','oasis']]

print(np.intersect1d(oasis.columns,df15.columns))

['stay_id' 'subject_id']

df20= pd.merge(oasis, df19, on=['subject_id','stay_id'],how='right')
df20.shape

(10269, 104)

df20.stay_id.nunique()

10269

df20.subject_id.nunique()

10269

df20.head()

subject_id stay_id oasis sirs apsiii weight height heart_rate sbp dbp ... rbc rdw WBC1 gcs crp BMI urineoutput_24hr ACEI/ARB scr_min ckd

0 10000690 37081114 41 3 52 55.3 NaN 79.0 107.0 63.0 ... 3.07 16.4 7.5 15.0 NaN NaN 815.0 1 0.6 0

1 10001884 37510196 35 3 51 65.0 157.0 76.0 127.0 73.0 ... 3.68 17.6 12.0 15.0 NaN 26.37 1655.0 0 0.5 0

2 10002155 31090461 26 3 52 48.0 NaN 94.0 118.0 51.0 ... 2.61 16.2 9.5 15.0 NaN NaN 3500.0 0 2.1 1

3 10002443 35044219 24 4 41 156.1 178.0 92.0 121.0 79.0 ... 4.51 13.1 15.9 15.0 NaN 49.27 3450.0 0 0.6 0

4 10002495 36753294 32 3 54 64.1 170.0 114.0 160.0 78.0 ... 4.4 12.5 36.8 15.0 NaN 22.18 3400.0 1 1.1 0

5 rows × 104 columns

crrt = pd.read_parquet(r'E:\MIMIC\MIMICIV3.1_Parquet\MIMIC_derived\crrt.parquet')
crrt.head()

stay_id charttime crrt_mode access_pressure blood_flow citrate current_goal dialysate_fluid dialysate_rate effluent_pressure ... prefilter_replacement_rate postfilter_replacement_rate rep

0 30003226 27/2/2123
08:26:00 CVVHDF -44.0 120.0 180.0 0.0 Prismasate K2 1000.0 0.0 ... 1800.0 NaN

1 30003226 27/2/2123
08:27:00 CVVHDF NaN NaN 1810.0 0.0 Prismasate K2 1000.0 NaN ... 1800.0 NaN

2 30003226 27/2/2123
09:00:00 None NaN NaN NaN NaN None NaN NaN ... NaN NaN

3 30003226 27/2/2123
10:00:00 None -45.0 120.0 180.0 NaN Prismasate K2 1000.0 -25.0 ... 1800.0 NaN

4 30003226 27/2/2123
11:00:00 None NaN NaN NaN NaN None NaN NaN ... NaN NaN

5 rows × 24 columns

crrt.shape

(475214, 24)

crrt['charttime'] = pd.to_datetime(crrt['charttime'], dayfirst=True)
crrt['charttime'] = crrt['charttime'].astype('datetime64[ns]')

In []:

Out[]:

In []:

Out[]:

In []:

Out[]:

In []:

In []:

In []:

In []:

Out[]:

In []:

Out[]:

In []:

In []:

In []:

In []:

Out[]:

In []:

Out[]:

In []:

Out[]:

In []:

Out[]:

In []:

Out[]:

In []:

Out[]:

In []:

2025/8/12 19:48 MIMIC_saki

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/MIMIC_saki.html 20/26

crrt=crrt[['stay_id','charttime']]

crrt= crrt.drop_duplicates()

crrt.head()

stay_id charttime

0 30003226 2123-02-27 08:26:00

1 30003226 2123-02-27 08:27:00

2 30003226 2123-02-27 09:00:00

3 30003226 2123-02-27 10:00:00

4 30003226 2123-02-27 11:00:00

crrt.shape

(475214, 2)

crrt['stay_id'] = crrt['stay_id'].astype(int)

df20a=df20[['stay_id','aki_charttime','window_start7']]

crrta = df20a.merge(crrt, on='stay_id', how='inner')

crrta.head()

stay_id aki_charttime window_start7 charttime

0 34100191 2196-02-25 00:00:00 2196-03-03 00:00:00 2196-02-26 01:00:00

1 34100191 2196-02-25 00:00:00 2196-03-03 00:00:00 2196-02-26 02:00:00

2 34100191 2196-02-25 00:00:00 2196-03-03 00:00:00 2196-02-26 02:03:00

3 34100191 2196-02-25 00:00:00 2196-03-03 00:00:00 2196-02-26 03:00:00

4 34100191 2196-02-25 00:00:00 2196-03-03 00:00:00 2196-02-26 04:00:00

def assign_crrt_value(row):
 if row['aki_charttime'] <= row['charttime'] < row['window_start7']:
 return 1
 elif row['charttime'] < row['aki_charttime']:
 return -1
 else:
 return 0

crrta['CRRT'] = crrta.apply(assign_crrt_value, axis=1)

crrta.head()

stay_id aki_charttime window_start7 charttime CRRT

0 34100191 2196-02-25 00:00:00 2196-03-03 00:00:00 2196-02-26 01:00:00 1

1 34100191 2196-02-25 00:00:00 2196-03-03 00:00:00 2196-02-26 02:00:00 1

2 34100191 2196-02-25 00:00:00 2196-03-03 00:00:00 2196-02-26 02:03:00 1

3 34100191 2196-02-25 00:00:00 2196-03-03 00:00:00 2196-02-26 03:00:00 1

4 34100191 2196-02-25 00:00:00 2196-03-03 00:00:00 2196-02-26 04:00:00 1

crrt1= crrta.query('CRRT == 1')

crrt2=crrt1[['stay_id','CRRT']]

crrt3= crrt2.drop_duplicates()

crrt3.shape

(530, 2)

df21 = df20.merge(crrt3, on=['stay_id'], how='left')

df21['CRRT'].fillna(0, inplace=True)

df21.shape

(10269, 105)

df21['CRRT'].value_counts()

