2025/8/12 19:50

saki_akd_shap

import pandas as pd
import numpy as np

df = pd.read_csv(r'E:\MIMIC\MIMIC BIG_DATA\MIMIC_BIG_DATA\case\stroke\250506H il i /& it 5 £ ¥ saki.csv')

df.head()
Unnamed: APS . . Mechanical
0 OASIS SIRS m Weight Heart rate SBP DBP MBP Resp rate Scr min CKD CRRT ventilation Vasoactive agent LODS DM Liver disease Los inf. AB Los icu aki
0 0 41 3 52 55.3 79.0 107.0 63.0 71.0 23.0 53.04 NO NO NO NO 5 NO NO 12.83 13.38
1 1 35 3 51 65.0 76.0 1270 73.0 87.0 26.0 4420 NO NO YES NO 7 NO NO 15.40 38.67
2 2 26 3 52 48.0 94.0 1180 51.0 68.0 18.0 185.64 YES NO NO NO 6 NO NO 13.50 1717
3 3 24 4 41 156.1 920 121.0 79.0 920 30.0 53.04 NO NO NO NO 2 VYES NO 5.07 31.67
4 4 32 3 54 64.1 1140 160.0 78.0 94.0 26.0 97.24 NO NO YES YES 4 YES NO 1.62 20.70
5 rows x 70 columns
df = df.drop(['Unnamed: ©'], axis=1)
print(list(df.columns))
["OASIS', 'SIRS', 'APS III', 'Weight', 'Heart_rate', 'SBP', 'DBP', 'MBP', 'Resp_rate', 'Temperature', 'Spo2', 'Myocardial_infarct', 'Congestive_heart_failure', 'Peripheral_vascular_disease’,
'Cerebrovascular_disease', 'Dementia‘', 'Chronic_pulmonary_disease', 'Rheumatic_disease', 'Peptic_ulcer_disease', 'Paraplegia’, 'Renal_disease', 'Malignant_cancer', 'Metastatic_solid_tumor', 'A
IDS', 'Charlson_comorbidity_index', 'AKI stage', 'Gender', 'Age', 'SOFA score', 'SA-AKI', 'HTN', 'AKD', 'Po2', 'Pco2', 'PH', 'Base Excess', 'Totalco2', 'Aniongap', 'Bicarbonate', 'BUN', 'Calci
um', 'Chloride', 'Glucose', 'Sodium', 'Potassium', 'INR', 'PT', 'PTT', ‘'Hematocrit', 'Hemoglobin', 'MCH', 'MCHC', 'MCV', 'Platelet', 'RBC', 'RDW', 'GCS', 'Urineoutput_24hr', 'ACEI/ARB', 'Scr_m
in', 'CKD', 'CRRT', 'Mechanical ventilation', 'Vasoactive_agent', 'LODS', 'DM', 'Liver_disease', 'Los_inf._ AB', 'Los_icu_aki']
columns_to_round = ['Los_inf. AB','Los_icu_aki','BMI','Age','PH','Calcium','Scr_min', 'Glucose’, 'Pao2fio2ratio’]
for col in columns_to_round:
if col in df.columns: # WifR%| %474 T DataFrame '
df[col] = df[col].round(2)
df.shape
(10234, 69)
new_columns= [
'OASIS', 'SIRS', 'APS III', 'Weight', 'Heart Rate', 'SBP', 'DBP', 'MBP', 'Resp Rate', 'Temperature', 'Sp02',
'Myocardial Infarct', 'Congestive Heart Failure', 'Peripheral Vascular Disease', 'Cerebrovascular Disease’,
'Dementia’, 'Chronic Pulmonary Disease', 'Rheumatic Disease', 'Peptic Ulcer Disease', 'Paraplegia’, 'Renal Disease’,
'Malignant Cancer', 'Metastatic Solid Tumor', 'AIDS', 'Charlson Comorbidity Index', 'AKI Stage', 'Gender', ‘'Age’,
'SOFA Score', 'SA-AKI', 'HTN', 'AKD', 'Pa02', 'PaC02', 'pH', 'Base Excess', 'Total C02', 'Anion Gap', 'Bicarbonate’,
'BUN', 'Calcium', 'Chloride', 'Glucose', 'Sodium', 'Potassium', 'INR', 'PT', 'PTT', 'Hematocrit', ‘'Hemoglobin',
'MCH', 'MCHC', 'MCV', 'Platelet', 'RBC', 'RDW', 'GCS', '24-hour Urine Output', "'ACEI/ARB', 'Scr Baseline', 'CKD', 'CRRT',
'Mechanical Ventilation', 'Vasoactive Agent', 'LODS', 'DM', 'Liver Disease', 'Los_inf. AB', 'Los_icu_aki'
]
B4
df.columns = new_columns
{TEIEE U K51 44
print(df.columns)
df.head()
df.shape
(10234, 69)
df . info()#R st 25 B 48 16 52 A & 1 A0 W] BE 1 Bl 2% 8 1) 2 .
df.shape
(10234, 69)
df.select_dtypes(include="'object').columns
df.describe()
pd.set_option('display.max rows', None) # Z/~FrG1T pd.set_option(‘display.max_columns', None) # ZB/~FrE%! pd.set option(‘display.width’, None) # APRE4HEERE
pd.set_option('display.max_colwidth', None) # A[RHI5IZE
I{EIERdescribe()75;
ALY escribe()/3;
df.describe(include="all")
print(list(df.columns))
["OASIS', 'SIRS', 'APS III', 'Weight', 'Heart Rate', 'SBP', 'DBP', 'MBP', 'Resp Rate', 'Temperature', 'Sp02', 'Myocardial Infarct', 'Congestive Heart Failure', 'Peripheral Vascular Disease',
'Cerebrovascular Disease', 'Dementia‘’, 'Chronic Pulmonary Disease', 'Rheumatic Disease', 'Peptic Ulcer Disease', 'Paraplegia’, 'Renal Disease', 'Malignant Cancer', 'Metastatic Solid Tumor', 'A
IDS', 'Charlson Comorbidity Index', 'AKI Stage', 'Gender', 'Age', 'SOFA Score', 'SA-AKI', 'HTN', 'AKD', 'Pa02', 'PaC02', 'pH', 'Base Excess', 'Total CO2', 'Anion Gap', 'Bicarbonate', 'BUN', 'C
alcium', 'Chloride', 'Glucose', 'Sodium', 'Potassium', 'INR', 'PT', 'PTT', 'Hematocrit', 'Hemoglobin', 'MCH', 'MCHC', 'MCV', 'Platelet', 'RBC', 'RDW', 'GCS', '24-hour Urine Output', 'ACEI/AR
B', 'Scr Baseline', 'CKD', 'CRRT', 'Mechanical Ventilation', 'Vasoactive Agent', 'LODS', 'DM', 'Liver Disease', 'Los_inf._AB', 'Los_icu_aki']

.

RI(EIRE

import matplotlib.pyplot as plt
from missingno import missingno as msno
msno.bar(df)

missing_percentages = df.isnull().mean()

R R OR L L 5e% 1) 7
columns_to_drop = missing percentages[missing percentages > 0.10].index

columns_to_drop

Index(['Pa02', 'PaC02', 'pH', 'Base Excess', 'Total C02'], dtype='object")

df= df.drop(columns=columns_to_drop)
df.shape

(10234, 64)

dfl=df

missing ratio_per_row = dfl.isna().mean(axis=1)

PR EH BRG] <10%11 17

file:///D:/System/Desktop/Prediction of AKD in SA-AKl/saki/saki_akd_shap.html

1/23

2025/8/12 19:50 saki_akd_shap

dfl= dfl[missing_ratio_per_row <= 0.10]
dfl.shape

(9778, 64)

msno.bar(df1)

ERIAEIEAN

A% FH A B0 78 Bk R AE

for column in dfl.columns:
mode_value = dfl[column].mode()[0] # HUARZELIMIZE —ME (WA Z At X HEHEE—1)
dfil[column] = dfl[column].fillna(mode_value)

WIRGR
print(dfl)

msno.bar(df1)

dfl.shape

(9778, 64)
dfl.select_dtypes(include="'object').columns
dfl.select_dtypes(include="'float64"').columns

dfl.select_dtypes(include="int64").columns

Index(['OASIS', 'SIRS', 'APS III', 'Charlson Comorbidity Index', 'AKI Stage',
'SOFA Score', 'LODS'],
dtype="object")

dfl.select_dtypes(include="int32').columns

Index([], dtype='object")

from missingno import missingno as msno
msno.bar(df1)

dfl.isnull().sum()

OASIS

SIRS

APS III
Weight
Heart Rate

OO0 000

LODS

DM

Liver Disease
Los_inf._AB
Los_icu_aki
Length: 64, dtype: int64

OO0 0000 -

one-hot¥Fi3:

dfl.select _dtypes(include='object')#7 {72515
cols = dfl.select_dtypes(include="object').columns
dfl.describe(include="all")

cols

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

for col in cols:#& —ME¥, B cols FIERTMENTLEK.
dfl[col] = le.fit_transform(dfi[col])

dfl[cols]
dfl.head()

df1.CRRT.value_counts()

CRRT
0 9262
1 516

Name: count, dtype: int64

df1['Vasoactive Agent'].value_counts()
Vasoactive Agent

0 5632

1 4146

Name: count, dtype: int64

count = dfl1[(dfl['Vasoactive Agent'] == 1) & (df1l['CRRT'] == 1)].shape[0]
count

393

dfl.head()

df1.to_csv(‘MIMIC saki.csv')

PEEREZE Yy (‘'outcome’ 5ll) FHFHIERE x (BRT ‘outcome’ FUZIMIRTEELEF)

df1['AKD']
dfl.drop('AKD',axis=1)

RZ/REMBERE

FHEZAFEXMETRIRAFE, KL (BRE) ZESEXMRNHE

X <
]

import matplotlib.pyplot as plt
from yellowbrick.features import Rank2D
import numpy as np

DR x A A0 S 1Y e
plt.rcParams.update({ 'font.size': 100})
plt.figure(figsize=(30, 30), dpi=300)

x = X.select_dtypes(include=[np.number])

file:///D:/System/Desktop/Prediction of AKD in SA-AKl/saki/saki_akd_shap.html 2/23

2025/8/12 19:50 saki_akd_shap

SEA AL W] AL AL 25 I 25 A A

visualizer = Rank2D(
features=x.columns,
algorithm="'pearson"',
title=None # 2% {5 /@

)
G R0 e KA

visualizer.fit(x, y)
visualizer.transform(x)

PR X R

ax = visualizer.ax

ax.spines['left'].set_color('black")
ax.spines['left'].set_linewidth(1.5)
ax.spines['bottom'].set_color('black")
ax.spines['bottom'].set_linewidth(1.5)
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)

% B R B A 21 B 4%
ax.grid(False)
ax.tick_params(axis='both', which="both', length=0)

U T AR il R A AR
ax.tick_params(axis='both', labelsize=20)

KEBH: Efinalizeni % TE K E
visualizer.finalize() # H&/EE TR (BFEIHEEK)

PRI 5% IF B R

cax = visualizer.ax.figure.axes[-1] # 3KHUFi(" 4%

D2 e

RBCURT PB4 E [Left, bottom, width, height]
pos = cax.get_position()

AN KR WA/ 50%, 46 /) 30%
new_width = pos.width * @.5 # % 48 Ny JE ki —2F
new_height = pos.height * 0.8 # =48 A5 KK 70%

PR E (REFE T

new_left = pos.x@ + (pos.width - new_width) / 2
new_bottom = pos.y® + (pos.height - new_height) / 2

BB I U 5 A B AR

cax.set_position([new_left, new_bottom, new_width, new_height])

WE B K TR
cax.tick params(labelsize=20) # ¥ & /il 4% 71k

1 H show() &7~ 45 51
visualizer.show()

file:///D:/System/Desktop/Prediction of AKD in SA-AKl/saki/saki_akd_shap.html 3/23

