Overconsumption Gravely Threatens Water Security in the Binational Rio Grande-Bravo Basin

Supplemental Information

Table SI-1. Consumptive water uses by sub-basin. Summary of the average annual consumptive use volumes over recent decades for each sub-basin and the entire basin as shown in Figure 2, in acre-feet per year.
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Table SI-2. Reservoir evaporation. Listing of 37 reservoirs included in estimation of reservoir evaporation for each sub-basin.
	
RGB_Subbasin
	
Lake_name

	Rio Grande Colorado
	Continental Reservoir

	Rio Grande Colorado
	Santa Maria Reservoir

	Rio Grande Colorado
	Farmers Union Reservoir

	Rio Grande Colorado
	Platoro Reservoir

	Rio Grande Colorado
	La Jara Reservoir

	Rio Grande Colorado
	Sanchez Reservoir

	Rio Grande Colorado
	Mountain Home Reservoir

	Rio Grande Colorado
	Terrace Reservoir

	Rio Grande Northern New Mexico
	Heron Lake

	Rio Grande Northern New Mexico
	El Vado Reservoir

	Rio Grande Northern New Mexico
	Abiquiu Reservoir

	Rio Grande Northern New Mexico
	Costilla Reservoir

	Rio Grande Northern New Mexico
	Stone Lake

	Rio Grande Middle New Mexico
	Cochiti Lake

	Rio Grande Middle New Mexico
	Jemez Canyon Reservoir

	Rio Grande Southern New Mexico
	Elephant Butte Reservoir

	Rio Grande Southern New Mexico
	Caballo Reservoir

	RGB El Paso to Fort Quitman
	Hudspeth Reservoir

	Rio Conchos
	Presa Luis L. Leon

	Rio Conchos
	Lago Las Virgenes

	Rio Conchos
	Presa La Boquilla

	Rio Conchos
	Presa Chihuahua

	Rio Conchos
	Presa Pico de Aguila

	Rio Conchos
	Presa Federalismo Mexicano

	Rio Conchos
	Lago Rosetilla

	Pecos River New Mexico
	Santa Rosa Lake

	Pecos River New Mexico
	Storrie Lake

	Pecos River New Mexico
	Lake Sumner

	Pecos River New Mexico
	Brantley Lake

	Pecos River Texas
	Red Bluff Reservoir

	RGB Amistad Dam to Gulf
	Amistad Reservoir

	RGB Amistad Dam to Gulf
	Falcon Reservoir

	RGB Amistad Dam to Gulf
	Lake Casa Blanca

	Rio Salado MX
	Presa Venustiano Carranza

	Rio San Juan MX
	Presa Marte R.Gomez

	Rio San Juan MX
	Lago El Cuchillo

	Rio San Juan MX
	Presa Rodrigo Gomez



Figure SI-1. Crop Water Trends and Averages
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Figure SI-2. Changes in water storage during 2002-2024. TWS = total water storage; GWS = ground water storage; SWRS = surface water storage (reservoirs); SMS = soil moisture storage.
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Fire Impacts on Water Availability in the Rio Grande-Bravo basin