CRRT
0.0 9739
1.0 530
Name: count, dtype: int64

ventilator= pd.read_parquet(r'E:\MIMIC\MIMICIV3.1_Parquet\MIMIC_derived\ventilation.parquet')
ventilator.head()

stay_id starttime endtime ventilation_status

0 32324375 28/1/2135 00:13:00 28/1/2135 01:00:00 SupplementalOxygen

1 31109006 24/8/2187 00:00:00 24/8/2187 08:00:00 SupplementalOxygen

2 30982821 12/7/2138 19:00:00 13/7/2138 12:00:00 InvasiveVent

3 31612054 12/9/2116 07:00:00 13/9/2116 05:00:00 SupplementalOxygen

4 31045843 22/1/2130 08:24:00 5/2/2130 10:00:00 InvasiveVent

ventilator['starttime'] = pd.to_datetime(ventilator['starttime'], dayfirst=True)
ventilator['starttime'] = ventilator['starttime'].astype('datetime64[ns]')
ventilator['endtime'] = pd.to_datetime(ventilator['endtime'], dayfirst=True)
ventilator['endtime'] = ventilator['endtime'].astype('datetime64[ns]')

ventilator = ventilator.drop_duplicates(subset=['stay_id', 'starttime'])

ventilator.head()

In []:

In []:

In []:

Out[]:

In []:

Out[]:

In []:

In []:

In []:

In []:

Out[]:

In []:

In []:

Out[]:

In []:

In []:

In []:

In []:

Out[]:

In []:

In []:

In []:

Out[]:

In []:

Out[]:

In []:

Out[]:

In []:

In []:

In []:

2025/8/12 19:48 MIMIC_saki

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/MIMIC_saki.html 21/26

stay_id starttime endtime ventilation_status

0 32324375 2135-01-28 00:13:00 2135-01-28 01:00:00 SupplementalOxygen

1 31109006 2187-08-24 00:00:00 2187-08-24 08:00:00 SupplementalOxygen

2 30982821 2138-07-12 19:00:00 2138-07-13 12:00:00 InvasiveVent

3 31612054 2116-09-12 07:00:00 2116-09-13 05:00:00 SupplementalOxygen

4 31045843 2130-01-22 08:24:00 2130-02-05 10:00:00 InvasiveVent

unique_ventilation_statuses = ventilator['ventilation_status'].unique()
unique_ventilation_statuses.tolist()

['SupplementalOxygen',
 'InvasiveVent',
 'NonInvasiveVent',
 'HFNC',
 'Tracheostomy',
 'None']

ventilator= ventilator[ventilator['ventilation_status'] != 'SupplementalOxygen']
ventilator= ventilator[ventilator['ventilation_status'] != 'HFNC']
ventilator= ventilator[ventilator['ventilation_status'] != 'Tracheostomy']
ventilator= ventilator[ventilator['ventilation_status'] != 'None']

ventilator.head()

stay_id starttime endtime ventilation_status

2 30982821 2138-07-12 19:00:00 2138-07-13 12:00:00 InvasiveVent

4 31045843 2130-01-22 08:24:00 2130-02-05 10:00:00 InvasiveVent

6 30965732 2159-01-22 23:00:00 2159-01-23 13:00:00 NonInvasiveVent

8 30599145 2155-01-14 11:00:00 2155-01-23 08:00:00 InvasiveVent

14 30299191 2154-04-21 22:20:00 2154-04-23 12:11:00 InvasiveVent

ventilator.shape

(50837, 4)

ventilator['stay_id'] = ventilator['stay_id'].astype(int)

df21a=df21[['stay_id','aki_charttime','window_start7']]

ventilator1 = df21a.merge(ventilator, on='stay_id', how='inner')

ventilator1['Mechanical ventilation'] = (
 (ventilator1['aki_charttime'] < ventilator1['starttime']) & (ventilator1['starttime'] < ventilator1['window_start7'])
) | (
 (ventilator1['aki_charttime'] < ventilator1['endtime']) & (ventilator1['endtime'] < ventilator1['window_start7'])
) | (
 (ventilator1['starttime'] < ventilator1['aki_charttime']) & (ventilator1['window_start7'] < ventilator1['endtime'])
)

ventilator2 = ventilator1[ventilator1['Mechanical ventilation'] == True]

ventilator2.head()

stay_id aki_charttime window_start7 starttime endtime ventilation_status Mechanical ventilation

0 37510196 2131-01-12 19:00:00 2131-01-19 19:00:00 2131-01-12 21:00:00 2131-01-13 04:00:00 NonInvasiveVent True

1 37510196 2131-01-12 19:00:00 2131-01-19 19:00:00 2131-01-16 10:00:00 2131-01-19 18:40:00 InvasiveVent True