2025/8/12 19:50 saki_akd_shap

Pearson Ranking of 63 Features
OASIS 1.00
SIRS
APS 11l |
Weight
Heart Rate
SBP

DBP I
MBP 0.75

Resp Rate
Temperature
Sp02
Myocardial Infarct
Congestive Heart Failure
Peripheral Vascular Disease
Cerebrovascular Disease
Dementia 050
Chronic Pulmonary Disease
Rheumatic Disease
Peptic Ulcer Disease
Paraplegia
Renal Disease
Malignant Cancer
Metastatic Solid Tumor
AIDS 0.25
Charlson Comorbidity Index B

AKI Stage
Gender
Age |
SOFA Score
SA-AKI
HTN
Anion Gap 0.00

Bicarbonate B
BUN
Calcium
Chloride
Glucose
Sodium B

Potassium
INR -0.25

PT [
PTT
Hematocrit
Hemoglobin B
MCH
MCHC l
MCV
Platelet -0.50
RBC [
RDW
GCS
24-hour Urine Output
ACEI/ARB
Scr Baseline l
CKD
CRRT
Mechanical Ventilation
Vasoactive Agent
Lops® B
DM
Liver Disease
Los_inf._AB
Los_icu_aki

|] ~0.75

-1.00

DM

Age
Liver Disease

SIRS

APS I

SBP

DBP

MBP

Resp Rate
Temperature
Sp02
SOFA Score
INR

PT

PTT

Myocardial Infarct
Congestive Heart Failure

Peripheral Vascular Disease
AIDS

Charlson Comorbidity Index
HTN

Anion Gap

Bicarbonate
RBC

RDW

GCs

24-hour Urine Output
CKD

CRRT

BUN
Mechanical Ventilation

Calcium
Chloride
MCH
MCHC
MCV
Platelet

SA-AKI Il
Los icu aki

OASIS
Weight
Heart Rate
Gender
Glucose
Sodium
Potassium
LODS

Dementia

Chronic Pulmonary Disease

AKI Stage

Paraplegia

Renal Disease
Malignant Cancer
ACEI/ARB

Scr Baseline

Metastatic Solid Tumor
Hematocrit

Rheumatic Disease
Peptic Ulcer Disease
Hemoglobin
Vasoactive Agent
Los_inf._ AB

Cerebrovascular Disease

<Axes: title={'center': 'Pearson Ranking of 63 Features'}>

import matplotlib.pyplot as plt from yellowbrick.features import Rank2D import numpy as np

R R B SRR

x = x.select_dtypes(include=[np.number])

BIZEFNSR - EREXEIRERTHDPI

fig, ax = plt.subplots(figsize=(30, 30), dpi=300)

LML RT L ES - SERERTE A RERYFRRRIZEIN

visualizer = Rank2D(features=x.columns, algorithm="pearson’, ax=ax, # {FFEH(1EIFEAYIMIISR title=None, # ZRFHRA show title=False # ZIMAIRABRIRA)

IS HREE

visualizer.fit(x, y) visualizer.transform(x)

TEBRFTE Al BRI TR

visualizer.finalize() # H&ZER/ITE ax.set_title(") # iEFRMHRRR fig.suptitle(") # jEIREF AR

\}-L T M
IREIATE
for spine in ['top’, 'right']: ax.spines[spine].set_visible(False) for spine in ['left’, 'bottom']: ax.spines[spine].set_visible(True) ax.spines[spinel.set_linewidth(2) # JNFHLHE

PEPRRITE A NZIE L,

ax.grid(False) ax.tick_params(axis='both’, which="both’, length=0)

I B AR R EE A

ax.tick params(axis='both’, labelsize=20)

file:///D:/System/Desktop/Prediction of AKD in SA-AKl/saki/saki_akd_shap.html 4/23

2025/8/12 19:50

IXREREBFETFR

if hasattr(visualizer, 'ax') and hasattr(visualizer.ax.figure, 'axes'): for cax in visualizer.ax.figure.axes: if cax != ax: # B+ (REEHEAE) caxtick_params(labelsize=20)

plt.show() # XIAERZ, BRER

saki_akd_shap

plt.savefig('correlation_heatmap.png’, bbox inches="tight', pad_inches=0.1) plt.close() # XZER,, BWHEER

def filter_highly correlated_features(dfl, correlation_threshold=0.9):
0 126 HY e RE A 5% R ARFALE

24
df: pandas DataFrame, & % §ii i (KRR 1iE -
correlation_threshold: #CVERIME, BRiIANO.9.

IR [A] :
highly correlated_features: & = & A SCHF1E i 51 3%

T SR 2 TR PR AH G 1 E R

correlation_matrix = dfl.corr()

WA — A28 51 3R ARAF 181 B AR S R R AR 5
highly correlated_features = []

3 AE 50 R R B B = A
for i in range(len(correlation_matrix.columns)):
for j in range(i):
R B AH O 2 A B E
if abs(correlation_matrix.iloc[i, j]) > correlation_threshold:
VI 0 AR SR R AR IR X

highly correlated features.append((correlation_matrix.columns[i], correlation_matrix.columns[j]))

return highly correlated_features

dfl.corr()

OASIS SIRS APSIll Weight H;:t’: SBP DBP

MBP

OASIS 1.000000 0.264100 0.578275 -0.052295 0.219366 -0.032894 -0.003988 -0.025368

SIRS 0.264100 1.000000 0.219039 0.006709 0.349755 -0.068094 0.009616 -0.020857

APS Il 0.578275 0.219039 1.000000 -0.009916 0.230983 -0.095446 -0.053854 -0.097426

Weight -0.052295 0.006709 -0.009916 1.000000 0.030737 0.016074 0.044396 0.025850

Heart Rate 0.219366 0.349755 0.230983 0.030737 1.000000 0.014388 0.200095 0.108736

LODS 0.569052 0.144003 0.703741 0.035594 0.107069 -0.131234 -0.047227 -0.077802

DM 0.033569 -0.039457 0.098401 0.156248 -0.016485 0.052217 -0.059419 -0.031396

Liver
Disease

0.013812 -0.006296 0.163851 0.052818 0.085686 -0.052602 0.012514 -0.022203

Los inf. AB -0.123887 -0.088343 -0.065911 -0.042560 -0.024800 0.077491 0.041935 0.053711

Los icu aki -0.181802 -0.012281 -0.173234 -0.149960 -0.095444 0.049965 -0.019283 0.025126

64 rows x 64 columns

Resp
Rate

0.154013
0.158177
0.178137
0.039843
0.303868

0.088859
0.007742

0.050293

0.017553
-0.009950

Temperature

-0.042473
0.042421
-0.087270
0.070872
0.247936

-0.081208
0.006134

0.008458

0.032012
0.139817

Scr
Baseline

0.013193
-0.077100
0.169296
0.083728
-0.041599

0.141159
0.168884

0.006502

-0.024424
-0.148222

CKD

0.037182
-0.074779
0.167589
0.012564
-0.051049

0.158962
0.211133

-0.023431

0.003270
-0.109489

CRRT

0.186794
0.072357
0.294814
0.059683
0.075401

0.254566
0.048907

0.130094

-0.041297
-0.110615

4 .

result = filter_highly correlated_features(x)

result

[('PT", "INR"),
("Hemoglobin', 'Hematocrit'),
('RBC', 'Hematocrit'),
('"RBC', 'Hemoglobin'),
('CKD', 'Renal Disease')]

RIELLEER, FohifibfeE—LEX Mt RENEE!
x = X.drop(["INR', '"Hematocrit', 'RBC', 'Renal Disease'],axis=1)

x.shape

(9778, 59)

1 ETREEEE A

from sklearn.ensemble import GradientBoostingClassifier#S A K& 2 14 2 FE

from yellowbrick.model selection import FeatureImportances

visualizer = FeatureImportances(GradientBoostingClassifier(random_state=0)) # i/t{% 7Y
ax = plt.subplots(figsize=(20,20), dpi=300)

visualizer.fit(x,y)#ill 2t 7Y

visualizer.poof(ax=ax)#%: il 4% fF 5 5 % &

features = visualizer.features_[visualizer.feature_importances_>@]# i% #% & I KT ol k5 1k
features

X_fm = x[features]# ik & Z M K T o) FF 1k

X_fm.shape# & H4E 1IER

(9778, 46)

X_fm.head()# & & H ¥ 1) 7l 547

2 Brotuaf®&4t (IEEHE)

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

from boruta import BorutaPy

HIUR AL BE N AR AR Y

rf = RandomForestClassifier(n_jobs=-1, class_weight='balanced', max_depth=5)
HUE A Borutalfs IF %k £ 2%

file:///D:/System/Desktop/Prediction of AKD in SA-AKl/saki/saki_akd_shap.html

Mechanical
Ventilation

0.358611
0.112460
0.180794
0.120658
0.039975

0.383996
0.003213

0.055737

-0.021981
-0.168381

Vasoactive
Agent

0.219081
0.127954
0.221376
0.040151
0.032537

0.315148
0.012505

0.035506

-0.071063
-0.193764

LODS

0.569052
0.144003
0.703741
0.035594
0.107069

1.000000
0.061024

0.133441

-0.097656
-0.175314

5/23

2025/8/12 19:50

Importance

saki_akd_shap

boruta_selector = BorutaPy(rf, n_estimators="auto', verbose=2, random_state=42)
0 25 B H BEAT R AR L

boruta_selector.fit(x.values, y.values)

2k P AR AE

selected_features = x.columns[boruta_selector.support_].to_list()

3T BN % 5 1 RRAE
print("Selected Features:
I BN 50 B)RR AE
rejected_features = x.columns[~boruta_selector.support_].to_list()
print("Rejected Features: ", rejected_features)

T BN 15 %€ 1k O RRALE

tentative_features = x.columns[boruta_selector.support_weak_].to_list()
print("Tentative Features: ", tentative_ features)

, selected_features)

feature_ranks = boruta_selector.ranking_
G RE 4 PR A HE 4 45 &) — > DataFrame
feature_importance_df = pd.DataFrame({
'Feature': x.columns,
'Rank': feature_ranks

1)

feature_importance_df

rf = RandomForestClassifier(n_jobs=-1, class_weight='balanced', max_depth=5)
VIR AEE R EHE 4 1Y DataFrame
ranking df = pd.DataFrame(index=range(1, 21), columns=x.columns)
1217 Boruta 20 X
for i in range(20):
print(f"Iteration {i+1}")
WIUE K Borutalks fiF ik £ 5%
boruta_selector = BorutaPy(rf, n_estimators='auto', verbose=2, random_state=i, max_iter=50)
0N 25 B B AT R ARk
boruta_selector.fit(x.values, y.values)
SRIURAEHE A
feature_ranks = boruta_selector.ranking_
HREHE 4 IR A7 2] DataFrame
ranking_df.loc[i+1] = feature_ranks
ranking_df

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd

DR BHE 2 HE 7Y

numeric_ranking df = ranking_df.apply(pd.to_numeric, errors='coerce')

1A RAE) AL BOR
median_values = numeric_ranking_df.median()
sorted_columns = median_values.sort_values().index

BB 2 B A% A R
plt.rcParams.update({'font.size': 100})
plt.figure(figsize=(30, 15), dpi=300)
sns.set(style="whitegrid")

2 AR 2 B O v B AR O
sns.boxplot(
data=numeric_ranking_df[sorted_columns],
palette="Greens",
flierprops=dict(markerfacecolor="'g', markersize=5) # ¥ & 7 fFE

plt.xticks(rotation=90, fontsize=20) # ¥ & X% & Hr%s 744k K/
plt.yticks(fontsize=20) # & B Yih %I [bp 2 74k K/

VB AL KR IR 25 T A K/
plt.xlabel("Attributes"”, fontsize=20)
plt.ylabel("Importance"”, fontsize=20)

