Mono2VR: Exploring Immersive Experiences of

Monocular Videos

Anthony Dickson® !, Wei Hong Lo ®', Felix Schrimper’,

Alistair Knott ©2, Jonathan Ventura ©®3, Stefanie Zollmann 14%

1*School of Computing, University of Otago, New Zealand.

2School of Engineering and Computer Science,, University of Wellington, New

Zealand.
3Department of Computer Science & Software Engineering, California
Polytechnic State University, USA.
“Department of Computer Science, Aarhus University, Denmark.

*Corresponding author(s). E-mail(s): stefanie.zollann @otago.ac.nz;

Abstract

Despite the growing popularity of VR headsets, most personal videos remain limited to flat
2D displays and lack the depth and motion cues needed for immersive playback. Converting
monocular videos into 3D experiences suitable for VR remains a challenge due to the
complexity and computational demands of existing solutions.

We present Mono2VR, a system that transforms standard monocular videos into immer-
sive 3D content for VR headsets, with minimal processing time and modest hardware
requirements. Unlike recent high-fidelity methods that are impractical for longer videos or
real-time use, Mono2VR runs on consumer hardware in minutes per second of video.
Our pipeline estimates camera parameters and depth maps to reconstruct both dynamic
foreground and static background elements. The resulting 3D videos support stereoscopic
playback and head-motion parallax, enhancing immersion.

We evaluated Mono2VR both technically and in a user study, where participants rated our
output on par with ground truth 3D content. These results highlight Mono2VR’s potential
to make immersive video experiences accessible to a broad audience.

Keywords: VR, Immersive Experience, View Synthesis

27

https://orcid.org/0000-0001-8893-5641
https://orcid.org/0000-0002-2706-6494
https://orcid.org/0000-0003-3036-4668
https://orcid.org/0000-0003-1661-8529
https://orcid.org/0000-0002-4690-5409

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Input Main Processing Steps Output

« SfM/Pose Estimation
* Instance Segmentation
* Depth Estimation

2D Input Video - e i -
« 3D Background Estimation
(Static)

Immersive 2D Input Video « 3D Foreground Estimation Immersive 3D Video
(No Free Viewpoint) (Dynamic) (Free Viewpoint)

Fig. 1: Using Mono2VR to create and experience a 3D video in VR. Currently, 2D input video
can only be watched on a virtual screen in a VR headset. This option does not allow for a free
viewpoint selection and creates a cinema-like experience (Bottom Left). Instead, Mono2VR
converts an input video into an immersive 3D video by 1) creating a 3D representation of the
dynamic foreground for each frame of the video sequence, 2) creating a 3D representation of
the static background, 3) and rendering the 3D video in a VR headset at interactive frame rates.
The user can then mostly freely explore the immersive 3D video in VR

1 Introduction

Virtual Reality (VR) headsets have become increasingly affordable and accessible, leading
to a growing interest in immersive media experiences beyond gaming. One recent example
is Apple’s introduction of spatial videos, which were launched alongside the Apple Vision
Pro headset!. This demonstrates the potential for everyday users to engage with immersive
personal content. However, creating compelling VR video experiences remains technically
challenging. Most available 360-degree videos are monoscopic, which means they lack depth
information and do not support motion parallax. As a result, they provide limited immersion
and are poorly suited for VR playback. While stereoscopic 360-degree capture can improve
depth perception, it requires specialized camera rigs and complex workflows [1-3], making it
inaccessible to most everyday content creators.

Recent advances in image-based rendering (IBR) provide alternatives by enabling depth-
aware novel view synthesis from monocular video. Techniques such as layered representations
[4], light fields [5], Neural Radiance Fields (NeRF) [6], and 3D Gaussian Splatting [7] can
reconstruct geometry and appearance from sparse viewpoints. While promising for offline
applications, many of these methods are computationally intensive. For example, Neural
Scene Flow Fields (NSFF) [8] requires two days to process a one-second video clip using two
NVIDIA V100 GPUs and an additional 6 seconds per 512x288 frame for rendering, making
it unsuitable for interactive VR scenarios. Although 4D Gaussian Splatting [9] significantly
improves rendering speed and achieves approximately 14 frames per second, it still requires
minutes of preprocessing per video and does not support real-time interactivity in head-
mounted displays.

Thttps://support.apple.com/en-nz/guide/apple- vision-pro/dev7068c3c93/visionos

https://support.apple.com/en-nz/guide/apple-vision-pro/dev7068c3c93/visionos

In addition to performance limitations, many of these methods do not compensate for the
egomotion of the recording camera. This limitation can result in a mismatch between visual
motion and head movement during VR playback, leading to discomfort or motion sickness [10].
Methods based on monocular depth estimation or multi-plane image (MPI) representations [5]
also suffer from this issue and often lack sufficient depth fidelity for immersive parallax effects.

These limitations highlight the need for VR video playback solutions that support egomo-
tion compensation, deliver motion parallax, and run at interactive frame rates with minimal
preprocessing.

Standard 2D Video RGB-D MPI Neural Scene | 4D Gaussian | Mono2VR
on Screen in VR videos video Flow Fields Splatting (Ours)

Compensate Egomotion
Motion Parallax

Interactive Rendering in VR
Processing times Minutes Minutes | Minutes
Table 1: Comparison of current methods for 3D videos for their feasibility for VR replays.
Egomotion of the videos has been shown to be a factor for motion sickness [11]. Motion
parallax is an important depth cue, and a lack of motion parallax can create motion sickness
[10]. Interactive framerates are important for an immersive VR experience. Furthermore,
processing times are an important factor to consider; while content creators are accustomed to a
couple of minutes of processing for video editing and transcoding, multiple days of processing
time is a limiting factor.

In this work, we describe Mono2VR, an end-to-end pipeline for creating and viewing
immersive 3D videos in VR from monocular video>. Mono2VR combines traditional computer
vision techniques with state-of-the-art deep learning models to achieve a unique approach
to VR-capable 3D video reconstruction. In contrast to recent work on NeRF and GS-based
methods, the main focus of our work is to achieve high framerates and interactive rendering
on VR headsets. Furthermore, Mono2VR has substantially lower hardware requirements and
processing times.

To evaluate the capabilities of Mono2VR, we conducted comprehensive technical evalua-
tions and a user study in VR. Our evaluation covers a range of aspects, including rendering
performance and file sizes for VR headsets, accuracy in camera trajectory estimation, mesh
fusion based on depth data, processing time, and VRAM usage. Moreover, we present the first
user study conducted for 3D videos generated using this approach, gathering valuable insights
on user experience, presence, depth perception, and visual quality—an important aspect that is
often ignored in other work. We make the source code for running Mono2VR and the experi-
ments in this paper publicly available®, contributing to the accessibility and reproducibility of
this research.

2We note that Mono2VR appeared under the name ‘VRVideos’ in a work-in-progress publication of ours [12] and ‘HIVE’ in the
code repository. These names all refer to the same method.
3https://github.com/AnthonyDickson/HIVE

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

7

72

73

https://github.com/AnthonyDickson/HIVE

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

920

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

109

110

1

112

13

114

2 Related Work

Extracting 3D data of static scenes from multiple photographs using structure-from-motion
(SfM) methods is a well-established field [13]. Recent advancements focused on methods
to create immersive 3D photographs that enable novel view synthesis with motion parallax.
However, the extraction of 3D data from monocular videos is still challenging.

2.1 3D Photographs

The extraction of 3D information from a single photograph has evolved from Tour Into the
Picture [14], one of the first methods that generate a simple 3D model from user-defined planes
over more automatic methods for creating popup-like 3D representations [15] to sophisticated
probabilistic depth estimations [16]. [4, 17, 18] leverage learned models for depth estimation
and inpainting to produce realistic view synthesis from a single image. Hedman et al.’s [19]
works to construct 3D panoramas with realistic motion parallax from a single mobile device
with dual cameras, and also works with monocular video and estimated depth data. Mildenhall
et al. proposed an approach for view synthesis based on an unstructured grid of input views
from a video [5]. Their approach renders novel views by blending local light fields that are
represented by Multi-Plane Image (MPI)s. MPIs were also used to synthesize novel views of
a scene from an input photograph in the work by Tucker et al. [20]. However, there is only
limited work on how well these methods work for content creation for VR experiences. While
Dickson et al. [21] investigated the benchmarking of monocular depth estimation methods in
the context of content creation for VR and Waidhofer et al. [22] investigated the impact of
different depth representations of 360 images on presence and perceived quality, there is still
limited knowledge on the feasibility of these content creation methods for VR experiences.

2.2 3D Video

While the above methods target static scenes, methods targeting dynamic scenes have been
developing rapidly. Wang et al. [23] use a neural network trained to synthesize novel views
from layered depth images and 2D image features, estimating appearance changes between a
pair of photos. However, their approach is limited to two frames and takes 0.71s to render each
frame (~1 FPS), and is therefore unsuitable for interactive applications and processing videos.
NeRF-based methods [6, 24-26] can also produce photo-realistic novel-viewpoints of static
scenes from a relatively small set of images. The implicit representation inherent to neural
networks helps address many of the challenges in reconstructing dynamic 3D scenes with
estimated depth and Truncated Signed Distance Function (TSDF) fusion-based approaches
[27]. Initially, NeRFs had long training times and low framerates, but recent developments
have seen the training time and render frame times significantly reduced [28], making them
more suitable for interactive applications.

NeRFs have also been applied to dynamic video scenes [8, 29-33]. However, the efficiency
gains have not carried over to dynamic video NeRF methods. NeRF methods often have long
compute times in the order of hours (and sometimes days) long render times in the order of
seconds per frame, and require expensive GPU hardware [8, 33]. The low framerates of these
methods limit their applicability for interactive applications such as VR. Fang et al. [34] used
an explicit representation to reduce training time but at the cost of lower quality view synthesis.

Their approach reduces training time down to minutes, however there is no mention of render
framerates and still requires expensive GPU hardware.