2 37510196 2131-01-12 19:00:00 2131-01-19 19:00:00 2131-01-13 04:00:00 2131-01-14 07:00:00 InvasiveVent True

4 36753294 2141-05-23 17:00:00 2141-05-30 17:00:00 2141-05-23 20:22:00 2141-05-24 05:00:00 NonInvasiveVent True

5 32128372 2137-02-26 06:00:00 2137-03-05 06:00:00 2137-02-25 23:37:00 2137-02-28 11:00:00 InvasiveVent True

ventilator3= ventilator2.groupby('stay_id')['starttime'].idxmin()
ventilator4= ventilator2.loc[ventilator3]

ventilator4.shape

(5845, 7)

ventilator4.stay_id.nunique()

5845

df22 = df21.merge(ventilator4[['stay_id','Mechanical ventilation']], on=['stay_id'], how='left')
df22.head()

subject_id stay_id oasis sirs apsiii weight height heart_rate sbp dbp ... WBC1 gcs crp BMI urineoutput_24hr ACEI/ARB scr_min ckd CRRT Mechanical ventilation

0 10000690 37081114 41 3 52 55.3 NaN 79.0 107.0 63.0 ... 7.5 15.0 NaN NaN 815.0 1 0.6 0 0.0 NaN

1 10001884 37510196 35 3 51 65.0 157.0 76.0 127.0 73.0 ... 12.0 15.0 NaN 26.37 1655.0 0 0.5 0 0.0 True

2 10002155 31090461 26 3 52 48.0 NaN 94.0 118.0 51.0 ... 9.5 15.0 NaN NaN 3500.0 0 2.1 1 0.0 NaN

3 10002443 35044219 24 4 41 156.1 178.0 92.0 121.0 79.0 ... 15.9 15.0 NaN 49.27 3450.0 0 0.6 0 0.0 NaN

4 10002495 36753294 32 3 54 64.1 170.0 114.0 160.0 78.0 ... 36.8 15.0 NaN 22.18 3400.0 1 1.1 0 0.0 True

5 rows × 106 columns

df22['Mechanical ventilation'] = df22['Mechanical ventilation'].fillna(False)

df22.shape

(10269, 106)

sum(df22['Mechanical ventilation'] == 1)

5845

vasoactive_agent= pd.read_parquet(r'E:\MIMIC\MIMICIV3.1_Parquet\MIMIC_derived\vasoactive_agent.parquet')
vasoactive_agent.head()

Out[]:

In []:

Out[]:

In []:

In []:

Out[]:

In []:

Out[]:

In []:

In []:

In []:

In []:

In []:

In []:

Out[]:

In []:

In []:

Out[]:

In []:

Out[]:

In []:

Out[]:

In []:

In []:

Out[]:

In []:

Out[]:

In []:

2025/8/12 19:48 MIMIC_saki

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/MIMIC_saki.html 22/26

stay_id starttime endtime dopamine epinephrine norepinephrine phenylephrine vasopressin dobutamine milrinone

0 30000484 15/1/2136 06:39:00 15/1/2136 07:00:00 NaN NaN NaN NaN NaN 1.000174 NaN

1 30000484 15/1/2136 07:00:00 15/1/2136 09:15:00 NaN NaN NaN NaN NaN 2.000348 NaN

2 30000484 15/1/2136 09:15:00 15/1/2136 09:40:00 NaN NaN NaN NaN NaN NaN NaN

3 30000484 15/1/2136 09:40:00 15/1/2136 17:42:00 5.003784 NaN NaN NaN NaN NaN NaN

4 30000484 15/1/2136 17:42:00 15/1/2136 21:02:00 2.501892 NaN NaN NaN NaN NaN NaN

vasoactive_agent['starttime'] = pd.to_datetime(vasoactive_agent['starttime'], dayfirst=True)
vasoactive_agent['starttime'] = vasoactive_agent['starttime'].astype('datetime64[ns]')
vasoactive_agent['endtime'] = pd.to_datetime(vasoactive_agent['endtime'], dayfirst=True)
vasoactive_agent['endtime'] = vasoactive_agent['endtime'].astype('datetime64[ns]')

vasoactive_agent = vasoactive_agent.drop_duplicates(subset=['stay_id', 'starttime'])

vasoactive_agent['stay_id'] = vasoactive_agent['stay_id'].astype(int)

vasoactive_agent1 = df21a.merge(vasoactive_agent, on='stay_id', how='inner')

vasoactive_agent1.head()

stay_id aki_charttime window_start7 starttime endtime dopamine epinephrine norepinephrine phenylephrine vasopressin dobutamine milrinone

0 37081114 2150-11-03 09:00:00 2150-11-10 09:00:00 2150-11-02 20:00:00 2150-11-02 22:45:00 NaN NaN NaN 0.600106 NaN NaN NaN

1 37081114 2150-11-03 09:00:00 2150-11-10 09:00:00 2150-11-02 22:45:00 2150-11-02 23:36:00 NaN NaN NaN 0.499987 NaN NaN NaN

2 37081114 2150-11-03 09:00:00 2150-11-10 09:00:00 2150-11-02 23:36:00 2150-11-03 00:35:00 NaN NaN NaN 0.400031 NaN NaN NaN

