ANN scripts
(Note: Only a certain portion of code is included.)

Model Training

mmn

"""Train and evaluate multiple models
models = {
'‘Neural Network'": {
'model": MLPClassifier(random_state=42),
'‘params’; {
'hidden_layer_sizes': [(32,), (64,), (32, 32), (64, 32), (64, 64)], # Layer configurations
'activation”: ['relu’, 'tanh'], # Activation functions
‘alpha': [0.0001, 0.001, 0.01, 0.1], # L2 regularization term
'learning_rate": ['constant', ‘adaptive'], # Learning rate schedule
'solver"; ['adam’, 'sgd'], # Optimization algorithms
'batch_size": [16, 32, 64], # Batch sizes
'max_iter": [500, 1000], # Maximum iterations,

‘early_stopping": [True], # Added early stopping

'validation_fraction": [0.2]

— e

def _plot_confusion_matrix(y_true, y_pred, model_name):
""Plot confusion matrix using plotly"""
cm = confusion_matrix(y_true, y_pred)

fig = go.Figure(data=go.Heatmap(
z=cm,
x=['Predicted 0', 'Predicted 1'],
y=['Actual 0', 'Actual 11,
text=cm,
texttemplate="%{text}’,
textfont={'size": 20},
colorscale='Blues'

))

fig.update_layout(
title=f'Confusion Matrix - {model_name}',
xaxis_title='"Predicted Label',
yaxis_title="True Label'

)
fig.show()

def _get_feature_importance(model, model_name, feature_names):
"""Extract feature importance from model if available"""
if hasattr(model, 'feature_importances_'):
return pd.Series(model.feature_importances_, index=feature_names)
elif model_name == 'Logistic Regression":
return pd.Series(abs(model.coef [0]), index=feature_names)
elif model_name == 'SVM' and model.kernel == 'linear"
return pd.Series(abs(model.coef [0]), index=feature_names)
else:
return None

Train and evaluate each model
for name, model_info in models.items():
print(f\nTraining {name}...")

Use RandomizedSearchCV for efficiency
random_search = RandomizedSearchCV/(
model_info['model1,
model_info['params'],
n_iter=20,
cv=5,
scoring=['accuracy', roc_auc', 'f11,
refit="roc_auc',
n_jobs=-1,
random_state=42

)

Fit model
random_search.fit(X_train, y_train)

Store results
results[name] = {
‘model": random_search.best_estimator_,
'‘best _params': random_search.best_params_,
‘cv_results": random_search.cv_results
'train_score": random_search.score(X_train, y_train),
'test_score: random_search.score(X_test, y_test),
'predictions': random_search.predict(X_test),
‘probabilities: random_search.predict_proba(X_test)[:, 1],
‘feature_importance": _get_feature_importance(
random_search.best_estimator_, name, X_train.columns)
}

Print results

print(f\nBest parameters: {random_search.best_params_}")
print("\nClassification Report:")
print(classification_report(y_test, results[name]['predictions']))

Plot confusion matrix
_plot_confusion_matrix(y_test, results[name]['predictions'], name)

Train and evaluate each model
for name, model_info in models.items():
print(f\nTraining {name}...")

Use RandomizedSearchCV for efficiency
random_search = RandomizedSearchCV/(
model_info['model]],
model_info['params’],
n_iter=20,
cv=5,
scoring=['accuracy', 'roc_auc', 'f1'],
refit="roc_auc/,
n_jobs=-1,
random_state=42

)

Fit model
random_search.fit(X _train, y train)

Store results (don't use test data here during training)
results[name] = {
‘model’: random_search.best_estimator _,
‘best params': random_search.best params_,
‘cv_results': random_search.cv_results_,
train_score': random_search.score(X_train, y_train),
predictions’: random_search.predict(X_test), # Only predict on test data after
aining
probabilities': random_search.predict_proba(X_test)[:, 1],
feature_importance': _get feature _importance(
random_search.best_estimator _, name, X_train.columns)

3

}

Print results

print(f\nBest parameters: {random_search.best_params_}")
print("\nClassification Report:")
print(classification_report(y_test, results[name][‘predictions’]))

Plot confusion matrix
_plot_confusion_matrix(y_test, results[name]['predictions'], name)

H H H H HFH HHFHFIHEHFHHFHFHT H H oo H H R H R

def train_and_evaluate_models(models, X_train, X _test, y train, y test,
random_state=42):
mn

Train and evaluate multiple models with proper cross-validation and performance
metrics.

