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Metadata

We created a User Interface (UI) for metadata input using the Shiny UI platform for R. We connected the Shiny app to locally stored CSV files which served as databases for tumor and treatment information.  This information was used to populate drop-down lists that researchers could select from.  Other fields, such as Dose groups, could be entered manually.  Users could add up to nine dose groups.  The number of rows in the resultant metadata CSV file corresponded to the number of micro-tumors or OBSCs in the experiment.  Metadata that was usually consistent between experiments (e.g. thickness of OBSC, imaging equipment used, etc.) was automatically populated and hidden in the default form.  However, users could choose to view and edit all metadata categories.
Each row in our database corresponds to one “target,” whether that be a micro-tumor in a tumor toxicity experiment or an OBSC in an OBSC toxicity experiment.  Each row contained metadata that allowed the target to be placed in its experimental context, including the Treatment used, the Dose applied (including the units of concentration, e.g. μM or Gy), the date the experiment was started, the tumor type when applicable, etc.  This allowed for experimental results to be easily queried later.  
Image Analysis
The image analysis pipeline was written in Python v3.10.  The packages NumPy and Pandas were used extensively for storage and manipulation of data.  OpenCV provided functions for image analysis.  Scikit-image was used for image thresholding: 0ften, we needed to perform thresholding only on a specific segment of an image; we could pass the “masked” parts of the image directly to the threshold functions in Scikit-image without any further formatting of the data.

An Object-Oriented Programming (OOP) approach was used to orchestrate the various steps of image analysis.  Different image types each had their own class, with custom measurement and data storage methods for each.  An Experiment class was used to organize the various images present in an image.  It also included methods that measured the various images present and handled Biodock API calls.  OOP made development smooth, as custom functionality was built around the elements of the OBSC assay.  Individual methods could be tweaked in class definitions without altering the overall performance of the pipeline.

We used Biodock to train an ML model to recognize OBSCs in grayscale images.  Biodock guides users through multiple rounds of labeling and testing.  Our final ML model was trained on 110 images containing 1037 OBSCs, all images being gathered from experiments that were not part of the data set used for validation in this paper. 99 images were used for model training, while 11 were reserved for model validation.  The following data augmentations were applied: random horizontal flip, random vertical flip, random brightness, random contrast, random rotation, and random rescale.  These augmentations improved the robustness of the resultant ML model when applied to new datasets.  Contrast normalization was also applied.  Images were uploaded to Biodock via their API protocol.  API was also used to monitor the progress of new mask generation and to download mask results when they were ready.  Biodock provides a UI for reviewing masks and editing and errors.  Our pipeline allowed users to verify the results on Biodock and make any necessary edits before downloading the OBSC masks.

OBSC masks were sorted into separate wells based on the location of each mask.  This accomplished by dividing the image into a grid, since the absolute locations of the wells were consistent from image to image.  The top mask in each well was measured before the bottom mask.  

For OBSC toxicity experiments, the OBSC masks were used to directly measure average fluorescence from each OBSC.

For Tumor toxicity experiments, the OBSC masks had to be split in two.  This was accomplished by using a function in OpenCV that found rotated bounding boxes.  A line was drawn down the center of these rotated boxes, dividing the OBSC mask into two hemispheres.  Each hemisphere was analyzed separately by Triangle Thresholding, determining a threshold for each hemisphere that distinguished the tumor signal from the background.
Survival Calculation
Raw image analysis results were loaded into R as data frames, which enabled calculations across large amounts of data.  For tumor toxicity assays, percent survival was calculated by finding the average BLI signal from the negative control group (Dose = 0) and dividing every individual BLI result by that value.  This means the negative control group had a defined mean survival of 100%, with other responses being measured relative to the negative control.  OBSC toxicity assays include both a negative and positive control.  The mean of the negative control group was subtracted from every individual fluorescent signal value, and then every signal was divided by the mean of the positive control group post-subtraction.  This produced percent killing results, so subtracting this value from 100 yielded percent survival.  An OBSC with a fluorescent signal equal to the mean of the negative control group would be interpreted as 100% survival, and an OBSC with a signal equal to the mean of the positive control would evaluate to 0% survival.  A signal halfway in between the negative and positive means would become 50% survival.
Dose-Response Modeling
Dose Response Models were fit and selected using the R package drc.  Experiments were sorted into three categories by heuristically evaluating the mean responses.  If any dose group had a mean survival equal to or greater than 110%, it was categorized as Growth.  If there was no growth greater than 110%, the experiment could be Plateau or Decreasing.  If an experiment had a plateau, where the mean survival did not change more than 15% between three or four dose groups but these dose groups were surrounded by changes >15%, it was categorized as Plateau.  Any other experiments were categorized as Decreasing.  

