
import pandas as pd
import numpy as np

df = pd.read_csv(r'E:\MIMIC\MIMIC_BIG_DATA\MIMIC_BIG_DATA\case\stroke\250506重制版清洗后数据 saki.csv')

df.head()

Unnamed:
0 OASIS SIRS APS

III Weight Heart_rate SBP DBP MBP Resp_rate ... Scr_min CKD CRRT Mechanical
ventilation Vasoactive_agent LODS DM Liver_disease Los_inf._AB Los_icu_aki

0 0 41 3 52 55.3 79.0 107.0 63.0 71.0 23.0 ... 53.04 NO NO NO NO 5 NO NO 12.83 13.38

1 1 35 3 51 65.0 76.0 127.0 73.0 87.0 26.0 ... 44.20 NO NO YES NO 7 NO NO 15.40 38.67

2 2 26 3 52 48.0 94.0 118.0 51.0 68.0 18.0 ... 185.64 YES NO NO NO 6 NO NO 13.50 17.17

3 3 24 4 41 156.1 92.0 121.0 79.0 92.0 30.0 ... 53.04 NO NO NO NO 2 YES NO 5.07 31.67

4 4 32 3 54 64.1 114.0 160.0 78.0 94.0 26.0 ... 97.24 NO NO YES YES 4 YES NO 1.62 20.70

5 rows × 70 columns

df = df.drop(['Unnamed: 0'], axis=1)

print(list(df.columns))

['OASIS', 'SIRS', 'APS III', 'Weight', 'Heart_rate', 'SBP', 'DBP', 'MBP', 'Resp_rate', 'Temperature', 'Spo2', 'Myocardial_infarct', 'Congestive_heart_failure', 'Peripheral_vascular_disease',
'Cerebrovascular_disease', 'Dementia', 'Chronic_pulmonary_disease', 'Rheumatic_disease', 'Peptic_ulcer_disease', 'Paraplegia', 'Renal_disease', 'Malignant_cancer', 'Metastatic_solid_tumor', 'A
IDS', 'Charlson_comorbidity_index', 'AKI stage', 'Gender', 'Age', 'SOFA score', 'SA-AKI', 'HTN', 'AKD', 'Po2', 'Pco2', 'PH', 'Base Excess', 'Totalco2', 'Aniongap', 'Bicarbonate', 'BUN', 'Calci
um', 'Chloride', 'Glucose', 'Sodium', 'Potassium', 'INR', 'PT', 'PTT', 'Hematocrit', 'Hemoglobin', 'MCH', 'MCHC', 'MCV', 'Platelet', 'RBC', 'RDW', 'GCS', 'Urineoutput_24hr', 'ACEI/ARB', 'Scr_m
in', 'CKD', 'CRRT', 'Mechanical ventilation', 'Vasoactive_agent', 'LODS', 'DM', 'Liver_disease', 'Los_inf._AB', 'Los_icu_aki']

columns_to_round = ['Los_inf._AB','Los_icu_aki','BMI','Age','PH','Calcium','Scr_min','Glucose','Pao2fio2ratio']
for col in columns_to_round:
 if col in df.columns: # 确保列名存在于 DataFrame 中
 df[col] = df[col].round(2)

df.shape

(10234, 69)

new_columns= [
 'OASIS', 'SIRS', 'APS III', 'Weight', 'Heart Rate', 'SBP', 'DBP', 'MBP', 'Resp Rate', 'Temperature', 'SpO2',
 'Myocardial Infarct', 'Congestive Heart Failure', 'Peripheral Vascular Disease', 'Cerebrovascular Disease',
 'Dementia', 'Chronic Pulmonary Disease', 'Rheumatic Disease', 'Peptic Ulcer Disease', 'Paraplegia', 'Renal Disease',
 'Malignant Cancer', 'Metastatic Solid Tumor', 'AIDS', 'Charlson Comorbidity Index', 'AKI Stage', 'Gender', 'Age',
 'SOFA Score', 'SA-AKI', 'HTN', 'AKD', 'PaO2', 'PaCO2', 'pH', 'Base Excess', 'Total CO2', 'Anion Gap', 'Bicarbonate',
 'BUN', 'Calcium', 'Chloride', 'Glucose', 'Sodium', 'Potassium', 'INR', 'PT', 'PTT', 'Hematocrit', 'Hemoglobin',
 'MCH', 'MCHC', 'MCV', 'Platelet', 'RBC', 'RDW', 'GCS', '24-hour Urine Output', 'ACEI/ARB', 'Scr Baseline', 'CKD', 'CRRT',
 'Mechanical Ventilation', 'Vasoactive Agent', 'LODS', 'DM', 'Liver Disease', 'Los_inf._AB', 'Los_icu_aki'
]

更改列名
df.columns = new_columns

打印更改后的列名
print(df.columns)

df.head()

df.shape

(10234, 69)

df.info()#快速检查数据集的基本属性和可能的缺失值问题。

df.shape

(10234, 69)

df.select_dtypes(include='object').columns

df.describe()

pd.set_option('display.max_rows', None) # 显示所有行 pd.set_option('display.max_columns', None) # 显示所有列 pd.set_option('display.width', None) # 不限制输出宽度

pd.set_option('display.max_colwidth', None) # 不限制列宽

现在调用describe()方法
df.describe(include='all')

print(list(df.columns))

['OASIS', 'SIRS', 'APS III', 'Weight', 'Heart Rate', 'SBP', 'DBP', 'MBP', 'Resp Rate', 'Temperature', 'SpO2', 'Myocardial Infarct', 'Congestive Heart Failure', 'Peripheral Vascular Disease',
'Cerebrovascular Disease', 'Dementia', 'Chronic Pulmonary Disease', 'Rheumatic Disease', 'Peptic Ulcer Disease', 'Paraplegia', 'Renal Disease', 'Malignant Cancer', 'Metastatic Solid Tumor', 'A
IDS', 'Charlson Comorbidity Index', 'AKI Stage', 'Gender', 'Age', 'SOFA Score', 'SA-AKI', 'HTN', 'AKD', 'PaO2', 'PaCO2', 'pH', 'Base Excess', 'Total CO2', 'Anion Gap', 'Bicarbonate', 'BUN', 'C
alcium', 'Chloride', 'Glucose', 'Sodium', 'Potassium', 'INR', 'PT', 'PTT', 'Hematocrit', 'Hemoglobin', 'MCH', 'MCHC', 'MCV', 'Platelet', 'RBC', 'RDW', 'GCS', '24-hour Urine Output', 'ACEI/AR
B', 'Scr Baseline', 'CKD', 'CRRT', 'Mechanical Ventilation', 'Vasoactive Agent', 'LODS', 'DM', 'Liver Disease', 'Los_inf._AB', 'Los_icu_aki']

缺失值检查
import matplotlib.pyplot as plt
from missingno import missingno as msno
msno.bar(df)

missing_percentages = df.isnull().mean()

找出缺失数据超过50%的列
columns_to_drop = missing_percentages[missing_percentages > 0.10].index

columns_to_drop

Index(['PaO2', 'PaCO2', 'pH', 'Base Excess', 'Total CO2'], dtype='object')

df= df.drop(columns=columns_to_drop)
df.shape

(10234, 64)

df1=df

missing_ratio_per_row = df1.isna().mean(axis=1)

保留缺失比例≤10%的行

In [1]:

In [2]:

In [3]:

Out[3]:

In [4]:

In [5]:

In [6]:

In [7]:

Out[7]:

In []:

In []:

In [10]:

Out[10]:

In []:

In [12]:

Out[12]:

In []:

In []:

In [15]:

In []:

In [17]:

In [18]:

Out[18]:

In [19]:

Out[19]:

In [20]:

In [21]:

2025/8/12 19:50 saki_akd_shap

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/saki_akd_shap.html 1/23

df1= df1[missing_ratio_per_row <= 0.10]
df1.shape

(9778, 64)

msno.bar(df1)

缺失值填补

使用众数填充缺失值
for column in df1.columns:
 mode_value = df1[column].mode()[0] # 取众数的第一个值（如果有多个众数，这里只取第一个）
 df1[column] = df1[column].fillna(mode_value)

显示结果
print(df1)

msno.bar(df1)

df1.shape

(9778, 64)

df1.select_dtypes(include='object').columns

df1.select_dtypes(include='float64').columns

df1.select_dtypes(include='int64').columns

Index(['OASIS', 'SIRS', 'APS III', 'Charlson Comorbidity Index', 'AKI Stage',
 'SOFA Score', 'LODS'],
 dtype='object')

df1.select_dtypes(include='int32').columns

Index([], dtype='object')

from missingno import missingno as msno
msno.bar(df1)

df1.isnull().sum()

OASIS 0
SIRS 0
APS III 0
Weight 0
Heart Rate 0
 ..
LODS 0
DM 0
Liver Disease 0
Los_inf._AB 0
Los_icu_aki 0
Length: 64, dtype: int64

one-hot编码：

df1.select_dtypes(include='object')#字符类型列

cols = df1.select_dtypes(include='object').columns

df1.describe(include='all')

cols

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

for col in cols:#是一个循环，它遍历 cols 列表中的每个元素。
 df1[col] = le.fit_transform(df1[col])

df1[cols]

df1.head()

df1.CRRT.value_counts()

CRRT
0 9262
1 516
Name: count, dtype: int64

df1['Vasoactive Agent'].value_counts()

Vasoactive Agent
0 5632
1 4146
Name: count, dtype: int64

count = df1[(df1['Vasoactive Agent'] == 1) & (df1['CRRT'] == 1)].shape[0]
count

393

df1.head()

df1.to_csv('MIMIC_saki.csv')

分离目标变量 y（‘outcome’ 列）和特征变量 x（除了 ‘outcome’ 列之外的所有其他列）

y = df1['AKD']
x = df1.drop('AKD',axis=1)

皮尔逊相关性
特征之间相关性筛选特征，去除特征（自变量）之间高相关性的特征

import matplotlib.pyplot as plt
from yellowbrick.features import Rank2D
import numpy as np

确保x只包含数值型数据
plt.rcParams.update({'font.size': 100})
plt.figure(figsize=(30, 30), dpi=300)
x = x.select_dtypes(include=[np.number])

Out[21]:

In []:

In []:

In []:

In [25]:

Out[25]:

In []:

In []:

In [28]:

Out[28]:

In [29]:

Out[29]:

In []:

In [31]:

Out[31]:

In []:

In [33]:

In []:

In []:

In [36]:

In []:

In []:

In []:

In [40]:

Out[40]:

In [41]:

Out[41]:

In [42]:

Out[42]:

In []:

In [44]:

In [45]:

2025/8/12 19:50 saki_akd_shap

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/saki_akd_shap.html 2/23

实例化可视化器并禁用标题
visualizer = Rank2D(
 features=x.columns,
 algorithm='pearson',
 title=None # 禁用标题
)

拟合和转换数据
visualizer.fit(x, y)
visualizer.transform(x)