In this paper we have presented findings on the historical water budget of the RGB. However, we must also recognize the uncertainty faced by basin inhabitants and how elements of the water budget may change in the future. Fires across Intermountain West, including the headwater areas of the RGB, are becoming more frequent and larger in size (Iglesias, et al., 2022). The burn scars left by these fires affect the water budget in a multitude of ways. Studies in New Mexico and Colorado have found that snowpacks in burned areas hold less water, melt earlier, and melt faster (Harpold et al. 2014, Kampf et al., 2022). Confounding the impacts that fires may have on snowpacks, increased dust emissions from land use disturbances can lead to the accumulation of dust-on-snow (Neff et al., 2008). Studies have found aeolian deposition of dust on snowpacks in the San Jaun Mountains and Wasatch Valley to be a contributor to earlier and quicker snowpack melting due to increased energy absorption (Reynolds et al., 2020). Fire further complicates the future RGB water budget by forcing changes to evapotranspiration. A study of ET changes pre- and post-fire found an increase in post-fire ET across ten NM fire locations (Joshi et al., 2024). While the Joshi et al. (2024) study notes that other studies have found a decrease in post-fire ET compared to pre-fire ET, other regional pre-, post-fire ET studies have found increases in ET post-fire (Poulos et al, 2021). Further, while streamflow may increase post-fire, accompanying water quality issues present new challenges to utilize the temporary increase in streamflow (Williams et al., 2022). Increased fire risk in the RGB is not constrained to the headwaters in southern Colorado and northern New Mexico.  Galván and Magaña (2020) identified fire risk hotspot areas in northeastern Mexico in the RGB. With the increased frequency of fire in the RGB, future water governance strategies must tightly couple with wildfire planning and governance (Morgan et al., 2023)
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Backcasting USGS Thermoelectric Power Plant Consumption 

An AutoRegressive Integrated Moving Average (ARIMA) model is a widely used statistical method for analyzing and forecasting time series data by capturing trends, lags, and past errors (Equation 1; Box et al., 2015). 

 			(Equation 1)

Here, each ARIMA parameter captures a different aspect of the time series behavior. The autoregressive component (p) refers to the number of past observations used to predict future values, effectively modeling the influence of previous time steps. The differencing order (d) represents the number of times the original time series must be differenced to achieve stationarity, meaning the mean and variance remain constant over time. Finally, the moving average component (q) captures the relationship between the current observation and past forecast errors, smoothing out short-term fluctuations. The Seasonal AutoRegressive Integrated Moving Average (SARIMA) model extends the traditional ARIMA framework to account for recurring seasonal patterns in time series data (Equation 2; Box et al., 2015).

 			(Equation 2)

The first set of parameters - p, d, and q - represent the non-seasonal components: the number of autoregressive terms, the order of differencing to remove trends, and the number of moving average terms, respectively. The second set - P, D, and Q - captures the seasonal behavior of the series: P denotes the number of seasonal autoregressive terms, D is the number of seasonal differences required for stationarity, and Q refers to the number of seasonal moving average terms. The m parameter defines the length of the seasonal cycle (e.g., 12 for monthly data with yearly seasonality). SARIMA models are particularly useful when a time series shows short-term dependencies and seasonal patterns, such as temperature, precipitation, or water use that fluctuates annually (Miauo, 1990; Jones & Hulme, 1996).
A SARIMA model can backcast missing historical values by leveraging past observations, trends, and seasonal fluctuations when applied to thermoelectric power plant withdrawal and consumption data. Backcasting in time series analysis uses a statistical or machine learning model to estimate past values of a dataset when historical data is missing or incomplete (Sibeijn & Pequito, 2022). It works similarly to forecasting but in reverse—instead of predicting future values, the model reconstructs past trends using known patterns, seasonality, and relationships in the existing data. This is particularly useful when older data is incomplete, as the model can estimate missing values based on known patterns in more recent data, improving the continuity and reliability of long-term water use records (Sibeijn & Pequito, 2022).

It is important to acknowledge that time series models often face challenges due to the inherent noise, data quality, and complexity in real-world data (Kim et al., 2024; Tawakuli et al., 2024). High noise levels can obscure underlying trends and seasonal patterns, making identifying true signals within the data difficult. Complex data structures can lead to issues such as overfitting, where the model captures noise instead of meaningful patterns, resulting in poor predictive performance on new data (Kim et al., 2024). Additionally, the quality of the input data plays a critical role in model performance, as poor, unreliable data can lead to unreliable forecasts and misguided decision-making (Tawakuli et al., 2024). These factors contribute to the difficulty in achieving perfect forecasting results, as models may struggle to distinguish between genuine patterns and random fluctuations.