VO E bR AN 21 BE) A R
plt.tick_params(axis='both', which="major', labelsize=20)
plt.tick_params(axis='both', which="minor', labelsize=20)

plt.tight_layout()
plt.grid(False)

T VH R AL
ax = plt.gca()
for spine in ax.spines.values():

spine.set_color('black') # 4
spine.set_linewidth(1.5)
plt.show()
25
20
15
10
_— e
— e
o
o
5
o
o _— e
-,
0
w o g ez ® o E QPO 5@ Q2E S E N L QR QL= EN TS 80 8 aaa P I >3 % 85098 5 98 5 8¢z 3 Qg 8O
3 2323552580 :sFER8230csxrs85852%52,5005smsaa22E583382288898222Z58%Ez2 % 2Q
<. 2 §P2688% FLOO0ZILeBFELGLT JFar 2?0282 3S2E8¢85803 583 FELTES ST
CESe 8556 <« = QW8 ETe- 8 2g <=" 8L g § a8 2859 goads Lzo 884
w £ 8 L e . L = £ 0w £ T o0 O . o T - 0o E =4 > = £ 8 o - =
§ < 3 3 £y 2% 2 85 S © 28 °% 8 $£% 25k
- ? 2 2 3§38 a 3 53 5 £S T8 g 35
— &) R o e -]
3 5 & g : 3 EE 228 B
< R o (@] S5 0 wE e Qo
[5] = n © [} X © o
< o c -]
N Q o o o jo S0
p= o @ z S c Q
) = c Q £
o @ o O =
e c (T)
(@] O o
Attributes

file:///D:/System/Desktop/Prediction of AKD in SA-AKl/saki/saki_akd_shap.html

6/23

2025/8/12 19:50 saki_akd_shap

sorted_columns

Index(['OASIS', 'Los_inf._ AB', 'Anion Gap', 'Bicarbonate', 'BUN', 'Calcium',
'Chloride', 'Glucose', 'Sodium', 'PT', 'SOFA Score', 'PTT', 'MCHC',
'GCS', '24-hour Urine Output', 'ACEI/ARB', 'Scr Baseline', 'CRRT',
'Mechanical Ventilation', 'Vasoactive Agent', 'LODS', 'Hemoglobin',
"Age', 'Los_icu_aki', 'Temperature', 'SIRS', 'APS III', 'Weight’,
'Sp02', 'Paraplegia', 'Heart Rate', 'Resp Rate', 'SBP',

'Cerebrovascular Disease', 'DBP', 'MBP', 'Platelet', 'RDW', 'Potassium’,
'"MCH', 'MCV', 'Charlson Comorbidity Index', 'Liver Disease', 'Dementia’,
'Malignant Cancer', 'CKD', 'AKI Stage', 'Gender',
"Chronic Pulmonary Disease', 'Metastatic Solid Tumor', 'DM',
'Congestive Heart Failure', 'Myocardial Infarct', 'SA-AKI', 'HTN',
'Rheumatic Disease', 'Peripheral Vascular Disease’,
'"Peptic Ulcer Disease', "AIDS'],

dtype="object")

X_boruta=x[['OASIS', 'Los_inf. AB', 'Anion Gap', 'Bicarbonate', 'BUN', 'Calcium',
'Chloride', 'Glucose', 'Sodium', 'PT', 'SOFA Score', 'PTT', 'MCHC',
'GCS', '24-hour Urine Output', "'ACEI/ARB', 'Scr Baseline', 'CRRT',
'Mechanical Ventilation', 'Vasoactive Agent', 'LODS', 'Hemoglobin',
'Age', 'Los_icu_aki', 'Temperature', 'SIRS', 'APS III', 'Weight',
'Sp02', 'Paraplegia‘', 'Heart Rate', 'Resp Rate', 'SBP',
'Cerebrovascular Disease', 'DBP', 'MBP']]

X_boruta.shape

(9778, 36)

3. FEERRTTIE (RFE)

4.LassoCVaJfi{t,

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

R 3 I SRR A0 P AR
X_train, X_test, y train, y_test = train_test_split(x, y, test_size=0.3, random_state=42, stratify=dfl['AKD'])

from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import Lasso
from sklearn.metrics import mean_squared_error

% X train, X_test, y train, y test T 2% IF 1% 7> Al v 4%

b e B

scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

%k Lassofs Y
lasso = Lasso(alpha=0.1) # alphas2 IF WAL 58 ¥ 2 51
lasso.fit(X_train_scaled, y_train)

FTElLassofi T [R %L

coefficients = pd.Series(lasso.coef_, index=x.columns)
selected_features = coefficients[coefficients != 0].index
print("Selected features:")

print(selected_features)

T E MR 577 R E
y_pred = lasso.predict(X_test_scaled)
mse = mean_squared_error(y_test, y_pred)

print(f"\nMean Squared Error on Test Set: {mse}")

Selected features:
Index(['CRRT', 'Mechanical Ventilation'], dtype='object")

Mean Squared Error on Test Set: 0.16622124130597035

from sklearn.linear_model import LassoCV

from sklearn.model_selection import RepeatedKFold
import numpy as np

import matplotlib.pyplot as plt

Assuming feature names are stored in feature_names List
feature_names = x.columns

Define alpha range
alphas = np.logspace(-4, 0, 50)

LassoCV with cross-validation
lasso_cv = LassoCV(alphas=alphas, cv=RepeatedKFold(n_splits=10, n_repeats=3, random_state=42), random_state=42)
lasso_cv.fit(X_train_scaled, y_train)

Calculate MSE path and std
mse_path = lasso_cv.mse_path_.mean(axis=1)
mse_std = lasso_cv.mse_path_.std(axis=1)

Find best alpha and 1-SE alpha

best_alpha_index = np.argmin(mse_path)

best_alpha = lasso_cv.alphas_[best_alpha_index]

one_se_index = np.where(mse_path <= mse_path[best_alpha_index] + mse_std[best_alpha_index])[0][0]
one_se alpha = lasso_cv.alphas [one_se_index]

print(f"Best alpha (A_min): {best_alphal}")
print(f"1-SE rule alpha (A_1se): {one_se_alpha}")

Feature selection for both alphas

lasso_best_alpha = LassoCV(alphas=[best_alpha], cv=RepeatedKFold(n_splits=10, n_repeats=3, random_state=42), random_state=42)
lasso_best_alpha.fit(X_train_scaled, y_train)

selected_features best = [feature_names[i] for i in np.where(lasso_best alpha.coef_ I!= 0)[0]]

print(f"Selected features with A_min: {selected_features_best}")

lasso_one_se_alpha = LassoCV(alphas=[one_se_alpha], cv=RepeatedKFold(n_splits=10, n_repeats=3, random_state=42), random_state=42)
lasso_one_se_alpha.fit(X_train_scaled, y_ train)

selected_features_one_se = [feature_names[i] for i in np.where(lasso_one_se_alpha.coef_ != 0)[0]]

print(f"Selected features with A_1lse: {selected_ features_one_se}")

Plot with improved styling
plt.figure(figsize=(12, 6), dpi=300)

Main plot elements

plt.errorbar(lasso_cv.alphas_, mse_path, yerr=mse_std, fmt="0"', color="red’,
ecolor="gray', capsize=3, markersize=8)

plt.axvline(lasso_cv.alphas_[best_alpha_index], linestyle='--",
color="black', linewidth=2, label=r'λ_{min}")

file:///D:/System/Desktop/Prediction of AKD in SA-AKl/saki/saki_akd_shap.html 7123

2025/8/12 19:50

saki_akd_shap

plt.axvline(lasso_cv.alphas_[one_se_index], linestyle='--"',

color="blue', linewidth=2, label=r

Axis settings
plt.xscale('log")

"λ_{1se}")

plt.xlabel('Alpha (a) value', fontsize=20) # Larger and bolder
plt.ylabel('Mean Squared Error (MSE)', fontsize=20)

Tick and legend settings
plt.xticks(rotation=45, fontsize=20)
plt.yticks(fontsize=20)
plt.legend(fontsize=20, frameon=True)

Border and grid styling

ax = plt.gca()

for spine in ax.spines.values():
spine.set_color('black")

spine.set_linewidth(1.5) # Thicker borders

plt.grid(False)
plt.show()

Best alpha (A_min): ©.0016768329368110067
1-SE rule alpha (A_1lse): ©.019306977288832496
Selected features with A_min: ['OASIS', 'SIRS',

'"APS III', 'Weight', 'Heart Rate', 'SBP', 'MBP', 'Resp Rate', 'Sp02', 'Myocardial Infarct', 'Congestive Heart Failure',

'Peripheral Vascular Dis

ease', 'Cerebrovascular Disease', 'Dementia’, 'Rheumatic Disease', 'Paraplegia', 'Malignant Cancer', 'Metastatic Solid Tumor', 'AIDS', 'AKI Stage', 'SOFA Score', 'SA-AKI', 'HTN', 'Anion Gap',
'Calcium', 'Chloride', 'Glucose', 'Sodium', 'Potassium', 'PT', 'Hemoglobin', 'MCHC', 'MCV', 'Platelet', 'GCS', '24-hour Urine Output', 'ACEI/ARB', 'Scr Baseline', 'CRRT', 'Mechanical Ventilati

on', 'Vasoactive Agent', 'LODS', 'Liver Disease'

, 'Los_inf._AB', 'Los_icu_aki']

Selected features with A_1se: ['APS III', 'Weight', 'MBP', 'Resp Rate', 'Sp02', 'Cerebrovascular Disease', 'Paraplegia', 'ACEI/ARB', 'Scr Baseline', 'CRRT', 'Mechanical Ventilation', 'Vasoacti

ve Agent', 'LODS', 'Los_inf._ AB']

0.19| === A,
T Alse

o
RN
o

0.17

o
A
@)

Mean Squared Error (MSE)
O —
~ >

O
RN
(@0)

- -

-0

coefs = []

for a in alphas:
lasso = Lasso(alpha=a, max_iter=10000)
lasso.fit(X_train_scaled, y_train)
coefs.append(lasso.coef)

AIRAL R B AR
plt.figure(figsize=(12, 6), dpi=300)
ax = plt.gca()

{4 F o B0 A b S 7 IE U A 2 4
ax.plot(np.logl@(alphas), coefs)
plt.xlabel('Log Lambda', fontsize=20)
plt.ylabel('Coefficients', fontsize=20)
plt.xticks(rotation=45, fontsize=20)
plt.yticks(fontsize=20)
plt.legend(fontsize=20, frameon=True)
ax = plt.gca()
for spine in ax.spines.values():
spine.set_color('black")
spine.set_linewidth(1.5)
plt.grid(False)

plt.show()

No artists with labels found to put in legend.

file:///D:/System/Desktop/Prediction of AKD in SA-AKl/saki/saki_akd_shap.html

/fz) /fl, /P\
N N N

Alpha (a) value

Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

8/23

2025/8/12 19:50

saki_akd_shap

0.10

0.08
0.06

ts

0.04

ICIEN

0.02
0.00

Coeff

-0.02

-0.04

print(list(X_boruta.columns))