3 37081114 2150-11-03 09:00:00 2150-11-10 09:00:00 2150-11-03 00:35:00 2150-11-03 01:07:00 NaN NaN NaN 0.299991 NaN NaN NaN

4 37081114 2150-11-03 09:00:00 2150-11-10 09:00:00 2150-11-03 01:07:00 2150-11-03 02:03:00 NaN NaN NaN 0.200016 NaN NaN NaN

vasoactive_agent1['vasoactive_agent'] = (
 (vasoactive_agent1['aki_charttime'] < vasoactive_agent1['starttime']) & (vasoactive_agent1['starttime'] < vasoactive_agent1['window_start7'])
) | (
 (vasoactive_agent1['aki_charttime'] < vasoactive_agent1['endtime']) & (vasoactive_agent1['endtime'] < vasoactive_agent1['window_start7'])
) | (
 (vasoactive_agent1['starttime'] < vasoactive_agent1['aki_charttime']) & (vasoactive_agent1['window_start7'] < vasoactive_agent1['endtime'])
)

vasoactive_agent2 = vasoactive_agent1[vasoactive_agent1['vasoactive_agent'] == True]

vasoactive_agent3= vasoactive_agent2.groupby('stay_id')['starttime'].idxmin()
vasoactive_agent4= vasoactive_agent2.loc[vasoactive_agent3]

df23= df22.merge(vasoactive_agent4[['stay_id','vasoactive_agent']], on=['stay_id'], how='left')
df23.head()

subject_id stay_id oasis sirs apsiii weight height heart_rate sbp dbp ... gcs crp BMI urineoutput_24hr ACEI/ARB scr_min ckd CRRT Mechanical
ventilation vasoactive_agent

0 10000690 37081114 41 3 52 55.3 NaN 79.0 107.0 63.0 ... 15.0 NaN NaN 815.0 1 0.6 0 0.0 False NaN

1 10001884 37510196 35 3 51 65.0 157.0 76.0 127.0 73.0 ... 15.0 NaN 26.37 1655.0 0 0.5 0 0.0 True NaN

2 10002155 31090461 26 3 52 48.0 NaN 94.0 118.0 51.0 ... 15.0 NaN NaN 3500.0 0 2.1 1 0.0 False NaN

3 10002443 35044219 24 4 41 156.1 178.0 92.0 121.0 79.0 ... 15.0 NaN 49.27 3450.0 0 0.6 0 0.0 False NaN

4 10002495 36753294 32 3 54 64.1 170.0 114.0 160.0 78.0 ... 15.0 NaN 22.18 3400.0 1 1.1 0 0.0 True True

5 rows × 107 columns

df23['vasoactive_agent'] = df23['vasoactive_agent'].fillna(False)

df23.shape

(10269, 107)

sum(df23['vasoactive_agent'] == 1)

4337

lods= pd.read_parquet(r'E:\MIMIC\MIMICIV3.1_Parquet\MIMIC_derived\lods.parquet')
lods.head()

subject_id hadm_id stay_id lods neurologic cardiovascular renal pulmonary hematologic hepatic

0 12466550 23998182 30000153 3 1.0 0.0 1.0 1 0.0 0.0

1 13180007 27543152 30000213 8 0.0 0.0 5.0 3 0.0 0.0

2 18421337 22413411 30000484 10 5.0 1.0 3.0 0 0.0 1.0

3 12207593 22795209 30000646 2 0.0 1.0 1.0 0 0.0 0.0

4 15726459 22744101 30000831 10 3.0 1.0 5.0 1 0.0 0.0

lods=lods[['subject_id','stay_id','lods']]

lods.head()

subject_id stay_id lods

0 12466550 30000153 3

1 13180007 30000213 8

2 18421337 30000484 10

3 12207593 30000646 2

4 15726459 30000831 10

lods.shape

(94458, 3)

lods.stay_id.nunique()

94458

df23['stay_id'] = df23['stay_id'].astype('Int64')
lods['stay_id'] = lods['stay_id'].astype('Int64')

df24= df23.merge(lods, on=['subject_id', 'stay_id'], how='left')

df24.shape

Out[]:

In []:

In []:

In []:

In []:

In []:

Out[]:

In []:

In []:

In []:

In []:

Out[]:

In []:

In []:

Out[]:

In []:

Out[]:

In []:

Out[]:

In []:

In []:

Out[]:

In []:

Out[]:

In []:

Out[]:

In []:

In []:

In []:

2025/8/12 19:48 MIMIC_saki

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/MIMIC_saki.html 23/26

(10269, 108)

df24.stay_id.nunique()

10269

df24.subject_id.nunique()

10269

df24.hadm_id.nunique()

10269

df24.columns

print(df24['scr_min'].value_counts().to_string())

msno.bar(df24)

数据筛选
final1=df24

final1.shape

(10269, 108)

final1.subject_id.nunique()

10269

final1.stay_id.nunique()

10269

final1.hadm_id.nunique()

10269

print(list(final1.columns))