In time series modeling, choosing the best model means balancing two key goals: how well the model fits the historical data and how accurately it can predict future values. A model that perfectly fits past data may not perform well on unseen data if it captures noise instead of real patterns. To help assess model performance, we use a mix of statistical and error-based metrics. The Akaike Information Criterion (AIC; Equation 3; Akaike, 1974) and Bayesian Information Criterion (BIC; Equation 4; Schwarz, 1978) evaluate how well a model fits the data while penalizing unnecessary complexity. Meanwhile, Mean Absolute Error (MAE; Equation 5) and Root Mean Square Error (RMSE; Equation 6) measure how far off predictions are from actual values. Using these metrics together gives a more complete picture of a model's accuracy and reliability in forecasting real-world data.

AIC is a model selection criterion that balances the model's goodness of fit and complexity (Equation 3; Akaike, 1974). A low AIC score indicates a better-fitting model but penalizes models with many parameters to dissuade overfitting. It is important to note that the absolute value of AIC scores is not directly interpreted; it is only the difference between AIC scores that matters. 

			(Equation 3)

Here, k is the number of estimated parameters in the model and  is the maximum value of the model’s likelihood function. BIC similarly balances model fit and complexity but instead penalizes model complexity more strongly as the sample size increases (Equation 4; Schwarz, 1978). Just like AIC, BIC tends to favor simpler models.  
			(Equation 4)

For BIC, k remains as the number of estimated parameters alongside  being the maximum value of the model’s likelihood function. The added n represents the number of observations used in the model. For model error verification, we first used MAE because it is good at interpreting forecasting errors of time series models. MAE measures the average magnitude of errors in a set of predictors without considering whether they are negative or positive (Equation 5). This model's average error size is a million gallons per day units.   

			(Equation 5)

Here,  represents the actual values,  the predicted values, and n being the number of predictions. RMSE is the square root of the average squared error (Equation 6). RMSE is a similar error metric to MAE but penalizes larger errors more harshly than MAE due to its squaring, however, it is more sensitive to value inflation to outliers. RMSE also uses the same parameters as MAE (Equation 5).

				(Equation 6)

To fill missing monthly water consumption data (units of million gallons per day – Mgal/day) for 2000–2007, individual SARIMA models were trained on observed monthly values from 2008–2020 for each HUC12 sub-watershed (Galanter et al., 2023). The goal was not to generate high-precision forecasts but to approximate plausible monthly values consistent with recent historical trends. Each model was fit individually per HUC12 and selected based on its ability to capture seasonal structure and minimize residual autocorrelation, heteroskedasticity, and extreme non-normality. Model diagnostics (shown in Figure S3-S10), including Ljung-Box tests (Ljung & Box, 1978), Jarque-Bera normality checks (Jarque & Bera, 1980), and heteroskedasticity tests (Breusch & Pagan, 1979), confirmed that most models had white noise residuals with stable variance and moderate deviations from normality which are acceptable given the approximate nature of the backcasting task (Sibeijn & Pequito, 2022). Verification was performed using standard error metrics: MAE and RMSE. These were computed by comparing model predictions against actual observed values from 2008 to 2020 (the in-sample period). The MAE and RMSE values ranged from 0.11 to 2.51 and 0.15 to 4.78, respectively (Table SI-3), indicating that the models generally performed well for approximating monthly water consumption values at the sub-watershed level. While error levels varied depending on the water use patterns and variability within each HUC12, the models provided reliable estimates suitable for backcasting.

Table SI-3. Summary of SARIMA model configurations, evaluation statistics, and data coverage for each Rio Grande HUC-12 sub-watershed containing a reported U.S. thermoelectric power plant. The HUC-12 130700071102 (Permian Basin power plant) includes only 36 monthly observations from 2008 to 2010, as the facility ceased operation in 2011. The final row corresponds to Laredo power station in HUC-12 130800022802, which was operational only in 2008, based on reported Energy Information Administration (EIA) records and the USGS dataset (Galanter et al., 2023;EIA, 2025).
	HUC12
	Data count (n)
	SARIMA Model
	AIC
	BIC
	MAE
	RMSE
	Notes