Log Lambda

['OASIS', 'Los_inf. AB', 'Anion Gap', 'Bicarbonate', 'BUN', 'Calcium', 'Chloride', 'Glucose', 'Sodium', 'PT', 'SOFA Score', 'PTT', 'MCHC', 'GCS',
ine', 'CRRT', 'Mechanical Ventilation', 'Vasoactive Agent', 'LODS', 'Hemoglobin', 'Age', 'Los_icu_aki', 'Temperature', 'SIRS', 'APS III', 'Weight',
te', 'SBP', 'Cerebrovascular Disease', 'DBP', 'MBP']
selected_features_one_se
['APS III',
"Weight',
'MBP',
'Resp Rate’,
'Sp02°',
'Cerebrovascular Disease',
'Paraplegia’,
"ACEI/ARB',
'Scr Baseline',
'CRRT',
'Mechanical Ventilation',
'Vasoactive Agent’,
'LODS',
"Los_inf. AB']
import networkx as nx
import matplotlib.pyplot as plt
5€ X BorutafllLassoik % i F5 fiE
boruta_features =['OASIS', 'Los_inf._AB', 'Anion Gap', 'Bicarbonate’', 'BUN', 'Calcium', 'Chloride', 'Glucose', 'Sodium', 'PT',
'SOFA Score', 'PTT', 'MCHC', 'GCS', '24-hour Urine Output', 'ACEI/ARB', 'Scr Baseline', 'CRRT', 'Mechanical Ventilation',
'Vasoactive Agent', 'LODS', 'Hemoglobin', 'Age', 'Los_icu_aki', 'Temperature', 'SIRS', 'APS III', 'Weight', 'Sp02',
'Paraplegia', 'Heart Rate', 'Resp Rate', 'SBP', 'Cerebrovascular Disease', 'DBP', 'MBP']

lasso_features = selected_features_one_se

QlEEE TR

boruta_set = set(boruta_features)
lasso_set = set(lasso_features)
intersection =
boruta_only = boruta_set - intersection
lasso_only = lasso_set - intersection

K
G = nx.Graph()

VNI AL
for feature in boruta_only:

G.add_edge('Boruta', feature, color='lightcoral')

for feature in lasso_only:

Borutafifb &
LassofF L&
boruta_set.intersection(lasso_set)
N Borutait £ {1 F7 f1F
1Y Lassoik FF M FFIE

MRS NAZE

WA K R XN Borutaid £ (1 R 4E

G.add_edge('Lasso', feature, color='lightblue') # ki (03RRI HY Lassoik £ (1) FF1iE

for feature in intersection:

G.add_edge('Boruta’, feature, color='lightcoral')
G.add_edge('Lasso', feature, color='lightblue')

IREGL B

IR BN E AT LR E Bl Boruta
ORI IEE A ERE R Lasso

edge_colors = [data['color'] for _, , data in G.edges(data=True)]
BB RPN
node_colors = []
for node in G.nodes():
if node == 'Boruta’:
node_colors.append('lightcoral') # Boruta i k4 ta
elif node == 'Lasso':

node_colors.append('lightblue")
elif node in boruta_only:
node_colors.append('lightcoral’)
elif node in lasso_only:
node_colors.append('lightblue")
elif node in intersection:
node_colors.append('plum")

2 KB
plt.figure(figsize=(13, 13), dpi=300)

LassoTi HIR
N Borutaif B HI IR R 48
AU Lassoide 3 1 FF A0 v 5

ST AR R R

pos = nx.spring_layout(G, seed=42) # fii[flspringfi &

nx.draw_networkx(
GJ
pos,
edge_color=edge_colors,
node_color=node_colors,
with_labels=True,

file:///D:/System/Desktop/Prediction of AKD in SA-AKl/saki/saki_akd_shap.html

'Sp02°',

'24-hour Urine Output',

'Paraplegia’,

'"ACEI/ARB',
'Heart Rate',

'Scr Basel

'Resp Ra

9/23

2025/8/12 19:50

node_size=1000,
font_size=10,
edgecolors="none' # &% fILAE
)
plt.title('Feature Selection by Boruta and Lasso')
plt.grid(False)
plt.show()

from matplotlib_venn import venn2
import matplotlib.pyplot as plt

B BE I E R/
plt.figure(figsize=(10, 10), dpi=300)

5E P
colorl = "#EEA3FF" # JR¥A(4
color2 = "#F99D9D" # k44

2 45 R

v = venn2([set(lasso_features), set(boruta_features)],
set_labels=('Lasso Features', 'Boruta Features'),
set_colors=(colorl, color2),
alpha=0.5)

DA RN
font_size = 20 # WESZ—MTFHE KN
for text in v.set_labels: # H£&H%
if text is not None:
text.set_fontsize(font_size)
for text in v.subset_labels: # T 4EX7ir%s
if text is not None:
text.set _fontsize(font_size)

AT W0 SURREE (R D
plt.title("Feature Selection Comparison”, fontsize=18)

BonEE
plt.show()

print(np.intersectld(boruta_features,lasso_features))

["ACEI/ARB' 'APS III' 'CRRT' 'Cerebrovascular Disease' 'LODS'
"Los_inf._AB' 'MBP' 'Mechanical Ventilation' 'Paraplegia’ 'Resp Rate'
'Scr Baseline' 'Sp02' 'Vasoactive Agent' ‘'Weight']

X_1 = X_boruta[['ACEI/ARB', 'APS III' ,'CRRT', 'Cerebrovascular Disease', 'LODS',

'Los_inf._AB', 'MBP', 'Mechanical Ventilation', 'Paraplegia’

'Scr Baseline' ,'Sp02', 'Vasoactive Agent', 'Weight']]

X_1
ACEI/ARB APS Il CRRT Cerebrovascular Disease LODS Los inf. AB
0 1 52 0 0 5 12.83
1 0 51 0 0 7 15.40
2 0 52 0 0 6 13.50
3 0 41 0 0 2 5.07
4 1 54 0 0 4 1.62
10229 0 50 0 0 8 2.80
10230 0 32 0 0 8 14.78
10231 0 39 0 0 5 17.00
10232 1 110 0 1 12 8.83
10233 1 64 0 0 8 26.83

9778 rows x 14 columns

X_1.info()

5. =185

BRENFEDER: JUMHIEmtHAIER, BBLS

Yo EUES:
SHURITEL, Bsmotet SR T A

print(X_1.dtypes)

y.value_counts()

AKD
0 7378
1 2400

Name: count, dtype: int64

from sklearn.preprocessing import StandardScaler
from imblearn.over_sampling import SMOTE

from sklearn.model_selection import train_test_split
from collections import Counter

1. VIGRBIERI 7y (o B AR
X_train_raw, X_test, y_train, y_test = train_test_split(
X1,
y)
test_size=0.3,
stratify=y, # {R¥EEIGEDAG
random_state=42
)
2. WELE ((NTEIISGE LS
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train_raw) # (BRI E TS
X_test = scaler.transform(X_test) # A8 F AH 5] 2 Hi0 6 K 4

import joblib

joblib.dump(scaler, '0511&EZkksaki_scaler.pkl’)

file:///D:/System/Desktop/Prediction of AKD in SA-AKl/saki/saki_akd_shap.html

,» 'Resp Rate',

saki_akd_shap

MBP Mechanical Ventilation Paraplegia Resp Rate Scr Baseline

71.0
87.0
68.0
92.0
94.0

122.0
86.0
91.0

133.0
87.0

E

0

o O

0

- o O O o

o O O o

23.0
26.0
18.0
30.0
26.0

20.0
16.0
15.0
20.0
20.0

53.04
44.20
185.64
53.04
97.24

70.72
79.56
44.20
61.88
167.96

SpO2 Vasoactive Agent

100.0
99.0
94.0
93.0
95.0

97.0
100.0
100.0
100.0

98.0

0

0
0
0

o O

Weight
55.3
65.0
48.0

156.1
64.1

134.5
59.0
85.0

110.0
77.6

10/23

2025/8/12 19:50 saki_akd_shap

3. TERRAEAL S Il SR & b5 FH SMOTE
smote = SMOTE(random_state=42)
X_train, y train = smote.fit_resample(X_train_scaled, y_train) # &y % Jubs i 4 9%

4. BIFHEIRE

print("\n=== LK UE ===")

print(f"[JHIAIIZ4E] A% : {len(X_train_raw)}, #5fE%: {X_train_raw.shape[1]}")
print(f"[“F#i /5 IIZ45E] FEA%: {len(X_train)}, 28040 4i: {dict(Counter(y_train))}")
print(f"[MXFE] FEA%: {len(X_test)}, &)l 4fi: {dict(Counter(y_test))}")

5. B e 4
X_train, y_train: ChrdELL H P60)1 25 500
X_test, y_ test: ChsiEAL H ORFFJE 45 2 A (10 03K £ 4

=== KB IGIE ===
RG] FEAL: 6844, FRIE%L: 14

[P eI ZR8E] FEA%: 10328, KAl {1: 5164, ©: 5164}
[REE] FEAS: 2934, Ko mAi: {0: 2214, 1: 720}

MR FAREY -

import shap #4524 A fife B 14 2 At

import lightgbm as lgb # %2 2%) 5ik

from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier # %% 2% >) 5k
from sklearn.tree import DecisionTreeClassifier # (%M

from sklearn.model selection import train_test split, RandomizedSearchCV, cross_val score, StratifiedKFold #%I|/; #idlifE . <2 Y UG HIF
from sklearn.metrics import f1_score, precision_score, recall score, roc_auc_score #\/rifhs:

from sklearn.metrics import confusion_matrix, roc_curve, classification_report #RandomizedSearchCV:&Python [f]—/A3%, fiF sklearn.model_selectionfithr, F THINE REEBMSHAE. ZRESHN-

M tGridSearchCVIM M AE R J7 7%, BEALIY 2 U5 A 7T DAZE BE 48 A I IA) 9 4R B — DA B F B 2 A &, &

from sklearn.linear model import LogisticRegression # 1% 7% (1]l

from sklearn.svm import SVC # 7 fF[h & Hl

from sklearn.neighbors import KNeighborsClassifier # KiT4ll

from xgboost import XGBClassifier # XGBoost

from sklearn.ensemble import GradientBoostingClassifier # 1 [£ F #f
from sklearn.ensemble import RandomForestClassifier # [l @+

from sklearn.ensemble import ExtraTreesClassifier # i L #

from sklearn.ensemble import AdaBoostClassifier # AdaBoost

from lightgbm import LGBMClassifier # LightGBM

HIUE A & AR
models = {
"Logistic Regression": {'model':LogisticRegression(random_state=0),
"param_grid':{
"penalty': ['11', '12', 'elasticnet', 'none'],
'C': np.linspace(0.01, 10, 10)
}}J

"SVM": {'model':SVC(probability=True,random_state=90),
"param_grid":{
'"C': np.linspace(0.01, 10, 10),
'kernel': ['linear', 'rbf', 'poly'],
'gamma': ['scale', 'auto']

s

"KNN": {'model':KNeighborsClassifier(),
"param_grid":{
'n_neighbors': range(5, 100, 5),
'weights': ['uniform', 'distance'],
'p': [1, 2] # IRRBIGIIEE, 2RRE)LESGES
}})

"Decision Tree": {'model’':DecisionTreeClassifier(random_state=0),
"param_grid':{
‘criterion': ['gini', ‘'entropy'],
'max_depth': range(3, 9),
'min_samples_split': range(2, 6),
'min_samples_leaf': range(2, 6)

I3

"Random Forest": {'model’':RandomForestClassifier(random_state=0),
"param_grid':{
'n_estimators': range(1e, 50, 19),
'max_depth': range(3, 9),
'min_samples_split': range(2, 6),
'min_samples_leaf': range(2, 6)

s

"Adaboost": {'model’:AdaBoostClassifier(random_state=90),
"param_grid":{
"'n_estimators': range(10, 50, 10),
"learning_rate': np.linspace(0.01, 1, 10),
}})

"Gradient Boosting": {'model’':GradientBoostingClassifier(random_state=90),
"param_grid" :{
'n_estimators': range(10, 50, 10),
"learning_rate': np.linspace(9.01, 1, 10),
'max_depth': range(3, 9),
'subsample': np.linspace(©.1, 1, 5)
}})

"XGBoost": {'model':XGBClassifier(random_state=90),
"param_grid':{
'n_estimators': range(10, 50, 190),
'learning_rate': np.linspace(9.01, 1, 10),
'max_depth': range(3, 8),
"subsample': np.linspace(©.1, 1, 5)
}}J

"LightGBM": {'model':LGBMClassifier(force_col wise=True, verbosity=-1,random_state=0),
"param_grid":{
'n_estimators': range(10, 50, 190),
"learning_rate': np.linspace(9.01, 1, 10),
'max_depth': range(3, 8),
'subsample’: np.linspace(©.1, 1, 5)
}})