3D Gaussian Splatting (3D-GS) [7] has many of the advantages of methods utilizing
implicit and explicit representations. 3D-GS methods produce high quality novel viewpoint
rendering of static scenes, often better than NeRF methods, while training in minutes instead
of hours and rendering at high framerates (160-180 fps at 1080p). These improvements come
from the use of 3D Gaussians which enables computation on empty space to be skipped and
rasterization-based rendering. Initially, 3D-GS methods had high hardware requirements with
the reference implementation of [7] requiring 24 GB of VRAM. Recent methods such as Wu
et al.’s work [9] have significantly lower hardware requirements, largely eliminating this issue.
However, the main challenge in using the approaches that reconstruct dynamic scenes from
monocular video (e.g., [9, 35]) is that they do not achieve interactive framerates required for
VR rendering (e.g. Wu et al: 14 FPS [9]). So while NeRF and 3D-GS methods achieve high-
quality results for monocular video, their sub-interactive framerates make them unsuitable for
interactive applications, especially VR.

Earlier methods have also been proposed to extract 3D representations from videos. How-
ever, they are either trained for a specific use case such as soccer [36], require a significant
amount of user input [37], focus on static or rotating cameras [38] or focus on extracting
dynamic content only for Mixed Reality applications [39] that do not need the background
reconstructed. Dickson et al. [12] presented early work on a VR video representation that is
suitable for VR rendering but without further investigation on feasibility.

2.3 360 VR Videos

There is more research on 360 VR videos, such as the work by Serrano et al. [10]. In their
work, Serrano et al. propose a method that creates a layered representation of the 360 input
video and use this for rendering in VR. Within their work, they investigate user preference
and motion sickness compared to a conventional 360 (3 degrees of freedom) video. Their
layered representation reduces motion sickness and scores better on user preferences. However,
this method can only be used for 360 input videos. Thus there is still a lack of methods that
are suitable for standard videos and limited knowledge on how well these methods work for
creating VR experiences.

2.4 Summary

In our work, we combine traditional geometric methods with machine learning-based depth
estimation and a layered representation to capture dynamic contents to reduce the computation
times and complexity of the VR videos to make them suitable for replay in a VR headset.

In summary, the options for experiencing casually captured videos in VR are still limited.
The most popular option currently is to watch videos on a virtual “cinema” screen as, for
instance, offered by YouTube. Additionally, RGB-D videos and MPI videos are an option and
can be computed quickly from standard 2D videos. Both offer some parallax, although this
is more limited for MPI videos as the viewer cannot move far away from the position from
where the video was captured. However, both RGB-D videos and MPI videos have a major
disadvantage that they do not compensate for the egomotion of the capturing camera (Table 1)
which can cause motion sickness [11].

115

116

17

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

166

167

168

169

170

7

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

3 Mono2VR System

For creating and rendering VR videos based on monocular 2D video input, we created the
Mono2VR system. Mono2VR consists of four main steps: (1) data preparation; (2) creating a
3D representation of the static background; (3) creating a 3D triangle mesh representation of
the dynamic foreground for each frame of the video sequence; and (4) rendering the 3D video
(Figure 1). Our method takes monocular video as input but is also flexible enough to support
RGB-D datasets (such as the TUM data set [40] or RGB-D datasets captured on an iPhone*).

3.1 Data Preparation

In the first step, we estimate depth data, dynamic foreground object segmentation masks, and
the camera parameters for each frame within the video sequence. This information is vital for
subsequent computations that involve the static background and the dynamic foreground.

3.1.1 Depth Map Estimation

For depth map estimation, we use the DPT depth estimation model [41] on each of the RGB
frames of the input video. We use the model weights that were fine-tuned on the NYU dataset
[42] and produce depth values that roughly correspond to meters (the model outputs depth in
the interval [0, 10]). We store a depth map for each video input frame for further processing.

3.1.2 Segmentation Masks

For the segmentation of the dynamic foreground, we compute instance segmentation masks for
each frame of the video and derive binary masks for regions that are likely to contain dynamic
foreground objects in the video. In our implementation, we limited the detection to people, as
they are the most likely dynamic elements in our scenario. However, the instance segmentation
can flexibly be extended to include any other dynamic element, such as cars, trains, or animals.
We use Detectron2 for our implementation [43]. As a result, we get a segmentation mask for
each video frame.

3.1.3 Camera Pose Estimation

We use COLMAP [44] to estimate the camera intrinsic and extrinsic parameters. Since running
COLMAP on many frames (e.g., several hundred) can take several hours, we use a ‘frame
step’ parameter to sample a subset of frames to lower the processing time and interpolate the
missing poses. COLMAP works best with static scenes, so we use the segmentation masks
from the previous step to exclude dynamic regions in the video to improve the estimated
camera parameters.

COLMAP pose data is subject to an unknown scale factor. This can lead to misalignment
in the 3D reconstruction due to discrepancies in the scale of the depth maps and translation
vectors of COLMAP poses (Figure 2). We calculate a scaling factor to harmonize the pose and
depth data scale. The scaling factor, denoted by o, is derived from the median ratio of nonzero

“https://github.com/strayrobots/scanner

https://github.com/strayrobots/scanner

(a) Sample Frame (b) Misaligned Frames (c) Aligned Mesh

Fig. 2: When the scale of the depth maps and the COLMAP poses do not match it can lead
to poor frame alignment (Figure 2b). Figure 2a shows one of the input frames and Figure 2c
shows the resulting mesh when the depth and pose scales are aligned

depth values in the dataset to nonzero depth values from COLMAP:

ddataset (1)

o = median(.
COLMAP

We use the depth values from all frames, but only from pixels that are nonzero in both depth
map sources. The depth values are divided element by element, and the median value is
calculated from the result.

This approach is inspired by Tucker and Snavely [20]. Similar to the work of Waidhofer
et al.[22], we use the median instead of the mean to make the scaling factor more robust to
outliers in the COLMAP depth maps. The scaled COLMAP poses are then defined as:

Rscaled = ReoLmar)
tscaled = OtcoLMAP 3)

where R denotes a rotation matrix and ¢ a translation vector.

The scaling factor on its own only matches the scales of two depth map sources and does
not guarantee that pose data scaled with this scale factor will match, or be close to, real-world
measurements. It is only in conjunction with metric-scale depth maps that this approach can
recover metric-scale pose data from COLMAP. The requirement for metric-scale depth data is,
in part, what motivated our choice in depth estimation model.

3.2 Static Background Mesh Reconstruction

Reconstructing the static background of the video is a multi-step process. We adapt TSDF
Fusion [45], which is intended for combining pre-registered RGB and sensor depth video
data into a TSDF volume. In contrast to sensor data used in the original algorithm, our
estimated depth data is not geometrically consistent. To adjust for this inconsistency, we add
pre-processing steps to minimize visual artifacts from overlapping frames.

Simply using all frames, or uniformly sampling frames, often leads to blurry texture details
due to many overlapping frames and small errors in the estimated pose data. We add a frame

192

194

195

196

197

198

199

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

sampling step that chooses the set of frames that mutually overlap no more than a given
percentage threshold. We first uniformly sample one frame for every 30 frames to remove
redundant frames that are not needed for background reconstruction. We then add the first
frame as the first ‘key frame’. Then we iterate through the remaining frames and test for
‘overlap’ by projecting points in the current frame onto the other key frames. We reject a frame
if the points visible from a given key frame cover an area greater than the specified percentage
threshold, i.e. we reject a frame if it does not add enough new information. Otherwise, we add
the frame to the set of key frames and move onto the next frame. This frame sampling step
greatly reduces the number of frames considered for background reconstruction and reduces
blur artifacts.

To exclude dynamic elements from the background mesh, we apply the results of our
instance segmentation. Contrary to Newcombe et al. [46], which estimates voxel representation
for the dynamic elements of a scene, we focus on the static background rather than the
dynamic elements. We dilate instance segmentation masks to create an error margin, preventing
dynamic foreground pixels from entering the background mesh. To fill the “holes” behind the
dynamic foreground elements, we apply LaMa inpainting [47] for the RGB images and the
Fast Marching Method inpainting method [48] for the depth maps to preserve the precision of
the depth values.

Each video frame is then integrated into the voxel volume observations using TSDF fusion.
The voxel representation incorporates new observations from the RGB image, masked depth
map, and camera pose per frame, all through a weighted average. The voxel’s signed distance
field (SDF) and color are updated, adjusting the SDF value if the voxel is occupied or setting
it if unoccupied. The voxel’s color and distance are updated by blending the previous and
new observations based on the observation weight and the cumulative weights volume. The
observation weight wy is, thereby, a scalar value used when adding a new observation (RGB-D
frame) to control the influence of the new observation on the existing TSDF values (wo set to
1.0 in our implementation).

After integrating all frames, we generate a mesh using the marching cubes algorithm [49].
The final step we perform is gamma correction for the vertex colors’. The mesh is saved as a
textured triangle mesh file and compressed to reduce file sizes.

3.3 Dynamic Mesh Reconstruction

The next step is to compute a mesh representation for parts of the scene that change each frame.
Our approach is based on the meshing technique from the paper “Soccer on Your Tabletop”
[36] and creates a textured triangle mesh from an RGB frame, depth map, camera matrix,
camera pose, and instance segmentation mask.

We create a 3D point cloud by projecting the 2.5D points (2D image coordinates + depth)
into 3D world coordinates by applying the depth, inverse camera matrix and inverse pose Tipy

Ty = [R7 |—R7{]

to each 2D point p in the image:
x = Tiny (dK ')

SWe use the THREE library for our web render. THREE and the gITF loader automatically converts between linear RGB and sRGB,
but not for meshes that use vertex colors. Thus we need to do this conversion manually for the background.

where: p is the 2D pixel coordinates (u,v) of a point in the current frame; p is p as homogeneous
2D coordinates (u,v,1); x is p projected into 3D world coordinates; T;,y is the inverse camera
pose for which R is the rotation matrix and t the translation column vector; d is the depth at
the point p; and K is the camera intrinsic parameter matrix.