	130202030302
	156
	(1,0,0)x(2,1,0,12)
	-111.4
	-100.3
	0.17
	0.28
	Log transformed

	130202070105
	156
	(1,0,0)x(0,1,1,12)
	193.7
	205.2
	2.51
	4.78
	Log transformed

	130301020903
	156
	(1,0,0)x(2,1,0,12)
	-161.1
	-149.9
	0.11
	0.15
	

	130301020906
	156
	(1,0,0)x(0,1,0,12)
	194.3
	200.2
	0.11
	0.15
	Log transformed

	130302020608
	156
	(1,0,0)x(2,1,0,12)
	104.4
	115.5
	0.41
	0.58
	

	130401000101
	156
	(1,0,0)x(0,1,1,12)
	239.8
	248.4
	0.54
	0.7
	

	130700070102
	156
	(1,0,0)x(1,0,2,12)
	151.8
	166.2
	0.37
	0.48
	

	130700071102
	36
	(0,0,0)x(1,1,0,12)
	11.7
	12.7
	0.45
	0.63
	

	130800022802
	12
	N/A
	N/A
	N/A
	N/A
	N/A
	Only operated in 2008 per EIA data
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Figure SI-3. A) Monthly thermoelectric water consumption (cu_mgd) for HUC-12 130202030302, showing observed data from 2008–2020 (blue points and lines) and SARIMA-based backcast estimates from 2000–2007 (red dashed line = backcast mean; shaded area = 95% confidence interval). The model used was SARIMA(1,0,0)x(2,1,0,12), applied to log-transformed data to stabilize variance. (B) Model residual diagnostics, including autocorrelation function (ACF) and partial autocorrelation function (PACF) plots with 95% confidence bands, and summary statistics. The Ljung-Box test indicates no significant autocorrelation (p = 0.22), while the Jarque-Bera test (p = 0.00) and elevated kurtosis (5.15) suggest slight departures from normality. No significant heteroskedasticity was detected (p = 0.36).
[image: A graph of different data