}
WILEIF I8 44 B

from sklearn.model_selection import RandomizedSearchCV
best_estimators = []

names = []
for model name, model_info in models.items():
pr‘int ('F" \n::::::::::::================ {model_name} ============================"')

18 GridSearchcvit 1T H 5
grid_search = RandomizedSearchCV(model info['model’], model_info['param_grid'], cv=5, scoring='roc_auc',n_jobs=-1) # accuracy roc_auc

file:///D:/System/Desktop/Prediction of AKD in SA-AKl/saki/saki_akd_shap.html

11/23

2025/8/12 19:50

from
bag

para
rand
rand
name
best
from
from
from
clfl
clf2
clf3
clf

voti

para

grid_search.fit(X_train, y_train)

KB A Ak 2 2 B R

best_params = grid_search.best_params_
best_model = grid_search.best_estimator_
best_estimators.append(best_model)
names.append(model _name)
print(best_params)

print(best_model)

sklearn.ensemble import BaggingClassifier
= BaggingClassifier(## If None, then the base estimator is a decision tree.

bootstrap_features=False,random_state=0)
m_grid = {'n_estimators':[10,30,50,70,80,150,160, 170,175,180,185]}

om_search = RandomizedSearchCV(estimator=bag,param_distributions=param_grid,cv=5,n_jobs=-1,random_state=48)

om_search.fit(X_train,y_train)
s.append('Bagging")
_estimators.append(random_search.best_estimator_)
sklearn.naive_bayes import GaussianNB
sklearn.ensemble import VotingClassifier
sklearn.linear_model import LogisticRegression
= LogisticRegression(random_state=0)
RandomForestClassifier(random_state=0)
= GaussianNB()
= VotingClassifier(estimators=[('1lr', clfl), ('rf', clf2), ('gnb', clf3)],
ng="soft")

ms = {"1lr__C"': [1.0, 100.0], 'rf__n_estimators': [20, 200]}

saki_akd_shap

grid = RandomizedSearchCV(estimator=clf, param_distributions=params, cv=5,n_jobs=-1,random_state=0)

grid
name

best

def

resu

def

fit(X_train,y_train)
s.append('Voting")

_estimators.append(grid.best_estimator_)

score_summary_roc(names, classifiers,X train_,y train_,x_test_ ,y test):
from sklearn.metrics import accuracy_score,roc_curve,confusion_matrix
from sklearn.metrics import RocCurveDisplay,auc

plt.figure(figsize=(10, 10), dpi=300)

ax = plt.gca()

cols=["Classifier", "Accuracy", "ROC_AUC", "Recall", "Precision", "F1"]

df = []
for name, clf in zip(names, classifiers):
clf.fit(X_train_, y train)

pred = clf.predict(x_test)
accuracy = accuracy_score(y_test_, pred)

pred_proba = clf.predict_proba(x_test)[:, 1]

fpr, tpr, thresholds = roc_curve(y_test_, pred_proba)

roc_auc = auc(fpr, tpr)

display = RocCurveDisplay(fpr=fpr, tpr=tpr, roc_auc=roc_auc,estimator_name=name)
display.plot(ax=ax)

plt.grid(visible=False)

cm = confusion_matrix(y_test_, pred)

recall: TP/(TP+FN)
recall = cm[1,1]/(cm[1,1] +cm[1,0])

precision: TP/(TP+FP)
precision = cm[1,1]/(cm[1,1] +cm[0,1])

F1 score: TP/(TP+FP)
fl = 2*recall*precision/(recall + precision)
df.append([name, accuracy*100, roc_auc, recall, precision, f1])

data_table = pd.DataFrame(data=df,columns=cols)

return(np.round(data_table.reset_index(drop=True), 2))
1t = score_summary_roc(names,best_estimators,X_train,y_train,X test,y test)

score_summary_roc(names, classifiers, X train_, y train_, x_test_ , y test):
from sklearn.metrics import accuracy score, roc_curve, confusion_matrix
from sklearn.metrics import RocCurveDisplay, auc

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

B BE IF ¥ E R/
plt.figure(figsize=(10, 10), dpi=300)
ax = plt.gca()

B R I A

for spine in ax.spines.values():
spine.set_linewidth(1) # 1 hniZi#E 5 &2
spine.set_color('black') # & & ilHEFi(ol B

cols = ["Classifier", "Accuracy", "ROC_AUC", "Recall", "Precision", "F1"]
df = []
for name, clf in zip(names, classifiers):

clf.fit(X_train_, y_train_)

pred = clf.predict(x_test)
accuracy = accuracy_score(y_test_, pred)

pred_proba = clf.predict_proba(x_test)[:, 1]

fpr, tpr, thresholds = roc_curve(y_test_, pred_proba)

roc_auc = auc(fpr, tpr)

display = RocCurveDisplay(fpr=fpr, tpr=tpr, roc_auc=roc_auc, estimator_name=name)
display.plot(ax=ax)

plt.grid(visible=False)

cm = confusion_matrix(y_test_ , pred)

recall: TP/(TP+FN)
recall = cm[1,1]/(cm[1,1] + cm[1,0])

precision: TP/(TP+FP)
precision = cm[1,1]/(cm[1,1] + cm[0,1])

F1 score: TP/(TP+FP)
fl = 2 * recall * precision / (recall + precision)
df.append([name, accuracy*100, roc_auc, recall, precision, f1])

WEE KA
font_size = 18
plt.xticks(fontsize=font_size) # X/ihZ|J&Z 71k

file:///D:/System/Desktop/Prediction of AKD in SA-AKl/saki/saki_akd_shap.html

12/23

2025/8/12 19:50 saki_akd_shap

plt.yticks(fontsize=font_size) # YilZlJZ 71k
plt.xlabel("False Positive Rate", fontsize=font_size) # Xflibp2s 71k
plt.ylabel("True Positive Rate", fontsize=font_size) # Vifitr2s 71k

B BB R KN

legend = ax.legend(loc="lower right", fontsize=font_size)
VCE) 1 AE SR B R

legend.get_frame().set_linewidth(1)
legend.get_frame().set_edgecolor("black™)

data_table = pd.DataFrame(data=df, columns=cols)

return(np.round(data_table.reset_index(drop=True), 2))

result = score_summary_roc(names,best_estimators,X_train,y train,X_test,y_ test)

result
Classifier Accuracy ROC AUC Recall Precision F1
0 Logistic Regression 74.37 084 0.81 049 0.61
1 SVM 73.89 0.78 0.68 0.48 0.56
2 KNN 70.82 081 0.79 0.45 0.57
3 Decision Tree 73.45 0.78 064 0.47 0.54
4 Random Forest 75.66 083 0.70 0.50 0.59
5 Adaboost 76.24 083 0.70 0.51 0.59
6 Gradient Boosting 77.74 083 0.65 0.54 0.59
7 XGBoost 79.21 0.84 0.56 0.58 0.57
8 LightGBM 79.52 083 0.57 0.58 0.58
9 Bagging 78.08 0.81 0.55 0.55 0.55
10 Voting 77.85 0.84 0.68 0.54 0.60

import matplotlib.pyplot as plt
import pandas as pd

Your original data

data = {
"Classifier": ["Logistic Regression", "SVM", "KNN", "Decision Tree", "Random Forest",

"Adaboost", "Gradient Boosting", "XGBoost", "LightGBM", "Bagging", "Voting"],

"Accuracy": [74.37, 73.96, 70.82, 74.03, 75.26, 76.55, 78.94, 75.97, 78.29, 78.08, 77.85],
"ROC_AUC": [0.84, ©.78, ©0.81, ©0.79, 0.83, 0.84, 0.83, 0.78, 0.82, 0.81, 0.84],
"Recall": [0.81, 0.69, 0.79, 0.71, 0.72, 0.72, 0.57, 0.47, 0.48, 0.55, 0.68],
"Precision": [0.49, 0.48, 0.45, 0.48, 0.50, 0.52, 0.57, ©.51, ©.57, ©.55, 0.54],
"F1": [0.61, ©.57, ©.57, ©.57, ©.59, 0.60, 0.57, 0.49, 0.52, 0.55, 0.60]

}

df = pd.DataFrame(data)

Set white background and remove grid
plt.style.use('default"')
plt.rcParams['figure.facecolor'] = 'white’
plt.rcParams['axes.facecolor'] = 'white’

Plotting the metrics
plt.figure(figsize=(14, 8),dpi=1200)

Helper function to add value Labels
def add_value_labels(bars, xlim_range, is_percent=False):
for bar in bars:
width = bar.get_width()
label = f"{width:.2f}%" if is_percent else f"{width:.2f}"
plt.text(width + ©0.01 * x1lim_range,
bar.get_y() + bar.get_height()/2,
label,
va='center’,
ha="'left’,
fontsize=9)

Accuracy plot

plt.subplot(2, 3, 1)

bars = plt.barh(df['Classifier'], df['Accuracy'], color="skyblue")
plt.title('Accuracy (%)")

plt.xlim(60, 85)

add_value_labels(bars, 25, is_percent=True)

ROC_AUC plot

plt.subplot(2, 3, 5)

bars = plt.barh(df['Classifier'], df['ROC_AUC'], color='lightgreen')
plt.title('ROC AUC Score')

plt.xlim(0.7, 0.9)

add_value_labels(bars, 0.2)

Recall plot

plt.subplot(2, 3, 2)

bars = plt.barh(df['Classifier'], df['Recall’'], color='salmon")
plt.title('Recall")

plt.xlim(0.4, 0.9)

add_value_labels(bars, 0.5)

Precision plot

plt.subplot(2, 3, 3)

bars = plt.barh(df['Classifier'], df['Precision'], color="'gold")
plt.title('Precision")

plt.xlim(0.4, 0.6)

add_value_labels(bars, 0.2)

F1 plot

plt.subplot(2, 3, 4)

bars = plt.barh(df['Classifier'], df['F1'], color="orchid")
plt.title('F1 Score')

plt.xlim(e.4, 0.65)

add_value_labels(bars, 0.25)

plt.tight_layout()

plt.suptitle('Comparison of Internal Data Classifier Performance Metrics', y=1.02, fontsize=14)
plt.show()

file:///D:/System/Desktop/Prediction of AKD in SA-AKl/saki/saki_akd_shap.html 13/23

2025/8/12 19:50

saki_akd_shap

Comparison of Internal Data Classifier Performance Metrics
Recall

Accuracy (%)

Voting A

Bagging A
LightGBM -
XGBoost -

Gradient Boosting -
Adaboost A
Random Forest -
Decision Tree -
KNN A

SVM A

Logistic Regression A

77.85%
78.08%
78.29%

75.97%
78.94%
76.55%
75.26%
74.03%

70.82%

73.96%

74.37%

T T

60 65 70

T T

75 80

F1 Score

85

Voting

Bagging
LightGBM
XGBoost
Gradient Boosting
Adaboost
Random Forest
Decision Tree

KNN

SVM

Logistic Regression

0.60

0.60
0.59

0.61

0.50

0.45

0.40

In []: import matplotlib.pyplot as plt

import pandas as pd

Your original data
data = {

"Classifier": ["Logistic Regression",

0.55

0.60

"SVM", "KNN", "Decision Tree", "Random Forest",

0.65

Voting

Bagging
LightGBM
XGBoost

Gradient Boosting
Adaboost
Random Forest

Decision Tree

KNN 0.79
SVM
Logistic Regression 0.81
0.I4 0:5 0.16 O.l7 0.18 0.9
ROC AUC Score
Voting - 0.84
Bagging A 0.81
LightGBM - 0.82
XGBoost 0.78
Gradient Boosting 0.83
Adaboost 0.84
Random Forest 0.83
Decision Tree A 0.79
KNN - 0.81
SVM - 0.78
Logistic Regression A 0.84
0.70 0.175 0.;30 0.%35 0.90