获取轴对象
ax = visualizer.ax

ax.spines['left'].set_color('black')
ax.spines['left'].set_linewidth(1.5)
ax.spines['bottom'].set_color('black')
ax.spines['bottom'].set_linewidth(1.5)
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)

移除网格线和刻度线
ax.grid(False)
ax.tick_params(axis='both', which='both', length=0)

设置主坐标轴标签字体
ax.tick_params(axis='both', labelsize=20)

关键修改：在finalize前准备所有设置
visualizer.finalize() # 准备图形元素（包括颜色条）

获取颜色条并调整尺寸
cax = visualizer.ax.figure.axes[-1] # 获取颜色条

获取当前颜色条的位置 [left, bottom, width, height]
pos = cax.get_position()

缩小颜色条尺寸：宽度缩小50%，高度缩小30%
new_width = pos.width * 0.5 # 宽度变为原来的一半
new_height = pos.height * 0.8 # 高度变为原来的70%

计算新位置（保持居中）
new_left = pos.x0 + (pos.width - new_width) / 2
new_bottom = pos.y0 + (pos.height - new_height) / 2

设置新的颜色条位置和大小
cax.set_position([new_left, new_bottom, new_width, new_height])

设置颜色条字体
cax.tick_params(labelsize=20) # 设置颜色条字体

使用show()显示结果
visualizer.show()

2025/8/12 19:50 saki_akd_shap

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/saki_akd_shap.html 3/23

<Axes: title={'center': 'Pearson Ranking of 63 Features'}>

import matplotlib.pyplot as plt from yellowbrick.features import Rank2D import numpy as np

确保x只包含数值型数据
x = x.select_dtypes(include=[np.number])

创建图形对象 - 直接在这里设置尺寸和DPI
fig, ax = plt.subplots(figsize=(30, 30), dpi=300)

实例化可视化器 - 禁用所有可能的标题选项
visualizer = Rank2D(features=x.columns, algorithm='pearson', ax=ax, # 使用我们创建的轴对象 title=None, # 禁用主标题 show_title=False # 额外确保不显示标题)

拟合和转换数据
visualizer.fit(x, y) visualizer.transform(x)

移除所有可能的标题元素
visualizer.finalize() # 准备图形元素 ax.set_title('') # 清除轴标题 fig.suptitle('') # 清除图形标题

设置边框
for spine in ['top', 'right']: ax.spines[spine].set_visible(False) for spine in ['left', 'bottom']: ax.spines[spine].set_visible(True) ax.spines[spine].set_linewidth(2) # 加粗边框

移除网格线和刻度线
ax.grid(False) ax.tick_params(axis='both', which='both', length=0)

设置主坐标轴标签字体
ax.tick_params(axis='both', labelsize=20)

Out[45]:

2025/8/12 19:50 saki_akd_shap

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/saki_akd_shap.html 4/23

 

设置颜色条字体
if hasattr(visualizer, 'ax') and hasattr(visualizer.ax.figure, 'axes'): for cax in visualizer.ax.figure.axes: if cax != ax: # 跳过主轴（只处理颜色条） cax.tick_params(labelsize=20)

plt.show() # 关闭图形，避免显示

plt.savefig('correlation_heatmap.png', bbox_inches='tight', pad_inches=0.1) plt.close() # 关闭图形，避免显示

def filter_highly_correlated_features(df1, correlation_threshold=0.9):
 """
 筛选出高度相关的特征。

 参数:
 df: pandas DataFrame，包含要筛选的特征。
 correlation_threshold: 相关性阈值，默认为0.9。

 返回:
 highly_correlated_features: 包含高度相关特征的列表。
 """
 # 计算特征之间的相关性矩阵
 correlation_matrix = df1.corr()

 # 初始化一个空列表来保存高度相关的特征对
 highly_correlated_features = []

 # 遍历相关性矩阵的上三角部分
 for i in range(len(correlation_matrix.columns)):
 for j in range(i):
 # 检查相关性是否超过阈值
 if abs(correlation_matrix.iloc[i, j]) > correlation_threshold:
 # 添加高度相关的特征对
 highly_correlated_features.append((correlation_matrix.columns[i], correlation_matrix.columns[j]))

 return highly_correlated_features

df1.corr()

OASIS SIRS APS III Weight Heart
Rate SBP DBP MBP Resp

Rate Temperature ... Scr
Baseline CKD CRRT Mechanical

Ventilation
Vasoactive

Agent LODS

OASIS 1.000000 0.264100 0.578275 -0.052295 0.219366 -0.032894 -0.003988 -0.025368 0.154013 -0.042473 ... 0.013193 0.037182 0.186794 0.358611 0.219081 0.569052 0

SIRS 0.264100 1.000000 0.219039 0.006709 0.349755 -0.068094 0.009616 -0.020857 0.158177 0.042421 ... -0.077100 -0.074779 0.072357 0.112460 0.127954 0.144003 -0

APS III 0.578275 0.219039 1.000000 -0.009916 0.230983 -0.095446 -0.053854 -0.097426 0.178137 -0.087270 ... 0.169296 0.167589 0.294814 0.180794 0.221376 0.703741 0

Weight -0.052295 0.006709 -0.009916 1.000000 0.030737 0.016074 0.044396 0.025850 0.039843 0.070872 ... 0.083728 0.012564 0.059683 0.120658 0.040151 0.035594 0

Heart Rate 0.219366 0.349755 0.230983 0.030737 1.000000 0.014388 0.200095 0.108736 0.303868 0.247936 ... -0.041599 -0.051049 0.075401 0.039975 0.032537 0.107069 -0

...

LODS 0.569052 0.144003 0.703741 0.035594 0.107069 -0.131234 -0.047227 -0.077802 0.088859 -0.081208 ... 0.141159 0.158962 0.254566 0.383996 0.315148 1.000000 0

DM 0.033569 -0.039457 0.098401 0.156248 -0.016485 0.052217 -0.059419 -0.031396 0.007742 0.006134 ... 0.168884 0.211133 0.048907 0.003213 0.012505 0.061024 1

Liver
Disease 0.013812 -0.006296 0.163851 0.052818 0.085686 -0.052602 0.012514 -0.022203 0.050293 0.008458 ... 0.006502 -0.023431 0.130094 0.055737 0.035506 0.133441 -0

Los_inf._AB -0.123887 -0.088343 -0.065911 -0.042560 -0.024800 0.077491 0.041935 0.053711 0.017553 0.032012 ... -0.024424 0.003270 -0.041297 -0.021981 -0.071063 -0.097656 -0

Los_icu_aki -0.181802 -0.012281 -0.173234 -0.149960 -0.095444 0.049965 -0.019283 0.025126 -0.009950 0.139817 ... -0.148222 -0.109489 -0.110615 -0.168381 -0.193764 -0.175314 -0

64 rows × 64 columns

result = filter_highly_correlated_features(x)

result

[('PT', 'INR'),
 ('Hemoglobin', 'Hematocrit'),
 ('RBC', 'Hematocrit'),
 ('RBC', 'Hemoglobin'),
 ('CKD', 'Renal Disease')]

根据以上结果，手动删除掉一些相关性较高的变量！

x = x.drop(['INR','Hematocrit','RBC','Renal Disease'],axis=1)

x.shape

(9778, 59)

1.基于特征重要性方法：
from sklearn.ensemble import GradientBoostingClassifier#导入梯度提升分类库
from yellowbrick.model_selection import FeatureImportances
visualizer = FeatureImportances(GradientBoostingClassifier(random_state=0)) # 选择模型
ax = plt.subplots(figsize=(20,20), dpi=300)
visualizer.fit(x,y)#训练模型
visualizer.poof(ax=ax)#绘制特征重要性图

features = visualizer.features_[visualizer.feature_importances_>0]# 选择重要性大于0的特征

features

X_fm = x[features]# 选择重要性大于0的特征

X_fm.shape# 查看数据的形状

(9778, 46)

X_fm.head()# 查看数据的前5行

2.Brotua降维（非常准）：

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier
from boruta import BorutaPy
初始化随机森林模型
rf = RandomForestClassifier(n_jobs=-1, class_weight='balanced', max_depth=5)
初始化Boruta特征选择器

In [46]:

In [47]:

Out[47]:

In [48]:

In [49]:

Out[49]:

In [50]:

In [51]:

Out[51]:

In []:

In []:

In []:

In []:

In []:

Out[]:

In []:

In []:

In []:

2025/8/12 19:50 saki_akd_shap

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/saki_akd_shap.html 5/23

boruta_selector = BorutaPy(rf, n_estimators='auto', verbose=2, random_state=42)
对训练数据进行特征选择
boruta_selector.fit(x.values, y.values)
检查选中的特征
selected_features = x.columns[boruta_selector.support_].to_list()
打印被选择的特征
print("Selected Features: ", selected_features)
打印被剔除的特征
rejected_features = x.columns[~boruta_selector.support_].to_list()
print("Rejected Features: ", rejected_features)
打印有待定性的特征
tentative_features = x.columns[boruta_selector.support_weak_].to_list()
print("Tentative Features: ", tentative_features)

feature_ranks = boruta_selector.ranking_
将特征名称和排名结合成一个DataFrame
feature_importance_df = pd.DataFrame({
 'Feature': x.columns,
 'Rank': feature_ranks
})
feature_importance_df

rf = RandomForestClassifier(n_jobs=-1, class_weight='balanced', max_depth=5)
初始化存储特征排名的 DataFrame
ranking_df = pd.DataFrame(index=range(1, 21), columns=x.columns)
运行 Boruta 20 次
for i in range(20):
 print(f"Iteration {i+1}")
 # 初始化Boruta特征选择器
 boruta_selector = BorutaPy(rf, n_estimators='auto', verbose=2, random_state=i, max_iter=50)
 # 对训练数据进行特征选择
 boruta_selector.fit(x.values, y.values)
 # 获取特征排名
 feature_ranks = boruta_selector.ranking_
 # 将特征排名保存到 DataFrame 中
 ranking_df.loc[i+1] = feature_ranks
ranking_df

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd

确保数据是数值型
numeric_ranking_df = ranking_df.apply(pd.to_numeric, errors='coerce')

计算每个特征的中位数并排序
median_values = numeric_ranking_df.median()
sorted_columns = median_values.sort_values().index

设置绘图风格和尺寸
plt.rcParams.update({'font.size': 100})
plt.figure(figsize=(30, 15), dpi=300)
sns.set(style="whitegrid")

绘制箱线图并设置字体大小
sns.boxplot(
 data=numeric_ranking_df[sorted_columns],
 palette="Greens",
 flierprops=dict(markerfacecolor='g', markersize=5) # 设置异常点样式
)

plt.xticks(rotation=90, fontsize=20) # 设置X轴刻度标签字体大小
plt.yticks(fontsize=20) # 设置Y轴刻度标签字体大小

设置坐标轴标签字体大小
plt.xlabel("Attributes", fontsize=20)
plt.ylabel("Importance", fontsize=20)

