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Abstract 12

Despite the growing popularity of VR headsets, most personal videos remain limited to flat 13

2D displays and lack the depth and motion cues needed for immersive playback. Converting 14

monocular videos into 3D experiences suitable for VR remains a challenge due to the 15

complexity and computational demands of existing solutions. 16

We present Mono2VR, a system that transforms standard monocular videos into immer- 17

sive 3D content for VR headsets, with minimal processing time and modest hardware 18

requirements. Unlike recent high-fidelity methods that are impractical for longer videos or 19

real-time use, Mono2VR runs on consumer hardware in minutes per second of video. 20

Our pipeline estimates camera parameters and depth maps to reconstruct both dynamic 21

foreground and static background elements. The resulting 3D videos support stereoscopic 22

playback and head-motion parallax, enhancing immersion. 23

We evaluated Mono2VR both technically and in a user study, where participants rated our 24

output on par with ground truth 3D content. These results highlight Mono2VR’s potential 25

to make immersive video experiences accessible to a broad audience. 26
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Fig. 1: Using Mono2VR to create and experience a 3D video in VR. Currently, 2D input video
can only be watched on a virtual screen in a VR headset. This option does not allow for a free
viewpoint selection and creates a cinema-like experience (Bottom Left). Instead, Mono2VR
converts an input video into an immersive 3D video by 1) creating a 3D representation of the
dynamic foreground for each frame of the video sequence, 2) creating a 3D representation of
the static background, 3) and rendering the 3D video in a VR headset at interactive frame rates.
The user can then mostly freely explore the immersive 3D video in VR

1 Introduction28

Virtual Reality (VR) headsets have become increasingly affordable and accessible, leading29

to a growing interest in immersive media experiences beyond gaming. One recent example30

is Apple’s introduction of spatial videos, which were launched alongside the Apple Vision31

Pro headset1. This demonstrates the potential for everyday users to engage with immersive32

personal content. However, creating compelling VR video experiences remains technically33

challenging. Most available 360-degree videos are monoscopic, which means they lack depth34

information and do not support motion parallax. As a result, they provide limited immersion35

and are poorly suited for VR playback. While stereoscopic 360-degree capture can improve36

depth perception, it requires specialized camera rigs and complex workflows [1–3], making it37

inaccessible to most everyday content creators.38

Recent advances in image-based rendering (IBR) provide alternatives by enabling depth-39

aware novel view synthesis from monocular video. Techniques such as layered representations40

[4], light fields [5], Neural Radiance Fields (NeRF) [6], and 3D Gaussian Splatting [7] can41

reconstruct geometry and appearance from sparse viewpoints. While promising for offline42

applications, many of these methods are computationally intensive. For example, Neural43

Scene Flow Fields (NSFF) [8] requires two days to process a one-second video clip using two44

NVIDIA V100 GPUs and an additional 6 seconds per 512×288 frame for rendering, making45

it unsuitable for interactive VR scenarios. Although 4D Gaussian Splatting [9] significantly46

improves rendering speed and achieves approximately 14 frames per second, it still requires47

minutes of preprocessing per video and does not support real-time interactivity in head-48

mounted displays.49

1https://support.apple.com/en-nz/guide/apple-vision-pro/dev7068c3c93/visionos
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In addition to performance limitations, many of these methods do not compensate for the 50

egomotion of the recording camera. This limitation can result in a mismatch between visual 51

motion and head movement during VR playback, leading to discomfort or motion sickness [10]. 52

Methods based on monocular depth estimation or multi-plane image (MPI) representations [5] 53

also suffer from this issue and often lack sufficient depth fidelity for immersive parallax effects. 54

These limitations highlight the need for VR video playback solutions that support egomo- 55

tion compensation, deliver motion parallax, and run at interactive frame rates with minimal 56

preprocessing. 57

Standard 2D Video
on Screen in VR

RGB-D
videos

MPI
video

Neural Scene
Flow Fields

4D Gaussian
Splatting

Mono2VR
(Ours)

Compensate Egomotion No No No Yes Yes Yes
Motion Parallax No Yes Yes Yes Yes Yes
Interactive Rendering in VR Yes Yes Yes No No Yes
Processing times No processing required Minutes Minutes Days Minutes Minutes

Table 1: Comparison of current methods for 3D videos for their feasibility for VR replays.
Egomotion of the videos has been shown to be a factor for motion sickness [11]. Motion
parallax is an important depth cue, and a lack of motion parallax can create motion sickness
[10]. Interactive framerates are important for an immersive VR experience. Furthermore,
processing times are an important factor to consider; while content creators are accustomed to a
couple of minutes of processing for video editing and transcoding, multiple days of processing
time is a limiting factor.

In this work, we describe Mono2VR, an end-to-end pipeline for creating and viewing 58

immersive 3D videos in VR from monocular video2. Mono2VR combines traditional computer 59

vision techniques with state-of-the-art deep learning models to achieve a unique approach 60

to VR-capable 3D video reconstruction. In contrast to recent work on NeRF and GS-based 61

methods, the main focus of our work is to achieve high framerates and interactive rendering 62

on VR headsets. Furthermore, Mono2VR has substantially lower hardware requirements and 63

processing times. 64

To evaluate the capabilities of Mono2VR, we conducted comprehensive technical evalua- 65

tions and a user study in VR. Our evaluation covers a range of aspects, including rendering 66

performance and file sizes for VR headsets, accuracy in camera trajectory estimation, mesh 67

fusion based on depth data, processing time, and VRAM usage. Moreover, we present the first 68

user study conducted for 3D videos generated using this approach, gathering valuable insights 69

on user experience, presence, depth perception, and visual quality—an important aspect that is 70

often ignored in other work. We make the source code for running Mono2VR and the experi- 71

ments in this paper publicly available3, contributing to the accessibility and reproducibility of 72

this research. 73

2We note that Mono2VR appeared under the name ‘VRVideos’ in a work-in-progress publication of ours [12] and ‘HIVE’ in the
code repository. These names all refer to the same method.

3https://github.com/AnthonyDickson/HIVE
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2 Related Work74

Extracting 3D data of static scenes from multiple photographs using structure-from-motion75

(SfM) methods is a well-established field [13]. Recent advancements focused on methods76

to create immersive 3D photographs that enable novel view synthesis with motion parallax.77

However, the extraction of 3D data from monocular videos is still challenging.78

2.1 3D Photographs79

The extraction of 3D information from a single photograph has evolved from Tour Into the80

Picture [14], one of the first methods that generate a simple 3D model from user-defined planes81

over more automatic methods for creating popup-like 3D representations [15] to sophisticated82

probabilistic depth estimations [16]. [4, 17, 18] leverage learned models for depth estimation83

and inpainting to produce realistic view synthesis from a single image. Hedman et al.’s [19]84

works to construct 3D panoramas with realistic motion parallax from a single mobile device85

with dual cameras, and also works with monocular video and estimated depth data. Mildenhall86

et al. proposed an approach for view synthesis based on an unstructured grid of input views87

from a video [5]. Their approach renders novel views by blending local light fields that are88

represented by Multi-Plane Image (MPI)s. MPIs were also used to synthesize novel views of89

a scene from an input photograph in the work by Tucker et al. [20]. However, there is only90

limited work on how well these methods work for content creation for VR experiences. While91

Dickson et al. [21] investigated the benchmarking of monocular depth estimation methods in92

the context of content creation for VR and Waidhofer et al. [22] investigated the impact of93

different depth representations of 360 images on presence and perceived quality, there is still94

limited knowledge on the feasibility of these content creation methods for VR experiences.95