The mesh faces are created by running Delaunay triangulation on the 2D points within
the dynamic regions of a given frame. The mesh faces are filtered to eliminate stretched or
mislabeled faces. Specifically, faces are removed if any vertex’s 2D point is more than 2 pixels
away from the other vertices or if the depth difference exceeds 10 cm. We then apply two
further filtering techniques on the 3D data. First, we apply mesh decimation to reduce the
complexity of the mesh, then we use connected components analysis to identify the largest
cluster of vertices and discard all other clusters (floaters).

The next step is to map the texture and UV coordinates. We obtain the texture by cropping
the RGB frame to the extent of the 2D points (minimum and maximum coordinates along each
axis). The UV coordinates are then adjusted to be relative to the texture’s top-left corner. Once
all objects in the frame have been processed, the mesh data is merged into a single mesh object
per frame.

This process is repeated for each frame, taking the respective camera pose into account
and storing a frame index. This results in a continuous and coherent mesh representation of
the dynamic elements in the video, which are directly used in the final 3D video output.

3.4 Export and Rendering

Our main goal is to render an immersive 3D video in a VR headset. To achieve this, we need to
ensure the data format can store all relevant information and can be displayed on a VR headset
in real-time.

3.4.1 Data Format

To the best of our knowledge, there is no standard file format for 3D mesh videos. Therefore,
we opt to export the 3D video into a folder with three files: one for the foreground meshes, one
for the background mesh, and a metadata file. Leveraging the gITF file format, we consolidate
the foreground meshes of all frames into a single file, labeling each mesh with its frame
index to ensure accurate timing since not all frames may have dynamic elements. We use
Draco compression® to reduce file size (Table 2) and load times. Applying Draco reduces the
average total file size by about 40% to 80 KB per frame, making the 3D video experience
more accessible to users.

3.4.2 VR Renderer

To render the videos, we developed a web-based application using WebXR for cross-platform
3D video rendering. Our solution supports basic playback controls and runs at 60 FPS on vari-
ous devices, including desktops, laptops, mobiles, and VR headsets. For effortless deployment,
we offer a Docker image that can be used on local or remote servers, along with a guide for
hosting the web app using GitHub Pages’.

Shitps:/google.github.io/draco/
7https://github.com/AnthonyDickson/HIVE

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

https://google.github.io/draco/
https://github.com/AnthonyDickson/HIVE

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

Table 2: Compression statistics (mean and standard devi-
ation) for 800 frames across all scenes and configurations
listed in Section 4.1. Note that not all frames have fore-
ground elements which is why the mean mesh (frame) count

is less than 800
. Before After Compression
Layer Meshes Time (s) (MB) (MB) Ratio
Foreground 572.8 2.1 75.3 59.2 1.29:1
Background 1.0 5.9 34.0 33 10.14:1

In the video player, the dynamic meshes are stored in a dictionary keyed by the frame
index. The frame index is then used to enable the correct dynamic mesh for each rendering
frame. Since the background mesh is a single 3D mesh, it remains constant throughout.

4 Technical Evaluation

4.1 Experiment Setup
4.1.1 RGB-D Datasets

In our experiments on RGB-D datasets, we use four RGB-D sequences with ground truth
depth and camera parameters. Two sequences, ‘walking xyz’ and ‘sitting xyz’, are from the
TUM RGB-D dataset [40], all of which contain people moving around indoors with a camera
being moved along the x, y, and z axes. The ‘garden’ and ‘small tree’ sequences were captured
outdoors on an iPhone 12 Pro Max with the StrayScanner app and the built-in LiDAR scanner,
each containing a single person with the camera either being held stationary or orbiting around
them.

We run Mono2VR with three configurations: ‘GT’, ‘CM’, and ‘EST’. The GT (Ground
Truth) configuration utilizes ground truth data for both camera parameters and depth maps. The
CM (COLMAP) configuration uses camera parameters estimated with COLMAP and ground
truth depth maps. Lastly, the EST (Estimated) configuration makes use of camera parameters
estimated with COLMAP and estimated depth maps (i.e., only uses the video frames as input).
All sequences are truncated to 800 frames (about 13 seconds at 60 frames per second). We use
a key frame threshold of 0.3 and a frame step for COLMAP of 15. All frame data is processed
at a resolution of 640 x 480.

4.1.2 HyperNeRF Dataset

In our experiments on the HyperNeRF dataset [32], we process frames at 540 x 960 resolution.
Due to how Mono2VR scales COLMAP pose data, the provided pose data cannot be used
directly for validation. We run COLMAP on all video frames and scale the translation vectors
with estimated depth as per Section 3.1.3. We then run Mono2VR on the training frame data
and the scaled COLMAP poses from the training frames.

10

Input GT EST

Fig. 3: Sample of outputs from the Mono2VR system. The rows correspond to outputs from
our iPhone datasets ‘garden’ and ‘small tree’. The columns correspond to the reference image,
the reconstruction from ground truth sensor data (config = GT), and the reconstruction from
monocular video and estimated data (config = EST)

4.1.3 DyNeRF Dataset

In our experiments on the DyNeRF dataset [29], we process frames at 640x480. Since
Mono2VR expects the translation vectors to be in the same units as the depth maps (i.e., same
scale), we cannot use the provided pose data as-is since it is subject to an unknown scale. We
extract the first frame of each video feed, estimate the camera parameters with COLMAP, esti-
mate depth maps for the first frames, and apply our pose scaling approach from Section 3.1.3.
We use these scaled camera parameters for positioning the camera at the other camera feeds
(01-20) to evaluate Mono2VR on novel viewpoint synthesis.

4.2 Visual Quality

We computed sample outputs from each of the datasets to assess the visual quality (Figure 3).
Overall, the outputs from the EST configuration look the most similar to the input frames
when viewing from the reference (capture) viewpoint. In all examples, the colors across all
configurations differ subtly from the reference frame, most notably the grass in the garden
sequence and the leaves in the small tree sequence. This may be caused by color space
conversions from RGB to sRGB and vice versa by the renderer. The output from the EST
configuration tends to be more complete than the outputs using sensor data for the depth maps
(GT and CM). This can be explained by how both the TUM and StrayScanner datasets use
LiDAR scanners which have a limited range. This leads to distant parts of the scenes lacking
depth data, and this subsequently leads to holes in the background mesh. This is especially
noticeable for the examples from the TUM dataset. The depth data from the StrayScanner
datasets leads to skinnier foreground meshes. This could be possibly due to the low capture

11

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

o

Fig. 4: Comparison of Mono2VR run on the ‘walking xyz’ sequence using ground truth depth
data with inpainting (left) and without inpainting (right). Inpainting on TUM sequences creates
floaters around object boundaries—note the areas around the two people in the scene and the
gray colored floaters.

Fig. 5: An example of depth maps from the sitting xyz sequence showing (Left) the ground
truth depth map and (Right) the inpainted depth map. Depth values are represented in grayscale
with zero as black and max depth (10 m) as white. The inpainted regions where the people
were shows how the inpainting algorithm smooths the depth between boundary areas with
non-zero values and the boundary areas with zero depth. This is what causes the floaters in the
TUM sequences when using inpainting.

resolution of the iPhone’s LiDAR scanner (256x192). Additionally, the GT and EST outputs
for the TUM sequences have floaters present that seem to form at the edges of a single frame’s
data and form a path towards the capture camera. These visual artifacts are introduced by
inpainting the depth data, and disabling inpainting completely removes the floaters (Figure 4).
These floaters are caused by the inpainting algorithm trying to inpaint the region that is
bordered by zero and non-zero values. This leads to the inpainting algorithm interpolating a
smooth gradient between the non-zero and zero values, which when projected in 3D gives us
the floaters that form a path towards zero depth. This is evident when comparing the source
and inpainted depth maps, such as in Figure 5.

12

A

(d) EST, Ref. View (e) EST, View A

L

(f) EST, View B

Fig. 6: Sample of outputs from the Mono2VR system comparing reconstructions viewed from
the reference viewpoint (Ref. View) and novel viewpoints. The rows show outputs from the
‘walking xyz’ sequence and the ‘garden’ sequence. View A shows a small translational change
in viewpoint, and View B shows a large rotational view change

Figure 6 shows outputs from the GT and EST configurations and shows the difference
between the reference view and two novel viewpoints. The first novel viewpoint (View A) is a
translation approximately 10-30 centimeters to the left and the second viewpoint (View B) is a
rotation approximately 30°about the y-axis from the reference viewpoint orbiting the scene.

Both configurations handle View A reasonably well and introduce only a small amount of
visual artifacts. The TUM examples show the most artifacts after the translation as holes in
the background mesh become visible (most notably the office chair in the bottom left corner).
The StrayScanner example for the EST configuration shows distortion in the geometry of the
person akin to barrel distortion due to inaccuracies in the estimated depth data.

View B proves to be challenging for all configurations and datasets and introduces notice-
ably more visual artifacts than View A. Only the Kinect sensor of the TUM dataset seems to
produce accurate geometry for foreground elements such as people. The examples with the
garden sequence handle View B the best. There are no visible holes or tears in the background
mesh, unlike the TUM examples. In this case, we see that the background inpainting plausibly
fills the hole in the background mesh behind the person. Comparing the examples for the TUM
and garden sequences, the depth estimation model seems to better handle ‘flat’ scenes, scenes
where the background could be roughly modeled with planar surfaces at similar depths. Com-
pare the TUM sequence, which has multiple ‘layers’ (the desk, the divider behind the desk,
and the wall in the distance), to the garden scene which has close to one layer—the plants.
The visual artifacts seem to mostly be due to inaccurate depth estimation, so improvements in
monocular depth estimation will directly improve the outputs of Mono2VR.