This categorization determined which models were considered when searching for a best-fit model.  Each category had a corresponding list of models stored in a separate script.  This allowed for definition of a fixed parameter list and other customizations (note: any parameters designated as NA were left unfixed and found by the model fitting function drm).  There were accompanying lists containing parameter limits for each function, which bounded the range of possible values for non-fixed parameters (Inf or -Inf meant no limit was imposed).  For Decreasing data, the following drc models were considered with the customizations described:
· LL.4
· Parameters
· b (Slope): (1, Inf)
· Ensured that model would evaluate
· c (Asymptote as Dose increases): (0, 1)
· Ensured that model could not measure growth or predict <0% Survival
· d (Asymptote at Dose = 0): fixed at 1
· Defined survival = 100% at Dose = 0
· e (Dose where inflection point occurred): (0.0001, Inf)
· Ensured that model would evaluate
· W1.4
· Parameters
· b (Slope): (1, 50)
· Prevented unreasonably steep slope and ensured that function behaved as expected
· c (Asymptote as Dose increases): (0, 1)
· Ensured that model could not measure growth or predict <0% Survival
· d (Asymptote at Dose = 0): fixed at 1
· Defined survival = 100% at Dose = 0
· e (Dose where inflection point occurred): (0.0001, Inf)
· Ensured that model would evaluate
· W2.4
· Parameters
· b (Slope): (-50, -0.3)
· Prevented unreasonably steep slope and ensured that function behaved as expected.  Note that the slope values must be negative for this version of the Weibull function.
· c (Asymptote as Dose increases): (0, 1)
· Ensured that model could not measure growth or predict <0% Survival
· d (Asymptote at Dose = 0): fixed at 1
· Defined survival = 100% at Dose = 0
· e (Dose where inflection point occurred): (0.0001, 10000)
· Ensured that model would evaluate
· EXD.3
· Parameters
· c (Asymptote as Dose increases): (0, Inf)
· Ensured that model could not predict <0% Survival, but allowed for modeling exponential growth
· d (Asymptote at Dose = 0): fixed at 1
· Defined survival = 100% at Dose = 0
· e (Steepness of decay): (0.0001, 10000)
· Ensured that model would evaluate
· Custom self-starter function, as described in Results

The Plateau list added these versions of the CRS function to the functions considered for Decreasing (the variations a, b, and c correspond to fixed alpha parameters of 1, 0.5, and 0.25 respectively):


· CRS.4a, CRS.4b, CRS.4c (lower limit set at 0)
· Parameters
· b (steepness of post-hormesis decay): (1, 250)
· Prevented unreasonably steep slopes
· d (Asymptote at Dose = 0): (0.95, 1.05)
· Couldn’t fix any CRS parameters, so this kept the Survival close to 100% at Dose = 0
· e (controls “overall” size of model; larger values just make the function look bigger, but the overall shape stays the same): (0.000001, Inf)
· Ensured that model evaluated
· f (height of hormesis peak): (-Inf, Inf)
· Allowing negative numbers makes capture of Two-Stage behavior possible
· CRS.5a, CRS.5b (free lower limit)
· Parameters
· b (steepness of post-hormesis decay): (1, 250)
· Prevented unreasonably steep slopes
· c (Asymptote as Dose grows larger): (0, 10)
· d (Asymptote at Dose = 0): (0.95, 1.05)
· Couldn’t fix any CRS parameters, so this kept the Survival close to 100% at Dose = 0
· e (controls “overall” size of model; larger values just make the function look bigger, but the overall shape stays the same): (0.000001, Inf)
· f (height of hormesis peak): (-10, Inf)

The Hormesis list added the following functions:


· BC.5
· Parameters
· b (Slope): (1, Inf)
· c (Asymptote as Dose increases): (0, Inf)
· d (Asymptote at Dose = 0): fixed at 1
· e (controls “overall” size of model; larger values just make the function look bigger, but the overall shape stays the same): (0, Inf)
· f (Height of Hormesis peak): (0.000001, Inf)
· RBC.5 (reparametrized version of BC.5)
· Parameters
· b (Slope): (1, 50)
· c (Asymptote as Dose increases): (0, Inf)
· d (Asymptote at Dose = 0):  fixed at 1
· M (Dose at which hormesis peak occurs): defined dynamically based on data
· f (Height of Hormesis peak): (0.000001, Inf)
· Equation
· 

Once the appropriate model list was chosen, the candidate models were compared using the drc function mselect.  This function had to be slightly modified to account for the pre-defined fixed parameters, parameter limits, and self-starting functions.  Mselect produces multiple measures of model fit, including AIC and Lack-of-fit.  AIC takes model complexity into account to avoid overfitting, with more negative values corresponding to better fit.  Lack-of-fit (LoF) measures the statistical alignment of the model to all data points (considering replicate values) without considering model complexity.  LoF is interpreted like R2, where a value closer to 1 signifies good fit.  We ranked models according to a “combined criterion,” where lower values signified a better fit:


· if AIC was positive, Combined Criterion = AIC/LoF
· Lower LoF leads to a larger CC value, higher LoF leads to smaller CC
· If AIC was negative, Combined Criterion = AIC * LoF
· Higher LoF leads to a more negative CC, while lower LoF leads to a less negative CC

Using this piecewise function ensures that a more negative AIC and a LoF closer to 1 are always rewarded.  Combining the values like this allowed us to choose models that fit the data better when AIC values were comparable, and it allowed us to pick models with better AICs when LoF values were comparable.

After ranking the fitted models by the combined criterion, we tested the models, starting with the best fit, to make sure that they didn’t overshoot or undershoot the range of observed data.  We eliminated a model if it predicted a survival higher than 1.1 * the highest mean survival in the observed data.  We also eliminated a model if it predicted a survival lower than the lowest mean survival - 50% Survival.  The model with the lowest CC value that also passed these tests was chosen as the model of best fit.

Chosen models were plotted using the R package ggplot.  The models were saved as .Rdata objects so that they could be loaded for future analysis.

DSS Calculation
The DSS is calculated as a weighted sum of various “windows” which compare the response of a tumor and the OBSC to a given treatment.  Each window took a value between -1 (indicating greater treatment effect on the OBSC) and 1 (indicating greater treatment effect on the tumor).  Each of the eleven parameters is described below:

· EDxx Window: The gap between the tumor and OBSC Survival values at the dose where xx% killing is observed in the tumor.  The EDxx of the tumor was found numerically by finding where the fitted model predicted xx% killing.  Windows were found for ED10, ED25, ED50, ED75, and ED90.  OBSC survival was then evaluated at this dose.  The window was found using the following piecewise function:
· If OBSC health > 100% at EDxx: 
·  EDxx Window = 1 (max value)
· If OBSC health > Tumor Health at EDxx:
·  EDxx Window = (Tumor Kill - OBSC Kill)/Tumor Kill
· If Tumor health > OBSC Health at EDxx:
·  EDxx Window = (Tumor Kill - OBSC Kill)/OBSC Kill
· AUC Window: The difference between the AUC of the Tumor model and the OBSC model.  The AUC of each was found by numerically integrating the fitted models.  AUC Window was calculated using the following piecewise function:
· If OBSC AUC > Tumor AUC (corresponding to more tumor kill):
· AUC Window = (OBSC AUC - Tumor AUC)/OBSC AUC
· If OBSC AUC <= Tumor AUC:
· AUC Window = (OBSC AUC - Tumor AUC)/Tumor AUC
· Tumor Growth Acceleration (TGA): A test for whether treatment accelerated tumor growth at any point.  
· If Max Survival > 150%: 
· TGA Window = -1
· Else, If Max Survival > 125%: 
· TGA Window = 0
· Else: 
· TGA Window = 1
· Incomplete Kill (IK): A test for whether treatment achieved complete tumor kill  
· If Survival at Highest Dose > 25%: 
· IK Window = -1
· Else, if Survival at Highest Dose > 10%: 
· IK Window = 0
· Else: 
· IK Window = 1
· Max Kill (MK): Compares Tumor Kill at the highest dose (TK) to OBSC Kill at Highest Dose (OK)  
· If TK > OK: MK Window = 
· (TK - OK)/TK
· If OK > TK: MK Window = 
· (TK - OK)/OK
· Biphasic (BP): Checks for whether the highest three doses are statistically significantly different from each other.
· If significantly different: 
· BP Window = 1
· If not significantly different: 
· BP Window = -1
· Slope: Compares slope of tumor model to slope of OBSC model.  If the tumor model reaches 50% kill, then the slope is evaluated at the Tumor’s ED50.  Otherwise, the slopes are compared at the highest dose.  A greater slope magnitude indicates higher treatment efficacy, so the values below represent the absolute value of the slope (slopes are always negative)
· If Tumor Slope > OBSC Slope: 
· Slope Window = (Tumor Slope - OBSC Slope)/Tumor Slope
· If Tumor Slope < OBSC Slope: 
· Slope Window = (Tumor Slope - OBSC Slope)/OBSC Slope

These window values are multiplied by weights which control the relative contribution of each window.  The window weights are:
· AUC: 35
· MK, IK, and ED50: 10
· BP and all other EDxx: 5

This means the greatest possible DSS is 100, and the lowest possible value is -100.  All constituent windows are recorded along with the final DSS.  



	
	
	