['subject_id', 'stay_id', 'oasis', 'sirs', 'apsiii', 'weight', 'height', 'heart_rate', 'sbp', 'dbp', 'mbp', 'resp_rate', 'temperature', 'spo2', 'hadm_id', 'age_score', 'myocardial_infarct', 'c
ongestive_heart_failure', 'peripheral_vascular_disease', 'cerebrovascular_disease', 'dementia', 'chronic_pulmonary_disease', 'rheumatic_disease', 'peptic_ulcer_disease', 'mild_liver_disease',
'diabetes_without_cc', 'diabetes_with_cc', 'paraplegia', 'renal_disease', 'malignant_cancer', 'severe_liver_disease', 'metastatic_solid_tumor', 'aids', 'charlson_comorbidity_index', 'aki_chart
time_max', 'aki_charttime', 'aki_stage', 'gender', 'dod', 'admittime', 'dischtime', 'admission_age', 'race', 'icu_intime', 'icu_outtime', 'sofa_time', 'sofa_score', 'infection_time', 'los_anti
-infe', 'max_time', 'window_end', 'saki', 'los_aki', 'HTN', 'AKD', 'los_icu-aki', 'window_start7', 'window_start-1', 'los_dod', 'po2', 'pco2', 'aado2_calc', 'pao2fio2ratio', 'ph', 'baseexces
s', 'totalco2', 'lactate', 'wbc', 'basophils_abs', 'eosinophils_abs', 'lymphocytes_abs', 'monocytes_abs', 'neutrophils_abs', 'troponin_t', 'ck_mb', 'ntprobnp', 'aniongap', 'bicarbonate', 'bu
n', 'calcium', 'chloride', 'creatinine', 'glucose', 'sodium', 'potassium', 'inr', 'pt', 'ptt', 'hematocrit', 'hemoglobin', 'mch', 'mchc', 'mcv', 'platelet', 'rbc', 'rdw', 'WBC1', 'gcs', 'crp',
'BMI', 'urineoutput_24hr', 'ACEI/ARB', 'scr_min', 'ckd', 'CRRT', 'Mechanical ventilation', 'vasoactive_agent', 'lods']

missing_percentages = final1.isnull().mean()

找出缺失数据超过50%的列
columns_to_drop = missing_percentages[missing_percentages > 0.30].index

删除这些列
final2 = final1.drop(columns=columns_to_drop)

final2.shape

(10269, 93)

final2 = final2.drop(['height', 'BMI'], axis=1)

msno.bar(final2)

计算每行的缺失值比例
missing_ratio_per_row = final2.isna().mean(axis=1)

保留缺失比例≤10%的行
final3 = final2[missing_ratio_per_row <= 0.15]

final3.shape

(10234, 91)

msno.bar(final3)

final3.AKD.value_counts()

AKD
0.0 7765
1.0 2469
Name: count, dtype: int64

print(list(final3.columns))

['subject_id', 'stay_id', 'oasis', 'sirs', 'apsiii', 'weight', 'heart_rate', 'sbp', 'dbp', 'mbp', 'resp_rate', 'temperature', 'spo2', 'hadm_id', 'age_score', 'myocardial_infarct', 'congestive_
heart_failure', 'peripheral_vascular_disease', 'cerebrovascular_disease', 'dementia', 'chronic_pulmonary_disease', 'rheumatic_disease', 'peptic_ulcer_disease', 'mild_liver_disease', 'diabetes_
without_cc', 'diabetes_with_cc', 'paraplegia', 'renal_disease', 'malignant_cancer', 'severe_liver_disease', 'metastatic_solid_tumor', 'aids', 'charlson_comorbidity_index', 'aki_charttime_max',
'aki_charttime', 'aki_stage', 'gender', 'admittime', 'dischtime', 'admission_age', 'race', 'icu_intime', 'icu_outtime', 'sofa_time', 'sofa_score', 'infection_time', 'los_anti-infe', 'max_tim
e', 'window_end', 'saki', 'los_aki', 'HTN', 'AKD', 'los_icu-aki', 'window_start7', 'window_start-1', 'po2', 'pco2', 'ph', 'baseexcess', 'totalco2', 'aniongap', 'bicarbonate', 'bun', 'calcium',
'chloride', 'creatinine', 'glucose', 'sodium', 'potassium', 'inr', 'pt', 'ptt', 'hematocrit', 'hemoglobin', 'mch', 'mchc', 'mcv', 'platelet', 'rbc', 'rdw', 'WBC1', 'gcs', 'urineoutput_24hr',
'ACEI/ARB', 'scr_min', 'ckd', 'CRRT', 'Mechanical ventilation', 'vasoactive_agent', 'lods']

columns_to_drop = [col for col in final3.columns if '_charttime' in col]
final4 = final3.drop(columns=columns_to_drop)

final4.shape

(10234, 89)

columns_to_drop = [col for col in final4.columns if '_time' in col]
final5 = final4.drop(columns=columns_to_drop)

final5.shape

(10234, 86)

final5.head()

Out[]:

In []:

Out[]:

In []:

Out[]:

In []:

Out[]:

In []:

In []:

In []:

In []:

In []:

Out[]:

In []:

Out[]:

In []:

Out[]:

In []:

Out[]:

In []:

In []:

In []:

Out[]:

In []:

In []:

In []:

In []:

Out[]:

In []:

In []:

Out[]:

In []:

In []:

In []:

Out[]:

In []:

In []:

Out[]:

In []:

2025/8/12 19:48 MIMIC_saki

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/MIMIC_saki.html 24/26

subject_id stay_id oasis sirs apsiii weight heart_rate sbp dbp mbp ... WBC1 gcs urineoutput_24hr ACEI/ARB scr_min ckd CRRT Mechanical
ventilation vasoactive_agent lods