设置轴标题和刻度线的字体大小
plt.tick_params(axis='both', which='major', labelsize=20)
plt.tick_params(axis='both', which='minor', labelsize=20)

plt.tight_layout()
plt.grid(False)

可选：调整轴线的粗细
ax = plt.gca()
for spine in ax.spines.values():
 spine.set_color('black') # 纯黑色
 spine.set_linewidth(1.5)
plt.show()

In []:

In []:

In []:

2025/8/12 19:50 saki_akd_shap

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/saki_akd_shap.html 6/23

sorted_columns

Index(['OASIS', 'Los_inf._AB', 'Anion Gap', 'Bicarbonate', 'BUN', 'Calcium',
 'Chloride', 'Glucose', 'Sodium', 'PT', 'SOFA Score', 'PTT', 'MCHC',
 'GCS', '24-hour Urine Output', 'ACEI/ARB', 'Scr Baseline', 'CRRT',
 'Mechanical Ventilation', 'Vasoactive Agent', 'LODS', 'Hemoglobin',
 'Age', 'Los_icu_aki', 'Temperature', 'SIRS', 'APS III', 'Weight',
 'SpO2', 'Paraplegia', 'Heart Rate', 'Resp Rate', 'SBP',
 'Cerebrovascular Disease', 'DBP', 'MBP', 'Platelet', 'RDW', 'Potassium',
 'MCH', 'MCV', 'Charlson Comorbidity Index', 'Liver Disease', 'Dementia',
 'Malignant Cancer', 'CKD', 'AKI Stage', 'Gender',
 'Chronic Pulmonary Disease', 'Metastatic Solid Tumor', 'DM',
 'Congestive Heart Failure', 'Myocardial Infarct', 'SA-AKI', 'HTN',
 'Rheumatic Disease', 'Peripheral Vascular Disease',
 'Peptic Ulcer Disease', 'AIDS'],
 dtype='object')

X_boruta=x[['OASIS', 'Los_inf._AB', 'Anion Gap', 'Bicarbonate', 'BUN', 'Calcium',
 'Chloride', 'Glucose', 'Sodium', 'PT', 'SOFA Score', 'PTT', 'MCHC',
 'GCS', '24-hour Urine Output', 'ACEI/ARB', 'Scr Baseline', 'CRRT',
 'Mechanical Ventilation', 'Vasoactive Agent', 'LODS', 'Hemoglobin',
 'Age', 'Los_icu_aki', 'Temperature', 'SIRS', 'APS III', 'Weight',
 'SpO2', 'Paraplegia', 'Heart Rate', 'Resp Rate', 'SBP',
 'Cerebrovascular Disease', 'DBP', 'MBP']]

X_boruta.shape

(9778, 36)

3.递归特征消除方法（RFE)

4.LassoCV可视化

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=42, stratify=df1['AKD'])

from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import Lasso
from sklearn.metrics import mean_squared_error

假设 X_train, X_test, y_train, y_test 已经被正确地划分和准备

标准化数据
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

训练Lasso模型
lasso = Lasso(alpha=0.1) # alpha是正则化强度的参数
lasso.fit(X_train_scaled, y_train)

打印Lasso模型的系数
coefficients = pd.Series(lasso.coef_, index=x.columns)
selected_features = coefficients[coefficients != 0].index
print("Selected features:")
print(selected_features)

计算测试集的均方误差
y_pred = lasso.predict(X_test_scaled)
mse = mean_squared_error(y_test, y_pred)

print(f"\nMean Squared Error on Test Set: {mse}")

Selected features:
Index(['CRRT', 'Mechanical Ventilation'], dtype='object')

Mean Squared Error on Test Set: 0.16622124130597035

from sklearn.linear_model import LassoCV
from sklearn.model_selection import RepeatedKFold
import numpy as np
import matplotlib.pyplot as plt

Assuming feature names are stored in feature_names list
feature_names = x.columns

Define alpha range
alphas = np.logspace(-4, 0, 50)

LassoCV with cross-validation
lasso_cv = LassoCV(alphas=alphas, cv=RepeatedKFold(n_splits=10, n_repeats=3, random_state=42), random_state=42)
lasso_cv.fit(X_train_scaled, y_train)

Calculate MSE path and std
mse_path = lasso_cv.mse_path_.mean(axis=1)
mse_std = lasso_cv.mse_path_.std(axis=1)

Find best alpha and 1-SE alpha
best_alpha_index = np.argmin(mse_path)
best_alpha = lasso_cv.alphas_[best_alpha_index]
one_se_index = np.where(mse_path <= mse_path[best_alpha_index] + mse_std[best_alpha_index])[0][0]
one_se_alpha = lasso_cv.alphas_[one_se_index]

print(f"Best alpha (λ_min): {best_alpha}")
print(f"1-SE rule alpha (λ_1se): {one_se_alpha}")

Feature selection for both alphas
lasso_best_alpha = LassoCV(alphas=[best_alpha], cv=RepeatedKFold(n_splits=10, n_repeats=3, random_state=42), random_state=42)
lasso_best_alpha.fit(X_train_scaled, y_train)
selected_features_best = [feature_names[i] for i in np.where(lasso_best_alpha.coef_ != 0)[0]]
print(f"Selected features with λ_min: {selected_features_best}")

lasso_one_se_alpha = LassoCV(alphas=[one_se_alpha], cv=RepeatedKFold(n_splits=10, n_repeats=3, random_state=42), random_state=42)
lasso_one_se_alpha.fit(X_train_scaled, y_train)
selected_features_one_se = [feature_names[i] for i in np.where(lasso_one_se_alpha.coef_ != 0)[0]]
print(f"Selected features with λ_1se: {selected_features_one_se}")

Plot with improved styling
plt.figure(figsize=(12, 6), dpi=300)

Main plot elements
plt.errorbar(lasso_cv.alphas_, mse_path, yerr=mse_std, fmt='o', color='red',
 ecolor='gray', capsize=3, markersize=8)
plt.axvline(lasso_cv.alphas_[best_alpha_index], linestyle='--',
 color='black', linewidth=2, label=r'λ_{min}')

In []:

Out[]:

In [59]:

In [60]:

Out[60]:

In []:

In []:

In []:

2025/8/12 19:50 saki_akd_shap

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/saki_akd_shap.html 7/23

plt.axvline(lasso_cv.alphas_[one_se_index], linestyle='--',
 color='blue', linewidth=2, label=r'λ_{1se}')

Axis settings
plt.xscale('log')
plt.xlabel('Alpha (α) value', fontsize=20) # Larger and bolder
plt.ylabel('Mean Squared Error (MSE)', fontsize=20)

Tick and legend settings
plt.xticks(rotation=45, fontsize=20)
plt.yticks(fontsize=20)
plt.legend(fontsize=20, frameon=True)

Border and grid styling
ax = plt.gca()
for spine in ax.spines.values():
 spine.set_color('black')
 spine.set_linewidth(1.5) # Thicker borders

plt.grid(False)
plt.show()

Best alpha (λ_min): 0.0016768329368110067
1-SE rule alpha (λ_1se): 0.019306977288832496
Selected features with λ_min: ['OASIS', 'SIRS', 'APS III', 'Weight', 'Heart Rate', 'SBP', 'MBP', 'Resp Rate', 'SpO2', 'Myocardial Infarct', 'Congestive Heart Failure', 'Peripheral Vascular Dis
ease', 'Cerebrovascular Disease', 'Dementia', 'Rheumatic Disease', 'Paraplegia', 'Malignant Cancer', 'Metastatic Solid Tumor', 'AIDS', 'AKI Stage', 'SOFA Score', 'SA-AKI', 'HTN', 'Anion Gap',
'Calcium', 'Chloride', 'Glucose', 'Sodium', 'Potassium', 'PT', 'Hemoglobin', 'MCHC', 'MCV', 'Platelet', 'GCS', '24-hour Urine Output', 'ACEI/ARB', 'Scr Baseline', 'CRRT', 'Mechanical Ventilati
on', 'Vasoactive Agent', 'LODS', 'Liver Disease', 'Los_inf._AB', 'Los_icu_aki']
Selected features with λ_1se: ['APS III', 'Weight', 'MBP', 'Resp Rate', 'SpO2', 'Cerebrovascular Disease', 'Paraplegia', 'ACEI/ARB', 'Scr Baseline', 'CRRT', 'Mechanical Ventilation', 'Vasoacti
ve Agent', 'LODS', 'Los_inf._AB']

coefs = []

for a in alphas:
 lasso = Lasso(alpha=a, max_iter=10000)
 lasso.fit(X_train_scaled, y_train)
 coefs.append(lasso.coef_)

可视化系数路径
plt.figure(figsize=(12, 6), dpi=300)
ax = plt.gca()

使用对数坐标显示正则化参数
ax.plot(np.log10(alphas), coefs)
plt.xlabel('Log Lambda', fontsize=20)
plt.ylabel('Coefficients', fontsize=20)
plt.xticks(rotation=45, fontsize=20)
plt.yticks(fontsize=20)
plt.legend(fontsize=20, frameon=True)
ax = plt.gca()
for spine in ax.spines.values():
 spine.set_color('black')
 spine.set_linewidth(1.5)
plt.grid(False)

plt.show()

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

In []:

2025/8/12 19:50 saki_akd_shap

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/saki_akd_shap.html 8/23

print(list(X_boruta.columns))

['OASIS', 'Los_inf._AB', 'Anion Gap', 'Bicarbonate', 'BUN', 'Calcium', 'Chloride', 'Glucose', 'Sodium', 'PT', 'SOFA Score', 'PTT', 'MCHC', 'GCS', '24-hour Urine Output', 'ACEI/ARB', 'Scr Basel
ine', 'CRRT', 'Mechanical Ventilation', 'Vasoactive Agent', 'LODS', 'Hemoglobin', 'Age', 'Los_icu_aki', 'Temperature', 'SIRS', 'APS III', 'Weight', 'SpO2', 'Paraplegia', 'Heart Rate', 'Resp Ra
te', 'SBP', 'Cerebrovascular Disease', 'DBP', 'MBP']

selected_features_one_se

['APS III',
 'Weight',
 'MBP',
 'Resp Rate',
 'SpO2',
 'Cerebrovascular Disease',
 'Paraplegia',
 'ACEI/ARB',
 'Scr Baseline',
 'CRRT',
 'Mechanical Ventilation',
 'Vasoactive Agent',
 'LODS',
 'Los_inf._AB']

import networkx as nx
import matplotlib.pyplot as plt

定义Boruta和Lasso选择的特征
boruta_features =['OASIS', 'Los_inf._AB', 'Anion Gap', 'Bicarbonate', 'BUN', 'Calcium', 'Chloride','Glucose', 'Sodium', 'PT',
 'SOFA Score', 'PTT', 'MCHC', 'GCS', '24-hour Urine Output', 'ACEI/ARB', 'Scr Baseline', 'CRRT', 'Mechanical Ventilation',
 'Vasoactive Agent', 'LODS', 'Hemoglobin', 'Age', 'Los_icu_aki', 'Temperature', 'SIRS', 'APS III', 'Weight', 'SpO2',
 'Paraplegia', 'Heart Rate', 'Resp Rate', 'SBP', 'Cerebrovascular Disease', 'DBP', 'MBP']

lasso_features = selected_features_one_se

创建集合用于求交集
boruta_set = set(boruta_features) # Boruta特征集合
lasso_set = set(lasso_features) # Lasso特征集合
intersection = boruta_set.intersection(lasso_set) # 两个集合的交集
boruta_only = boruta_set - intersection # 仅Boruta选择的特征
lasso_only = lasso_set - intersection # 仅Lasso选择的特征