AI-generated content may be incorrect.]
Figure SI-4. (A) Monthly thermoelectric water consumption (cu_mgd) for HUC-12 130202070105, showing observed data from 2008–2020 (blue points and lines) and SARIMA-based backcast estimates for 2000–2007 (red dashed line = backcast mean; shaded area = 95% confidence interval). The model used was SARIMA(1,0,0)x(1,1,0,12), applied to log-transformed data to stabilize variance. (B) Residual diagnostics include autocorrelation function (ACF) and partial autocorrelation function (PACF) plots with 95% confidence bands, and summary statistics. The Ljung-Box test (p = 0.42) suggests no significant autocorrelation, and the heteroskedasticity test (p = 0.81) indicates constant variance. However, the Jarque-Bera test (p = 0.00), skewness (–1.07), and high kurtosis (6.12) reveal strong left skew and heavy-tailed residuals, indicating deviations from normality.
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Figure SI-5. (A) Monthly thermoelectric water consumption (cu_mgd) for HUC-12 130301020903, displaying observed data from 2008–2020 (blue points and lines) and SARIMA-based backcast estimates for 2000–2007 (red dashed line = backcast mean; shaded area = 95% confidence interval). The selected model was SARIMA(1,0,0)x(2,1,0,12}, fit to untransformed data. (B) Residual diagnostics include autocorrelation function (ACF) and partial autocorrelation function (PACF) plots with 95% confidence intervals, along with statistical tests. The Ljung-Box test (p = 0.42) indicates no significant autocorrelation, and the heteroskedasticity test (p = 0.24) suggests constant variance. The Jarque-Bera test (p = 0.00), skewness (–0.58), and kurtosis (4.11) point to mild residual non-normality with slight left skew and heavier tails.
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Figure SI-6. (A) Monthly thermoelectric water consumption (cu_mgd) for HUC-12 130301020906, showing observed data from 2008–2020 (blue points and lines) and SARIMA-based backcast estimates for 2000–2007 (red dashed line = backcast mean; shaded area = 95% confidence interval). The model used was SARIMA(1,0,0)x(0,1,0,12}, applied to log-transformed data to account for variance heterogeneity. (B) Residual diagnostics include autocorrelation function (ACF) and partial autocorrelation function (PACF) plots with 95% confidence intervals and summary statistics. The Ljung-Box test (p = 0.58) suggests no significant autocorrelation, and the heteroskedasticity test (p = 0.36) confirms stable residual variance. However, the Jarque-Bera test (p = 0.00), skewness (–0.08), and kurtosis (5.54) indicate moderate deviations from normality, primarily due to fat-tailed residuals.
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Figure SI-7. (A) Monthly thermoelectric water consumption (cu_mgd) for HUC-12 130302020608, showing observed data from 2008–2020 (blue points and lines) and SARIMA-based backcast estimates for 2000–2007 (red dashed line = backcast mean; shaded area = 95% confidence interval). The selected model was SARIMA(1,0,0)x(2,1,0,12}, applied to untransformed data. (B) Residual diagnostics include autocorrelation function (ACF) and partial autocorrelation function (PACF) plots with 95% confidence intervals, as well as statistical test summaries. The Ljung-Box test (p = 0.28) suggests no significant autocorrelation. Residual variance appears stable (heteroskedasticity test p = 0.13), though the Jarque-Bera test (p = 0.02), skewness (–0.56), and kurtosis (3.61) indicate mild left skew and modest tail heaviness, reflecting slight deviations from normality.
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Figure SI-8. (A) Monthly thermoelectric water consumption (cu_mgd) for HUC-12 130401000101, showing observed data from 2008–2020 (blue points and lines) and SARIMA-based backcast estimates for 2000–2007 (red dashed line = backcast mean; shaded area = 95% confidence interval). The selected model was SARIMA(1,0,0)x(0,1,1,12}, applied to untransformed data. (B) Residual diagnostics include autocorrelation function (ACF) and partial autocorrelation function (PACF) plots with 95% confidence intervals and summary statistics. The Ljung-Box test (p = 0.36) indicates no significant autocorrelation, and the heteroskedasticity test (p = 0.60) confirms constant residual variance. The Jarque-Bera test (p = 0.95), skewness (0.08), and kurtosis (2.62) suggest that residuals are approximately normal, with minimal skew or tail deviation.
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Figure SI-9. (A) Monthly thermoelectric water consumption (cu_mgd) for HUC-12 130700070102, displaying observed data from 2008–2020 (blue points and lines) and SARIMA-based backcast estimates for 2000–2007 (red dashed line = backcast mean; shaded area = 95% confidence interval). The selected model was SARIMA(1,0,0)x(1,0,2,12), applied to untransformed data. (B) Residual diagnostics include autocorrelation function (ACF) and partial autocorrelation function (PACF) plots with 95% confidence intervals and key summary statistics. The Ljung-Box test (p = 0.97) indicates no evidence of autocorrelation, and the heteroskedasticity test (p = 0.00) suggests variance is not constant. The Jarque-Bera test (p = 0.00), skewness (–1.27), and kurtosis (4.45) highlight substantial left skew and moderately heavy tails, indicating notable deviations from normality.
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Figure SI-10. (A) Monthly thermoelectric water consumption (cu_mgd) for HUC-12 130700071102, displaying observed data from 2008–2010 (blue points and lines) and SARIMA-based backcast estimates for 2000–2007 (red dashed line = backcast mean; shaded area = 95% confidence interval). The model used was SARIMA(0,0,0)x(1,1,0,12), fit to untransformed data. This plant ceased operation in 2011, resulting in a shorter observed time series. (B) Residual diagnostics include autocorrelation function (ACF) and partial autocorrelation function (PACF) plots with 95% confidence intervals and key statistical test results. The Ljung-Box test (p = 0.78) and heteroskedasticity test (p = 0.26) show no significant autocorrelation or variance instability. However, the Jarque-Bera test (p = 0.28), skewness (–0.54), and kurtosis (4.52) suggest moderate deviations from normality, primarily due to tail heaviness and mild left skew.