"Adaboost", "Gradient Boosting", "XGBoost", "LightGBM", "Bagging", "Voting"],
"Accuracy": [54.97, 53.82, 56.29, 53.87, 53.60, 53.25, 53.87, 52.85, 53.98, 53.22, 54.86],
"ROC_AUC": [0.58, ©.56, ©0.59, ©.56, ©.57, 0.56, 0.55, ©.55, 0.57, 0.58, 0.58],

"Precision": [©.58, ©.59, ©.59, 0.58, 0.58, 0.60, 0.58, 0.57, 0.58, 0.60, 0.58],

"Recall": [0.40, 0.30, 0.47, 0.33, 0.31, 0.25, 0.35, 0.28, 0.34, 0.23, 0.40],
"F1": [0.47, ©.40, 0.52, 0.42, 0.40, 0.35, 0.43, 0.38, 0.43, 0.34, 0.47]

df = pd.DataFrame(data)

Set white background and remove grid
plt.style.use('default")

plt.rcParams['figure.facecolor'] = 'white’
plt.rcParams['axes.facecolor'] = 'white’

Plotting the metrics
plt.figure(figsize=(14, 8),dpi=300)

Helper function to add value Llabels

def add_value labels(bars, xlim_range, is_percent=False):

for bar in bars:
width = bar.get_width()

label = f"{width:.2f}%" if is_percent else f"{width:
plt.text(width + ©.01 * xlim_range,
bar.get_y() + bar.get_height()/2,

label,
va='center"',
ha="left"',
fontsize=9)

Accuracy plot
plt.subplot(2, 3, 1)

L2}

bars = plt.barh(df['Classifier'], df['Accuracy'], color='skyblue')

plt.title('Accuracy (%)")
plt.xlim(40, 65)

add_value_labels(bars, 25, is_percent=True)

ROC_AUC plot
plt.subplot(2, 3, 5)

bars = plt.barh(df['Classifier'], df['ROC_AUC'], color='lightgreen')

plt.title('ROC AUC Score')
plt.x1im(0.45, 0.65)
add_value_labels(bars, 0.2)

Recall plot
plt.subplot(2, 3, 2)

bars = plt.barh(df['Classifier'], df['Recall’'], color='salmon"')

plt.title('Recall’)
plt.xlim(0.1, 0.6)
add_value_labels(bars, 0.5)

Precision plot
plt.subplot(2, 3, 3)

bars = plt.barh(df['Classifier'], df['Precision'], color='gold")

plt.title('Precision")
plt.x1im(0.45, 0.65)
add_value_labels(bars, 0.2)

F1 plot
plt.subplot(2, 3, 4)

bars = plt.barh(df['Classifier'], df['F1'], color="orchid")

plt.title('F1 Score')
plt.xlim(@.3, ©.55)
add_value_labels(bars, 0.25)

plt.tight_layout()

plt.suptitle('Comparison of External Data Classifier Performance Metrics', y=1.02, fontsize=14)

plt.show()

file:///D:/System/Desktop/Prediction of AKD in SA-AKl/saki/saki_akd_shap.html

Precision

Voting -

Bagging A
LightGBM A
XGBoost -
Gradient Boosting -
Adaboost
Random Forest -
Decision Tree A
KNN A

SVM -

Logistic Regression A

0.54
0.55
0.57
0.51
0.57
0.52
0.50
0.48
0.45
0.48
0.49

0.40

0.45 0.50 0.55 0.60

14/23

2025/8/12 19:50

Accuracy (%)

saki_akd_shap

Comparison of External Data Classifier Performance Metrics

Voting A 54.86%
Bagging A 53.22%
LightGBM A 53.98%
XGBoost - 52.85%
Gradient Boosting - 53.87%
Adaboost A 53.25%
Random Forest - 53.60%
Decision Tree A 53.87%
KNN - 56.29%
SVM A 53.82%
Logistic Regression 54.97%
40 415 Sb 515 610 65
F1 Score
Voting
Bagging
LightGBM
XGBoost
Gradient Boosting
Adaboost
Random Forest
Decision Tree
KNN 0.52
SVM
Logistic Regression 0.47
0.I30 0.l35 O.;IO 0.215 O.ISO 0.55

In []:

import matplotlib.pyplot as plt

from yellowbrick.classifier import PrecisionRecallCurve

¥ best_estimators, X_train, y train, X _test, y testt %7 X

model = best_estimators[9]

viz = PrecisionRecallCurve(model)

{Efitflscorex B ¥ B figuref] X /Nl 43 # %
plt.figure(figsize=(10, 8), dpi=300)

plt.rcParams.update({
'axes.labelsize': 18,
'xtick.labelsize': 18,
'ytick.labelsize': 18,
'legend.fontsize': 18,

AR A RS 25 A K

X2 P A K
YA 2 B AR
B 7 AR RN

}

ax = plt.gca()

for spine in ax.spines.values():
spine.set_color('black")
spine.set_linewidth(1.5)

BUEIUHE IR BT

viz.fit(X_train, y_train)
viz.score(X_test, y test)
viz.show()

file:///D:/System/Desktop/Prediction of AKD in SA-AKl/saki/saki_akd_shap.html

Recall

Voting

Bagging
LightGBM
XGBoost
Gradient Boosting
Adaboost
Random Forest
Decision Tree

KNN

SVM

Logistic Regression

0.47

T

0.2 0.3 0.4 0.5

T

0.1 0.6
ROC AUC Score
Voting - 0.58
Bagging A 0.58
LightGBM - 0.57
XGBoost 0.55
Gradient Boosting 0.55
Adaboost 0.56
Random Forest 0.57
Decision Tree A 0.56
KNN - 0.59
SVM - 0.56
Logistic Regression A 0.58
0.45 O.ISO 0.155 0.%50 0.65

Precision
Voting - 0.58
Bagging A 0.60
LightGBM - 0.58
XGBoost - 0.57
Gradient Boosting - 0.58
Adaboost 0.60
Random Forest - 0.58
Decision Tree A 0.58
KNN - 0.59
SVM A 0.59
Logistic Regression 0.58
0.45 O.ISO 0.155 0.230

0.65

15/23

2025/8/12 19:50 saki_akd_shap

Precision-Recall Curve for LogisticRegression

1.0

0.8

0.6

Precision
o
N

0.2

— Binary PR curve
---=-Avg. precision=0.63

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Recall

<Axes: title={'center': 'Precision-Recall Curve for LogisticRegression'}, xlabel='Recall', ylabel='Precision'>

names

['Logistic Regression',
"SVM',
"KNN',
'Decision Tree',
'Random Forest',
'Adaboost’,
'Gradient Boosting',
'XGBoost',
"LightGBM',
'Bagging’,
'"Voting']

iy s

import numpy as np

import matplotlib.pyplot as plt

from sklearn.metrics import confusion_matrix

import seaborn as sns # " ik: {# [seabornik Ak 3%k

R & bestestimators[0],&— " B LI G 147 25 5%

Xtrain, ytraing2 284, Xtest, ytest &l & s

DL ARTE ¥ e Yel LowbrickIP) VR ¥ 5 FE nf ML4L

TR IE A B

cm = confusion_matrix(y_test, best_estimators[0].predict(X_test))
2 VR R R

plt.figure(figsize=(10, 8), dpi=300) # W & & K/NForHF%
plt.rcParams.update({

"font.size': 18, # AR AR ORI
'axes.titlesize': 18, # B RN
'axes.labelsize': 18, # ALl AR 25 KN
"xtick.labelsize': 18, # X5 Z RN
'ytick.labelsize': 18, # Y ZI K
"figure.dpi': 300, # R

1)

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues') # fii F seabornlt]heatmapif %
plt.xlabel('Predicted Class')

plt.ylabel('True Class")

plt.show() # ‘i~ E1{E

file:///D:/System/Desktop/Prediction of AKD in SA-AKl/saki/saki_akd_shap.html 16/23

2025/8/12 19:50 saki_akd_shap

1400

ol 1200

1000

300

True Class

600
— 135 585

400

200

Predicted Class

ROz

import matplotlib.pyplot as plt
from sklearn.calibration import CalibrationDisplay, calibration_curve
from sklearn.metrics import brier_score_loss

R¥% best_estimators s&— NEE& AL 157 KA 15
X_test Ml y test &R 4 42 1) R AiE Fl b 25

fig, ax = plt.subplots(figsize=(12, 12), dpi=300) # G & K Al AL b5 b

I REAS 7 A I 4 R v i 2k

for clf in best_estimators:
1 HBrier score
y_prob = clf.predict_proba(X_test)[:, 1]
brier_score = brier_score_loss(y_test, y_prob)

@ CalibrationDisplay*t % I 2 fil ke e il 28
display = CalibrationDisplay.from_estimator(
clf, X_test, y_test, ax=ax, name=f'{clf._ class__._ name__} (Brier: {brier_score:.3f})’

)

plt.grid(False)
plt.show()

SHAP--- 128U n] B o1

best_estimators

import shap
X_train = pd.DataFrame(X_train,columns=X_1.columns)
model = best estimators[@] # 1%t ¢ — - fsiY

compute SHAP values
explainer = shap.Explainer(model, X_train)
shap_values = explainer(X_train)

shap.plots.violin(shap_values, plot_type="layered violin")

plt.figure(figsize=(10,10), dpi=300)
plt.grid(False)
shap.plots.bar(shap_values,max_display=20)

import shap

import matplotlib.pyplot as plt

Hid shapfii Bk 2%

explainer = shap.Explainer(model, X_train)
1H SR 1) shapfd

shap_values = explainer(X_train)

FFAEFR A

labels = X_train.columns

BE TR TR RN

file:///D:/System/Desktop/Prediction of AKD in SA-AKl/saki/saki_akd_shap.html 17/23

2025/8/12 19:50

saki_akd_shap

plt.rcParams['font.family'] = 'serif’
plt.rcParams['font.serif'] = 'Times new Roman'
plt.rcParams['font.size'] = 13

25 A% 25

plt.rcParams['axes.grid'] = False

WEERKDMSHF
plt.figure(figsize=(10, 10), dpi=300)

£ SHAPHH 1K
shap.summary_plot(shap_values, X train, feature_names=labels, plot_type="dot")
WoRER

plt.show()

import joblib
joblib.dump(model, '©511F & fiisaki_lr modell.pkl') # fE ¥ model &Il 251 1) 455 1

['0511F & fitsaki_1r_modell.pkl']

from sklearn.linear_model import LogisticRegression
import joblib

BKIRELH T — DI Rbr R
model = LogisticRegression()
model.fit(X_train, y_train)

13 FH job LibfR A7 15 Bl
joblib.dump(model, ‘modell.joblib")

['modell.joblib"]

shap_values_topl00 = shap_values[:1000]

221 AT 1001 FE 41X SHAPTE #4475
shap.plots.heatmap(shap_values_top100)

shap.plots.heatmap(shap_values)

explanation = explainer(X_train.loc[:1000,:])
X_train

shap.plots.scatter(explanation[:, "Scr_baseline"])

shap.plots.scatter(explanation[:, "Scr_baseline"], color=explanation[:, "Age"])

shap.plots.waterfall(shap_values[@])

shap.plots.waterfall(shap_values[1])

shap.plots.waterfall(shap_values[3])

from lime.lime_tabular import LimeTabularExplainer

explainer = LimeTabularExplainer(X_train.values, feature_names=X_1.columns, class_names=np.unique(y_train), mode='classification')

instance = X_train.loc[11]

Generate an explanation for the instance
explanation = explainer.explain_instance(instance,model.predict_proba, num_features=5)

Display the explanation
explanation.show_in_notebook ()

import joblib
joblib.dump(model, 'saki_lr _model.pkl') # {fi% model &Il Z54f (1) 4 7Y