创建图
G = nx.Graph()

添加节点和边
for feature in boruta_only:
 G.add_edge('Boruta', feature, color='lightcoral') # 淡红色表示仅被Boruta选择的特征

for feature in lasso_only:
 G.add_edge('Lasso', feature, color='lightblue') # 淡蓝色表示仅被Lasso选择的特征

for feature in intersection:
 G.add_edge('Boruta', feature, color='lightcoral') # 淡红色边连接交集特征到Boruta
 G.add_edge('Lasso', feature, color='lightblue') # 淡蓝色边连接交集特征到Lasso

获取边的颜色
edge_colors = [data['color'] for _, _, data in G.edges(data=True)]

设置节点的颜色
node_colors = []
for node in G.nodes():
 if node == 'Boruta':
 node_colors.append('lightcoral') # Boruta节点淡红色
 elif node == 'Lasso':
 node_colors.append('lightblue') # Lasso节点淡蓝色
 elif node in boruta_only:
 node_colors.append('lightcoral') # 仅被Boruta选择的特征淡红色
 elif node in lasso_only:
 node_colors.append('lightblue') # 仅被Lasso选择的特征淡蓝色
 elif node in intersection:
 node_colors.append('plum') # 交集特征节点用淡紫色表示

绘制图形
plt.figure(figsize=(13, 13), dpi=300)
pos = nx.spring_layout(G, seed=42) # 使用spring布局
nx.draw_networkx(
 G,
 pos,
 edge_color=edge_colors,
 node_color=node_colors,
 with_labels=True,

In []:

In []:

Out[]:

In []:

2025/8/12 19:50 saki_akd_shap

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/saki_akd_shap.html 9/23

 node_size=1000,
 font_size=10,
 edgecolors='none' # 移除节点边框
)
plt.title('Feature Selection by Boruta and Lasso')
plt.grid(False)
plt.show()

from matplotlib_venn import venn2
import matplotlib.pyplot as plt

创建图形并设置大小
plt.figure(figsize=(10, 10), dpi=300)

定义颜色
color1 = "#EEA3FF" # 浅蓝色
color2 = "#F99D9D" # 浅红色

绘制韦恩图
v = venn2([set(lasso_features), set(boruta_features)],
 set_labels=('Lasso Features', 'Boruta Features'),
 set_colors=(color1, color2),
 alpha=0.5)

设置字体大小
font_size = 20 # 设置统一的字体大小
for text in v.set_labels: # 集合标签
 if text is not None:
 text.set_fontsize(font_size)
for text in v.subset_labels: # 子集数字标签
 if text is not None:
 text.set_fontsize(font_size)

可选：添加自定义标题（如果需要）
plt.title("Feature Selection Comparison", fontsize=18)

显示图形
plt.show()

print(np.intersect1d(boruta_features,lasso_features))

['ACEI/ARB' 'APS III' 'CRRT' 'Cerebrovascular Disease' 'LODS'
 'Los_inf._AB' 'MBP' 'Mechanical Ventilation' 'Paraplegia' 'Resp Rate'
 'Scr Baseline' 'SpO2' 'Vasoactive Agent' 'Weight']

X_1 = X_boruta[['ACEI/ARB', 'APS III' ,'CRRT', 'Cerebrovascular Disease', 'LODS',
 'Los_inf._AB', 'MBP', 'Mechanical Ventilation', 'Paraplegia', 'Resp Rate',
 'Scr Baseline' ,'SpO2', 'Vasoactive Agent', 'Weight']]

X_1

ACEI/ARB APS III CRRT Cerebrovascular Disease LODS Los_inf._AB MBP Mechanical Ventilation Paraplegia Resp Rate Scr Baseline SpO2 Vasoactive Agent Weight

0 1 52 0 0 5 12.83 71.0 0 0 23.0 53.04 100.0 0 55.3

1 0 51 0 0 7 15.40 87.0 1 0 26.0 44.20 99.0 0 65.0

2 0 52 0 0 6 13.50 68.0 0 0 18.0 185.64 94.0 0 48.0

3 0 41 0 0 2 5.07 92.0 0 0 30.0 53.04 93.0 0 156.1

4 1 54 0 0 4 1.62 94.0 1 0 26.0 97.24 95.0 1 64.1

...

10229 0 50 0 0 8 2.80 122.0 1 1 20.0 70.72 97.0 1 134.5

10230 0 32 0 0 8 14.78 86.0 1 0 16.0 79.56 100.0 1 59.0

10231 0 39 0 0 5 17.00 91.0 0 0 15.0 44.20 100.0 1 85.0

10232 1 110 0 1 12 8.83 133.0 1 0 20.0 61.88 100.0 0 110.0

10233 1 64 0 0 8 26.83 87.0 1 0 20.0 167.96 98.0 0 77.6

9778 rows × 14 columns

X_1.info()

5.卡方检验

常用的特征方法是：几种特征筛选出的结果，取交集。

划分数据集：
先数据标准化，再用smote处理不平衡问题

print(X_1.dtypes)

y.value_counts()

AKD
0 7378
1 2400
Name: count, dtype: int64

from sklearn.preprocessing import StandardScaler
from imblearn.over_sampling import SMOTE
from sklearn.model_selection import train_test_split
from collections import Counter

1. 初始数据划分（分层抽样）
X_train_raw, X_test, y_train, y_test = train_test_split(
 X_1,
 y,
 test_size=0.3,
 stratify=y, # 保持原始分布
 random_state=42
)
2. 标准化处理（仅在训练集上拟合）
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train_raw) # 仅用原始训练集计算参数
X_test = scaler.transform(X_test) # 使用相同参数转换测试集

import joblib

joblib.dump(scaler, '0511重置版saki_scaler.pkl')

In []:

In []:

In [61]:

In [62]:

Out[62]:

In []:

In []:

In []:

In []:

Out[]:

In []:

In []:

2025/8/12 19:50 saki_akd_shap

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/saki_akd_shap.html 10/23

3. 在标准化后的训练集上应用SMOTE
smote = SMOTE(random_state=42)
X_train, y_train = smote.fit_resample(X_train_scaled, y_train) # 重命名为标准名称

4. 验证数据状态
print("\n=== 数据处理验证 ===")
print(f"[原始训练集] 样本数: {len(X_train_raw)}, 特征数: {X_train_raw.shape[1]}")
print(f"[平衡后训练集] 样本数: {len(X_train)}, 类别分布: {dict(Counter(y_train))}")
print(f"[测试集] 样本数: {len(X_test)}, 类别分布: {dict(Counter(y_test))}")

5. 最终可用数据集：
X_train, y_train: 已标准化且平衡的训练数据
X_test, y_test: 已标准化且保持原始分布的测试数据

=== 数据处理验证 ===
[原始训练集] 样本数: 6844, 特征数: 14
[平衡后训练集] 样本数: 10328, 类别分布: {1: 5164, 0: 5164}
[测试集] 样本数: 2934, 类别分布: {0: 2214, 1: 720}

构建预测模型：
import shap #模型可解释性分析
import lightgbm as lgb # 集成学习算法
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier # 集成学习算法
from sklearn.tree import DecisionTreeClassifier # 决策树

from sklearn.model_selection import train_test_split, RandomizedSearchCV, cross_val_score, StratifiedKFold #划分数据集、交叉验证
from sklearn.metrics import f1_score, precision_score, recall_score, roc_auc_score #评价指标

from sklearn.metrics import confusion_matrix, roc_curve, classification_report #RandomizedSearchCV是Python中的一个类，位于sklearn.model_selection模块中，用于随机搜索最佳超参数组合。该类会接收一
相比GridSearchCV网格搜索方法，随机搜索方法可以在更短的时间内找到一个相对较好的超参数组合，适

from sklearn.linear_model import LogisticRegression # 逻辑回归
from sklearn.svm import SVC # 支持向量机
from sklearn.neighbors import KNeighborsClassifier # K近邻
from xgboost import XGBClassifier # XGBoost
from sklearn.ensemble import GradientBoostingClassifier # 梯度提升树
from sklearn.ensemble import RandomForestClassifier # 随机森林
from sklearn.ensemble import ExtraTreesClassifier # 极端随机树
from sklearn.ensemble import AdaBoostClassifier # AdaBoost
from lightgbm import LGBMClassifier # LightGBM

初始化各个模型
models = {
 "Logistic Regression": {'model':LogisticRegression(random_state=0),
 'param_grid':{
 'penalty': ['l1', 'l2', 'elasticnet', 'none'],
 'C': np.linspace(0.01, 10, 10)
 }},

 "SVM": {'model':SVC(probability=True,random_state=0),
 'param_grid':{
 'C': np.linspace(0.01, 10, 10),
 'kernel': ['linear', 'rbf', 'poly'],
 'gamma': ['scale', 'auto']
 }},

 "KNN": {'model':KNeighborsClassifier(),
 'param_grid':{
 'n_neighbors': range(5, 100, 5),
 'weights': ['uniform', 'distance'],
 'p': [1, 2] # 1表示曼哈顿距离，2表示欧几里得距离
 }},

 "Decision Tree": {'model':DecisionTreeClassifier(random_state=0),
 'param_grid':{
 'criterion': ['gini', 'entropy'],
 'max_depth': range(3, 9),
 'min_samples_split': range(2, 6),
 'min_samples_leaf': range(2, 6)
 }},

 "Random Forest": {'model':RandomForestClassifier(random_state=0),
 'param_grid':{
 'n_estimators': range(10, 50, 10),
 'max_depth': range(3, 9),
 'min_samples_split': range(2, 6),
 'min_samples_leaf': range(2, 6)
 }},

 "Adaboost": {'model':AdaBoostClassifier(random_state=0),
 'param_grid':{
 'n_estimators': range(10, 50, 10),
 'learning_rate': np.linspace(0.01, 1, 10),
 }},

 "Gradient Boosting": {'model':GradientBoostingClassifier(random_state=0),
 'param_grid':{
 'n_estimators': range(10, 50, 10),
 'learning_rate': np.linspace(0.01, 1, 10),
 'max_depth': range(3, 9),
 'subsample': np.linspace(0.1, 1, 5)
 }},

 "XGBoost": {'model':XGBClassifier(random_state=0),
 'param_grid':{
 'n_estimators': range(10, 50, 10),
 'learning_rate': np.linspace(0.01, 1, 10),
 'max_depth': range(3, 8),
 'subsample': np.linspace(0.1, 1, 5)
 }},