0 10000690 37081114 41 3 52 55.3 79.0 107.0 63.0 71.0 ... 7.5 15.0 815.0 1 0.6 0 0.0 False False 5

1 10001884 37510196 35 3 51 65.0 76.0 127.0 73.0 87.0 ... 12.0 15.0 1655.0 0 0.5 0 0.0 True False 7

2 10002155 31090461 26 3 52 48.0 94.0 118.0 51.0 68.0 ... 9.5 15.0 3500.0 0 2.1 1 0.0 False False 6

3 10002443 35044219 24 4 41 156.1 92.0 121.0 79.0 92.0 ... 15.9 15.0 3450.0 0 0.6 0 0.0 False False 2

4 10002495 36753294 32 3 54 64.1 114.0 160.0 78.0 94.0 ... 36.8 15.0 3400.0 1 1.1 0 0.0 True True 4

5 rows × 86 columns

print(list(final5.columns))

['subject_id', 'stay_id', 'oasis', 'sirs', 'apsiii', 'weight', 'heart_rate', 'sbp', 'dbp', 'mbp', 'resp_rate', 'temperature', 'spo2', 'hadm_id', 'age_score', 'myocardial_infarct', 'congestive_
heart_failure', 'peripheral_vascular_disease', 'cerebrovascular_disease', 'dementia', 'chronic_pulmonary_disease', 'rheumatic_disease', 'peptic_ulcer_disease', 'mild_liver_disease', 'diabetes_
without_cc', 'diabetes_with_cc', 'paraplegia', 'renal_disease', 'malignant_cancer', 'severe_liver_disease', 'metastatic_solid_tumor', 'aids', 'charlson_comorbidity_index', 'aki_stage', 'gende
r', 'admittime', 'dischtime', 'admission_age', 'race', 'icu_intime', 'icu_outtime', 'sofa_score', 'los_anti-infe', 'window_end', 'saki', 'los_aki', 'HTN', 'AKD', 'los_icu-aki', 'window_start
7', 'window_start-1', 'po2', 'pco2', 'ph', 'baseexcess', 'totalco2', 'aniongap', 'bicarbonate', 'bun', 'calcium', 'chloride', 'creatinine', 'glucose', 'sodium', 'potassium', 'inr', 'pt', 'pt
t', 'hematocrit', 'hemoglobin', 'mch', 'mchc', 'mcv', 'platelet', 'rbc', 'rdw', 'WBC1', 'gcs', 'urineoutput_24hr', 'ACEI/ARB', 'scr_min', 'ckd', 'CRRT', 'Mechanical ventilation', 'vasoactive_a
gent', 'lods']

final6 = final5.drop(['admittime', 'dischtime','race', 'icu_intime', 'icu_outtime','window_end','window_start7','window_start-1','WBC1'], axis=1)

print(list(final6.columns))

['subject_id', 'stay_id', 'oasis', 'sirs', 'apsiii', 'weight', 'heart_rate', 'sbp', 'dbp', 'mbp', 'resp_rate', 'temperature', 'spo2', 'hadm_id', 'age_score', 'myocardial_infarct', 'congestive_
heart_failure', 'peripheral_vascular_disease', 'cerebrovascular_disease', 'dementia', 'chronic_pulmonary_disease', 'rheumatic_disease', 'peptic_ulcer_disease', 'mild_liver_disease', 'diabetes_
without_cc', 'diabetes_with_cc', 'paraplegia', 'renal_disease', 'malignant_cancer', 'severe_liver_disease', 'metastatic_solid_tumor', 'aids', 'charlson_comorbidity_index', 'aki_stage', 'gende
r', 'admission_age', 'sofa_score', 'los_anti-infe', 'saki', 'los_aki', 'HTN', 'AKD', 'los_icu-aki', 'po2', 'pco2', 'ph', 'baseexcess', 'totalco2', 'aniongap', 'bicarbonate', 'bun', 'calcium',
'chloride', 'creatinine', 'glucose', 'sodium', 'potassium', 'inr', 'pt', 'ptt', 'hematocrit', 'hemoglobin', 'mch', 'mchc', 'mcv', 'platelet', 'rbc', 'rdw', 'gcs', 'urineoutput_24hr', 'ACEI/AR
B', 'scr_min', 'ckd', 'CRRT', 'Mechanical ventilation', 'vasoactive_agent', 'lods']

final6['diabetes'] = final6.apply(lambda row: 1 if 1 in [row['diabetes_without_cc'], row['diabetes_with_cc']] else 0, axis=1)

删除原本的两列
final6.drop(['diabetes_without_cc', 'diabetes_with_cc'], axis=1, inplace=True)

final6.shape

(10234, 76)

final6['liver_disease'] = final6.apply(lambda row: 1 if 1 in [row['severe_liver_disease'], row['mild_liver_disease']] else 0, axis=1)