["saki_lr_model.pkl']

coefficients = model.coef_ [0]
intercept = model.intercept_[90]

coefficients

array([-0.38681916, -0.01213823, -0.16050141, ©.36487372, ©.29474987,
©.4989831 , ©.31881465, ©.18528972, ©.35857963, ©.17374482,
0.20034995, ©.04636802, -0.2696443 , ©.1108195 , -0.48366887,
0.17549857, ©.1038173 , ©.41248211, ©.16337912, ©.16645699])

final= pd.read_csv(r'E:\MIMIC\MIMIC BIG_DATA\MIMIC BIG DATA\case\sepsis\250510 EICU#i#ii saki.csv')
final.head()

Unnamed:

0 0 141304 1.24 -127.0 7293 7420 0 1
1 1 141751 0.90 -101.0 6042 6143 0 1
2 2 141920 1.03 -113.0 2469 2582 0 0
3 3 141945 2.17 -205.0 6539 6744 0 1
4 4 142388 1.11 -94.0 7122 7216 0 1

5 rows x 137 columns

4

print(list(final.columns))

file:///D:/System/Desktop/Prediction of AKD in SA-AKl/saki/saki_akd_shap.html

0 patientunitstayid Scr baseline akimintime akimaxtime los aki AKD cxx aki diagnosisoffset

23.0

45.0

15.0

25.0

73.0

diagnosisstring

cardiovascular|shock
/ hypotension|sepsis

cardiovascular|shock
/ hypotension|signs
and s...

cardiovascular|shock
/ hypotension|sepsis

cardiovascular|shock
/ hypotension|sepsis

cardiovascular|shock
/ hypotension|sepsis

demential

copd1 ctd1
0 0
0 0
0 0
0 0
0 0

pud1

liver1 age score charlson fin

0 3
0 2
0 4
0 3
0 2

18/23

2025/8/12 19:50 saki_akd_shap

["Unnamed: @', 'patientunitstayid', 'Scr_baseline', ‘'akimintime', 'akimaxtime', 'los_aki', 'AKD', ‘'cxx_aki', 'diagnosisoffset', 'diagnosisstring', 'patienthealthsystemstayid', 'unitvisitnumbe
r', 'hospitalid', '"hospitaladmitoffset', 'hospitaldischargeoffset', 'unitadmitoffset', 'unitdischargeoffset', 'apache_iv', 'hospitaldischargeyear', 'age', "hosp_mort', 'gender', 'admissionheig
ht', 'admissionweight', 'icu_los_hours', 'aniongap_min', 'aniongap_max', ‘'albumin_min', 'albumin_max', 'bicarbonate_min', 'bicarbonate_max', 'bilirubin_min', ‘'bilirubin_max', 'creatinine_min',
'creatinine_max', 'chloride_min', 'chloride_max', 'glucose_min', 'glucose_max', ‘'hematocrit_min', 'hematocrit_max', 'hemoglobin_min', 'hemoglobin_max', 'lactate_min', 'lactate_max', 'platelet_
min', 'platelet_max', 'potassium_min', ‘'potassium_max', 'inr_min', 'inr_max', ‘pt_min', 'pt_max', 'sodium_min', 'sodium_max', ‘bun_min', 'bun_max', ‘'wbc_min', 'wbc_max', 'window_start7', 'CRR
T', 'apachepatientresultsid', 'physicianspeciality', 'physicianinterventioncategory', 'acutephysiologyscore', 'apachescore', 'apacheversion', ‘'predictedicumortality', 'actualicumortality', 'pr
edictediculos', 'actualiculos', 'predictedhospitalmortality', 'actualhospitalmortality', 'predictedhospitallos', 'actualhospitallos', 'preopmi', 'preopcardiaccath', 'ptcawithin24h', 'unabridge
dunitlos', 'unabridgedhosplos', 'apacheapsvarid', 'intubated', 'vent', 'dialysis', ‘eyes', 'motor', ‘verbal', 'meds', 'wbc', 'sodium', 'meanbp', 'hematocrit', 'creatinine', ‘'bun', 'glucose’,
'oasis', 'vasopressor', "ACEI/ARB', 'GCS', 'chartoffset', 'heartrate', 'respiratoryrate', 'spo2', 'nibp_systolic', 'nibp_diastolic', 'temperature', 'PT', 'pa02', 'FiO2', 'Pa02/FiO02', 'LODS',
'BaseExcess', 'drugstartoffset', 'Los_inf._AB', 'mets6', 'aids6', 'liver3', 'stroke2', ‘'renal2', 'dm', ‘cancer2', 'leukemia2', 'lymphoma2', 'mil', ‘chfl', 'pvdl', 'tial', ‘demential’', 'copdl’,
"ctdl', 'pudl', 'liverl', 'age_score_charlson', 'final_charlson_score', 'Cerebrovascular_disease', 'paC02', 'paraplegia’]

print(final['Scr_baseline'].value_counts().to_string())
final['MBP'] = final['nibp_diastolic'] + (final['nibp_systolic'] - final['nibp_diastolic']) / 3

final=final[['patientunitstayid’, 'Scr_baseline','AKD"', "cxx_aki', 'apache_iv', 'age', 'CRRT', 'LODS', 'BaseExcess','Los_inf. AB', 'vent',
'temperature’, 'respiratoryrate’, 'ACEI/ARB', 'vasopressor','bun', 'glucose', 'oasis','wbc', 'sodium', 'acutephysiologyscore',
"Cerebrovascular_disease', 'admissionweight', 'pa02', 'paC02', 'spo2', 'MBP', 'paraplegia’, 'age"', 'gender']]

print(list(final.columns))

["patientunitstayid', 'Scr_baseline', 'AKD', 'cxx_aki', 'apache_iv', ‘'age', 'CRRT', 'LODS', 'BaseExcess', 'Los_inf._AB', 'vent', 'temperature', 'respiratoryrate', 'ACEI/ARB', 'vasopressor', 'b

un', 'glucose', 'oasis', 'wbc', 'sodium', 'acutephysiologyscore', 'Cerebrovascular_disease', 'admissionweight', 'pa0O2', 'paC02', 'spo2', 'MBP', 'paraplegia', 'age', 'gender']
X_1.columns

Index(['ACEI/ARB', 'APS III', 'CRRT', 'Cerebrovascular Disease', 'LODS',
'Los_inf._AB', 'MBP', 'Mechanical Ventilation', 'Paraplegia’,
"Resp Rate', 'Scr Baseline', 'Sp02', 'Vasoactive Agent', 'Weight'],
dtype="object")

finall=final[['Scr_baseline', 'AKD', 'CRRT', 'LODS', 'vent', ‘'respiratoryrate', 'ACEI/ARB', 'vasopressor',
'acutephysiologyscore', 'Cerebrovascular_disease', 'admissionweight', 'spo2','MBP','Los_inf._AB', 'paraplegia‘','age', 'gender']]

rename_mapping = {
'Scr_baseline': 'Scr Baseline',
'"CRRT": 'CRRT',
'LODS': 'LODS',

'respiratoryrate’: 'Resp Rate',

'"ACEI/ARB': 'ACEI/ARB',

'vasopressor': 'Vasoactive Agent',
'acutephysiologyscore': 'APS III',
'Cerebrovascular_disease': 'Cerebrovascular Disease',
'admissionweight': 'Weight',

'spo2':'Sp02"',

'vent':'Mechanical Ventilation',
'paraplegia’: 'Paraplegia’,
‘age':'Age’,

'gender':'Gender'

}

1f F renameJ7 15 % 48 B 4
final2= finall.rename(columns=rename_mapping)

final2.head()

Basel:f; AKD CRRT LODS “\’,'::,:fa“t':)a; i‘:st': ACEI/ARB Vas°:‘;t;‘r"‘: AFI'IS; Ce"*"’”"g;%‘;':; Weight SpO2 MBP Los inf. AB Paraplegia Age Age Gender
0 124 0 0 4 1.0 28.0 0 0 410 0 NaN 950 72.000000 0.00 0 70.0 70.0 1.0
1 090 0 0 8 1.0 25.0 0 0 NaN 0 NaN 940 57.666667 0.19 0 60.0 60.0 0.0
2 103 0 0 4 1.0 28.0 0 0 410 0 534 970 67.000000 0.00 0 81.0 81.0 0.0
3 217 0 0 1 0.0 14.0 0 0 400 0 748 690 67.666667 0.00 0 720 720 0.0
4 1110 0 7 1.0 22.0 0 0 101.0 0 966 97.0 144333333 0.86 0 67.0 67.0 1.0

threshold = 0.9 * len(final2.columns)
final2_cleaned = final2.dropna(thresh=threshold)

final2_cleaned.shape

(4842, 18)

final2_cleaned['AKD'].value_counts()

AKD
1 2463
0 2379

Name: count, dtype: int64

threshold = 1 * len(final2.columns)
final3 = final2.dropna(thresh=threshold)

final3.shape

(3721, 18)

final3["AKD'].value_counts()

AKD
1 1894
0 1827

Name: count, dtype: int64
msno.bar(final3)

<Axes: >

file:///D:/System/Desktop/Prediction of AKD in SA-AKl/saki/saki_akd_shap.html 19/23

2025/8/12 19:50

N (N N N N
O A SR AN\
1-0 I I I I I
0-8 I I I I I
0-6 I I I I I
0-4 I I I I I
0-2 I I I I I
0.0
N L& & S
@9 O Y N
Q 2 @
S 3 &
& N
&
&
O
\x\@
final3['Scr Baseline'] = final3['Scr Baseline'] * 88.4
final3.head()
Scr Mechanical Resp Vasoactive
Baseline AKD CRRT LODS Ventilation Rate ACEI/ARB Agent
2 91.052 0 0 4 1.0 28.0 0 0
3 191.828 0 0 1 0.0 14.0 0 0
4 98.124 0 0 7 1.0 22.0 0 0
5 109.616 1 0 4 0.0 20.0 0 0
6 162.656 1 0 7 1.0 20.0 0 0
X_1.columns

Index(['ACEI/ARB', 'APS III', 'CRRT', 'Cerebrovascular Disease’,
'Los_inf._AB', 'MBP', 'Mechanical Ventilation', 'Paraplegia’,
"Resp Rate', 'Scr Baseline', 'Sp02', 'Vasoactive Agent', 'Weight'],

colu

]

J%
fina

fina

ACEI/ARB APS 1l

o U A W N

dtype="object")

'LODS ',

mn_order = ['ACEI/ARB', 'APS III' ,'CRRT', 'Cerebrovascular Disease', 'LODS',

'Los_inf. AB', 'MBP' ,'Mechanical Ventilation', 'Paraplegia’,

'Scr Baseline' ,'Sp02' ,'Vasoactive Agent', 'Weight','AKD'

35 %€ Iy H1E 1 51

13 = final3[column_order]

13.head()

0 41.0 0 0 4
0 40.0 0 0 1
0 101.0 0 0 7
0 42.0 0 0 4
0 63.0 0 0 7

final3.to_csv('elCU saki.csv')

y_val= final3['AKD"]
X_val= final3.drop('AKD',axis=1)

import streamlit as st

import joblib

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

X_val= scaler.transform(X_val)

from sklearn.metrics import accuracy score, precision_score, recall score, fl_score, roc_auc_score, roc_curve

import matplotlib.pyplot as plt

1

W best_estimators j&— NMAE AR IG5 K5I R

CRRT Cerebrovascular Disease LODS Los inf. AB

0.00
0.00
0.86
0.00
0.28

saki_akd_shap

APS Cerebrovascular
i Disease
41.0 0
40.0 0
101.0 0
42.0 0
63.0 0

'Resp Rate’,

MBP

Weight Sp02
534 97.0 67.000000
748 690 67.666667
96.6 97.0 144333333
714 980 71.666667
76.7 99.0 85.666667

MBP Mechanical Ventilation Paraplegia Resp Rate Scr Baseline

67.000000
67.666667
144.333333
71.666667
85.666667

model names = ['Logistic Regression', 'SVM','KNN', 'Decision Tree', 'Random Forest',
'Adaboost’, 'Gradient Boosting', 'XGBoost', 'LightGBM', 'Bagging', 'Voting']