 "LightGBM": {'model':LGBMClassifier(force_col_wise=True, verbosity=-1,random_state=0),
 'param_grid':{
 'n_estimators': range(10, 50, 10),
 'learning_rate': np.linspace(0.01, 1, 10),
 'max_depth': range(3, 8),
 'subsample': np.linspace(0.1, 1, 5)
 }},

}

训练并评估每个模型
from sklearn.model_selection import RandomizedSearchCV
best_estimators = []
names = []
for model_name, model_info in models.items():
 print(f"\n============================ {model_name} ============================")

 # 使用GridSearchCV进行自动调参
 grid_search = RandomizedSearchCV(model_info['model'], model_info['param_grid'], cv=5, scoring='roc_auc',n_jobs=-1) # accuracy roc_auc

In []:

In []:

In []:

In []:

2025/8/12 19:50 saki_akd_shap

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/saki_akd_shap.html 11/23

 grid_search.fit(X_train, y_train)

 # 获取最优的超参数配置和模型
 best_params = grid_search.best_params_
 best_model = grid_search.best_estimator_
 best_estimators.append(best_model)
 names.append(model_name)
 print(best_params)
 print(best_model)

from sklearn.ensemble import BaggingClassifier

bag = BaggingClassifier(## If None, then the base estimator is a decision tree.
 bootstrap_features=False,random_state=0)
param_grid = {'n_estimators':[10,30,50,70,80,150,160, 170,175,180,185]}
random_search = RandomizedSearchCV(estimator=bag,param_distributions=param_grid,cv=5,n_jobs=-1,random_state=48)
random_search.fit(X_train,y_train)
names.append('Bagging')
best_estimators.append(random_search.best_estimator_)
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import VotingClassifier
from sklearn.linear_model import LogisticRegression
clf1 = LogisticRegression(random_state=0)
clf2 = RandomForestClassifier(random_state=0)
clf3 = GaussianNB()
clf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)],
voting='soft')

params = {'lr__C': [1.0, 100.0], 'rf__n_estimators': [20, 200]}
grid = RandomizedSearchCV(estimator=clf, param_distributions=params, cv=5,n_jobs=-1,random_state=0)
grid.fit(X_train,y_train)
names.append('Voting')

best_estimators.append(grid.best_estimator_)

def score_summary_roc(names, classifiers,X_train_,y_train_,x_test_,y_test_):
 from sklearn.metrics import accuracy_score,roc_curve,confusion_matrix
 from sklearn.metrics import RocCurveDisplay,auc
 plt.figure(figsize=(10, 10), dpi=300)
 ax = plt.gca()
 cols=["Classifier", "Accuracy", "ROC_AUC", "Recall", "Precision", "F1"]

 df = []
 for name, clf in zip(names, classifiers):
 clf.fit(X_train_, y_train_)

 pred = clf.predict(x_test_)
 accuracy = accuracy_score(y_test_, pred)

 pred_proba = clf.predict_proba(x_test_)[:, 1]

 fpr, tpr, thresholds = roc_curve(y_test_, pred_proba)
 roc_auc = auc(fpr, tpr)
 display = RocCurveDisplay(fpr=fpr, tpr=tpr, roc_auc=roc_auc,estimator_name=name)
 display.plot(ax=ax)
 plt.grid(visible=False)

 cm = confusion_matrix(y_test_, pred)

 # recall: TP/(TP+FN)
 recall = cm[1,1]/(cm[1,1] +cm[1,0])

 # precision: TP/(TP+FP)
 precision = cm[1,1]/(cm[1,1] +cm[0,1])

 # F1 score: TP/(TP+FP)
 f1 = 2*recall*precision/(recall + precision)
 df.append([name, accuracy*100, roc_auc, recall, precision, f1])

 data_table = pd.DataFrame(data=df,columns=cols)

 return(np.round(data_table.reset_index(drop=True), 2))

result = score_summary_roc(names,best_estimators,X_train,y_train,X_test,y_test)

def score_summary_roc(names, classifiers, X_train_, y_train_, x_test_, y_test_):
 from sklearn.metrics import accuracy_score, roc_curve, confusion_matrix
 from sklearn.metrics import RocCurveDisplay, auc
 import matplotlib.pyplot as plt
 import pandas as pd
 import numpy as np

 # 创建图形并设置大小
 plt.figure(figsize=(10, 10), dpi=300)
 ax = plt.gca()

 # 设置更粗的边框
 for spine in ax.spines.values():
 spine.set_linewidth(1) # 增加边框宽度
 spine.set_color('black') # 设置边框颜色为纯黑

 cols = ["Classifier", "Accuracy", "ROC_AUC", "Recall", "Precision", "F1"]
 df = []

 for name, clf in zip(names, classifiers):
 clf.fit(X_train_, y_train_)

 pred = clf.predict(x_test_)
 accuracy = accuracy_score(y_test_, pred)

 pred_proba = clf.predict_proba(x_test_)[:, 1]

 fpr, tpr, thresholds = roc_curve(y_test_, pred_proba)
 roc_auc = auc(fpr, tpr)
 display = RocCurveDisplay(fpr=fpr, tpr=tpr, roc_auc=roc_auc, estimator_name=name)
 display.plot(ax=ax)
 plt.grid(visible=False)

 cm = confusion_matrix(y_test_, pred)

 # recall: TP/(TP+FN)
 recall = cm[1,1]/(cm[1,1] + cm[1,0])

 # precision: TP/(TP+FP)
 precision = cm[1,1]/(cm[1,1] + cm[0,1])

 # F1 score: TP/(TP+FP)
 f1 = 2 * recall * precision / (recall + precision)
 df.append([name, accuracy*100, roc_auc, recall, precision, f1])

 # 设置更大的字体
 font_size = 18
 plt.xticks(fontsize=font_size) # X轴刻度字体

In []:

In []:

In []:

2025/8/12 19:50 saki_akd_shap

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/saki_akd_shap.html 12/23

 plt.yticks(fontsize=font_size) # Y轴刻度字体
 plt.xlabel("False Positive Rate", fontsize=font_size) # X轴标签字体
 plt.ylabel("True Positive Rate", fontsize=font_size) # Y轴标签字体

 # 设置图例字体大小
 legend = ax.legend(loc="lower right", fontsize=font_size)
 # 设置图例边框更粗更黑
 legend.get_frame().set_linewidth(1)
 legend.get_frame().set_edgecolor("black")

 data_table = pd.DataFrame(data=df, columns=cols)

 return(np.round(data_table.reset_index(drop=True), 2))

result = score_summary_roc(names,best_estimators,X_train,y_train,X_test,y_test)

result

Classifier Accuracy ROC_AUC Recall Precision F1

0 Logistic Regression 74.37 0.84 0.81 0.49 0.61

1 SVM 73.89 0.78 0.68 0.48 0.56

2 KNN 70.82 0.81 0.79 0.45 0.57

3 Decision Tree 73.45 0.78 0.64 0.47 0.54

4 Random Forest 75.66 0.83 0.70 0.50 0.59

5 Adaboost 76.24 0.83 0.70 0.51 0.59

6 Gradient Boosting 77.74 0.83 0.65 0.54 0.59

7 XGBoost 79.21 0.84 0.56 0.58 0.57

8 LightGBM 79.52 0.83 0.57 0.58 0.58

9 Bagging 78.08 0.81 0.55 0.55 0.55

10 Voting 77.85 0.84 0.68 0.54 0.60

import matplotlib.pyplot as plt
import pandas as pd

Your original data
data = {
 "Classifier": ["Logistic Regression", "SVM", "KNN", "Decision Tree", "Random Forest",
 "Adaboost", "Gradient Boosting", "XGBoost", "LightGBM", "Bagging", "Voting"],
 "Accuracy": [74.37, 73.96, 70.82, 74.03, 75.26, 76.55, 78.94, 75.97, 78.29, 78.08, 77.85],
 "ROC_AUC": [0.84, 0.78, 0.81, 0.79, 0.83, 0.84, 0.83, 0.78, 0.82, 0.81, 0.84],
 "Recall": [0.81, 0.69, 0.79, 0.71, 0.72, 0.72, 0.57, 0.47, 0.48, 0.55, 0.68],
 "Precision": [0.49, 0.48, 0.45, 0.48, 0.50, 0.52, 0.57, 0.51, 0.57, 0.55, 0.54],
 "F1": [0.61, 0.57, 0.57, 0.57, 0.59, 0.60, 0.57, 0.49, 0.52, 0.55, 0.60]
}

df = pd.DataFrame(data)

Set white background and remove grid
plt.style.use('default')
plt.rcParams['figure.facecolor'] = 'white'
plt.rcParams['axes.facecolor'] = 'white'

Plotting the metrics
plt.figure(figsize=(14, 8),dpi=1200)

Helper function to add value labels
def add_value_labels(bars, xlim_range, is_percent=False):
 for bar in bars:
 width = bar.get_width()
 label = f"{width:.2f}%" if is_percent else f"{width:.2f}"
 plt.text(width + 0.01 * xlim_range,
 bar.get_y() + bar.get_height()/2,
 label,
 va='center',
 ha='left',
 fontsize=9)

Accuracy plot
plt.subplot(2, 3, 1)
bars = plt.barh(df['Classifier'], df['Accuracy'], color='skyblue')
plt.title('Accuracy (%)')
plt.xlim(60, 85)
add_value_labels(bars, 25, is_percent=True)

ROC_AUC plot
plt.subplot(2, 3, 5)
bars = plt.barh(df['Classifier'], df['ROC_AUC'], color='lightgreen')
plt.title('ROC AUC Score')
plt.xlim(0.7, 0.9)
add_value_labels(bars, 0.2)

Recall plot
plt.subplot(2, 3, 2)
bars = plt.barh(df['Classifier'], df['Recall'], color='salmon')
plt.title('Recall')
plt.xlim(0.4, 0.9)
add_value_labels(bars, 0.5)

Precision plot
plt.subplot(2, 3, 3)
bars = plt.barh(df['Classifier'], df['Precision'], color='gold')
plt.title('Precision')
plt.xlim(0.4, 0.6)
add_value_labels(bars, 0.2)

F1 plot
plt.subplot(2, 3, 4)
bars = plt.barh(df['Classifier'], df['F1'], color='orchid')
plt.title('F1 Score')
plt.xlim(0.4, 0.65)
add_value_labels(bars, 0.25)

plt.tight_layout()
plt.suptitle('Comparison of Internal Data Classifier Performance Metrics', y=1.02, fontsize=14)
plt.show()

In []:

In []:

Out[]:

In []:

2025/8/12 19:50 saki_akd_shap

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/saki_akd_shap.html 13/23

import matplotlib.pyplot as plt
import pandas as pd

Your original data
data = {
 "Classifier": ["Logistic Regression", "SVM", "KNN", "Decision Tree", "Random Forest",
 "Adaboost", "Gradient Boosting", "XGBoost", "LightGBM", "Bagging", "Voting"],
 "Accuracy": [54.97, 53.82, 56.29, 53.87, 53.60, 53.25, 53.87, 52.85, 53.98, 53.22, 54.86],
 "ROC_AUC": [0.58, 0.56, 0.59, 0.56, 0.57, 0.56, 0.55, 0.55, 0.57, 0.58, 0.58],
 "Precision": [0.58, 0.59, 0.59, 0.58, 0.58, 0.60, 0.58, 0.57, 0.58, 0.60, 0.58],
 "Recall": [0.40, 0.30, 0.47, 0.33, 0.31, 0.25, 0.35, 0.28, 0.34, 0.23, 0.40],
 "F1": [0.47, 0.40, 0.52, 0.42, 0.40, 0.35, 0.43, 0.38, 0.43, 0.34, 0.47]
}

df = pd.DataFrame(data)

Set white background and remove grid
plt.style.use('default')
plt.rcParams['figure.facecolor'] = 'white'
plt.rcParams['axes.facecolor'] = 'white'

Plotting the metrics
plt.figure(figsize=(14, 8),dpi=300)

Helper function to add value labels
def add_value_labels(bars, xlim_range, is_percent=False):
 for bar in bars:
 width = bar.get_width()
 label = f"{width:.2f}%" if is_percent else f"{width:.2f}"
 plt.text(width + 0.01 * xlim_range,
 bar.get_y() + bar.get_height()/2,
 label,
 va='center',
 ha='left',
 fontsize=9)

Accuracy plot
plt.subplot(2, 3, 1)
bars = plt.barh(df['Classifier'], df['Accuracy'], color='skyblue')
plt.title('Accuracy (%)')
plt.xlim(40, 65)
add_value_labels(bars, 25, is_percent=True)

ROC_AUC plot
plt.subplot(2, 3, 5)
bars = plt.barh(df['Classifier'], df['ROC_AUC'], color='lightgreen')
plt.title('ROC AUC Score')
plt.xlim(0.45, 0.65)
add_value_labels(bars, 0.2)

Recall plot
plt.subplot(2, 3, 2)
bars = plt.barh(df['Classifier'], df['Recall'], color='salmon')
plt.title('Recall')
plt.xlim(0.1, 0.6)
add_value_labels(bars, 0.5)

Precision plot
plt.subplot(2, 3, 3)
bars = plt.barh(df['Classifier'], df['Precision'], color='gold')
plt.title('Precision')
plt.xlim(0.45, 0.65)
add_value_labels(bars, 0.2)

F1 plot
plt.subplot(2, 3, 4)
bars = plt.barh(df['Classifier'], df['F1'], color='orchid')
plt.title('F1 Score')
plt.xlim(0.3, 0.55)
add_value_labels(bars, 0.25)

plt.tight_layout()
plt.suptitle('Comparison of External Data Classifier Performance Metrics', y=1.02, fontsize=14)
plt.show()

In []:

2025/8/12 19:50 saki_akd_shap

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/saki_akd_shap.html 14/23

import matplotlib.pyplot as plt
from yellowbrick.classifier import PrecisionRecallCurve

假设best_estimators, X_train, y_train, X_test, y_test已经定义
model = best_estimators[0]
viz = PrecisionRecallCurve(model)

在fit和score之前设置figure的大小和分辨率
plt.figure(figsize=(10, 8), dpi=300)
plt.rcParams.update({
 'axes.labelsize': 18, # 坐标轴标签字体大小
 'xtick.labelsize': 18, # X轴刻度字体大小
 'ytick.labelsize': 18, # Y轴刻度字体大小
 'legend.fontsize': 18, # 图例字体大小
})

ax = plt.gca()
for spine in ax.spines.values():
 spine.set_color('black') # 设置边框为深黑色
 spine.set_linewidth(1.5)

viz.fit(X_train, y_train)
viz.score(X_test, y_test)
viz.show()

In []:

2025/8/12 19:50 saki_akd_shap

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/saki_akd_shap.html 15/23

<Axes: title={'center': 'Precision-Recall Curve for LogisticRegression'}, xlabel='Recall', ylabel='Precision'>

names

['Logistic Regression',
 'SVM',
 'KNN',
 'Decision Tree',
 'Random Forest',
 'Adaboost',
 'Gradient Boosting',
 'XGBoost',
 'LightGBM',
 'Bagging',
 'Voting']

混淆矩阵

import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
import seaborn as sns # 可选：使用seaborn来美化图表
假设bestestimators[0]是一个已经训练好的分类器
Xtrain, ytrain是训练数据，Xtest, ytest是测试数据
以下代码将替换Yellowbrick的混淆矩阵可视化
计算混淆矩阵
cm = confusion_matrix(y_test, best_estimators[0].predict(X_test))
绘制混淆矩阵
plt.figure(figsize=(10, 8), dpi=300) # 设置图像大小和分辨率
plt.rcParams.update({
 'font.size': 18, # 全局字体大小
 'axes.titlesize': 18, # 标题大小
 'axes.labelsize': 18, # 坐标轴标签大小
 'xtick.labelsize': 18, # X轴刻度大小
 'ytick.labelsize': 18, # Y轴刻度大小
 'figure.dpi': 300, # 分辨率
})

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues') # 使用seaborn的heatmap函数
plt.xlabel('Predicted Class')
plt.ylabel('True Class')
plt.show() # 显示图像

Out[]:

In []:

Out[]:

In []:

2025/8/12 19:50 saki_akd_shap

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/saki_akd_shap.html 16/23

校准曲线

import matplotlib.pyplot as plt
from sklearn.calibration import CalibrationDisplay, calibration_curve
from sklearn.metrics import brier_score_loss

假设 best_estimators 是一个包含已经训练好的分类器的列表
X_test 和 y_test 是测试数据集的特征和标签

fig, ax = plt.subplots(figsize=(12, 12), dpi=300) # 创建图形和坐标轴

遍历每个分类器并绘制校准曲线
for clf in best_estimators:
 # 计算Brier score
 y_prob = clf.predict_proba(X_test)[:, 1]
 brier_score = brier_score_loss(y_test, y_prob)

 # 创建CalibrationDisplay对象并绘制校准曲线
 display = CalibrationDisplay.from_estimator(
 clf, X_test, y_test, ax=ax, name=f'{clf.__class__.__name__} (Brier: {brier_score:.3f})'
)

plt.grid(False)
plt.show()

SHAP---模型可解释性分析
best_estimators

import shap
X_train = pd.DataFrame(X_train,columns=X_1.columns)
model = best_estimators[0] # 选择一个模型

compute SHAP values
explainer = shap.Explainer(model, X_train)
shap_values = explainer(X_train)

shap.plots.violin(shap_values, plot_type="layered_violin")

plt.figure(figsize=(10,10), dpi=300)
plt.grid(False)
shap.plots.bar(shap_values,max_display=20)

import shap
import matplotlib.pyplot as plt
构建 shap解释器
explainer = shap.Explainer(model, X_train)
计算测试集的shap值
shap_values = explainer(X_train)
特征标签
labels = X_train.columns
设置字体和字体大小

In []:

In []:

In []:

In []:

In []:

In []:

2025/8/12 19:50 saki_akd_shap

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/saki_akd_shap.html 17/23

 

plt.rcParams['font.family'] = 'serif'
plt.rcParams['font.serif'] = 'Times new Roman'
plt.rcParams['font.size'] = 13
禁用网格线
plt.rcParams['axes.grid'] = False
设置图表大小和分辨率
plt.figure(figsize=(10, 10), dpi=300)
生成SHAP摘要图
shap.summary_plot(shap_values, X_train, feature_names=labels, plot_type="dot")
显示图表
plt.show()

import joblib
joblib.dump(model, '0511重置版saki_lr_model1.pkl') # 假设 model 是训练好的模型

['0511重置版saki_lr_model1.pkl']

from sklearn.linear_model import LogisticRegression
import joblib

假设你已经有了一个训练好的模型
model = LogisticRegression()
model.fit(X_train, y_train)

使用joblib保存模型
joblib.dump(model, 'model1.joblib')

['model1.joblib']

shap_values_top100 = shap_values[:1000]

绘制前100个样本的SHAP值热力图
shap.plots.heatmap(shap_values_top100)

shap.plots.heatmap(shap_values)

explanation = explainer(X_train.loc[:1000,:])

X_train

shap.plots.scatter(explanation[:, "Scr_baseline"])

shap.plots.scatter(explanation[:, "Scr_baseline"], color=explanation[:, "Age"])

shap.plots.waterfall(shap_values[0])

shap.plots.waterfall(shap_values[1])

shap.plots.waterfall(shap_values[3])

from lime.lime_tabular import LimeTabularExplainer

explainer = LimeTabularExplainer(X_train.values, feature_names=X_1.columns, class_names=np.unique(y_train), mode='classification')

instance = X_train.loc[11]

 # Generate an explanation for the instance
explanation = explainer.explain_instance(instance,model.predict_proba, num_features=5)

 # Display the explanation
explanation.show_in_notebook()

import joblib
joblib.dump(model, 'saki_lr_model.pkl') # 假设 model 是训练好的模型

['saki_lr_model.pkl']

coefficients = model.coef_[0]
intercept = model.intercept_[0]

coefficients

array([-0.38681916, -0.01213823, -0.16050141, 0.36487372, 0.29474987,
 0.4989831 , 0.31881465, 0.18528972, 0.35857963, 0.17374482,
 0.20034995, 0.04636802, -0.2696443 , 0.1108195 , -0.48366887,
 0.17549857, 0.1038173 , 0.41248211, 0.16337912, 0.16645699])

final= pd.read_csv(r'E:\MIMIC\MIMIC_BIG_DATA\MIMIC_BIG_DATA\case\sepsis\250510 EICU数据 saki.csv')
final.head()

Unnamed:
0 patientunitstayid Scr_baseline akimintime akimaxtime los_aki AKD cxx_aki diagnosisoffset diagnosisstring ... dementia1 copd1 ctd1 pud1 liver1 age_score_charlson fina

0 0 141304 1.24 -127.0 7293 7420 0 1 23.0 cardiovascular|shock
/ hypotension|sepsis ... 0 0 0 0 0 3

1 1 141751 0.90 -101.0 6042 6143 0 1 45.0
cardiovascular|shock
/ hypotension|signs

and s...
... 0 0 0 0 0 2

2 2 141920 1.03 -113.0 2469 2582 0 0 15.0 cardiovascular|shock
/ hypotension|sepsis ... 0 0 0 0 0 4

3 3 141945 2.17 -205.0 6539 6744 0 1 25.0 cardiovascular|shock
/ hypotension|sepsis ... 0 0 0 0 0 3

4 4 142388 1.11 -94.0 7122 7216 0 1 73.0 cardiovascular|shock
/ hypotension|sepsis ... 0 0 0 0 0 2

5 rows × 137 columns

print(list(final.columns))

In []:

Out[]:

In []:

Out[]:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

Out[]:

In []:

In []:

Out[]:

In []:

In []:

In [64]:

Out[64]:

In [65]:

2025/8/12 19:50 saki_akd_shap

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/saki_akd_shap.html 18/23

['Unnamed: 0', 'patientunitstayid', 'Scr_baseline', 'akimintime', 'akimaxtime', 'los_aki', 'AKD', 'cxx_aki', 'diagnosisoffset', 'diagnosisstring', 'patienthealthsystemstayid', 'unitvisitnumbe
r', 'hospitalid', 'hospitaladmitoffset', 'hospitaldischargeoffset', 'unitadmitoffset', 'unitdischargeoffset', 'apache_iv', 'hospitaldischargeyear', 'age', 'hosp_mort', 'gender', 'admissionheig
ht', 'admissionweight', 'icu_los_hours', 'aniongap_min', 'aniongap_max', 'albumin_min', 'albumin_max', 'bicarbonate_min', 'bicarbonate_max', 'bilirubin_min', 'bilirubin_max', 'creatinine_min',
'creatinine_max', 'chloride_min', 'chloride_max', 'glucose_min', 'glucose_max', 'hematocrit_min', 'hematocrit_max', 'hemoglobin_min', 'hemoglobin_max', 'lactate_min', 'lactate_max', 'platelet_
min', 'platelet_max', 'potassium_min', 'potassium_max', 'inr_min', 'inr_max', 'pt_min', 'pt_max', 'sodium_min', 'sodium_max', 'bun_min', 'bun_max', 'wbc_min', 'wbc_max', 'window_start7', 'CRR
T', 'apachepatientresultsid', 'physicianspeciality', 'physicianinterventioncategory', 'acutephysiologyscore', 'apachescore', 'apacheversion', 'predictedicumortality', 'actualicumortality', 'pr
edictediculos', 'actualiculos', 'predictedhospitalmortality', 'actualhospitalmortality', 'predictedhospitallos', 'actualhospitallos', 'preopmi', 'preopcardiaccath', 'ptcawithin24h', 'unabridge
dunitlos', 'unabridgedhosplos', 'apacheapsvarid', 'intubated', 'vent', 'dialysis', 'eyes', 'motor', 'verbal', 'meds', 'wbc', 'sodium', 'meanbp', 'hematocrit', 'creatinine', 'bun', 'glucose',
'oasis', 'vasopressor', 'ACEI/ARB', 'GCS', 'chartoffset', 'heartrate', 'respiratoryrate', 'spo2', 'nibp_systolic', 'nibp_diastolic', 'temperature', 'PT', 'paO2', 'FiO2', 'PaO2/FiO2', 'LODS',
'BaseExcess', 'drugstartoffset', 'Los_inf._AB', 'mets6', 'aids6', 'liver3', 'stroke2', 'renal2', 'dm', 'cancer2', 'leukemia2', 'lymphoma2', 'mi1', 'chf1', 'pvd1', 'tia1', 'dementia1', 'copd1',
'ctd1', 'pud1', 'liver1', 'age_score_charlson', 'final_charlson_score', 'Cerebrovascular_disease', 'paCO2', 'paraplegia']

print(final['Scr_baseline'].value_counts().to_string())

final['MBP'] = final['nibp_diastolic'] + (final['nibp_systolic'] - final['nibp_diastolic']) / 3

final=final[['patientunitstayid','Scr_baseline','AKD','cxx_aki','apache_iv', 'age','CRRT', 'LODS', 'BaseExcess','Los_inf._AB','vent',
 'temperature','respiratoryrate', 'ACEI/ARB','vasopressor','bun', 'glucose', 'oasis','wbc', 'sodium','acutephysiologyscore',
 'Cerebrovascular_disease','admissionweight','paO2','paCO2','spo2','MBP','paraplegia','age','gender']]

print(list(final.columns))

['patientunitstayid', 'Scr_baseline', 'AKD', 'cxx_aki', 'apache_iv', 'age', 'CRRT', 'LODS', 'BaseExcess', 'Los_inf._AB', 'vent', 'temperature', 'respiratoryrate', 'ACEI/ARB', 'vasopressor', 'b
un', 'glucose', 'oasis', 'wbc', 'sodium', 'acutephysiologyscore', 'Cerebrovascular_disease', 'admissionweight', 'paO2', 'paCO2', 'spo2', 'MBP', 'paraplegia', 'age', 'gender']

X_1.columns

Index(['ACEI/ARB', 'APS III', 'CRRT', 'Cerebrovascular Disease', 'LODS',
 'Los_inf._AB', 'MBP', 'Mechanical Ventilation', 'Paraplegia',
 'Resp Rate', 'Scr Baseline', 'SpO2', 'Vasoactive Agent', 'Weight'],
 dtype='object')

final1=final[['Scr_baseline', 'AKD', 'CRRT', 'LODS', 'vent', 'respiratoryrate', 'ACEI/ARB', 'vasopressor',
 'acutephysiologyscore', 'Cerebrovascular_disease', 'admissionweight', 'spo2','MBP','Los_inf._AB','paraplegia','age','gender']]

rename_mapping = {
 'Scr_baseline': 'Scr Baseline',
 'CRRT': 'CRRT',
 'LODS': 'LODS',
 'respiratoryrate': 'Resp Rate',
 'ACEI/ARB': 'ACEI/ARB',
 'vasopressor': 'Vasoactive Agent',
 'acutephysiologyscore': 'APS III',
 'Cerebrovascular_disease': 'Cerebrovascular Disease',
 'admissionweight': 'Weight',
 'spo2':'SpO2',
 'vent':'Mechanical Ventilation',
 'paraplegia':'Paraplegia',
 'age':'Age',
 'gender':'Gender'
}

使用rename方法替换变量名
final2= final1.rename(columns=rename_mapping)

final2.head()

Scr
Baseline AKD CRRT LODS Mechanical

Ventilation
Resp
Rate ACEI/ARB Vasoactive

Agent
APS

III
Cerebrovascular

Disease Weight SpO2 MBP Los_inf._AB Paraplegia Age Age Gender

0 1.24 0 0 4 1.0 28.0 0 0 41.0 0 NaN 95.0 72.000000 0.00 0 70.0 70.0 1.0

1 0.90 0 0 8 1.0 25.0 0 0 NaN 0 NaN 94.0 57.666667 0.19 0 60.0 60.0 0.0

2 1.03 0 0 4 1.0 28.0 0 0 41.0 0 53.4 97.0 67.000000 0.00 0 81.0 81.0 0.0

3 2.17 0 0 1 0.0 14.0 0 0 40.0 0 74.8 69.0 67.666667 0.00 0 72.0 72.0 0.0

4 1.11 0 0 7 1.0 22.0 0 0 101.0 0 96.6 97.0 144.333333 0.86 0 67.0 67.0 1.0

threshold = 0.9 * len(final2.columns)
final2_cleaned = final2.dropna(thresh=threshold)

final2_cleaned.shape

(4842, 18)

final2_cleaned['AKD'].value_counts()

AKD
1 2463
0 2379
Name: count, dtype: int64

threshold = 1 * len(final2.columns)
final3 = final2.dropna(thresh=threshold)

final3.shape

(3721, 18)

final3['AKD'].value_counts()

AKD
1 1894
0 1827
Name: count, dtype: int64

msno.bar(final3)

<Axes: >

In [66]:

In [67]:

In [68]:

In [69]:

Out[69]:

In [70]:

In [71]:

In [72]:

Out[72]:

In [73]:

Out[73]:

In [74]:

Out[74]:

In [75]:

Out[75]:

In [76]:

Out[76]:

In [77]:

Out[77]:

2025/8/12 19:50 saki_akd_shap

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/saki_akd_shap.html 19/23

final3['Scr Baseline'] = final3['Scr Baseline'] * 88.4

final3.head()

Scr
Baseline AKD CRRT LODS Mechanical

Ventilation
Resp
Rate ACEI/ARB Vasoactive

Agent
APS

III
Cerebrovascular

Disease Weight SpO2 MBP Los_inf._AB Paraplegia Age Age Gender

2 91.052 0 0 4 1.0 28.0 0 0 41.0 0 53.4 97.0 67.000000 0.00 0 81.0 81.0 0.0

3 191.828 0 0 1 0.0 14.0 0 0 40.0 0 74.8 69.0 67.666667 0.00 0 72.0 72.0 0.0

4 98.124 0 0 7 1.0 22.0 0 0 101.0 0 96.6 97.0 144.333333 0.86 0 67.0 67.0 1.0

5 109.616 1 0 4 0.0 20.0 0 0 42.0 0 71.4 98.0 71.666667 0.00 0 72.0 72.0 1.0

6 162.656 1 0 7 1.0 20.0 0 0 63.0 0 76.7 99.0 85.666667 0.28 0 60.0 60.0 0.0

X_1.columns

Index(['ACEI/ARB', 'APS III', 'CRRT', 'Cerebrovascular Disease', 'LODS',
 'Los_inf._AB', 'MBP', 'Mechanical Ventilation', 'Paraplegia',
 'Resp Rate', 'Scr Baseline', 'SpO2', 'Vasoactive Agent', 'Weight'],
 dtype='object')

column_order = ['ACEI/ARB', 'APS III' ,'CRRT', 'Cerebrovascular Disease', 'LODS',
 'Los_inf._AB', 'MBP' ,'Mechanical Ventilation', 'Paraplegia', 'Resp Rate',
 'Scr Baseline' ,'SpO2' ,'Vasoactive Agent', 'Weight','AKD'
]

按指定顺序排列列
final3 = final3[column_order]

final3.head()

ACEI/ARB APS III CRRT Cerebrovascular Disease LODS Los_inf._AB MBP Mechanical Ventilation Paraplegia Resp Rate Scr Baseline SpO2 Vasoactive Agent Weight AKD

2 0 41.0 0 0 4 0.00 67.000000 1.0 0 28.0 91.052 97.0 0 53.4 0

3 0 40.0 0 0 1 0.00 67.666667 0.0 0 14.0 191.828 69.0 0 74.8 0

4 0 101.0 0 0 7 0.86 144.333333 1.0 0 22.0 98.124 97.0 0 96.6 0

5 0 42.0 0 0 4 0.00 71.666667 0.0 0 20.0 109.616 98.0 0 71.4 1

6 0 63.0 0 0 7 0.28 85.666667 1.0 0 20.0 162.656 99.0 0 76.7 1

final3.to_csv('eICU_saki.csv')

y_val= final3['AKD']
X_val= final3.drop('AKD',axis=1)

import streamlit as st
import joblib
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

X_val= scaler.transform(X_val)

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, roc_curve
import matplotlib.pyplot as plt

假设 best_estimators 是一个包含已经训练好的分类器的列表
model_names = ['Logistic Regression','SVM','KNN','Decision Tree','Random Forest',
 'Adaboost','Gradient Boosting','XGBoost','LightGBM','Bagging','Voting'] # 模型名称列表