13

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

4.3 Scaling COLMAP Poses

As shown previously in Figure 2, it is important to scale the COLMAP pose data to match
the scale of the depth maps, otherwise the frames will not be correctly aligned. To show that
our scaling method can indeed recover metric-scale pose data from COLMAP when using
metric-scale depth maps and align frame data accurately, we evaluate pose error against the
ground truth pose data provided in our experiment datasets. We use two configurations in
the evaluations: CM and EST. The purpose of using the CM configuration is to show how
accurate the scaled COLMAP poses are when using ground truth depth data—i.e., to evaluate
the scaling method under ideal conditions. The purpose of using the EST configuration is to
show the joint effect of our scaling method and estimated depth maps on the accuracy of the
scaled COLMAP poses. If the error for the CM configuration is low, that would suggest that
our approach to scaling COLMAP poses recovers accurate, metric-scale pose data. If the error
for the EST configuration is similar to that of the CM configuration, that would suggest that the
estimated depth maps from DPT can be used in place of ground truth depth maps to recover
accurate, metric-scale pose data.

We compare the scaled COLMAP pose data against the ground truth pose data with the
Relative Pose Error (RPE) and Absolute Trajectory Error (ATE) metrics. We calculate the RPE
for translation and rotation between adjacent frames:

IN—1
RPE, =/ Y /(RI R)T(R? R;)? 4)
=1

N—1
RPE, = ([Y [iran((P;,P;) - (B B)|3)
i=1

where: / converts a rotation matrix to axis-angle representation and gets the rotation angle;
and tran(...) extracts the translation vector from a pose. We calculate ATE in a similar way to
the authors of [50], scaling the predicted trajectory to the ground truth trajectory:

f\lleiQTi

scale = Py
Yo T.oT;

(6)

where: 7j is the ith translation vector in the ground truth trajectory; 7; is the ith translation
vector in the estimated trajectory; and ® denotes the element-wise product. The ATE metric is
then calculated as:

N
ATE = \/Z(Ti —scale x T;)? (7)
i=1

Our results (Table 3) indicate that the depth data estimated with DPT [41] can be used to
recover metric-scale pose data from COLMAP with comparable accuracy to that of the ground
truth depth data. The pose data scaled with the estimated depth data compared to the pose
data scaled with ground truth depth on average had: about the same rotational RPE (less than
0.01°difference), 0.06 cm (21%) higher RPE and 0.08 cm (2%) lower ATE. The low error
further suggests that the scaled COLMAP poses can accurately align the frame data.

14

Table 3: Comparison of the ground truth trajectory
and the trajectories from COLMAP scaled with ground
truth depth maps (Config = CM) and scaled with esti-
mated depth maps (Config = EST). For each metric,
lower is better.

Dataset Config RPE,(°) RPE;(cm) ATE (cm)
walkine xvz M 0.57 0.52 3.30
EXYZ gsT 0.57 0.60 2.50
itine vy M 0.44 0.32 3.07
sitting Xy EST 0.44 0.41 3.66
arden CM 0.06 0.11 1.57
& EST 0.06 0.15 1.56
amall tree CM 0.10 0.16 4.84
‘ EST 0.10 0.19 4.85
CM 0.29 0.28 322
Mean EST 0.29 0.34 3.14
All 0.29 031 3.17

4.4 Mono2VR and NSFF

We compare Mono2VR against Neural Scene Flow Fields (NSFF) [8], a NeRF technique that
has been adapted for video. Both methods are similar in that they both work on monocular
RGB video and are restricted to camera movements that COLMAP can work with. NSFF
generally produces more complete and accurate renders than Mono2VR, but has disadvantages
when it comes to hardware requirements, compute time and interactivity.

Both methods can produce realistic renders from novel viewpoints close to the reference
viewpoint (Figure 7). The most notable visual artifacts in the Mono2VR output are the black
borders due a lack of mesh data and static reflections on the ground due to the use of a static
background mesh.

NSFF has hardware requirements that goes beyond the typical computer, beyond even
enthusiast computers that have dedicated graphics hardware. We were unable to independently

verify the VRAM usage of NSFF since we were unable to run it on our own hardware.

However, based on the information from the paper and the official code repository, we estimate

VRAM usage to be between 32-64 GB for a 75 clip processed at a resolution of 512x288.

In comparison, Mono2VR uses about 4 GB when processing the same clip at a resolution
of 640x360. Just the memory usage alone greatly restricts access to NSFF. When looking at
the Steam Hardware and Software Survey: December 202383, we find that 53% of enthusiast
computers have a graphics card capable of running Mono2VR (GTX 1060 6 GB equivalent or
better) and no more than 10% of enthusiast computers could potentially run NSFF (RTX 2080
Ti 11 GB equivalent or better). We say ‘potentially’ because generally consumer PCs only have
one GPU, whereas NSFF requires at least two GPUs with 16 GB or more VRAM?, or 4 GPUs
with 11 GB or more VRAM. These issues with high VRAM usage and subsequent hardware

Shitps://store.steampowered.com/hwsurvey/videocard/, accessed 30 Jan, 2024
“only 3.3% of PCs in the survey had at least one GPU with 16 GB or more of VRAM.

15

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

https://store.steampowered.com/hwsurvey/videocard/

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

(c) Mono2VR, View A (d) Mono2VR, View B

Fig. 7: A comparison of novel viewpoints rendered with NSFF and Mono2VR from frame
10 of the kid running sequence. The black pixels in the Mono2VR samples are due to no
mesh data. For NSFF, we chose frames from the example GIF (https://github.com/zhengqili/
Neural-Scene-Flow-Fields/blob/main/demo/sti.gif) and chose the pair of frames that are
approximately the most distant. A live demo of Mono2VR’s 3D video for the kid running
sequence is available at https://anthonydickson.github.io/HIVE_Renderer

requirements of NSFF are only exacerbated when the video length is increased beyond the one
second (75 frames) in this example clip. The amount of video that the underlying MLP model
can accurately represent is restricted by its size, but increasing the size of the MLP model
increases the memory usage rapidly due its non-linear scaling. This makes it increasingly
difficult to apply NSFF to longer video clips. In contrast, the hardware requirements for
Mono2VR are fixed regardless of the length of the input video.

The computational complexity of NSFF results in long compute times even for short clips.
For the ‘kid running’ clip of 75 frames, the author reported that it took about 2 days to train.
In contrast, Mono2VR does not require any test-time training and processes the same clip
in about two and half minutes. The compute time of NSFF is affected by video length in a
similar way to memory usage, as the size of the MLP increases the compute time will likely
increase non-linearly. Mono2 VR scales linearly, except for camera parameter estimation with
COLMAP, which appears to scale non-linearly.

The high per-frame processing times of NSFF present a barrier to usage in interactive
applications, especially VR. It takes 6 seconds for NSFF to render a single frame at a resolution
of 512x288. 60 frames per second (0.016 seconds per frame) is the ideal minimum frame rate
for interactive applications for smooth movement/animation and keeping camera movement

16

https://github.com/zhengqili/Neural-Scene-Flow-Fields/blob/main/demo/sti.gif
https://github.com/zhengqili/Neural-Scene-Flow-Fields/blob/main/demo/sti.gif
https://anthonydickson.github.io/HIVE_Renderer

in sync with head movements in VR. It is especially important to maintain this minimum
frame rate in VR to avoid causing or worsening motion sickness [51]. When tested on the ‘kid
running’ sequence, Mono2VR processed the video at a resolution of 640x360 and rendered
the mesh video at up to 120 frames per second (0.008 seconds per frame) across a range of
devices (desktop PC w/ RTX 3080, M1 MacBook Pro, and iPhone 13 Pro).

Overall, NSFF produces the highest quality synthesized novel-viewpoint, however it
requires expensive hardware, takes a long time to run, and slow render times make it unsuitable
for interactive applications. Mono2VR can run on consumer hardware in a relatively short
amount of time, and owing to the choice of triangle meshes as the 3D model representation
renders at interactive frame rates.

4.5 Evaluation on HyperNeRF

Table 4: Quantitative comparisons on the HyperNeRF dataset [32]. Reported figures for
Mono2VR and 4D-GS are from experiments run by us; figures for other methods are from
respective publications. Hardware access for Mono2VR and 4D-GS is calculated from observed
VRAM usage; for others, from reported hardware. Processing times for Mono2VR and 4D-
GS include time for COLMAP. "Excludes regions with no data in the rendered frame from
Mono2VR. *Performance and hardware requirements are as reported in [8], image metrics in
[32]. **HyperNeRF VRAM is VRAM usage per TPU multiplied by number of TPUs.

Sequence Time Fromes Per Render S‘(“I(;g v GPU Mardwar \IG.SSIM PSNR LPIPS
Mono2VR (Ours) 14m 19 60+ 35 4.1 1xRTX3080(10GB) 53% 315 95 .668
Mono2VR (Ours)" 578 165 367
NSFF [8]* 48h00m 0.04 0.16 - 32 2xTeslaV100 (16 GB) < 10% 917 232 174
HyperNeRF [32]** 8h0Om 0.14 - - 128 4x TPU v4 (32GB) < 1% 811 222 153
NeRFPlayer [33] 5h30m 0.9 - - 48 1xRTX A6000 (48 GB) < 1% - 303 -
TiNeuVox-S [34] 10m 27 - - 24 1xRTX3090 (24 GB) 1.5% 813 234 -
4D-GS [9] 1h07m 40 14 34 43 1xRTX3080(10GB) 53% 865 258 323

We evaluate Mono2VR on the HyperNeRF dataset [32] and compare our approach to
NSFF [8], HyperNeRF [32], NeRFPlayer [33], TiNeuVox-S [34] and 4D-GS [9] with regards
to performance, hardware requirements, and visual quality (Table 4). Sample outputs from
Mono2VR as shown in Figure 8.

One issue with Mono2VR and the key frame sampling approach is that it typically only
uses one frame for reconstructing the background mesh, leading to regions with no data (e.g.,
Figure 8, bottom row). We additionally report the image similarity metrics after excluding
regions in the rendered frame that have no mesh data to evaluate the quality of the present
mesh data.