Linearly Interpolating Mexico Thermoelectric Power Plant Values
Annual estimates of Mexican thermoelectric power plant water consumption for the Rio Bravo portion of the Rio Grande/Rio Bravo basin between 2000 and 2020 were obtained from the Estadísticas del Agua en México annual reports published by the Sistema Nacional de Información del Agua (2025). However, two data gaps were present in the collected data. First, annual reports were missing for 2000, 2001, 2002, and 2020. Second, there were partial reports in 2004, 2005, 2008, 2009, and 2013 where thermoelectric power plant water withdrawal was reported, but water consumption was not. 
To address these data gaps, we constructed a complete time series of annual thermoelectric water consumption values (in hm³) for the Rio Bravo basin using a multi-step strategy. For 2000 to 2002, which lacked any reported data, we assumed the same consumptive use value as in 2003 (30.55 hm³), the first year with available data. This conservative approach avoids extrapolating into a period with no established baseline trend, as no annual reports were available prior to 2003. We applied linear interpolation based on adjacent known values for years with partially reported or missing data - 2004, 2005, 2008, 2009, 2013, and 2020. To interpolate a value for 2020, we included the reported consumptive value from the 2021 annual report to provide an adjacent value. Interpolation was performed strictly between observed data points to preserve the long-term trend and avoid introducing artificial seasonality or curvature. This approach provides plausible and consistent estimates for missing years. A side-by-side comparison of the pre-interpolation and post-interpolation values is presented in Table S2.

Table SI-4. Annual Mexican thermoelectric water consumption values (in cubic hectometers - hm³) for a U.S. power plant site along the Rio Grande/Rio Bravo basin, shown before and after linear interpolation. Missing values were filled using linear interpolation where possible. Years prior to 2003 lack official reported data; therefore, values for 2000–2002 were held constant at the 2003 level (30.55 hm³) and are marked with an asterisk (*). For years where both pre- and post-interpolation values exist, no adjustments were made. The interpolation was performed to ensure a continuous dataset for modeling and trend analysis between 2000 and 2021.
	Year
	Pre-Interpolation 
Consumption Value (hm3)
	Post-Interpolation 
Consumption Value (hm3)

	2000
	N/A
	30.55*

	2001
	N/A
	30.55*

	2002
	N/A
	30.55*

	2003
	30.55
	30.55

	2004
	N/A
	56.7

	2005
	N/A
	86.85

	2006
	115
	115

	2007
	115
	115

	2008
	N/A
	114

	2009
	N/A
	113

	2010
	112
	112

	2011
	112
	112

	2012
	111.5
	111.5

	2013
	N/A
	111.25

	2014
	111
	111

	2015
	111
	111

	2016
	111
	111

	2017
	111
	111

	2018
	111
	111

	2019
	111
	111

	2020
	N/A
	87

	2021
	63
	63



After constructing the gap-filled time series of annual thermoelectric water consumption for the Rio Bravo basin, we proportionally allocated basin-wide values to individual Mexican HUC-8 sub-basins based on thermoelectric power plant infrastructure characteristics. This disaggregation was designed to reflect spatial heterogeneity in water use by incorporating facility-level information. Allocation weights were derived from two primary attributes: the total installed generation capacity (in megawatts, MW) of thermoelectric power plants within each sub-basin and the operational start year of each plant, which determined its contribution to water use each year.
To implement this, we first compiled detailed facility-level data, including plant name, fuel type, generation technology, installed capacity, and operational year for all known thermoelectric units operating between 2000 and 2020 within the Rio Bravo basin. This data was sourced from the Global Energy Monitor Wiki (GEM, 2025) and cross-referenced with the World Resource Institute’s Global Power Plant Database (Table S3; Byers et al., 2018). We constructed capacity profiles for each year by identifying operational units within each HUC-8 and summing their total installed capacities to reflect the sub-basin's annual generation capacity. Annual allocation weights were then calculated by dividing each HUC-8’s capacity by the total operational capacity across all HUC-8s in that year (Equation 7):