初始化性能指标字典
performance_metrics = {}

对每个分类器进行评估
for name, model in zip(model_names, best_estimators):
 y_pred = model.predict(X_val)
 y_pred_proba = model.predict_proba(X_val)[:, 1]

 # 计算性能指标
 accuracy = accuracy_score(y_val, y_pred)
 precision = precision_score(y_val, y_pred)
 recall = recall_score(y_val, y_pred)
 f1 = f1_score(y_val, y_pred)
 auc_score = roc_auc_score(y_val, y_pred_proba)

In []:

In [79]:

Out[79]:

In []:

In [80]:

Out[80]:

In [81]:

In [82]:

Out[82]:

In []:

In []:

In []:

In []:

2025/8/12 19:50 saki_akd_shap

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/saki_akd_shap.html 20/23

 # 存储性能指标
 performance_metrics[name] = {
 'Accuracy': accuracy,
 'Precision': precision,
 'Recall': recall,
 'F1 Score': f1,
 'AUC': auc_score
 }

打印性能指标
for name, metrics in performance_metrics.items():
 print(f"{name} Performance:")
 for metric, value in metrics.items():
 print(f"{metric}: {value:.4f}")
 print()

绘制ROC曲线
plt.figure(figsize=(10, 10), dpi=300)
for name, model in zip(model_names, best_estimators):
 y_pred_proba = model.predict_proba(X_val)[:, 1]
 fpr, tpr, _ = roc_curve(y_val, y_pred_proba)
 auc_score = performance_metrics[name]['AUC']
 plt.plot(fpr, tpr, label=f'{name} (AUC = {auc_score:.2f})')

plt.plot([0, 1], [0, 1], 'k--', label='Random')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.legend(loc="lower right")
plt.grid(False)
plt.show()

Logistic Regression Performance:
Accuracy: 0.5496
Precision: 0.5846
Recall: 0.3976
F1 Score: 0.4733
AUC: 0.5781

SVM Performance:
Accuracy: 0.5394
Precision: 0.5939
Recall: 0.3004
F1 Score: 0.3990
AUC: 0.5573

KNN Performance:
Accuracy: 0.5474
Precision: 0.5772
Recall: 0.4145
F1 Score: 0.4825
AUC: 0.5674

Decision Tree Performance:
Accuracy: 0.5370
Precision: 0.5861
Recall: 0.3073
F1 Score: 0.4032
AUC: 0.5657

Random Forest Performance:
Accuracy: 0.5361
Precision: 0.5817
Recall: 0.3157
F1 Score: 0.4093
AUC: 0.5739

Adaboost Performance:
Accuracy: 0.5284
Precision: 0.5918
Recall: 0.2365
F1 Score: 0.3380
AUC: 0.5647

Gradient Boosting Performance:
Accuracy: 0.5289
Precision: 0.5809
Recall: 0.2672
F1 Score: 0.3660
AUC: 0.5468

XGBoost Performance:
Accuracy: 0.5257
Precision: 0.5722
Recall: 0.2698
F1 Score: 0.3667
AUC: 0.5432

LightGBM Performance:
Accuracy: 0.5292
Precision: 0.5632
Recall: 0.3342
F1 Score: 0.4195
AUC: 0.5559

Bagging Performance:
Accuracy: 0.5321
Precision: 0.6041
Recall: 0.2344
F1 Score: 0.3378
AUC: 0.5778

Voting Performance:
Accuracy: 0.5485
Precision: 0.5821
Recall: 0.4007
F1 Score: 0.4747
AUC: 0.5816

2025/8/12 19:50 saki_akd_shap

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/saki_akd_shap.html 21/23

from PIL import Image, ImageDraw, ImageFont

打开两张图片，使用原始字符串或双反斜杠
image1 = Image.open(r'E:\MIMIC\image\Feature Selection by Boruta and Lassov2.png')
image2 = Image.open(r'E:\MIMIC\image\Feature Selection by Boruta and Lassov4.png')
确保两张图片的尺寸一致
width, height = image1.size
image1 = image1.resize((width, height))
image2 = image2.resize((width, height))

创建一个新图片，宽度为两张图片宽度之和，高度与单张图片相同
total_width = image1.width + image2.width
max_height = max(image1.height, image2.height)
new_image = Image.new('RGB', (total_width, max_height))

拼接图片
new_image.paste(image1, (0, 0))
new_image.paste(image2, (image1.width, 0))

创建绘图对象
draw = ImageDraw.Draw(new_image)

定义字体和大小，这里使用PIL内置的字体
font = ImageFont.load_default()

在每张图片的左上角标注"A"和"B"
text_position1 = (10, 10) # "A"的位置
text_position2 = (image1.width + 10, 10) # "B"的位置
draw.text(text_position1, "A", font=font, fill=(255, 0, 0))
draw.text(text_position2, "B", font=font, fill=(255, 0, 0))

显示拼接后的图片
new_image.show()

new_image.save('E:\MIMIC\image\Boruta_Lasso v1.png')

<>:1: SyntaxWarning: invalid escape sequence '\M'
<>:1: SyntaxWarning: invalid escape sequence '\M'
C:\Users\Lenovo\AppData\Local\Temp\ipykernel_23624\867099026.py:1: SyntaxWarning: invalid escape sequence '\M'
 new_image.save('E:\MIMIC\image\Boruta_Lasso v1.png')

In []:

In []:

In []:

In []:

2025/8/12 19:50 saki_akd_shap

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/saki_akd_shap.html 22/23

from PIL import Image, ImageDraw, ImageFont

打开两张图片，使用原始字符串或双反斜杠
image1 = Image.open(r'E:\MIMIC\image\Lasso Regressionv2.png')
image2 = Image.open(r'E:\MIMIC\image\Lasso Pathsv2.png')

确保两张图片的宽度一致
width = min(image1.width, image2.width)
image1 = image1.resize((width, image1.height))
image2 = image2.resize((width, image2.height))

创建一个新图片，宽度与单张图片相同，高度为两张图片高度之和
total_height = image1.height + image2.height
max_width = max(image1.width, image2.width)
new_image = Image.new('RGB', (max_width, total_height))

拼接图片
new_image.paste(image1, (0, 0))
new_image.paste(image2, (0, image1.height))

创建绘图对象
draw = ImageDraw.Draw(new_image)

定义字体和大小，这里使用PIL内置的字体
font = ImageFont.load_default()

在每张图片的左上角标注"A"和"B"
text_position1 = (10, 10) # "A"的位置
text_position2 = (10, image1.height + 10) # "B"的位置
draw.text(text_position1, "A", font=font, fill=(255, 0, 0))
draw.text(text_position2, "B", font=font, fill=(255, 0, 0))

显示拼接后的图片
new_image.show()

import joblib

加载保存的模型
model = joblib.load(r'E:\MIMIC\MIMIC_BIG_DATA\MIMIC_BIG_DATA\case\stroke\0511重置版saki_lr_model1.pkl')

现在你可以使用这个模型进行预测
例如：
predictions = model.predict(X_new)

model = best_estimators[0]

决策分析曲线

from sklearn.metrics import confusion_matrix
矢量化计算模型净收益的函数
def compute_net_benefit_model_vectorized(thresholds, y_pred_scores, y_labels):
 # 先将 y_labels 转换为 numpy 数组以避免多维索引问题
 y_labels = np.array(y_labels)
 y_pred_scores = np.array(y_pred_scores)
 # 计算总样本数
 n = len(y_labels)
 # 预分配数组
 net_benefit_model = np.zeros_like(thresholds)
 # 将预测得分和阈值进行广播计算
 y_pred_matrix = (y_pred_scores[:, None] > thresholds).astype(int)
 # 矢量化计算混淆矩阵的元素：TP 和 FP
 tp = (y_pred_matrix & y_labels[:, None]).sum(axis=0)
 fp = ((y_pred_matrix == 1) & (y_labels[:, None] == 0)).sum(axis=0)
 # 计算净收益
 net_benefit_model = (tp / n) - (fp / n) * (thresholds / (1 - thresholds))
 return net_benefit_model
矢量化计算 Treat all 策略净收益的函数
def compute_net_benefit_all_vectorized(thresholds, y_labels):
 # 将 y_labels 转换为 numpy 数组以避免多维索引问题
 y_labels = np.array(y_labels)
 # 计算混淆矩阵的元素（基于 Treat all 策略，所有样本被视为正类）
 tn, fp, fn, tp = confusion_matrix(y_labels, y_labels).ravel()
 total = tp + tn
 # 预分配数组
 net_benefit_all = np.zeros_like(thresholds)
 # 矢量化计算净收益
 net_benefit_all = (tp / total) - (tn / total) * (thresholds / (1 - thresholds))
 return net_benefit_all
绘制 DCA 的函数
def plot_dca_custom(thresholds, net_benefit_model, net_benefit_all):
 fig, ax = plt.subplots(figsize=(8, 6),dpi=1200)
 # 绘制净收益曲线
 ax.plot(thresholds, net_benefit_model, color='deepskyblue', label='Model')
 ax.plot(thresholds, net_benefit_all, color='black', label='Treat all')
 ax.plot((0, 1), (0, 0), color='#808080', label='Treat none')
 # 填充模型比 Treat all 和 Treat none 优势部分
 y2 = np.maximum(net_benefit_all, 0)
 y1 = np.maximum(net_benefit_model, y2)
 ax.fill_between(thresholds, y1, y2, color='deepskyblue', alpha=0.3) # 保持原来的填充颜色
 # 美化图表
 ax.set_xlim(0, 1)
 ax.set_ylim(net_benefit_model.min() - 0.15, net_benefit_model.max() + 0.15)
 ax.set_xlabel('Threshold Probability', fontdict={'family': 'Times New Roman', 'fontsize': 15})
 ax.set_ylabel('Net Benefit', fontdict={'family': 'Times New Roman', 'fontsize': 15})
 ax.grid(True)
 ax.legend(loc='upper right')
 plt.savefig("DCA.pdf", bbox_inches='tight')
 plt.show()
运行 DCA 分析函数
def run_dca_analysis(model, X_test, y_test):
 # 使用模型预测概率
 y_pred_scores = model.predict_proba(X_test)[:, 1] # 获得正类的预测概率
 y_labels = y_test # 使用测试集的真实标签
 # 定义阈值范围
 thresholds = np.arange(0, 1, 0.01)
 # 计算不同阈值下的净收益
 net_benefit_model = compute_net_benefit_model_vectorized(thresholds, y_pred_scores, y_labels)
 net_benefit_all = compute_net_benefit_all_vectorized(thresholds, y_labels)
 # 调用绘图函数
 plot_dca_custom(thresholds, net_benefit_model, net_benefit_all)

run_dca_analysis(model, X_test, y_test)

In []:

In []:

In []:

In []:

In []:

In []:

In []:

2025/8/12 19:50 saki_akd_shap

file:///D:/System/Desktop/Prediction of AKD in SA-AKI/saki/saki_akd_shap.html 23/23