4l

ga Ak 1k REHE AR T g

performance_metrics = {}

T
for

TSI 2K AR AT VR A

name, model in zip(model names, best_estimators):
y_pred = model.predict(X_val)

y_pred_proba = model.predict_proba(X_val)[:, 1]

THE R IR AR

accuracy = accuracy_score(y_val, y_pred)
precision = precision_score(y_val, y_pred)
recall = recall_score(y_val, y_pred)

f1l = f1_score(y_val, y_pred)

auc_score = roc_auc_score(y_val, y pred_proba)

file:///D:/System/Desktop/Prediction of AKD in SA-AKl/saki/saki_akd_shap.html

1.0
0.0
1.0
0.0
1.0

AL FRE R

0

o O O o

28.0
14.0
22.0
20.0
20.0

91.052
191.828
98.124
109.616
162.656

Los inf. AB Paraplegia

0.00
0.00
0.86
0.00
0.28

o O o o o

Age

81.0
72.0
67.0
72.0
60.0

3721
2976
2232
1488
744
0
Age Gender
81.0 0.0
72.0 0.0
67.0 1.0
72.0 1.0
60.0 0.0

SpO2 Vasoactive Agent Weight AKD

97.0
69.0
97.0
98.0
99.0

0

o o o o

534
74.8
96.6
714
76.7

0
0
0

20/23

2025/8/12 19:50 saki_akd_shap

1PEVERETE AR
performance_metrics[name] = {
"Accuracy': accuracy,
'Precision': precision,

'Recall’: recall,
'F1 Score': f1,
"AUC': auc_score

}

FTENVEREFE AR
for name, metrics in performance_metrics.items():
print(f"{name} Performance:")
for metric, value in metrics.items():
print(f"{metric}: {value:.4f}")
print()

22 ROCH £;
plt.figure(figsize=(10, 10), dpi=300)
for name, model in zip(model_names, best_estimators):
y_pred_proba = model.predict_proba(X_val)[:, 1]
fpr, tpr, _ = roc_curve(y_val, y pred_proba)
auc_score = performance_metrics[name]['AUC"]
plt.plot(fpr, tpr, label=f'{name} (AUC = {auc_score:.2f})")

plt.plot([0, 1], [0, 1], 'k--', label="'Random')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.legend(loc="1lower right")

plt.grid(False)

plt.show()

Logistic Regression Performance:
Accuracy: 0.5496

Precision: 0.5846

Recall: ©.3976

F1 Score: 0.4733

AUC: 0.5781

SVM Performance:

Accuracy: 0.5394

Precision: ©.5939
Recall: ©.3004

F1 Score: 0.3990

AUC: ©.5573

KNN Performance:

Accuracy: 0.5474

Precision: 0.5772
Recall: 0.4145

F1 Score: 0.4825

AUC: 0.5674

Decision Tree Performance:
Accuracy: 0.5370
Precision: 0.5861

Recall: 0.3073

F1 Score: 0.4032

AUC: 0.5657

Random Forest Performance:
Accuracy: 0.5361
Precision: 0.5817

Recall: 0.3157

F1 Score: 0.4093

AUC: 0.5739

Adaboost Performance:
Accuracy: 0.5284
Precision: ©.5918
Recall: 0.2365

F1 Score: 0.3380

AUC: 0.5647

Gradient Boosting Performance:
Accuracy: 0.5289

Precision: ©.5809

Recall: 0.2672

F1 Score: 0.3660

AUC: 0.5468

XGBoost Performance:
Accuracy: 0.5257
Precision: ©.5722
Recall: ©.2698

F1 Score: 0.3667
AUC: 0.5432

LightGBM Performance:
Accuracy: 0.5292
Precision: 0.5632
Recall: ©.3342

F1 Score: 0.4195

AUC: ©.5559

Bagging Performance:
Accuracy: 0.5321
Precision: 0.6041
Recall: ©.2344

F1 Score: 0.3378
AUC: ©.5778

Voting Performance:
Accuracy: 0.5485
Precision: 0.5821
Recall: 0.4007

F1 Score: 0.4747
AUC: ©.5816

file:///D:/System/Desktop/Prediction of AKD in SA-AKl/saki/saki_akd_shap.html 21/23

2025/8/12 19:50 saki_akd_shap

1.0

0.8

o
(@)
\
O
\
N\

9
©
hd
[}
2
k%)
o
al
o)
2
I_
0.4
— | ogistic Regression (AUC = 0.58)
SVM (AUC = 0.56)
— KNN (AUC = 0.57)
0.2 —— Decision Tree (AUC = 0.57)

Random Forest (AUC = 0.57)
Adaboost (AUC = 0.56)
— (Gradient Boosting (AUC = 0.55)
XGBoost (AUC = 0.54)
LightGBM (AUC = 0.56)
Bagging (AUC = 0.58)
0.0 ’ Voting (AUC = 0.58)
==+ Random

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

from PIL import Image, ImageDraw, ImageFont

FTTFPISK B v, A8 08 o 4 HR BOBUR RHT

imagel = Image.open(r'E:\MIMIC\image\Feature Selection by Boruta and Lassov2.png')
image2 = Image.open(r'E:\MIMIC\image\Feature Selection by Boruta and Lassov4.png')
AR U IK B B R — 3

width, height = imagel.size

imagel = imagel.resize((width, height))

image2 = image2.resize((width, height))

AR R, BEAPKERERE M, SESRKERHERA
total_width = imagel.width + image2.width

max_height = max(imagel.height, image2.height)

new_image = Image.new('RGB', (total_width, max_height))

PHEE A
new_image.paste(imagel, (0, 9))
new_image.paste(image2, (imagel.width, 0))

BlEZEXR
draw = ImageDraw.Draw(new_image)

& X FRMRN, X BAEHPILAN B K 1k
font = ImageFont.load_default()

(R E A L AR A" "B"

text_positionl = (10, 10) # "A"[(IfI &

text_position2 = (imagel.width + 10, 10) # "B"[{7 &
draw.text(text_positioni, "A", font=font, fill=(255, 0, 0))
draw.text(text_position2, "B", font=font, fill=(255, 9, 9))

SoRPHEE R E A
new_image.show()

new_image.save('E:\MIMIC\image\Boruta_Lasso vil.png"')

<>:1: SyntaxWarning: invalid escape sequence '\M'

<>:1: SyntaxWarning: invalid escape sequence '\M'

C:\Users\Lenovo\AppData\Local\Temp\ipykernel 23624\867099026.py:1: SyntaxWarning: invalid escape sequence '\M'
new_image.save('E:\MIMIC\image\Boruta_Lasso vi1.png"')

file:///D:/System/Desktop/Prediction of AKD in SA-AKl/saki/saki_akd_shap.html 22/23

2025/8/12 19:50 saki_akd_shap

from PIL import Image, ImageDraw, ImageFont

ATIF PR Fr . 6 5 00 5 1 o B0 AT
imagel = Image.open(r'E:\MIMIC\image\Lasso Regressionv2.png')
image2 = Image.open(r'E:\MIMIC\image\Lasso Pathsv2.png')

BOR PR 5K B T B0 98— 3K

width = min(imagel.width, image2.width)

imagel = imagel.resize((width, imagel.height))
image2 = image2.resize((width, image2.height))

Qg —AEERE, BESRKE AR, &R E R EZ M
total_height = imagel.height + image2.height

max_width = max(imagel.width, image2.width)

new_image = Image.new('RGB', (max_width, total height))

PHEE A
new_image.paste(imagel, (0, 9))
new_image.paste(image2, (0, imagel.height))

AIEZEXNR
draw = ImageDraw.Draw(new_image)

€ X FARMRN, X BAEHPILA B 71k
font = ImageFont.load_default()

(R KE R L B AR A "B

text_positionl = (10, 10) # "A"M{ &

text_position2 = (10, imagel.height + 10) # "B"HIfu &
draw.text(text_positionl, "A", font=font, fill=(255, 0, 0))
draw.text(text_position2, "B", font=font, fill=(255, 9, 0))

TR PHEE R E
new_image.show()

import joblib

0 ERAE AR A
model = joblib.load(r'E:\MIMIC\MIMIC BIG_DATA\MIMIC_ BIG_DATA\case\stroke\@511% & it saki_lr_modell.pkl")

BLALE PR AT DA 3 A 458 28 AT T U
Bl

predictions = model.predict(X_new)

model = best_estimators[9]
RRDHTHISS

from sklearn.metrics import confusion_matrix
R EAL T SR Y U 2R 0 B
def compute_net_benefit_model vectorized(thresholds, y pred_scores, y labels):
¥ y_Labels 4N numpy %40 DLk G £ 2 2% 5| 19 7
y_labels = np.array(y_labels)
y_pred_scores = np.array(y_pred_scores)
I E A
n = len(y_labels)
Ty BB
net_benefit_model = np.zeros_like(thresholds)
K TS o A0 B E BEAT) R
y_pred_matrix = (y_pred_scores[:, None] > thresholds).astype(int)
REATFIREESEKITR: TP M FP
tp = (y_pred_matrix & y labels[:, None]).sum(axis=0)
fp = ((y_pred_matrix == 1) & (y_labels[:, None] == 0)).sum(axis=0)
1H SIS
net_benefit model = (tp / n) - (fp / n) * (thresholds / (1 - thresholds))
return net_benefit_model
REMITHE Treat all TR A I R £
def compute_net_benefit_all vectorized(thresholds, y labels):
% y _Labels BN numpy BrH DLE G 2 4R 5] W) @l
y_labels = np.array(y_labels)
I EIRBEMENITE (T Treat all KW, FrA AP NIES)
tn, fp, fn, tp = confusion_matrix(y_labels, y labels).ravel()
total = tp + tn
To) M B
net_benefit_all = np.zeros_like(thresholds)
REN I EF U
net_benefit_all = (tp / total) - (tn / total) * (thresholds / (1 - thresholds))
return net_benefit_all
¢4 DCA ek L
def plot_dca_custom(thresholds, net_benefit model, net benefit_all):
fig, ax = plt.subplots(figsize=(8, 6),dpi=1200)
2o U A 4R
ax.plot(thresholds, net_benefit_model, color='deepskyblue', label='Model")
ax.plot(thresholds, net_benefit_all, color='black', label='Treat all')
ax.plot((e, 1), (0, 9), color="#808080', label='Treat none')
HARAL Treat all 1 Treat none IL#H4)
y2 = np.maximum(net_benefit_all, 0)
yl = np.maximum(net_benefit_model, y2)
ax.fill_between(thresholds, y1, y2, color='deepskyblue', alpha=0.3) # {#§F 5k 1945 78 Zi (o
RUEER
ax.set_xlim(o, 1)
ax.set_ylim(net_benefit_model.min() - ©.15, net_benefit_model.max() + ©.15)
ax.set_xlabel('Threshold Probability', fontdict={'family': 'Times New Roman', 'fontsize': 15})
ax.set_ylabel('Net Benefit', fontdict={'family': 'Times New Roman', 'fontsize': 15})
ax.grid(True)
ax.legend(loc="upper right")
plt.savefig("DCA.pdf", bbox_inches="tight")
plt.show()
1217 DCA 43 BT ki 3L
def run_dca_analysis(model, X test, y test):
A AR 2R Y0 A &2
y_pred_scores = model.predict_proba(X_test)[:, 1] # 375 1E 25 il M %
y_labels = y_test # fifi IR 45 1 S bR 45
€ SCBME
thresholds = np.arange(0, 1, 0.01)
1HEASFE BE T IR R
net_benefit_model = compute_net_benefit_model_vectorized(thresholds, y_pred_scores, y labels)
net_benefit_all = compute_net_benefit_all vectorized(thresholds, y_labels)
% Bl
plot_dca_custom(thresholds, net_benefit_model, net_benefit_all)

run_dca_analysis(model, X_test, y test)

file:///D:/System/Desktop/Prediction of AKD in SA-AKl/saki/saki_akd_shap.html 23/23