				(Equation 7)

where  is the weight for HUC-8 h in year t,  is the total installed capacity in HUC-8 h in year t, and  is the capacity of for sub-basin i in year t, with n representing the number of active sub-basins in year t. These weights were then multiplied by the total basin-wide consumptive use value for each year to estimate the annual thermoelectric water use for each sub-basin (Equation 8):

			(Equation 8)

where  is the consumptive use assigned to HUC-8 h in year t, and  is the total Rio Bravo basin thermoelectric consumption, B, in year t. This approach assumes that water use scales linearly with installed capacity and that plants within a given HUC-8 are otherwise homogeneous in operational characteristics such as cooling technology and water use intensity. While simplified, this method offers a transparent and reproducible means of spatially disaggregating aggregate water use values in the absence of detailed plant-level consumption data and plant operational characteristics.

Table SI-5. List of Mexican thermoelectric power generation units located within the Rio Grande/Río Bravo (RGRB) basin in Mexico, including plant name, unit number, fuel type, generation technology, installed capacity (MW), operational start year, and associated RGRB sub-basin. The dataset covers facilities using a range of generator technologies and fuels. Several facilities consist of multiple units commissioned in different years. Sub-basin classification reflects the geographic location of each plant relative to major hydrologic divisions of the Rio Grande/Río Bravo. This data was manually collected using the Global Energy Monitor Wiki (GEM, 2025).
	Plant Name
	Unit
	Fuel
	Technology
	Capacity
(MW)
	Start Year
	RGRB Subbasin

	CCC Norte-III power station
	1
	Natural Gas
	Combined Cycle
	453
	2020
	RGRB El Paso to Fort Quitman

	CCC Norte-III power station
	2
	Natural Gas
	Combined Cycle
	453
	2020
	RGRB El Paso to Fort Quitman

	Chihuahua II (El Encino) power station
	1
	Natural Gas
	Combined Cycle
	619
	2003
	Rio Conchos

	Chihuahua III power station
	1
	Natural Gas
	Combined Cycle
	327
	2003
	Rio Conchos

	Norte II power station
	1
	Natural Gas
	Combined Cycle
	433
	2014
	Rio Conchos

	Francisco Villa power station
	4
	Natural Gas, Heavy Fuel Oil
	Steam Turbine
	150
	1981
	Rio Conchos

	Francisco Villa power station
	5
	Natural Gas, Heavy Fuel Oil
	Stream Turbine
	150
	1981
	Rio Conchos

	Ramos cogeneration power station
	1
	Natural Gas
	Combined Cycle
	52
	2016
	Rio San Juan Mex Tributary

	Saltillo power station
	1
	Natural Gas
	Combined Cycle
	247.5
	2001
	Rio San Juan Mex Tributary

	Tractebel Monterrey power station
	1
	Natural Gas
	Combined Cycle
	284
	2003
	Rio San Juan Mex Tributary

	Deacero power station
	1
	Natural Gas
	Gas Turbine
	200
	2015
	Rio San Juan Mex Tributary

	Huinalá CC power station
	1
	Natural Gas
	Combined Cycle
	378
	1981
	Rio San Juan Mex Tributary

	Dulces Nombres (Monterrey) power station
	2
	Natural Gas
	Combined Cycle
	459
	2000
	Rio San Juan Mex Tributary

	Dulces Nombres (Monterrey) power station
	1
	Natural Gas
	Combined Cycle
	252
	2002
	Rio San Juan Mex Tributary

	Dulces Nombres (Monterrey) power station
	2
	Natural Gas
	Combined Cycle
	252
	2002
	Rio San Juan Mex Tributary

	Dulces Nombres (Monterrey) power station
	3
	Natural Gas
	Combined Cycle
	252
	2002
	Rio San Juan Mex Tributary

	Dulces Nombres II power station
	4
	Natural Gas
	Combined Cycle
	252
	2002
	Rio San Juan Mex Tributary