The HyperNeRF dataset proves challenging for Mono2VR and highlights the limitations
of our approach to instance segmentation. The HyperNeRF dataset contains a scene where the
only moving object is not a person (the 3D Printer sequence) and the sequences have people
only partially in frame handling an inanimate object. Mono2VR is designed for scenes focused
on people and only people are considered for inclusion in the dynamic reconstruction. The
dynamic elements in these sequences are therefore ignored by Mono2VR.

17

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

481

482

GT 4D-GS Mono2VR GT 4D-GS Mono2VR

Fig. 8: A comparison of 4D-GS and Mono2VR on the HyperNeRF dataset. The top row show
the results from frame one and the bottom row show the results for frame five

It is important to mention that the more recently proposed Gaussian splatting method 4D-
GS [9] has lower computational requirements compared to the NeRF-based methods for view
synthesis, but our Mono2 VR retains an advantage in processing time and render frame rates
and is about four times faster than 4D-GS. The biggest challenge in using 4D-GS for interactive
applications, and especially immersive VR applications, is its low render framerate of about
14 FPS on the HyperNeRF dataset using our experimental setup (RTX 3080). On the DyNeRF
dataset [29], 4D-GS rendered at around 18 FPS. These frame rates are for monocular rendering,
and would likely be substantially lower for stereo rendering in VR. In comparison, Mono2VR
(M2VR) renders at a steady 60 FPS on typical displays and at 120 FPS on high refresh rate
displays even on mobile devices, largely owing to our use of standard 3D mesh formats.
Perhaps converting the 4D-GS outputs into our mesh format, similar to [52], could combine
the high visual quality of 4D-GS and the fast rendering of Mono2VR. Recent work such as
MoDGS [53] looks promising for achieving 60+ FPS rendering with Gaussian Splatting.

4.6 Ablation Study

We evaluate Mono2VR on the DyNeRF dataset [29] to see how components of Mono2VR
affect the outputs.

Multicam uses the scaled multi-camera pose data from the above process along with the
video from the test video (cam(0). This gives us a baseline to compare the other configurations
against. Monocular only uses the test video and uses the Kinect sensor intrinsic matrix'® as

10Using a simple pinhole camera model, the Kinect intrinsic parameters we use are: fx=fy=580, cx=319.5, cy=239.5.

18

an estimate. This gives us an idea on how Mono2VR performs with solely monocular data.
BundleFusion shows how BundleFusion [54], a TSDF RGB-D fusion method that builds upon
KinectFusion [27], compares to TSDF Fusion with scaled COLMAP poses for reconstructing
the background mesh from estimated depth data. Compression follows the same configuration
as Monocular, however the mesh data is compressed with Draco and uncompressed before
rendering. This shows how much compression affects the quality of the outputs. No CC
Analysis follows the same configuration as Monocular, however the Connected Components
(CC) analysis filtering is disabled (this affects the foreground mesh data). No Inpainting
follows the same configuration as Monocular, however the mesh data is created without
inpainting the holes in the background.

Due to Mono2VR only using a single video feed to reconstruct the scene, there are
unobserved regions of scene Mono2VR cannot possibly reconstruct that are visible from the
other camera feeds (01-20). We also include the image similarity metrics calculated only on
the regions that Mono2VR observed to give an idea of the quality of the reconstructed mesh
data without considering the regions with no corresponding input data. To create the masked
image, we mask the input video frames by painting white the regions that correspond to the
regions in the rendered frame that are missing mesh data (RGB = [255,255,255]). Note the
difference between results for the non-masked and masked images for the cameras 01-20. This
shows the impact of unobserved regions on the scores of novel viewpoints.

The results in Table 5 show the relative gain/loss in render quality between each configura-
tion. Overall, the biggest changes are observed when changing the background reconstruction
algorithm to BundleFusion and when removing background inpainting (Figure 9). We initially
considered using BundleFusion for background reconstruction but found it was not suitable
for use with estimated depth data. We observe that BundleFusion results in blurrier textures
and gaps in the background mesh. Removing background inpainting has a large impact on
visual quality. Although, this is likely due to our aggressive mask dilation creating a larger
than necessary borders around foreground elements. We note that removing the connected
components analysis filtering and adding compression have a neglible impact on visual quality.
The connected components analysis filtering is most effective when background is confused
for foreground, which does not seem to happen much with this dataset.

5 User Evaluation

We conducted a user study to evaluate the user experience and visual quality of Mono2VR.
As there are currently limited options available for rendering videos in VR, we compared our
method to a 2D video rendered in VR as well as 3D videos created with ground truth depth.
This study has received ethical approval from the University of Otago’s ethics committee and
followed health and safety precautions such as providing hand sanitizers and using disposable
VR Covers for the headsets.

5.1 Study Design and Apparatus

We designed a within-subject user study to explore the use of 2D and 3D videos in more detail.
The videos used in the study capture a variety of scenes, including outdoor and indoor scenes
with varying depths. All videos have one human subject performing different actions. The
starting location of each video is manually calibrated to the “sweet spot” for minimal distortion

19

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

Table 5: Ablation study on render quality. Mono2 VR is run on camera feed 00 and camera feeds
01-20 are used for novel viewpoint synthesis. See Section 4.6 for details on the configurations.
TExcludes empty regions

Config Camera Feed SSIM PSNR LPIPS
00 .848 26.0 163
Multicam 01-20 453 9.4 476
01-20" .628 18.8 .208
00 .860 25.9 .188
Monocular (Ours) 01-20 370 8.3 619
01-20" .588 16.4 304
00 .658 16.1 335
BundleFusion 01-20 391 8.1 .627
01-20" 623 169 308
00 .860 25.9 .188
Compression 01-20 .370 8.3 .619
01-207 .588 16.4 .304
00 .862 26.0 191
No CC Analysis 01-20 .370 8.3 .619
01-207 .588 16.4 .303
00 .843 18.5 220
No Inpainting 01-20 .369 8.0 .629
01-207 .614 16.5 283

Input (cam06) Monocular No Inpainting BundleFusion

Fig. 9: Example outputs from the ablation study of Mono2VR run on the DyNeRF dataset
[29]. We show the input frames, the outputs from our method, Mono2VR (Monocular),
and the configurations that show the largest change in visual quality, ‘No Inpainting” and
‘BundleFusion’

20

e ey ~3

art of the user study. (Left) 2D-Video, (Center) 3D-GT,

e .

Fig. 10: Scene used for the first p
(Right) 3D-EST.

when viewing from novel viewpoints. The study had two parts, the first part compared the user
experience and presence between 2D video (2D-Video), 3D ground truth depth video (3D-GT),
and 3D estimated depth (3D-EST) video. The second part compares the visual quality between
just 3D-GT and the 3D-EST. We used 2D videos as a baseline since these are the standard
way of watching videos in VR (e.g. YouTube VR). We decided against using RGB-D and
MPI videos because they induced motion sickness in preliminary tests and would not create a
pleasant experience for users. Instead, we decided to use 3D ground truth videos as a baseline
since they they use sensor input for depth and would provide more insights.

The task for the participants was to explore the videos. The first part of the study used the
same video (Figure 10) for all three conditions (2D-Video, 3D-GT, 3D-EST). The order of
the conditions was randomized using Latin Square to minimize the influence of learning and
order effects. The videos were viewed in the Firefox web browser through the VR headset
and Oculus Link Desktop. The second part of the study uses 3 sets of videos (Figure 11), and
video and condition order were also randomized. The two conditions (3D-GT and 3D-EST)
for the same video are shown successively for better comparison.

We hosted the videos locally on a desktop with an i9 processor, 64GB of RAM and an
NVIDIA Quadro RTX5000 graphics card. A Meta Quest 2 with a disposable VR Cover was
connected via the Link Cable to the desktop workstation. Participants were asked to sit on a
swivel chair in which they could rotate themselves and look around. All questionnaires were
done on paper by the participant, except for the questions in part 2 where the study instructor
wrote down the participant’s verbal answers.

5.2 Participants

We recruited 24 participants to balance the Latin Square randomization for the user study
conditions. Participants were recruited from the University of Otago through advertisements
and word of mouth, and were only required to be between 18-65 years old. In total, 24
participants (15 male, 8 female, and 1 Other) aged between 18 and 34 (X = 22.04, 6 = 4.50)
participated in our study. Among them, 18 participants knew what of VR and had prior
experience, while 5 participants had heard of it but had no experience. One participant was
new to the term VR.

5.3 Procedures

Upon arrival, participants were provided with an information sheet detailing the objectives,
procedures, and expectations of the study. They were given time to review the information

21

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

=
=% = -

FI < - A N

nd part of the user study. (Left) Input video, (Middle) 3D
Video created with Ground Truth data (RGB-D + poses captured with StrayScanner app),
(Right) 3D Video created from video input only.

Fig. 11: Scenes used for the seco

sheet and invited to fill in a consent form to confirm their voluntary participation. Additionally,
they were asked to complete a demographic questionnaire, which collected information on
their age, gender, vision status, and any relevant experience with VR.

5.3.1 Briefing

After completing the initial paperwork, participants were briefed on the structure and flow
of the user study. We explained the study goals and gave an overview of the two parts of the
study. Throughout the briefing, participants were encouraged to ask questions and clarify any
aspects of the study they found unclear. The user study began when the participant was ready
and had no further questions.

5.3.2 Part 1: User Experience and Presence

Participants first put on the VR headset and adjusted for a good fit to ensure they could see
clearly. If they still had trouble seeing clearly, the interpupillary distance (IPD) was changed.
Participants were then presented with the first video. They were given ample time to watch the
video, which looped upon completion, allowing them to experience the condition for as long
as they felt necessary.

When participants were finished viewing the video, they removed the VR headset and com-
pleted the User Experience Questionnaire (UEQ) [55] and the Igroup Presence Questionnaire
(IPQ) [56]. These questionnaires aimed to capture their impressions of the user experience

22

and their sense of presence in the virtual environment for each condition. After completing
the questionnaires for the first condition, participants moved on to the next condition, follow-
ing the same procedure of putting on the VR headset, watching the video, and filling out the
questionnaires. This process was repeated for all three conditions in part one of the study.