2.2 3D Video96

While the above methods target static scenes, methods targeting dynamic scenes have been97

developing rapidly. Wang et al. [23] use a neural network trained to synthesize novel views98

from layered depth images and 2D image features, estimating appearance changes between a99

pair of photos. However, their approach is limited to two frames and takes 0.71s to render each100

frame (∼1 FPS), and is therefore unsuitable for interactive applications and processing videos.101

NeRF-based methods [6, 24–26] can also produce photo-realistic novel-viewpoints of static102

scenes from a relatively small set of images. The implicit representation inherent to neural103

networks helps address many of the challenges in reconstructing dynamic 3D scenes with104

estimated depth and Truncated Signed Distance Function (TSDF) fusion-based approaches105

[27]. Initially, NeRFs had long training times and low framerates, but recent developments106

have seen the training time and render frame times significantly reduced [28], making them107

more suitable for interactive applications.108

NeRFs have also been applied to dynamic video scenes [8, 29–33]. However, the efficiency109

gains have not carried over to dynamic video NeRF methods. NeRF methods often have long110

compute times in the order of hours (and sometimes days) long render times in the order of111

seconds per frame, and require expensive GPU hardware [8, 33]. The low framerates of these112

methods limit their applicability for interactive applications such as VR. Fang et al. [34] used113

an explicit representation to reduce training time but at the cost of lower quality view synthesis.114
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Their approach reduces training time down to minutes, however there is no mention of render 115

framerates and still requires expensive GPU hardware. 116

3D Gaussian Splatting (3D-GS) [7] has many of the advantages of methods utilizing 117

implicit and explicit representations. 3D-GS methods produce high quality novel viewpoint 118

rendering of static scenes, often better than NeRF methods, while training in minutes instead 119

of hours and rendering at high framerates (160-180 fps at 1080p). These improvements come 120

from the use of 3D Gaussians which enables computation on empty space to be skipped and 121

rasterization-based rendering. Initially, 3D-GS methods had high hardware requirements with 122

the reference implementation of [7] requiring 24 GB of VRAM. Recent methods such as Wu 123

et al.’s work [9] have significantly lower hardware requirements, largely eliminating this issue. 124

However, the main challenge in using the approaches that reconstruct dynamic scenes from 125

monocular video (e.g., [9, 35]) is that they do not achieve interactive framerates required for 126

VR rendering (e.g. Wu et al: 14 FPS [9]). So while NeRF and 3D-GS methods achieve high- 127

quality results for monocular video, their sub-interactive framerates make them unsuitable for 128

interactive applications, especially VR. 129

Earlier methods have also been proposed to extract 3D representations from videos. How- 130

ever, they are either trained for a specific use case such as soccer [36], require a significant 131

amount of user input [37], focus on static or rotating cameras [38] or focus on extracting 132

dynamic content only for Mixed Reality applications [39] that do not need the background 133

reconstructed. Dickson et al. [12] presented early work on a VR video representation that is 134

suitable for VR rendering but without further investigation on feasibility. 135

2.3 360 VR Videos 136

There is more research on 360 VR videos, such as the work by Serrano et al. [10]. In their 137

work, Serrano et al. propose a method that creates a layered representation of the 360 input 138

video and use this for rendering in VR. Within their work, they investigate user preference 139

and motion sickness compared to a conventional 360 (3 degrees of freedom) video. Their 140

layered representation reduces motion sickness and scores better on user preferences. However, 141

this method can only be used for 360 input videos. Thus there is still a lack of methods that 142

are suitable for standard videos and limited knowledge on how well these methods work for 143

creating VR experiences. 144

2.4 Summary 145

In our work, we combine traditional geometric methods with machine learning-based depth 146

estimation and a layered representation to capture dynamic contents to reduce the computation 147

times and complexity of the VR videos to make them suitable for replay in a VR headset. 148

In summary, the options for experiencing casually captured videos in VR are still limited. 149

The most popular option currently is to watch videos on a virtual “cinema” screen as, for 150

instance, offered by YouTube. Additionally, RGB-D videos and MPI videos are an option and 151

can be computed quickly from standard 2D videos. Both offer some parallax, although this 152

is more limited for MPI videos as the viewer cannot move far away from the position from 153

where the video was captured. However, both RGB-D videos and MPI videos have a major 154

disadvantage that they do not compensate for the egomotion of the capturing camera (Table 1) 155

which can cause motion sickness [11]. 156
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3 Mono2VR System157

For creating and rendering VR videos based on monocular 2D video input, we created the158

Mono2VR system. Mono2VR consists of four main steps: (1) data preparation; (2) creating a159

3D representation of the static background; (3) creating a 3D triangle mesh representation of160

the dynamic foreground for each frame of the video sequence; and (4) rendering the 3D video161

(Figure 1). Our method takes monocular video as input but is also flexible enough to support162

RGB-D datasets (such as the TUM data set [40] or RGB-D datasets captured on an iPhone4).163

3.1 Data Preparation164

In the first step, we estimate depth data, dynamic foreground object segmentation masks, and165

the camera parameters for each frame within the video sequence. This information is vital for166

subsequent computations that involve the static background and the dynamic foreground.167

3.1.1 Depth Map Estimation168

For depth map estimation, we use the DPT depth estimation model [41] on each of the RGB169

frames of the input video. We use the model weights that were fine-tuned on the NYU dataset170

[42] and produce depth values that roughly correspond to meters (the model outputs depth in171

the interval [0, 10]). We store a depth map for each video input frame for further processing.172

3.1.2 Segmentation Masks173

For the segmentation of the dynamic foreground, we compute instance segmentation masks for174

each frame of the video and derive binary masks for regions that are likely to contain dynamic175

foreground objects in the video. In our implementation, we limited the detection to people, as176

they are the most likely dynamic elements in our scenario. However, the instance segmentation177

can flexibly be extended to include any other dynamic element, such as cars, trains, or animals.178

We use Detectron2 for our implementation [43]. As a result, we get a segmentation mask for179

each video frame.180

3.1.3 Camera Pose Estimation181

We use COLMAP [44] to estimate the camera intrinsic and extrinsic parameters. Since running182

COLMAP on many frames (e.g., several hundred) can take several hours, we use a ‘frame183

step’ parameter to sample a subset of frames to lower the processing time and interpolate the184

missing poses. COLMAP works best with static scenes, so we use the segmentation masks185

from the previous step to exclude dynamic regions in the video to improve the estimated186

camera parameters.187

COLMAP pose data is subject to an unknown scale factor. This can lead to misalignment188

in the 3D reconstruction due to discrepancies in the scale of the depth maps and translation189

vectors of COLMAP poses (Figure 2). We calculate a scaling factor to harmonize the pose and190

depth data scale. The scaling factor, denoted by σ , is derived from the median ratio of nonzero191

4https://github.com/strayrobots/scanner
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(a) Sample Frame (b) Misaligned Frames (c) Aligned Mesh

Fig. 2: When the scale of the depth maps and the COLMAP poses do not match it can lead
to poor frame alignment (Figure 2b). Figure 2a shows one of the input frames and Figure 2c
shows the resulting mesh when the depth and pose scales are aligned

depth values in the dataset to nonzero depth values from COLMAP: 192

σ = median(
ddataset

dCOLMAP
). (1)