	Noreste (Escobedo) power station
	1
	Natural Gas
	Combined Cycle
	300
	2016
	Rio San Juan Mex Tributary

	Ternium Monterrey power station
	1
	Natural Gas
	Combined Cycle
	878
	2019
	Rio San Juan Mex Tributary

	El Carmen Nuevo Leon power station
	1
	Natural Gas
	Gas Turbine
	50
	1992
	Rio San Juan Mex Tributary

	Pemcorp Energy power station
	1
	Natural Gas
	Combined Cycle
	866
	2019
	Rio San Juan Mex Tributary

	Pesquería power station
	1
	Natural Gas
	Internal Combustion
	130.9
	2018
	Rio San Juan Mex Tributary

	Refinería Hector Lara Sosa power station
	1
	Natural Gas
	Combined Cycle
	900
	2016
	Rio San Juan Mex Tributary

	Los Ramones power station
	1
	Natural Gas, Fuel Oil
	Steam Turbine
	79
	2007
	Rio San Juan Mex Tributary

	Los Ramones power station
	1
	Natural Gas
	Gas Turbine
	277
	2020
	Rio San Juan Mex Tributary

	José López Portillo power station
	2
	Natural Gas
	Gas Turbine
	277
	2020
	Rio San Juan Mex Tributary

	José López Portillo power station
	1
	Coal
	Subcritical
	300
	1982
	RGRB Amistad dam to Gulf of Mexico

	José López Portillo power station
	2
	Coal
	Subcritical
	300
	1983
	RGRB Amistad dam to Gulf of Mexico

	José López Portillo power station
	3
	Coal
	Subcritical
	300
	1985
	RGRB Amistad dam to Gulf of Mexico

	Carbón II power station
	4
	Coal
	Subcritical
	300
	1987
	RGRB Amistad dam to Gulf of Mexico

	Carbón II power station
	1
	Coal
	Subcritical
	350
	1993
	RGRB Amistad dam to Gulf of Mexico

	Carbón II power station
	2
	Coal
	Subcritical
	350
	1993
	RGRB Amistad dam to Gulf of Mexico

	Carbón II power station
	3
	Coal
	Subcritical
	350
	1995
	RGRB Amistad dam to Gulf of Mexico

	Río Bravo III (Lomas del Real) power station
	4
	Coal
	Subcritical
	350
	1996
	RGRB Amistad dam to Gulf of Mexico

	Río Bravo IV (Valle Hermoso) power station
	3
	Natural Gas
	Combined Cycle
	495
	2004
	RGRB Amistad dam to Gulf of Mexico

	Río Bravo II (Anahuac) power station
	4
	Natural Gas
	Combined Cycle
	500
	2005
	RGRB Amistad dam to Gulf of Mexico

	Emilio Portes Gil power station
	2
	Natural Gas
	Combined Cycle
	495
	2002
	RGRB Amistad dam to Gulf of Mexico

	Emilio Portes Gil power station
	3
	Natural Gas
	Steam Turbine
	300
	1982
	RGRB Amistad dam to Gulf of Mexico

	Dulces Nombres (Monterrey) power station
	4
	Natural Gas
	Combined Cycle
	211
	2007
	RGRB Amistad dam to Gulf of Mexico

	Dulces Nombres (Monterrey) power station
	1
	Natural Gas
	Combined Cycle
	453
	2020
	RGRB El Paso to Fort Quitman

	Dulces Nombres (Monterrey) power station
	2
	Natural Gas
	Combined Cycle
	453
	2020
	RGRB El Paso to Fort Quitman

	Dulces Nombres (Monterrey) power station
	1
	Natural Gas
	Combined Cycle
	619
	2003
	Rio Conchos

	Dulces Nombres II power station
	1
	Natural Gas
	Combined Cycle
	327
	2003
	Rio Conchos

	Noreste (Escobedo) power station
	1
	Natural Gas
	Combined Cycle
	433
	2014
	Rio Conchos
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