5.3.3 Part 2: Depth Perception and Visual Quality

Participants kept their VR headset on for the entire duration of this part of the study. The
focus of this part was to evaluate the depth perception and visual quality of the videos, and the
participants were guided through a series of prompts for each video. They were asked to rate
the depth perception, visual quality, and presence of visual artifacts in the video using a 7-point
scale, with 1 representing very low and 7 representing very high. To begin, the first condition
of the randomized video was played. After the participant viewed and assessed the video, they
answered the three prompts in sequence. This is repeated for the second condition of the same
video. The same procedure was followed for the remaining two videos in part two of the study.

5.3.4 Debriefing

Once the second part of the study was completed, participants filled in a questionnaire. This
questionnaire asked about their preferences and opinions about using 2D and 3D videos for
reliving past memories, and under what circumstances they might choose one format over the
other. Additionally, participants were asked if they would recommend such an experience to
their friends and family. Participants were encouraged to provide any further feedback they
had regarding the overall study.

5.4 Results

We analyzed the results using R and Excel following the instructions for each of the used
questionnaires. We performed the Shapiro-Wilk normality test and where appropriate used
repeated measure ANOVA and t-tests or Friedman and Wilcoxon.

5.4.1 UEQ

For most UEQ ratings, the scores for all three conditions were in a neutral range (scores for
efficiency, novelty and stimulation being in the range of -0.8 — 0.8). The 2D video format
received lower scores in the Stimulation (-0.323) and Novelty categories (-0.715) compared
to the 3D-GT condition (0.48 (S) and 0.72 (N) and the 3D-EST condition (0.634 (S) and
0.75 (N)). This was anticipated, given that 2D videos are a common and less engaging format
compared to 3D videos.

The 2D video format showed higher scores than the other video types in the areas of
perspicuity (1.719 (2D-Video), 1.15 (3D-GT), 1.524 (3D-EST)) and dependability (1.01 (2D-
Video), 0.55 (3D-GT), 0.85 (3D-EST)). For perspicuity, all conditions are in the range of
a positive evaluation (> 0.8 [55]), and for dependability both 2D video and 3D-EST are
within the positive range. Overall, the scores could be attributed to the fact that 2D videos are
currently the most widely used and familiar format, making them easier to understand and
more reliable for users. Overall, we only found significant differences between the 2D video

23

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

8 Method 3 2D-Video 1 3D-GT (1 3D-EST

OVERALL
-

e a

2D-Video ap-aT 3D-EST

Fig. 12: Comparison of the overall IPQ scores of the 2D-Video, the 3D Ground Truth Depth
(3D-GT) and 3D Estimated Depth (3D-EST) conditions.

-

-

Meiha 520-dso 4 30.0T 08T Nethod 320-as0+ 30:01 1 08T Mothod @120 ¢ st
B o o
S - .
- . -
o o of
o
3
H
3 L3 H & —_
aaaed 4 £ o
[& b
o]
1o o .
o —3
L -
o 2 2 2
oamo b
- N
yoo o
= e ES et e oor Py

Fig. 13: Comparison of the IPQ scores of the 2D-Video, 3D Ground Truth Depth (3D-GT) and
3D Estimated Depth (3D-EST).

13 I"

F NN

condition and the 3D video conditions for novelty (2D-Video-3D-GT: p=0.029, 2D-Video-3D-
EST p=0.0113) and stimulation (2D-Video-3D-GT: p=0.0001, 2D-Video-3D-EST p=0.0002)
with measurable lower scores for the 2D video.

5.4.2 Presence

We employed the Immersive Presence Questionnaire (IPQ) to analyze presence [56]. The
dependent variable was the IPQ score. The independent variable was represented by the
VRVideo method 2D-Video, 3D-GT, and 3D-EST. We computed the overall IPQ presence
score [56-58] (Figure 12), along with the IPQ subscale scores. In accordance with the IPQ
data analysis guidelines!!, we transformed the IPQ scales to span a range of 0 to 6.
Descriptive statistics reveal that the 2D-Video method (mean = 2.61, std =1.02, median =
2.46) and 3D-GT method (mean = 2.83, std =0.85, median = 2.75) exhibit similar medians for
the overall presence score, while the median for 3D-EST is higher (mean = 3.01, std = 1.1,
median = 3.29). We applied a Shapiro Wilk test and a p-value = 0.343 indicates that we can
assume normality. Using repeated measures ANOVA, we identified a statistically significant
difference in the IPQ scores depending on the method, F = 3.602, p = 0.0352. The result is

http://www.igroup.org/pq/ipq/data.php

24

http://www.igroup.org/pq/ipq/data.php

significant at p < .05. We then performed a t-test (with Holm correction) for post-hoc analysis,
which indicated no significant differences between the conditions (Table 6).

Table 6: Overall Presence: p values t-test.
2D-Video | 3D-GT

3D-GT 0.33 -
3D-EST 0.15 0.33

Cohen’s d indicates small effect sizes (2D-Video-3D-GT d = 0.206 (small), 2D-Video-3D-
EST d = 0.402 (small), and 3D-GT-3D-EST d = 0.281 (small)).

We also analyzed the IPQ subscales (General presence (G), Spatial presence (SP), Involve-
ment (INV), and Realism (REAL)) for a more detailed analysis (Figure 13). For Spatial
Presence, the Shapiro-Wilk (SW) normality test indicated normal distribution (p=0.5033),
so we used a repeated measure ANOVA. We found a significant effect of the video method
for Spatial Presence (SP) (F(2, 46) = 3.452, p = 0.0401) and further analyzed the data with a
t-test (Holm). The analysis showed that there is a significant difference between the 2D-Video
condition and 3D-EST (Table 7).

Cohen’s d displays small to moderate effect sizes (2D-Video-3D-GT d = 0.388 (small), 2D-
Video-3D-EST d = 0.627 (moderate), and 3D-GT-3D-EST d = 0.314 (small)). We did not find a
significant effect of video type on G (Friedman p = 0.70, SW p=0.0026), nor on SP (p = 0.137),
nor on INV (Friedman p-value = 0.461, SW p=0.0405), nor on REAL (Friedman p =0.102,
SW p =0.011). The results indicate that there is an overall effect on presence and that there is
a significant increase in spatial presence (SP) between 2D-Video and our 3D-EST method.

5.4.3 Depth Perception and Visual Quality

Depth perception was generally high across both 3D-GT and 3D-EST conditions (Figure
14, 3D-GT: m=4.82, std=0.98, 3D-EST: m=5, std=1.13). Interestingly, we could not find a
significant difference between the 3D-EST condition, which relied on estimated depth, and the
3D-GT condition which utilized LiDAR sensor data from the iPhone 13 Pro (t-test: p=0.25).
This suggests that the depth estimation techniques used in the 3D-EST condition created
convincing depth perception for the participants.

Additionally, the visual quality of the 3D-EST (m=3.18, std= 1.29) condition was rated
better than the 3D-GT condition (m=3.58, std= 1.16, t-test p=0.029) which might be due to
the smoother estimated depth data. We did not find any significant differences in the number
of artifacts, but both conditions showed more than the average amount of artifacts (3D-GT:
m=4.53 std=1.01, 3D-EST: m=4.29, std=1.02, t-test: p=0.13). The visual quality of 3D videos
has room for improvement as the general rating was around midpoint (3.5).

Table 7: Spatial presence (SP): p values t-test.
2D-Video | 3D-GT

3D-GT 0.14 -
3D-EST | 0.016* 0.14

25

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

Method B3 30T 41 3DEST Method @) SD.GT (4 SDEST Method B DGT 4 SDEST

Sy

Visual Quaity

Artofacts

Depth Perception

AN
i

e

gl |

war ST eT £

Fig. 14: Depth perception, visual quality and amount of artefacts of 3D-GT and 3D-EST.

war st

When participants were asked if they would prefer the 2D video or 3D video, 18 of the
24 participants preferred the 3D video (75%). Participants also rated an average of 4.96 out
of 7 when asked if they would recommend such 3D video. The results show that participants
have a positive experience with 3D videos. However, it is important to mention that 50% of
the participants mentioned video quality as a factor to be improved.

5.5 Discussion

Overall, the study showcased the potential of 3D videos as a viable medium for reliving past
memories, with most participants expressing their acceptance of this presentation format. The
advantages of 3D videos, such as enhanced spatial presence and improved visual quality, make
the experience more immersive. However, the study also highlighted certain challenges, such
as the presence of visual artifacts and visual quality, which could impact the user experience.

5.5.1 Depth Perception

The 3D videos contributed to an above-average rating of the depth perception, which in turn
potentially led to a heightened sense of spatial presence for the viewers. Participants, including
P4, P9, P11, P13, P21, and P23, reported feeling as if they were “being there” or ”in the
moment” while watching both the 3D videos. It is important to note that the 3D-GT condition
did not render pixels beyond the range of the LiDAR sensor. The 3D-EST condition on the
other hand renders every pixel, creating a more complete scene, which might have contributed
to a slightly improved depth perception.

5.5.2 Visual Quality

The results reveal that 3D videos enhance spatial presence but also highlight a need for
improvement in the quality of the 3D videos, as highlighted by 50% of the participants.
Participants P14, P16, and P17 commented on the artifacts they encountered along the edges of
the subject, such as “shakiness” or a ”saw-tooth effect.” These visual artifacts can be attributed
to the discrepancy between the user’s viewpoint and the original camera position where the
video was captured. The distortion they perceive becomes more pronounced as the user moves
their head further from the camera’s original position. This is an inherent challenge when
generating 3D videos from monocular input. The background mesh of the video could also

26

be improved. Due to the fusion of images, the visual quality is not as clear as the 2D video,

which P14 and P17 mentioned. P10 also mentioned that they wanted a full 360°experience.

However, this is not possible with monocular video.

5.6 Limitations

While our user study indicates some promising results, there are a few limitations that need to
be considered.

