
1

ANN scripts

(Note: Only a certain portion of code is included.)

Model Training

"""Train and evaluate multiple models"""
models = {
'Neural Network': {
'model': MLPClassifier(random_state=42),
'params': {
'hidden_layer_sizes': [(32,), (64,), (32, 32), (64, 32), (64, 64)], # Layer configurations
'activation': ['relu', 'tanh'], # Activation functions
'alpha': [0.0001, 0.001, 0.01, 0.1], # L2 regularization term
'learning_rate': ['constant', 'adaptive'], # Learning rate schedule
'solver': ['adam', 'sgd'], # Optimization algorithms
'batch_size': [16, 32, 64], # Batch sizes
'max_iter': [500, 1000], # Maximum iterations,
 'early_stopping': [True], # Added early stopping
 'validation_fraction': [0.2]

}
}
}

def _plot_confusion_matrix(y_true, y_pred, model_name):
 """Plot confusion matrix using plotly"""
 cm = confusion_matrix(y_true, y_pred)

 fig = go.Figure(data=go.Heatmap(
 z=cm,
 x=['Predicted 0', 'Predicted 1'],
 y=['Actual 0', 'Actual 1'],
 text=cm,
 texttemplate='%{text}',
 textfont={'size': 20},
 colorscale='Blues'
))

 fig.update_layout(
 title=f'Confusion Matrix - {model_name}',
 xaxis_title='Predicted Label',
 yaxis_title='True Label'
)
 fig.show()

2

def _get_feature_importance(model, model_name, feature_names):
 """Extract feature importance from model if available"""
 if hasattr(model, 'feature_importances_'):
 return pd.Series(model.feature_importances_, index=feature_names)
 elif model_name == 'Logistic Regression':
 return pd.Series(abs(model.coef_[0]), index=feature_names)
 elif model_name == 'SVM' and model.kernel == 'linear':
 return pd.Series(abs(model.coef_[0]), index=feature_names)
 else:
 return None

Train and evaluate each model
for name, model_info in models.items():
 print(f"\nTraining {name}...")

 # Use RandomizedSearchCV for efficiency
 random_search = RandomizedSearchCV(
 model_info['model'],
 model_info['params'],
 n_iter=20,
 cv=5,
 scoring=['accuracy', 'roc_auc', 'f1'],
 refit='roc_auc',
 n_jobs=-1,
 random_state=42
)

 # Fit model
 random_search.fit(X_train, y_train)

 # Store results
 results[name] = {
 'model': random_search.best_estimator_,
 'best_params': random_search.best_params_,
 'cv_results': random_search.cv_results_,
 'train_score': random_search.score(X_train, y_train),
 'test_score': random_search.score(X_test, y_test),
 'predictions': random_search.predict(X_test),
 'probabilities': random_search.predict_proba(X_test)[:, 1],
 'feature_importance': _get_feature_importance(
 random_search.best_estimator_, name, X_train.columns)
 }

 # Print results
 print(f"\nBest parameters: {random_search.best_params_}")
 print("\nClassification Report:")
 print(classification_report(y_test, results[name]['predictions']))

3

 # Plot confusion matrix
 _plot_confusion_matrix(y_test, results[name]['predictions'], name)

Train and evaluate each model
for name, model_info in models.items():
print(f"\nTraining {name}...")

Use RandomizedSearchCV for efficiency
random_search = RandomizedSearchCV(
model_info['model'],
model_info['params'],
n_iter=20,
cv=5,
scoring=['accuracy', 'roc_auc', 'f1'],
refit='roc_auc',
n_jobs=-1,
random_state=42
)

Fit model
random_search.fit(X_train, y_train)

Store results (don't use test data here during training)
results[name] = {
'model': random_search.best_estimator_,
'best_params': random_search.best_params_,
'cv_results': random_search.cv_results_,
'train_score': random_search.score(X_train, y_train),
'predictions': random_search.predict(X_test), # Only predict on test data after
training
'probabilities': random_search.predict_proba(X_test)[:, 1],
'feature_importance': _get_feature_importance(
random_search.best_estimator_, name, X_train.columns)
}

Print results
print(f"\nBest parameters: {random_search.best_params_}")
print("\nClassification Report:")
print(classification_report(y_test, results[name]['predictions']))

Plot confusion matrix
_plot_confusion_matrix(y_test, results[name]['predictions'], name)

def train_and_evaluate_models(models, X_train, X_test, y_train, y_test,

random_state=42):

"""

4

Train and evaluate multiple models with proper cross-validation and performance

metrics.