删除原本的两列
final6.drop(['severe_liver_disease', 'mild_liver_disease'], axis=1, inplace=True)

final6.malignant_cancer.value_counts()

malignant_cancer
0 9003
1 1231
Name: count, dtype: int64

final6.shape

(10234, 75)

final6.rename(columns={
 'saki': 'SA-AKI',
 'admission_age': 'age',
 'crrt': 'CRRT',
 'oasis': 'OASIS',
 'sirs': 'SIRS',
 'apsiii': 'APS III',
 'diabetes': 'DM',
 'sofa_score': 'SOFA score',
 'aki_stage': 'AKI stage',
 'ckd': 'CKD',
 'aids': 'AIDS',
 'lods': 'LODS',
}, inplace=True)

print(list(final6.columns))

['subject_id', 'stay_id', 'OASIS', 'SIRS', 'APS III', 'weight', 'heart_rate', 'sbp', 'dbp', 'mbp', 'resp_rate', 'temperature', 'spo2', 'hadm_id', 'age_score', 'myocardial_infarct', 'congestive
_heart_failure', 'peripheral_vascular_disease', 'cerebrovascular_disease', 'dementia', 'chronic_pulmonary_disease', 'rheumatic_disease', 'peptic_ulcer_disease', 'paraplegia', 'renal_disease',
'malignant_cancer', 'metastatic_solid_tumor', 'AIDS', 'charlson_comorbidity_index', 'AKI stage', 'gender', 'age', 'SOFA score', 'los_anti-infe', 'SA-AKI', 'los_aki', 'HTN', 'AKD', 'los_icu-ak
i', 'po2', 'pco2', 'ph', 'baseexcess', 'totalco2', 'aniongap', 'bicarbonate', 'bun', 'calcium', 'chloride', 'creatinine', 'glucose', 'sodium', 'potassium', 'inr', 'pt', 'ptt', 'hematocrit', 'h
emoglobin', 'mch', 'mchc', 'mcv', 'platelet', 'rbc', 'rdw', 'gcs', 'urineoutput_24hr', 'ACEI/ARB', 'scr_min', 'CKD', 'CRRT', 'Mechanical ventilation', 'vasoactive_agent', 'LODS', 'DM', 'liver_
disease']

final6.drop(['los_aki','age_score','creatinine'], axis=1, inplace=True)

final6.shape

(10234, 72)

def convert_to_hours(time_str):
 try:
 # 将字符串转为 Timedelta 类型
 td = pd.to_timedelta(time_str)
 # 计算总秒数，再除以 3600 得到小时
 return td.total_seconds() / 3600
 except:
 return None # 异常值处理（如空值或无效格式）

应用转换函数到指定列
final6['Los_inf._AB'] = final6['los_anti-infe'].apply(convert_to_hours)
final6['Los_icu_aki'] = final6['los_icu-aki'].apply(convert_to_hours)

final6['Los_inf._AB'] = final6['Los_inf._AB'].apply(lambda x: 0 if x < 0 else x)
final6['Los_icu_aki'] = final6['Los_icu_aki'].apply(lambda x: 0 if x < 0 else x)
删除原始列（可选）
final6.drop(['los_anti-infe', 'los_icu-aki'], axis=1, inplace=True)

final6.shape

(10234, 72)

print(list(final6.columns))

['subject_id', 'stay_id', 'OASIS', 'SIRS', 'APS III', 'weight', 'heart_rate', 'sbp', 'dbp', 'mbp', 'resp_rate', 'temperature', 'spo2', 'hadm_id', 'myocardial_infarct', 'congestive_heart_failur
e', 'peripheral_vascular_disease', 'cerebrovascular_disease', 'dementia', 'chronic_pulmonary_disease', 'rheumatic_disease', 'peptic_ulcer_disease', 'paraplegia', 'renal_disease', 'malignant_ca
ncer', 'metastatic_solid_tumor', 'AIDS', 'charlson_comorbidity_index', 'AKI stage', 'gender', 'age', 'SOFA score', 'SA-AKI', 'HTN', 'AKD', 'po2', 'pco2', 'ph', 'baseexcess', 'totalco2', 'anion
gap', 'bicarbonate', 'bun', 'calcium', 'chloride', 'glucose', 'sodium', 'potassium', 'inr', 'pt', 'ptt', 'hematocrit', 'hemoglobin', 'mch', 'mchc', 'mcv', 'platelet', 'rbc', 'rdw', 'gcs', 'uri
neoutput_24hr', 'ACEI/ARB', 'scr_min', 'CKD', 'CRRT', 'Mechanical ventilation', 'vasoactive_agent', 'LODS', 'DM', 'liver_disease', 'Los_inf._AB', 'Los_icu_aki']

binary_cols = ['liver_disease', 'DM', 'vasoactive_agent','Mechanical ventilation','CRRT','CKD','ACEI/ARB',
 'myocardial_infarct', 'congestive_heart_failure', 'peripheral_vascular_disease', 'cerebrovascular_disease', 'dementia',
 'chronic_pulmonary_disease', 'rheumatic_disease', 'peptic_ulcer_disease', 'paraplegia', 'renal_disease', 'malignant_cancer',

Out[]:

In []:

In []:

In []:

In []:

In []:

Out[]:

In []:

In []:

Out[]:

In []:

Out[]:

In []:

In []:

In []:

In []:

Out[]:

In []:

In []:

Out[]:

In []:

In []:

2025/8/12 19:48 MIMIC_saki

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/MIMIC_saki.html 25/26

 'metastatic_solid_tumor', 'AIDS','HTN', 'AKD',]
final6.replace({col: {0: 'NO', 1: 'YES'} for col in binary_cols}, inplace=True)

binary_cols = ['vasoactive_agent','Mechanical ventilation',]
final6.replace({col: {False: 'NO', True: 'YES'} for col in binary_cols}, inplace=True)

final6.rename(columns={'baseexcess':'Base Excess'}, inplace=True)

final6['calcium'] = final6['calcium'] / 2.54

final6.columns = [col[0].upper() + col[1:] if col else col for col in final6.columns]

print(list(final6.columns))

['Subject_id', 'Stay_id', 'OASIS', 'SIRS', 'APS III', 'Weight', 'Heart_rate', 'Sbp', 'Dbp', 'Mbp', 'Resp_rate', 'Temperature', 'Spo2', 'Hadm_id', 'Myocardial_infarct', 'Congestive_heart_failur
e', 'Peripheral_vascular_disease', 'Cerebrovascular_disease', 'Dementia', 'Chronic_pulmonary_disease', 'Rheumatic_disease', 'Peptic_ulcer_disease', 'Paraplegia', 'Renal_disease', 'Malignant_ca
ncer', 'Metastatic_solid_tumor', 'AIDS', 'Charlson_comorbidity_index', 'AKI stage', 'Gender', 'Age', 'SOFA score', 'SA-AKI', 'HTN', 'AKD', 'Po2', 'Pco2', 'Ph', 'Base Excess', 'Totalco2', 'Anio
ngap', 'Bicarbonate', 'Bun', 'Calcium', 'Chloride', 'Glucose', 'Sodium', 'Potassium', 'Inr', 'Pt', 'Ptt', 'Hematocrit', 'Hemoglobin', 'Mch', 'Mchc', 'Mcv', 'Platelet', 'Rbc', 'Rdw', 'Gcs', 'Ur
ineoutput_24hr', 'ACEI/ARB', 'Scr_min', 'CKD', 'CRRT', 'Mechanical ventilation', 'Vasoactive_agent', 'LODS', 'DM', 'Liver_disease', 'Los_inf._AB', 'Los_icu_aki']

column_names_to_upper = ['Gcs','Inr','Pt','Ptt','Mch','Mchc', 'Mcv', 'Rbc', 'Rdw', 'Wbc', 'Sbp', 'Dbp', 'Mbp','Ph','Bun']
final6.columns = [col.upper() if col in column_names_to_upper else col for col in final6.columns]

final6['Hemoglobin'] = final6['Hemoglobin'] * 10

final6['Glucose'] = final6['Glucose'] / 18.0182

final6['Scr_min'] = final6['Scr_min'] * 88.4

final6['NLR'] = final6['Neutrophils_abs'] / final6['Lymphocytes_abs'].replace(0, np.nan)

计算 PIV，避免除以零
final6['PIV'] = (final6['Neutrophils_abs'] * final6['Platelet'] * final6['Monocytes_abs']) / final6['Lymphocytes_abs'].replace(0, np.nan)

检查并处理无穷大或过大的值
final6.replace([np.inf, -np.inf], np.nan, inplace=True)

print(list(final6.columns))

['Subject_id', 'Stay_id', 'OASIS', 'SIRS', 'APS III', 'Weight', 'Heart_rate', 'SBP', 'DBP', 'MBP', 'Resp_rate', 'Temperature', 'Spo2', 'Hadm_id', 'Myocardial_infarct', 'Congestive_heart_failur
e', 'Peripheral_vascular_disease', 'Cerebrovascular_disease', 'Dementia', 'Chronic_pulmonary_disease', 'Rheumatic_disease', 'Peptic_ulcer_disease', 'Paraplegia', 'Renal_disease', 'Malignant_ca
ncer', 'Metastatic_solid_tumor', 'AIDS', 'Charlson_comorbidity_index', 'AKI stage', 'Gender', 'Age', 'SOFA score', 'SA-AKI', 'HTN', 'AKD', 'Po2', 'Pco2', 'PH', 'Base Excess', 'Totalco2', 'Anio
ngap', 'Bicarbonate', 'BUN', 'Calcium', 'Chloride', 'Glucose', 'Sodium', 'Potassium', 'INR', 'PT', 'PTT', 'Hematocrit', 'Hemoglobin', 'MCH', 'MCHC', 'MCV', 'Platelet', 'RBC', 'RDW', 'GCS', 'Ur
ineoutput_24hr', 'ACEI/ARB', 'Scr_min', 'CKD', 'CRRT', 'Mechanical ventilation', 'Vasoactive_agent', 'LODS', 'DM', 'Liver_disease', 'Los_inf._AB', 'Los_icu_aki']

final6['BUN'] = final6['BUN'] * 0.357

以下是修改指定列，保留小数点后2位的代码
columns_to_round = ['Los_inf._AB','Los_icu_aki','Age','PH','Scr_min','Calcium','Chloride','Glucose','BUN','Pao2fio2ratio']
for col in columns_to_round:
 if col in final6.columns: # 确保列名存在于 DataFrame 中
 final6[col] = final6[col].round(2)

现在 df 中的指定列已经保留了小数点后2位

msno.bar(final6)

final6.shape

(10234, 72)

final6.to_csv('250501重制版清洗后数据v1 saki.csv')

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

Out[]:

2025/8/12 19:48 MIMIC_saki

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/MIMIC_saki.html 26/26