The user study used an old version of Mono2VR, hence why there is an observable
difference in the quality of the outputs in this section (Figure 10, Figure 11) and the previous
section (Figure 3). The difference between these sample outputs is due to the following three
changes. Firstly, the old version did not perform gamma correction, leading to incorrect colors.
Secondly, the old version uniformly sampled frames for the background reconstruction, often
leading to blurry textures. Thirdly, the old version used sub-optimal settings for the TSDF step,
leading to background meshes that lacked detail and blurry textures.

One of the limitations is the relatively low resolution of the LiDAR sensor used for
capturing depth information. The limited resolution may result in less accurate depth maps,
which can impact the overall visual quality of the 3D-GT videos. This is particularly obvious
for the detection of the subject in the video. The edges of the human subject in the 3D-GT
videos are often pixelated. This could be improved by smoothing the edges to provide a similar
experience to the 3D-EST videos where every pixel is used for depth estimation and results in
smoother boundaries. Despite there being higher resolution LiDAR scanners available, our
target is to use consumer hardware that is widely available and suitable for casual video capture.

Another limitation in our study is that the 3D videos have a “sweet spot” around the
camera’s position during video capture. Deviation from this position results in visual distortions
and artifacts. We limited the impact of this by placing participants in a swivel chair.

Lastly, the quality of the captured videos and the complexity of the background scenes can
also affect the performance of the 3D video generation pipeline. Complex background scenes
can pose challenges for the depth estimation and reconstruction algorithms, leading to less
accurate 3D video generation. A good example was the moving leaves in our courtyard video,
which made the leaves’ texture appear blurry. In addition, the video capture must have enough
movement so that it works as input for the SfM methods. This requirement could be addressed
by using a spherical SfM approach [59, 60].

In the study, we occasionally experienced an Oculus Link bug where videos were not
loaded initially (the screen in the headset showed an hourglass symbol) until the user removed
the headset and put it back on again. As this did not happen during the trials but just while
starting a trial, we are confident that this was not a confounding factor.

6 Conclusion and Future Work

In this work, we presented Mono2VR, a pipeline for creating and exploring immersive 3D
video experiences from a monocular video. Mono2VR automatically handles the estimation
of the camera parameters, depth maps, 3D reconstruction of dynamic foreground and static
background elements on consumer hardware within a reasonable time frame. We showed
that with our pipeline, we are able to render VR videos on computers or VR headsets with
interactive framerates, providing an immersive and engaging experience for users.

27

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

71

712

713

714

715

716

77

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

Through our technical evaluation, we demonstrated the key advantages of Mono2VR rel-
ative to NeRF and 3D-GS methods. Mono2VR can run on a greater proportion of existing
computers with consumer hardware, is significantly faster to run, achieves significantly higher
framerates, and provides direct support for VR rendering. Our user study served as an eval-
uation of the technology, identifying its strengths and areas requiring further improvement.
Participants provided valuable feedback on aspects such as depth perception, visual quality,
and presence, indicating the potential of our pipeline in delivering an engaging and immersive
experience. Nevertheless, the study also revealed limitations, such as visual artifacts and the
need for higher-quality output.

The insights from the user study and technical evaluations will help guide our future work,
as we continue refining the pipeline in iterations and addressing identified shortcomings. The
main areas we consider for future work are as follows. A more general approach to separating
foreground and background is needed to improve the reconstruction quality on scenes where
dynamic elements other than just people, perhaps using optical flow, and will help improve the
outputs for datasets like HyperNeRF [32]. Handling effects such as shadows and reflections
would also help improve the visual quality. The accuracy of single image depth estimation
models leads to inaccurate geometry and inconsistencies between frames. Therefore, depth
estimation models that can leverage video data should be investigated. There is also a need for
reducing the compute time for depth estimation models; the model we use [41] takes up close
to a third of the runtime of Mono2VR.

Overall, Mono2VR opens new areas of research targeting novel ways of replaying, editing
and interacting with VR videos. We hope that our open source software framework will support
future research in this direction.

References

[1] Richardt, C., Pritch, Y., Zimmer, H., Sorkine-Hornung, A.: Megastereo: Construct-
ing high-resolution stereo panoramas. In: Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1256-1263 (2013). https://doi.org/10.1109/CVPR.2013.166 .
http://richardt.name/megastereo/

[2] Richardt, C., Hedman, P., Overbeck, R.S., Cabral, B., Konrad, R., Sullivan, S.: Cap-
ture4VR: From VR photography to VR video. In: SIGGRAPH Courses (2019). https:
//doi.org/10.1145/3305366.3328028 . https://richardt.name/Capture4VR/

[3] Bertel, T., Yuan, M., Lindroos, R., Richardt, C.: OmniPhotos: Casual 360° VR photog-
raphy. ACM Transactions on Graphics 39(6), 266—112 (2020) https://doi.org/10.1145/
3414685.3417770

[4] Kopf, J., Matzen, K., Alsisan, S., Quigley, O., Ge, F., Chong, Y., Patterson, J., Frahm,
J.-M., Wu, S., Yu, M,, et al.: One shot 3d photography. ACM Transactions on Graphics
(TOG) 39(4), 76-1 (2020)

[5] Mildenhall, B., Srinivasan, P.P., Ortiz-Cayon, R., Kalantari, N.K., Ramamoorthi, R., Ng,
R., Kar, A.: Local light field fusion: Practical view synthesis with prescriptive sampling
guidelines. ACM Trans. Graph. 38(4) (2019) https://doi.org/10.1145/3306346.3322980

28

https://doi.org/10.1109/CVPR.2013.166
https://doi.org/10.1145/3305366.3328028
https://doi.org/10.1145/3305366.3328028
https://doi.org/10.1145/3305366.3328028
https://doi.org/10.1145/3414685.3417770
https://doi.org/10.1145/3414685.3417770
https://doi.org/10.1145/3414685.3417770
https://doi.org/10.1145/3306346.3322980

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf:
Representing scenes as neural radiance fields for view synthesis. In: ECCV (2020)

Kerbl, B., Kopanas, G., Leimkiihler, T., Drettakis, G.: 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics 42(4), 1-14 (2023)

Li, Z., Niklaus, S., Snavely, N., Wang, O.: Neural scene flow fields for space-time view
synthesis of dynamic scenes. In: Proceedings of the [IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6498-6508 (2021)

Wu, G., Yi, T., Fang, J., Xie, L., Zhang, X., Wei, W., Liu, W., Tian, Q., Wang, X.: 4d gaus-
sian splatting for real-time dynamic scene rendering. arXiv preprint arXiv:2310.08528
(2023)

Serrano, A., Kim, 1., Chen, Z., DiVerdi, S., Gutierrez, D., Hertzmann, A., Masia, B.:
Motion parallax for 360° rgbd video. IEEE Transactions on Visualization and Computer
Graphics (2019)

Balasubramanian, S., Soundararajan, R.: Prediction of discomfort due to egomotion in
immersive videos for virtual reality. In: 2019 IEEE International Symposium on Mixed
and Augmented Reality (ISMAR), pp. 169-177 (2019). https://doi.org/10.1109/ISMAR.
2019.000-7

Dickson, A., Shanks, J., Ventura, J., Knott, A., Zollmann, S.: Vrvideos: A flexible pipeline
for virtual reality video creation. In: 2022 IEEE International Conference on Artificial
Intelligence and Virtual Reality (AIVR), pp. 199-202 (2022). https://doi.org/10.1109/
AIVR56993.2022.00039

Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge
University Press, ??? (2003). http://dl.acm.org/citation.cfm?id=861369

Horry, Y., Anjyo, K., Arai, K.: Tour Into the Picture: Using Spidery Mesh Interface to
Make Animation from a Single Image”, pp. 225-232 (1997). https://doi.org/10.1145/
258734.258854

Hoiem, D., Efros, A.A., Hebert, M.: Automatic photo pop-up. In: ACM SIG-
GRAPH 2005 Papers. SIGGRAPH 05, pp. 577-584. Association for Computing
Machinery, New York, NY, USA (2005). https://doi.org/10.1145/1186822.1073232 .
https://doi.org/10.1145/1186822.1073232

Saxena, A., Sun, M., Ng, A.Y.: Make3D: Learning 3D Scene Structure from a Single Still
Image. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(5), 824-840
(2009) https://doi.org/10.1109/TPAMI.2008.132

Niklaus, S., Mai, L., Yang, J., Liu, F.: 3d ken burns effect from a single image. ACM
Transactions on Graphics (ToG) 38(6), 1-15 (2019)

29

768

769

770

7

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

791

792

793

794

79

797

798

799

800

801

802

https://doi.org/10.1109/ISMAR.2019.000-7
https://doi.org/10.1109/ISMAR.2019.000-7
https://doi.org/10.1109/ISMAR.2019.000-7
https://doi.org/10.1109/AIVR56993.2022.00039
https://doi.org/10.1109/AIVR56993.2022.00039
https://doi.org/10.1109/AIVR56993.2022.00039
https://doi.org/10.1145/258734.258854
https://doi.org/10.1145/258734.258854
https://doi.org/10.1145/258734.258854
https://doi.org/10.1145/1186822.1073232
https://doi.org/10.1109/TPAMI.2008.132

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

Wiles, O., Gkioxari, G., Szeliski, R., Johnson, J.: Synsin: End-to-end view synthesis
from a single image. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 7467-7477 (2020)

Hedman, P., Kopf, J.: Instant 3d photography. ACM Transactions on Graphics (TOG)
37(4), 1-12 (2018)

Tucker, R., Snavely, N.: Single-view view synthesis with multiplane images. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
551-560 (2020)

Dickson, A., Knott, A., Zollmann, S.: User-centred Depth Estimation Benchmarking
for VR Content Creation from Single Images. In: Lee, S.-H., Zollmann, S., Okabe, M.,
Wiinsche, B. (eds.) Pacific Graphics Short Papers, Posters, and Work-in-Progress Papers.
The Eurographics Association, ??? (2021). https://doi.org/10.2312/pg.20211394

Waidhofer, J., Gadgil, R., Dickson, A., Zollmann, S., Ventura, J.: Panosynthvr: Toward
light-weight 360-degree view synthesis from a single panoramic input. In: 2022 IEEE
International Symposium on Mixed and Augmented Reality (ISMAR), pp. 584-592
(2022). https://doi.org/10.1109/ISMARS55827.2022.00075

Wang, Q., Li, Z., Salesin, D., Snavely, N., Curless, B., Kontkanen, J.: 3D Moments
from Near-Duplicate Photos. arXiv (2022). https://doi.org/10.48550/ARXIV.2205.06255
. https://arxiv.org/abs/2205.06255

Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan,
P.P.: Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5855—
5864 (2021)

Martin-Brualla, R., Radwan, N., Sajjadi, M.S., Barron, J.T., Dosovitskiy, A., Duckworth,
D.: Nerf in the wild: Neural radiance fields for unconstrained photo collections. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 7210-7219 (2021)

Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelnerf: Neural radiance fields from one
or few images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4578-4587 (2021)

Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J., Kohi, P.,
Shotton, J., Hodges, S., Fitzgibbon, A.: Kinectfusion: Real-time dense surface mapping
and tracking. In: 2011 10th IEEE International Symposium on Mixed and Augmented
Reality, pp. 127-136 (2011). IEEE

Miiller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a

multiresolution hash encoding. ACM Trans. Graph. 41(4), 102-110215 (2022) https:
/ldoi.org/10.1145/3528223.3530127

30

https://doi.org/10.2312/pg.20211394
https://doi.org/10.1109/ISMAR55827.2022.00075
https://doi.org/10.48550/ARXIV.2205.06255
https://arxiv.org/abs/2205.06255
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Li, T., Slavcheva, M., Zollhoefer, M., Green, S., Lassner, C., Kim, C., Schmidt,
T., Lovegrove, S., Goesele, M., Lv, Z.: Neural 3d video synthesis. arXiv preprint
arXiv:2103.02597 (2021)

Xian, W., Huang, J.-B., Kopf, J., Kim, C.: Space-time neural irradiance fields for free-
viewpoint video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 9421-9431 (2021)

Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-nerf: Neural radiance
fields for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10318-10327 (2021)

Park, K., Sinha, U., Hedman, P., Barron, J.T., Bouaziz, S., Goldman, D.B., Martin-Brualla,
R., Seitz, S.M.: Hypernerf: A higher-dimensional representation for topologically varying
neural radiance fields. arXiv preprint arXiv:2106.13228 (2021)

Song, L., Chen, A., Li, Z., Chen, Z., Chen, L., Yuan, J., Xu, Y., Geiger, A.: Nerfplayer: A
streamable dynamic scene representation with decomposed neural radiance fields. IEEE
Transactions on Visualization and Computer Graphics 29(5), 2732-2742 (2023)

Fang,J., Yi, T., Wang, X., Xie, L., Zhang, X., Liu, W., NieBner, M., Tian, Q.: Fast dynamic
radiance fields with time-aware neural voxels. In: SIGGRAPH Asia 2022 Conference
Papers, pp. 1-9 (2022)

Yang, Z., Gao, X., Zhou, W, Jiao, S., Zhang, Y., Jin, X.: Deformable 3d gaussians for
high-fidelity monocular dynamic scene reconstruction. arXiv preprint arXiv:2309.13101
(2023)

Rematas, K., Kemelmacher-Shlizerman, ., Curless, B., Seitz, S.: Soccer on your tabletop.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 4738-4747 (2018)

Chen, J., Paris, S., Wang, J., Matusik, W., Cohen, M., Durand, F.: The video mesh: A data
structure for image-based three-dimensional video editing. In: 2011 IEEE International
Conference on Computational Photography (ICCP), pp. 1-8 (2011). https://doi.org/10.
1109/ICCPHOT.2011.5753118

Zollmann, S., Dickson, A., Ventura, J.: Casualvrvideos: Vr videos from casual stationary
videos. In: 26th ACM Symposium on Virtual Reality Software and Technology, pp. 1-3
(2020)

Hwang, D.-H., Koike, H.: Parapara: Synthesizing pseudo-2.5d content from monocu-
lar videos for mixed reality. In: Extended Abstracts of the 2018 CHI Conference on
Human Factors in Computing Systems. CHI EA 18, pp. 1-6. Association for Comput-
ing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3170427.3188596 .
https://doi.org/10.1145/3170427.3188596

31

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

https://doi.org/10.1109/ICCPHOT.2011.5753118
https://doi.org/10.1109/ICCPHOT.2011.5753118
https://doi.org/10.1109/ICCPHOT.2011.5753118
https://doi.org/10.1145/3170427.3188596

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the
evaluation of rgb-d slam systems. In: Proc. of the International Conference on Intelligent
Robot Systems (IROS) (2012)

Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12179—
12188 (2021)

Nathan Silberman, P.K. Derek Hoiem, Fergus, R.: Indoor segmentation and support
inference from rgbd images. In: ECCV (2012)

Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y., Girshick, R.: Detectron2. https://github.com/
facebookresearch/detectron2 (2019)

Schonberger, J.L., Frahm, J.-M.: Structure-from-Motion Revisited. In: Conference on
Computer Vision and Pattern Recognition (CVPR) (2016)

Zeng, A., Song, S., NieBner, M., Fisher, M., Xiao, J., Funkhouser, T.: 3dmatch: Learning
local geometric descriptors from rgb-d reconstructions. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1802-1811 (2017)

Newcombe, R.A., Fox, D., Seitz, S.M.: Dynamicfusion: Reconstruction and tracking of
non-rigid scenes in real-time. In: 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 343-352 (2015). https://doi.org/10.1109/CVPR.2015.7298631

Suvorov, R., Logacheva, E., Mashikhin, A., Remizova, A., Ashukha, A., Silvestrov, A.,
Kong, N., Goka, H., Park, K., Lempitsky, V.: Resolution-robust large mask inpainting
with fourier convolutions. arXiv preprint arXiv:2109.07161 (2021)

Telea, A.: An image inpainting technique based on the fast marching method. J. Graphics,
GPU, & Game Tools 9(1), 23-34 (2004)

Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface construction
algorithm. In: Seminal Graphics: Pioneering Efforts that Shaped the Field, pp. 347-353
(1998)

Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-
motion from video. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1851-1858 (2017)

Zhang, C.: Investigation on motion sickness in virtual reality environment from the per-
spective of user experience. In: 2020 IEEE 3rd International Conference on Information
Systems and Computer Aided Education (ICISCAE), pp. 393-396 (2020). IEEE

Guédon, A., Lepetit, V.: Sugar: Surface-aligned gaussian splatting for efficient 3d mesh

reconstruction and high-quality mesh rendering. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5354-5363 (2024)

32

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://doi.org/10.1109/CVPR.2015.7298631

[53] Liu, Q., Liu, Y., Wang, J., Lv, X., Wang, P., Wang, W., Hou, J.: Modgs: Dynamic gaussian
splatting from causually-captured monocular videos. arXiv preprint arXiv:2406.00434
(2024)

[54] Dai, A., Nieiner, M., Zollhofer, M., Izadi, S., Theobalt, C.: Bundlefusion: Real-time
globally consistent 3d reconstruction using on-the-fly surface reintegration. ACM
Transactions on Graphics (ToG) 36(4), 1 (2017)

[55] Schrepp, M.: User Experience Questionnaire Handbook-Version 8. URL:
https://www.ueq-online.org/Material/Handbook.pdf (2019)

[56] Regenbrecht, H., Schubert, T.: Real and illusory interactions enhance presence in virtual
environments. Presence 11(4), 425-434 (2002)

[57] Schubert, T., Friedmann, F., Regenbrecht, H.: The experience of presence: Factor analytic
insights. Presence: Teleoperators & Virtual Environments 10(3), 266281 (2001)

[58] Schwind, V., Knierim, P., Haas, N., Henze, N.: Using presence questionnaires in virtual
reality. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems, pp. 1-12. Association for Computing Machinery, New York, NY, USA (2019).
https://doi.org/10.1145/3290605.3300590

[59] Baker, L., Ventura, J., Zollmann, S., Mills, S., Langlotz, T.: SPLAT: Spherical
Localization and Tracking in Large Spaces. In: IEEE Virtual Reality (IEEE VR) (2020)

[60] Baker, L., Mills, S., Zollmann, S., Ventura, J.: CasualStereo: Casual Capture of Stereo
Panoramas with Spherical Structure-from-Motion. In: Proceedings - 2020 IEEE Confer-
ence on Virtual Reality and 3D User Interfaces, VR 2020 (2020). https://doi.org/10.1109/
VR46266.2020.1581313146787

33

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

https://doi.org/10.1109/VR46266.2020.1581313146787
https://doi.org/10.1109/VR46266.2020.1581313146787
https://doi.org/10.1109/VR46266.2020.1581313146787

	Introduction
	Related Work
	3D Photographs
	3D Video
	360 VR Videos
	Summary

	Mono2VR System
	Data Preparation
	Depth Map Estimation
	Segmentation Masks
	Camera Pose Estimation

	Static Background Mesh Reconstruction
	Dynamic Mesh Reconstruction
	Export and Rendering
	Data Format
	VR Renderer

	Technical Evaluation
	Experiment Setup
	RGB-D Datasets
	HyperNeRF Dataset
	DyNeRF Dataset

	Visual Quality
	Scaling COLMAP Poses
	Mono2VR and NSFF
	Evaluation on HyperNeRF
	Ablation Study

	User Evaluation
	Study Design and Apparatus
	Participants
	Procedures
	Briefing
	Part 1: User Experience and Presence
	Part 2: Depth Perception and Visual Quality
	Debriefing

	Results
	UEQ
	Presence
	Depth Perception and Visual Quality

	Discussion
	Depth Perception
	Visual Quality

	Limitations

	Conclusion and Future Work