We use the depth values from all frames, but only from pixels that are nonzero in both depth 193

map sources. The depth values are divided element by element, and the median value is 194

calculated from the result. 195

This approach is inspired by Tucker and Snavely [20]. Similar to the work of Waidhofer 196

et al.[22], we use the median instead of the mean to make the scaling factor more robust to 197

outliers in the COLMAP depth maps. The scaled COLMAP poses are then defined as: 198

Rscaled = RCOLMAP (2)
tscaled = σ tCOLMAP (3)

where R denotes a rotation matrix and t a translation vector. 199

The scaling factor on its own only matches the scales of two depth map sources and does 200

not guarantee that pose data scaled with this scale factor will match, or be close to, real-world 201

measurements. It is only in conjunction with metric-scale depth maps that this approach can 202

recover metric-scale pose data from COLMAP. The requirement for metric-scale depth data is, 203

in part, what motivated our choice in depth estimation model. 204

3.2 Static Background Mesh Reconstruction 205

Reconstructing the static background of the video is a multi-step process. We adapt TSDF 206

Fusion [45], which is intended for combining pre-registered RGB and sensor depth video 207

data into a TSDF volume. In contrast to sensor data used in the original algorithm, our 208

estimated depth data is not geometrically consistent. To adjust for this inconsistency, we add 209

pre-processing steps to minimize visual artifacts from overlapping frames. 210

Simply using all frames, or uniformly sampling frames, often leads to blurry texture details 211

due to many overlapping frames and small errors in the estimated pose data. We add a frame 212
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sampling step that chooses the set of frames that mutually overlap no more than a given213

percentage threshold. We first uniformly sample one frame for every 30 frames to remove214

redundant frames that are not needed for background reconstruction. We then add the first215

frame as the first ‘key frame’. Then we iterate through the remaining frames and test for216

‘overlap’ by projecting points in the current frame onto the other key frames. We reject a frame217

if the points visible from a given key frame cover an area greater than the specified percentage218

threshold, i.e. we reject a frame if it does not add enough new information. Otherwise, we add219

the frame to the set of key frames and move onto the next frame. This frame sampling step220

greatly reduces the number of frames considered for background reconstruction and reduces221

blur artifacts.222

To exclude dynamic elements from the background mesh, we apply the results of our223

instance segmentation. Contrary to Newcombe et al. [46], which estimates voxel representation224

for the dynamic elements of a scene, we focus on the static background rather than the225

dynamic elements. We dilate instance segmentation masks to create an error margin, preventing226

dynamic foreground pixels from entering the background mesh. To fill the “holes” behind the227

dynamic foreground elements, we apply LaMa inpainting [47] for the RGB images and the228

Fast Marching Method inpainting method [48] for the depth maps to preserve the precision of229

the depth values.230

Each video frame is then integrated into the voxel volume observations using TSDF fusion.231

The voxel representation incorporates new observations from the RGB image, masked depth232

map, and camera pose per frame, all through a weighted average. The voxel’s signed distance233

field (SDF) and color are updated, adjusting the SDF value if the voxel is occupied or setting234

it if unoccupied. The voxel’s color and distance are updated by blending the previous and235

new observations based on the observation weight and the cumulative weights volume. The236

observation weight wO is, thereby, a scalar value used when adding a new observation (RGB-D237

frame) to control the influence of the new observation on the existing TSDF values (wO set to238

1.0 in our implementation).239

After integrating all frames, we generate a mesh using the marching cubes algorithm [49].240

The final step we perform is gamma correction for the vertex colors5. The mesh is saved as a241

textured triangle mesh file and compressed to reduce file sizes.242

3.3 Dynamic Mesh Reconstruction243

The next step is to compute a mesh representation for parts of the scene that change each frame.244

Our approach is based on the meshing technique from the paper “Soccer on Your Tabletop”245

[36] and creates a textured triangle mesh from an RGB frame, depth map, camera matrix,246

camera pose, and instance segmentation mask.247

We create a 3D point cloud by projecting the 2.5D points (2D image coordinates + depth)248

into 3D world coordinates by applying the depth, inverse camera matrix and inverse pose Tinv249

Tinv =
[
RT −RT t

]
to each 2D point p in the image:250

x = Tinv(dK−1p̂)

5We use the THREE library for our web render. THREE and the glTF loader automatically converts between linear RGB and sRGB,
but not for meshes that use vertex colors. Thus we need to do this conversion manually for the background.
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where: p is the 2D pixel coordinates (u,v) of a point in the current frame; p̂ is p as homogeneous 251

2D coordinates (u,v,1); x is p projected into 3D world coordinates; Tinv is the inverse camera 252

pose for which R is the rotation matrix and t the translation column vector; d is the depth at 253

the point p; and K is the camera intrinsic parameter matrix. 254

The mesh faces are created by running Delaunay triangulation on the 2D points within 255

the dynamic regions of a given frame. The mesh faces are filtered to eliminate stretched or 256

mislabeled faces. Specifically, faces are removed if any vertex’s 2D point is more than 2 pixels 257

away from the other vertices or if the depth difference exceeds 10 cm. We then apply two 258

further filtering techniques on the 3D data. First, we apply mesh decimation to reduce the 259

complexity of the mesh, then we use connected components analysis to identify the largest 260

cluster of vertices and discard all other clusters (floaters). 261

The next step is to map the texture and UV coordinates. We obtain the texture by cropping 262

the RGB frame to the extent of the 2D points (minimum and maximum coordinates along each 263

axis). The UV coordinates are then adjusted to be relative to the texture’s top-left corner. Once 264

all objects in the frame have been processed, the mesh data is merged into a single mesh object 265

per frame. 266

This process is repeated for each frame, taking the respective camera pose into account 267

and storing a frame index. This results in a continuous and coherent mesh representation of 268

the dynamic elements in the video, which are directly used in the final 3D video output. 269

3.4 Export and Rendering 270

Our main goal is to render an immersive 3D video in a VR headset. To achieve this, we need to 271

ensure the data format can store all relevant information and can be displayed on a VR headset 272

in real-time. 273

3.4.1 Data Format 274

To the best of our knowledge, there is no standard file format for 3D mesh videos. Therefore, 275

we opt to export the 3D video into a folder with three files: one for the foreground meshes, one 276

for the background mesh, and a metadata file. Leveraging the glTF file format, we consolidate 277

the foreground meshes of all frames into a single file, labeling each mesh with its frame 278

index to ensure accurate timing since not all frames may have dynamic elements. We use 279

Draco compression6 to reduce file size (Table 2) and load times. Applying Draco reduces the 280

average total file size by about 40% to 80 KB per frame, making the 3D video experience 281

more accessible to users. 282

3.4.2 VR Renderer 283

To render the videos, we developed a web-based application using WebXR for cross-platform 284

3D video rendering. Our solution supports basic playback controls and runs at 60 FPS on vari- 285

ous devices, including desktops, laptops, mobiles, and VR headsets. For effortless deployment, 286

we offer a Docker image that can be used on local or remote servers, along with a guide for 287

hosting the web app using GitHub Pages7. 288

6https://google.github.io/draco/
7https://github.com/AnthonyDickson/HIVE
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Table 2: Compression statistics (mean and standard devi-
ation) for 800 frames across all scenes and configurations
listed in Section 4.1. Note that not all frames have fore-
ground elements which is why the mean mesh (frame) count
is less than 800

Layer Meshes Time (s) Before
(MB)

After
(MB)

Compression
Ratio

Foreground 572.8 2.1 75.3 59.2 1.29:1
Background 1.0 5.9 34.0 3.3 10.14:1

In the video player, the dynamic meshes are stored in a dictionary keyed by the frame289

index. The frame index is then used to enable the correct dynamic mesh for each rendering290

frame. Since the background mesh is a single 3D mesh, it remains constant throughout.291

4 Technical Evaluation292

4.1 Experiment Setup293

4.1.1 RGB-D Datasets294

In our experiments on RGB-D datasets, we use four RGB-D sequences with ground truth295

depth and camera parameters. Two sequences, ‘walking xyz’ and ‘sitting xyz’, are from the296

TUM RGB-D dataset [40], all of which contain people moving around indoors with a camera297

being moved along the x, y, and z axes. The ‘garden’ and ‘small tree’ sequences were captured298

outdoors on an iPhone 12 Pro Max with the StrayScanner app and the built-in LiDAR scanner,299

each containing a single person with the camera either being held stationary or orbiting around300

them.301

We run Mono2VR with three configurations: ‘GT’, ‘CM’, and ‘EST’. The GT (Ground302

Truth) configuration utilizes ground truth data for both camera parameters and depth maps. The303

CM (COLMAP) configuration uses camera parameters estimated with COLMAP and ground304

truth depth maps. Lastly, the EST (Estimated) configuration makes use of camera parameters305

estimated with COLMAP and estimated depth maps (i.e., only uses the video frames as input).306

All sequences are truncated to 800 frames (about 13 seconds at 60 frames per second). We use307

a key frame threshold of 0.3 and a frame step for COLMAP of 15. All frame data is processed308

at a resolution of 640×480.309

4.1.2 HyperNeRF Dataset310

In our experiments on the HyperNeRF dataset [32], we process frames at 540×960 resolution.311

Due to how Mono2VR scales COLMAP pose data, the provided pose data cannot be used312

directly for validation. We run COLMAP on all video frames and scale the translation vectors313

with estimated depth as per Section 3.1.3. We then run Mono2VR on the training frame data314

and the scaled COLMAP poses from the training frames.315
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Input GT EST

Fig. 3: Sample of outputs from the Mono2VR system. The rows correspond to outputs from
our iPhone datasets ‘garden’ and ‘small tree’. The columns correspond to the reference image,
the reconstruction from ground truth sensor data (config = GT), and the reconstruction from
monocular video and estimated data (config = EST)

4.1.3 DyNeRF Dataset 316

In our experiments on the DyNeRF dataset [29], we process frames at 640x480. Since 317

Mono2VR expects the translation vectors to be in the same units as the depth maps (i.e., same 318

scale), we cannot use the provided pose data as-is since it is subject to an unknown scale. We 319

extract the first frame of each video feed, estimate the camera parameters with COLMAP, esti- 320

mate depth maps for the first frames, and apply our pose scaling approach from Section 3.1.3. 321

We use these scaled camera parameters for positioning the camera at the other camera feeds 322

(01-20) to evaluate Mono2VR on novel viewpoint synthesis. 323

4.2 Visual Quality 324

We computed sample outputs from each of the datasets to assess the visual quality (Figure 3). 325

Overall, the outputs from the EST configuration look the most similar to the input frames 326

when viewing from the reference (capture) viewpoint. In all examples, the colors across all 327

configurations differ subtly from the reference frame, most notably the grass in the garden 328

sequence and the leaves in the small tree sequence. This may be caused by color space 329

conversions from RGB to sRGB and vice versa by the renderer. The output from the EST 330

configuration tends to be more complete than the outputs using sensor data for the depth maps 331

(GT and CM). This can be explained by how both the TUM and StrayScanner datasets use 332

LiDAR scanners which have a limited range. This leads to distant parts of the scenes lacking 333

depth data, and this subsequently leads to holes in the background mesh. This is especially 334

noticeable for the examples from the TUM dataset. The depth data from the StrayScanner 335

datasets leads to skinnier foreground meshes. This could be possibly due to the low capture 336
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Fig. 4: Comparison of Mono2VR run on the ‘walking xyz’ sequence using ground truth depth
data with inpainting (left) and without inpainting (right). Inpainting on TUM sequences creates
floaters around object boundaries—note the areas around the two people in the scene and the
gray colored floaters.

Fig. 5: An example of depth maps from the sitting xyz sequence showing (Left) the ground
truth depth map and (Right) the inpainted depth map. Depth values are represented in grayscale
with zero as black and max depth (10 m) as white. The inpainted regions where the people
were shows how the inpainting algorithm smooths the depth between boundary areas with
non-zero values and the boundary areas with zero depth. This is what causes the floaters in the
TUM sequences when using inpainting.

resolution of the iPhone’s LiDAR scanner (256x192). Additionally, the GT and EST outputs337

for the TUM sequences have floaters present that seem to form at the edges of a single frame’s338

data and form a path towards the capture camera. These visual artifacts are introduced by339

inpainting the depth data, and disabling inpainting completely removes the floaters (Figure 4).340

These floaters are caused by the inpainting algorithm trying to inpaint the region that is341

bordered by zero and non-zero values. This leads to the inpainting algorithm interpolating a342

smooth gradient between the non-zero and zero values, which when projected in 3D gives us343

the floaters that form a path towards zero depth. This is evident when comparing the source344

and inpainted depth maps, such as in Figure 5.345
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(a) EST, Ref. View (b) EST, View A (c) EST, View B

(d) EST, Ref. View (e) EST, View A (f) EST, View B

Fig. 6: Sample of outputs from the Mono2VR system comparing reconstructions viewed from
the reference viewpoint (Ref. View) and novel viewpoints. The rows show outputs from the
‘walking xyz’ sequence and the ‘garden’ sequence. View A shows a small translational change
in viewpoint, and View B shows a large rotational view change

Figure 6 shows outputs from the GT and EST configurations and shows the difference 346

between the reference view and two novel viewpoints. The first novel viewpoint (View A) is a 347

translation approximately 10-30 centimeters to the left and the second viewpoint (View B) is a 348

rotation approximately 30°about the y-axis from the reference viewpoint orbiting the scene. 349

Both configurations handle View A reasonably well and introduce only a small amount of 350

visual artifacts. The TUM examples show the most artifacts after the translation as holes in 351

the background mesh become visible (most notably the office chair in the bottom left corner). 352

The StrayScanner example for the EST configuration shows distortion in the geometry of the 353

person akin to barrel distortion due to inaccuracies in the estimated depth data. 354

View B proves to be challenging for all configurations and datasets and introduces notice- 355

ably more visual artifacts than View A. Only the Kinect sensor of the TUM dataset seems to 356

produce accurate geometry for foreground elements such as people. The examples with the 357

garden sequence handle View B the best. There are no visible holes or tears in the background 358

mesh, unlike the TUM examples. In this case, we see that the background inpainting plausibly 359

fills the hole in the background mesh behind the person. Comparing the examples for the TUM 360

and garden sequences, the depth estimation model seems to better handle ‘flat’ scenes, scenes 361

where the background could be roughly modeled with planar surfaces at similar depths. Com- 362

pare the TUM sequence, which has multiple ‘layers’ (the desk, the divider behind the desk, 363

and the wall in the distance), to the garden scene which has close to one layer—the plants. 364

The visual artifacts seem to mostly be due to inaccurate depth estimation, so improvements in 365

monocular depth estimation will directly improve the outputs of Mono2VR. 366
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4.3 Scaling COLMAP Poses367

As shown previously in Figure 2, it is important to scale the COLMAP pose data to match368

the scale of the depth maps, otherwise the frames will not be correctly aligned. To show that369

our scaling method can indeed recover metric-scale pose data from COLMAP when using370

metric-scale depth maps and align frame data accurately, we evaluate pose error against the371

ground truth pose data provided in our experiment datasets. We use two configurations in372

the evaluations: CM and EST. The purpose of using the CM configuration is to show how373

accurate the scaled COLMAP poses are when using ground truth depth data—i.e., to evaluate374

the scaling method under ideal conditions. The purpose of using the EST configuration is to375

show the joint effect of our scaling method and estimated depth maps on the accuracy of the376

scaled COLMAP poses. If the error for the CM configuration is low, that would suggest that377

our approach to scaling COLMAP poses recovers accurate, metric-scale pose data. If the error378

for the EST configuration is similar to that of the CM configuration, that would suggest that the379

estimated depth maps from DPT can be used in place of ground truth depth maps to recover380

accurate, metric-scale pose data.381

We compare the scaled COLMAP pose data against the ground truth pose data with the382

Relative Pose Error (RPE) and Absolute Trajectory Error (ATE) metrics. We calculate the RPE383

for translation and rotation between adjacent frames:384

RPEr =

√
N−1

∑
i=1

̸ (RT
i+1Ri)T (R̂T

i+1R̂i)2 (4)

385

RPEt =

√
N−1

∑
i=1

||tran((P−1
i+1Pi)−1(P̂−1

i+1P̂i))||22 (5)

where: ̸ converts a rotation matrix to axis-angle representation and gets the rotation angle;386

and tran(...) extracts the translation vector from a pose. We calculate ATE in a similar way to387

the authors of [50], scaling the predicted trajectory to the ground truth trajectory:388

scale =
∑

N
i=1 Ti ⊙ T̂i

∑
N
i=1 T̂i ⊙ T̂i

(6)

where: Ti is the ith translation vector in the ground truth trajectory; T̂i is the ith translation389

vector in the estimated trajectory; and ⊙ denotes the element-wise product. The ATE metric is390

then calculated as:391

ATE =

√
N

∑
i=1

(Ti − scale× T̂i)2 (7)

Our results (Table 3) indicate that the depth data estimated with DPT [41] can be used to392

recover metric-scale pose data from COLMAP with comparable accuracy to that of the ground393

truth depth data. The pose data scaled with the estimated depth data compared to the pose394

data scaled with ground truth depth on average had: about the same rotational RPE (less than395

0.01°difference), 0.06 cm (21%) higher RPE and 0.08 cm (2%) lower ATE. The low error396

further suggests that the scaled COLMAP poses can accurately align the frame data.397
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Table 3: Comparison of the ground truth trajectory
and the trajectories from COLMAP scaled with ground
truth depth maps (Config = CM) and scaled with esti-
mated depth maps (Config = EST). For each metric,
lower is better.

Dataset Config RPEr (°) RPEt (cm) ATE (cm)

walking xyz CM 0.57 0.52 3.30
EST 0.57 0.60 2.50

sitting xyz CM 0.44 0.32 3.07
EST 0.44 0.41 3.66

garden CM 0.06 0.11 1.57
EST 0.06 0.15 1.56

small tree CM 0.10 0.16 4.84
EST 0.10 0.19 4.85

Mean
CM 0.29 0.28 3.22
EST 0.29 0.34 3.14
All 0.29 0.31 3.17

4.4 Mono2VR and NSFF 398

We compare Mono2VR against Neural Scene Flow Fields (NSFF) [8], a NeRF technique that 399

has been adapted for video. Both methods are similar in that they both work on monocular 400

RGB video and are restricted to camera movements that COLMAP can work with. NSFF 401

generally produces more complete and accurate renders than Mono2VR, but has disadvantages 402

when it comes to hardware requirements, compute time and interactivity. 403

Both methods can produce realistic renders from novel viewpoints close to the reference 404

viewpoint (Figure 7). The most notable visual artifacts in the Mono2VR output are the black 405

borders due a lack of mesh data and static reflections on the ground due to the use of a static 406

background mesh. 407

NSFF has hardware requirements that goes beyond the typical computer, beyond even 408

enthusiast computers that have dedicated graphics hardware. We were unable to independently 409

verify the VRAM usage of NSFF since we were unable to run it on our own hardware. 410

However, based on the information from the paper and the official code repository, we estimate 411

VRAM usage to be between 32-64 GB for a 75 clip processed at a resolution of 512x288. 412

In comparison, Mono2VR uses about 4 GB when processing the same clip at a resolution 413

of 640x360. Just the memory usage alone greatly restricts access to NSFF. When looking at 414

the Steam Hardware and Software Survey: December 20238, we find that 53% of enthusiast 415

computers have a graphics card capable of running Mono2VR (GTX 1060 6 GB equivalent or 416

better) and no more than 10% of enthusiast computers could potentially run NSFF (RTX 2080 417

Ti 11 GB equivalent or better). We say ‘potentially’ because generally consumer PCs only have 418

one GPU, whereas NSFF requires at least two GPUs with 16 GB or more VRAM9, or 4 GPUs 419

with 11 GB or more VRAM. These issues with high VRAM usage and subsequent hardware 420

8https://store.steampowered.com/hwsurvey/videocard/, accessed 30 Jan, 2024
9only 3.3% of PCs in the survey had at least one GPU with 16 GB or more of VRAM.
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(a) NSFF, View A (b) NSFF, View B

(c) Mono2VR, View A (d) Mono2VR, View B

Fig. 7: A comparison of novel viewpoints rendered with NSFF and Mono2VR from frame
10 of the kid running sequence. The black pixels in the Mono2VR samples are due to no
mesh data. For NSFF, we chose frames from the example GIF (https://github.com/zhengqili/
Neural-Scene-Flow-Fields/blob/main/demo/sti.gif) and chose the pair of frames that are
approximately the most distant. A live demo of Mono2VR’s 3D video for the kid running
sequence is available at https://anthonydickson.github.io/HIVE Renderer

requirements of NSFF are only exacerbated when the video length is increased beyond the one421

second (75 frames) in this example clip. The amount of video that the underlying MLP model422

can accurately represent is restricted by its size, but increasing the size of the MLP model423

increases the memory usage rapidly due its non-linear scaling. This makes it increasingly424

difficult to apply NSFF to longer video clips. In contrast, the hardware requirements for425

Mono2VR are fixed regardless of the length of the input video.426

The computational complexity of NSFF results in long compute times even for short clips.427

For the ‘kid running’ clip of 75 frames, the author reported that it took about 2 days to train.428

In contrast, Mono2VR does not require any test-time training and processes the same clip429

in about two and half minutes. The compute time of NSFF is affected by video length in a430

similar way to memory usage, as the size of the MLP increases the compute time will likely431

increase non-linearly. Mono2VR scales linearly, except for camera parameter estimation with432

COLMAP, which appears to scale non-linearly.433

The high per-frame processing times of NSFF present a barrier to usage in interactive434

applications, especially VR. It takes 6 seconds for NSFF to render a single frame at a resolution435

of 512x288. 60 frames per second (0.016 seconds per frame) is the ideal minimum frame rate436

for interactive applications for smooth movement/animation and keeping camera movement437
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in sync with head movements in VR. It is especially important to maintain this minimum 438

frame rate in VR to avoid causing or worsening motion sickness [51]. When tested on the ‘kid 439

running’ sequence, Mono2VR processed the video at a resolution of 640x360 and rendered 440

the mesh video at up to 120 frames per second (0.008 seconds per frame) across a range of 441

devices (desktop PC w/ RTX 3080, M1 MacBook Pro, and iPhone 13 Pro). 442

Overall, NSFF produces the highest quality synthesized novel-viewpoint, however it 443

requires expensive hardware, takes a long time to run, and slow render times make it unsuitable 444

for interactive applications. Mono2VR can run on consumer hardware in a relatively short 445

amount of time, and owing to the choice of triangle meshes as the 3D model representation 446

renders at interactive frame rates. 447

4.5 Evaluation on HyperNeRF 448

Table 4: Quantitative comparisons on the HyperNeRF dataset [32]. Reported figures for
Mono2VR and 4D-GS are from experiments run by us; figures for other methods are from
respective publications. Hardware access for Mono2VR and 4D-GS is calculated from observed
VRAM usage; for others, from reported hardware. Processing times for Mono2VR and 4D-
GS include time for COLMAP. †Excludes regions with no data in the rendered frame from
Mono2VR. *Performance and hardware requirements are as reported in [8], image metrics in
[32]. **HyperNeRF VRAM is VRAM usage per TPU multiplied by number of TPUs.

Sequence Time Frames Per
Minute

Render
FPS

Storage
(MB)

VRAM
(GB) GPU Hardware

Access MS-SSIM PSNR LPIPS

Mono2VR (Ours) 14m 19 60+ 35 4.1 1x RTX 3080 (10 GB) 53% .315 9.5 .668
Mono2VR (Ours)† .578 16.5 .367

NSFF [8]* 48h00m 0.04 0.16 - 32 2x Tesla V100 (16 GB) ≤ 10% .917 23.2 .174
HyperNeRF [32]** 8h00m 0.14 - - 128 4x TPU v4 (32 GB) < 1% .811 22.2 .153
NeRFPlayer [33] 5h30m 0.9 - - 48 1x RTX A6000 (48 GB) < 1% - 30.3 -
TiNeuVox-S [34] 10m 27 - - 24 1x RTX 3090 (24 GB) 1.5% .813 23.4 -
4D-GS [9] 1h07m 4.0 14 34 4.3 1x RTX 3080 (10 GB) 53% .865 25.8 .323

We evaluate Mono2VR on the HyperNeRF dataset [32] and compare our approach to 449

NSFF [8], HyperNeRF [32], NeRFPlayer [33], TiNeuVox-S [34] and 4D-GS [9] with regards 450

to performance, hardware requirements, and visual quality (Table 4). Sample outputs from 451

Mono2VR as shown in Figure 8. 452

One issue with Mono2VR and the key frame sampling approach is that it typically only 453

uses one frame for reconstructing the background mesh, leading to regions with no data (e.g., 454

Figure 8, bottom row). We additionally report the image similarity metrics after excluding 455

regions in the rendered frame that have no mesh data to evaluate the quality of the present 456

mesh data. 457

The HyperNeRF dataset proves challenging for Mono2VR and highlights the limitations 458

of our approach to instance segmentation. The HyperNeRF dataset contains a scene where the 459

only moving object is not a person (the 3D Printer sequence) and the sequences have people 460

only partially in frame handling an inanimate object. Mono2VR is designed for scenes focused 461

on people and only people are considered for inclusion in the dynamic reconstruction. The 462

dynamic elements in these sequences are therefore ignored by Mono2VR. 463
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GT 4D-GS Mono2VR GT 4D-GS Mono2VR

Fig. 8: A comparison of 4D-GS and Mono2VR on the HyperNeRF dataset. The top row show
the results from frame one and the bottom row show the results for frame five

It is important to mention that the more recently proposed Gaussian splatting method 4D-464

GS [9] has lower computational requirements compared to the NeRF-based methods for view465

synthesis, but our Mono2VR retains an advantage in processing time and render frame rates466

and is about four times faster than 4D-GS. The biggest challenge in using 4D-GS for interactive467

applications, and especially immersive VR applications, is its low render framerate of about468

14 FPS on the HyperNeRF dataset using our experimental setup (RTX 3080). On the DyNeRF469

dataset [29], 4D-GS rendered at around 18 FPS. These frame rates are for monocular rendering,470

and would likely be substantially lower for stereo rendering in VR. In comparison, Mono2VR471

(M2VR) renders at a steady 60 FPS on typical displays and at 120 FPS on high refresh rate472

displays even on mobile devices, largely owing to our use of standard 3D mesh formats.473

Perhaps converting the 4D-GS outputs into our mesh format, similar to [52], could combine474

the high visual quality of 4D-GS and the fast rendering of Mono2VR. Recent work such as475

MoDGS [53] looks promising for achieving 60+ FPS rendering with Gaussian Splatting.476

4.6 Ablation Study477

We evaluate Mono2VR on the DyNeRF dataset [29] to see how components of Mono2VR478

affect the outputs.479

Multicam uses the scaled multi-camera pose data from the above process along with the480

video from the test video (cam00). This gives us a baseline to compare the other configurations481

against. Monocular only uses the test video and uses the Kinect sensor intrinsic matrix10 as482

10Using a simple pinhole camera model, the Kinect intrinsic parameters we use are: fx=fy=580, cx=319.5, cy=239.5.
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an estimate. This gives us an idea on how Mono2VR performs with solely monocular data. 483

BundleFusion shows how BundleFusion [54], a TSDF RGB-D fusion method that builds upon 484

KinectFusion [27], compares to TSDF Fusion with scaled COLMAP poses for reconstructing 485

the background mesh from estimated depth data. Compression follows the same configuration 486

as Monocular, however the mesh data is compressed with Draco and uncompressed before 487

rendering. This shows how much compression affects the quality of the outputs. No CC 488

Analysis follows the same configuration as Monocular, however the Connected Components 489

(CC) analysis filtering is disabled (this affects the foreground mesh data). No Inpainting 490

follows the same configuration as Monocular, however the mesh data is created without 491

inpainting the holes in the background. 492

Due to Mono2VR only using a single video feed to reconstruct the scene, there are 493

unobserved regions of scene Mono2VR cannot possibly reconstruct that are visible from the 494

other camera feeds (01-20). We also include the image similarity metrics calculated only on 495

the regions that Mono2VR observed to give an idea of the quality of the reconstructed mesh 496

data without considering the regions with no corresponding input data. To create the masked 497

image, we mask the input video frames by painting white the regions that correspond to the 498

regions in the rendered frame that are missing mesh data (RGB = [255,255,255]). Note the 499

difference between results for the non-masked and masked images for the cameras 01-20. This 500

shows the impact of unobserved regions on the scores of novel viewpoints. 501

The results in Table 5 show the relative gain/loss in render quality between each configura- 502

tion. Overall, the biggest changes are observed when changing the background reconstruction 503

algorithm to BundleFusion and when removing background inpainting (Figure 9). We initially 504

considered using BundleFusion for background reconstruction but found it was not suitable 505

for use with estimated depth data. We observe that BundleFusion results in blurrier textures 506

and gaps in the background mesh. Removing background inpainting has a large impact on 507

visual quality. Although, this is likely due to our aggressive mask dilation creating a larger 508

than necessary borders around foreground elements. We note that removing the connected 509

components analysis filtering and adding compression have a neglible impact on visual quality. 510

The connected components analysis filtering is most effective when background is confused 511

for foreground, which does not seem to happen much with this dataset. 512

5 User Evaluation 513

We conducted a user study to evaluate the user experience and visual quality of Mono2VR. 514

As there are currently limited options available for rendering videos in VR, we compared our 515

method to a 2D video rendered in VR as well as 3D videos created with ground truth depth. 516

This study has received ethical approval from the University of Otago’s ethics committee and 517

followed health and safety precautions such as providing hand sanitizers and using disposable 518

VR Covers for the headsets. 519

5.1 Study Design and Apparatus 520

We designed a within-subject user study to explore the use of 2D and 3D videos in more detail. 521

The videos used in the study capture a variety of scenes, including outdoor and indoor scenes 522

with varying depths. All videos have one human subject performing different actions. The 523

starting location of each video is manually calibrated to the “sweet spot” for minimal distortion 524
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Table 5: Ablation study on render quality. Mono2VR is run on camera feed 00 and camera feeds
01-20 are used for novel viewpoint synthesis. See Section 4.6 for details on the configurations.
†Excludes empty regions

Config Camera Feed SSIM PSNR LPIPS

Multicam
00 .848 26.0 .163
01-20 .453 9.4 .476
01-20† .628 18.8 .208

Monocular (Ours)
00 .860 25.9 .188
01-20 .370 8.3 .619
01-20† .588 16.4 .304

BundleFusion
00 .658 16.1 .335
01-20 .391 8.1 .627
01-20† .623 16.9 .308

Compression
00 .860 25.9 .188
01-20 .370 8.3 .619
01-20† .588 16.4 .304

No CC Analysis
00 .862 26.0 .191
01-20 .370 8.3 .619
01-20† .588 16.4 .303

No Inpainting
00 .843 18.5 .220
01-20 .369 8.0 .629
01-20† .614 16.5 .283

Input (cam06) Monocular No Inpainting BundleFusion

Fig. 9: Example outputs from the ablation study of Mono2VR run on the DyNeRF dataset
[29]. We show the input frames, the outputs from our method, Mono2VR (Monocular),
and the configurations that show the largest change in visual quality, ‘No Inpainting’ and
‘BundleFusion’

20



Fig. 10: Scene used for the first part of the user study. (Left) 2D-Video, (Center) 3D-GT,
(Right) 3D-EST.

when viewing from novel viewpoints. The study had two parts, the first part compared the user 525

experience and presence between 2D video (2D-Video), 3D ground truth depth video (3D-GT), 526

and 3D estimated depth (3D-EST) video. The second part compares the visual quality between 527

just 3D-GT and the 3D-EST. We used 2D videos as a baseline since these are the standard 528

way of watching videos in VR (e.g. YouTube VR). We decided against using RGB-D and 529

MPI videos because they induced motion sickness in preliminary tests and would not create a 530

pleasant experience for users. Instead, we decided to use 3D ground truth videos as a baseline 531

since they they use sensor input for depth and would provide more insights. 532

The task for the participants was to explore the videos. The first part of the study used the 533

same video (Figure 10) for all three conditions (2D-Video, 3D-GT, 3D-EST). The order of 534

the conditions was randomized using Latin Square to minimize the influence of learning and 535

order effects. The videos were viewed in the Firefox web browser through the VR headset 536

and Oculus Link Desktop. The second part of the study uses 3 sets of videos (Figure 11), and 537

video and condition order were also randomized. The two conditions (3D-GT and 3D-EST) 538

for the same video are shown successively for better comparison. 539

We hosted the videos locally on a desktop with an i9 processor, 64GB of RAM and an 540

NVIDIA Quadro RTX5000 graphics card. A Meta Quest 2 with a disposable VR Cover was 541

connected via the Link Cable to the desktop workstation. Participants were asked to sit on a 542

swivel chair in which they could rotate themselves and look around. All questionnaires were 543

done on paper by the participant, except for the questions in part 2 where the study instructor 544

wrote down the participant’s verbal answers. 545

5.2 Participants 546

We recruited 24 participants to balance the Latin Square randomization for the user study 547

conditions. Participants were recruited from the University of Otago through advertisements 548

and word of mouth, and were only required to be between 18-65 years old. In total, 24 549

participants (15 male, 8 female, and 1 Other) aged between 18 and 34 (x̄ = 22.04, σ = 4.50) 550

participated in our study. Among them, 18 participants knew what of VR and had prior 551

experience, while 5 participants had heard of it but had no experience. One participant was 552

new to the term VR. 553

5.3 Procedures 554

Upon arrival, participants were provided with an information sheet detailing the objectives, 555

procedures, and expectations of the study. They were given time to review the information 556
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Fig. 11: Scenes used for the second part of the user study. (Left) Input video, (Middle) 3D
Video created with Ground Truth data (RGB-D + poses captured with StrayScanner app),
(Right) 3D Video created from video input only.

sheet and invited to fill in a consent form to confirm their voluntary participation. Additionally,557

they were asked to complete a demographic questionnaire, which collected information on558

their age, gender, vision status, and any relevant experience with VR.559

5.3.1 Briefing560

After completing the initial paperwork, participants were briefed on the structure and flow561

of the user study. We explained the study goals and gave an overview of the two parts of the562

study. Throughout the briefing, participants were encouraged to ask questions and clarify any563

aspects of the study they found unclear. The user study began when the participant was ready564

and had no further questions.565

5.3.2 Part 1: User Experience and Presence566

Participants first put on the VR headset and adjusted for a good fit to ensure they could see567

clearly. If they still had trouble seeing clearly, the interpupillary distance (IPD) was changed.568

Participants were then presented with the first video. They were given ample time to watch the569

video, which looped upon completion, allowing them to experience the condition for as long570

as they felt necessary.571

When participants were finished viewing the video, they removed the VR headset and com-572

pleted the User Experience Questionnaire (UEQ) [55] and the Igroup Presence Questionnaire573

(IPQ) [56]. These questionnaires aimed to capture their impressions of the user experience574
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and their sense of presence in the virtual environment for each condition. After completing 575

the questionnaires for the first condition, participants moved on to the next condition, follow- 576

ing the same procedure of putting on the VR headset, watching the video, and filling out the 577

questionnaires. This process was repeated for all three conditions in part one of the study. 578

5.3.3 Part 2: Depth Perception and Visual Quality 579

Participants kept their VR headset on for the entire duration of this part of the study. The 580

focus of this part was to evaluate the depth perception and visual quality of the videos, and the 581

participants were guided through a series of prompts for each video. They were asked to rate 582

the depth perception, visual quality, and presence of visual artifacts in the video using a 7-point 583

scale, with 1 representing very low and 7 representing very high. To begin, the first condition 584

of the randomized video was played. After the participant viewed and assessed the video, they 585

answered the three prompts in sequence. This is repeated for the second condition of the same 586

video. The same procedure was followed for the remaining two videos in part two of the study. 587

5.3.4 Debriefing 588

Once the second part of the study was completed, participants filled in a questionnaire. This 589

questionnaire asked about their preferences and opinions about using 2D and 3D videos for 590

reliving past memories, and under what circumstances they might choose one format over the 591

other. Additionally, participants were asked if they would recommend such an experience to 592

their friends and family. Participants were encouraged to provide any further feedback they 593

had regarding the overall study. 594

5.4 Results 595

We analyzed the results using R and Excel following the instructions for each of the used 596

questionnaires. We performed the Shapiro-Wilk normality test and where appropriate used 597

repeated measure ANOVA and t-tests or Friedman and Wilcoxon. 598

5.4.1 UEQ 599

For most UEQ ratings, the scores for all three conditions were in a neutral range (scores for 600

efficiency, novelty and stimulation being in the range of -0.8− 0.8). The 2D video format 601

received lower scores in the Stimulation (-0.323) and Novelty categories (-0.715) compared 602

to the 3D-GT condition (0.48 (S) and 0.72 (N) and the 3D-EST condition (0.634 (S) and 603

0.75 (N)). This was anticipated, given that 2D videos are a common and less engaging format 604

compared to 3D videos. 605

The 2D video format showed higher scores than the other video types in the areas of 606

perspicuity (1.719 (2D-Video), 1.15 (3D-GT), 1.524 (3D-EST)) and dependability (1.01 (2D- 607

Video), 0.55 (3D-GT), 0.85 (3D-EST)). For perspicuity, all conditions are in the range of 608

a positive evaluation (> 0.8 [55]), and for dependability both 2D video and 3D-EST are 609

within the positive range. Overall, the scores could be attributed to the fact that 2D videos are 610

currently the most widely used and familiar format, making them easier to understand and 611

more reliable for users. Overall, we only found significant differences between the 2D video 612
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Fig. 12: Comparison of the overall IPQ scores of the 2D-Video, the 3D Ground Truth Depth
(3D-GT) and 3D Estimated Depth (3D-EST) conditions.

Fig. 13: Comparison of the IPQ scores of the 2D-Video, 3D Ground Truth Depth (3D-GT) and
3D Estimated Depth (3D-EST).

condition and the 3D video conditions for novelty (2D-Video-3D-GT: p=0.029, 2D-Video-3D-613

EST p=0.0113) and stimulation (2D-Video-3D-GT: p=0.0001, 2D-Video-3D-EST p=0.0002)614

with measurable lower scores for the 2D video.615

5.4.2 Presence616

We employed the Immersive Presence Questionnaire (IPQ) to analyze presence [56]. The617

dependent variable was the IPQ score. The independent variable was represented by the618

VRVideo method 2D-Video, 3D-GT, and 3D-EST. We computed the overall IPQ presence619

score [56–58] (Figure 12), along with the IPQ subscale scores. In accordance with the IPQ620

data analysis guidelines11, we transformed the IPQ scales to span a range of 0 to 6.621

Descriptive statistics reveal that the 2D-Video method (mean = 2.61, std =1.02, median =622

2.46) and 3D-GT method (mean = 2.83, std =0.85, median = 2.75) exhibit similar medians for623

the overall presence score, while the median for 3D-EST is higher (mean = 3.01, std = 1.1,624

median = 3.29). We applied a Shapiro Wilk test and a p-value = 0.343 indicates that we can625

assume normality. Using repeated measures ANOVA, we identified a statistically significant626

difference in the IPQ scores depending on the method, F = 3.602, p = 0.0352. The result is627

11http://www.igroup.org/pq/ipq/data.php
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significant at p < .05. We then performed a t-test (with Holm correction) for post-hoc analysis, 628

which indicated no significant differences between the conditions (Table 6). 629

Table 6: Overall Presence: p values t-test.
2D-Video 3D-GT

3D-GT 0.33 -
3D-EST 0.15 0.33

Cohen’s d indicates small effect sizes (2D-Video-3D-GT d = 0.206 (small), 2D-Video-3D- 630

EST d = 0.402 (small), and 3D-GT-3D-EST d = 0.281 (small)). 631

We also analyzed the IPQ subscales (General presence (G), Spatial presence (SP), Involve- 632

ment (INV), and Realism (REAL)) for a more detailed analysis (Figure 13). For Spatial 633

Presence, the Shapiro-Wilk (SW) normality test indicated normal distribution ( p=0.5033), 634

so we used a repeated measure ANOVA. We found a significant effect of the video method 635

for Spatial Presence (SP) (F(2, 46) = 3.452, p = 0.0401) and further analyzed the data with a 636

t-test (Holm). The analysis showed that there is a significant difference between the 2D-Video 637

condition and 3D-EST (Table 7). 638

Cohen’s d displays small to moderate effect sizes (2D-Video-3D-GT d = 0.388 (small), 2D- 639

Video-3D-EST d = 0.627 (moderate), and 3D-GT-3D-EST d = 0.314 (small)). We did not find a 640

significant effect of video type on G (Friedman p = 0.70, SW p=0.0026), nor on SP (p = 0.137), 641

nor on INV (Friedman p-value = 0.461, SW p=0.0405), nor on REAL (Friedman p = 0.102, 642

SW p = 0.011 ). The results indicate that there is an overall effect on presence and that there is 643

a significant increase in spatial presence (SP) between 2D-Video and our 3D-EST method. 644

5.4.3 Depth Perception and Visual Quality 645

Depth perception was generally high across both 3D-GT and 3D-EST conditions (Figure 646

14, 3D-GT: m=4.82, std=0.98, 3D-EST: m=5, std=1.13). Interestingly, we could not find a 647

significant difference between the 3D-EST condition, which relied on estimated depth, and the 648

3D-GT condition which utilized LiDAR sensor data from the iPhone 13 Pro (t-test: p=0.25). 649

This suggests that the depth estimation techniques used in the 3D-EST condition created 650

convincing depth perception for the participants. 651

Additionally, the visual quality of the 3D-EST (m=3.18, std= 1.29) condition was rated 652

better than the 3D-GT condition (m=3.58, std= 1.16, t-test p=0.029) which might be due to 653

the smoother estimated depth data. We did not find any significant differences in the number 654

of artifacts, but both conditions showed more than the average amount of artifacts (3D-GT: 655

m=4.53 std=1.01, 3D-EST: m=4.29, std=1.02, t-test: p=0.13). The visual quality of 3D videos 656

has room for improvement as the general rating was around midpoint (3.5). 657

Table 7: Spatial presence (SP): p values t-test.
2D-Video 3D-GT

3D-GT 0.14 -
3D-EST 0.016∗ 0.14
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Fig. 14: Depth perception, visual quality and amount of artefacts of 3D-GT and 3D-EST.

When participants were asked if they would prefer the 2D video or 3D video, 18 of the658

24 participants preferred the 3D video (75%). Participants also rated an average of 4.96 out659

of 7 when asked if they would recommend such 3D video. The results show that participants660

have a positive experience with 3D videos. However, it is important to mention that 50% of661

the participants mentioned video quality as a factor to be improved.662

5.5 Discussion663

Overall, the study showcased the potential of 3D videos as a viable medium for reliving past664

memories, with most participants expressing their acceptance of this presentation format. The665

advantages of 3D videos, such as enhanced spatial presence and improved visual quality, make666

the experience more immersive. However, the study also highlighted certain challenges, such667

as the presence of visual artifacts and visual quality, which could impact the user experience.668

5.5.1 Depth Perception669

The 3D videos contributed to an above-average rating of the depth perception, which in turn670

potentially led to a heightened sense of spatial presence for the viewers. Participants, including671

P4, P9, P11, P13, P21, and P23, reported feeling as if they were ”being there” or ”in the672

moment” while watching both the 3D videos. It is important to note that the 3D-GT condition673

did not render pixels beyond the range of the LiDAR sensor. The 3D-EST condition on the674

other hand renders every pixel, creating a more complete scene, which might have contributed675

to a slightly improved depth perception.676

5.5.2 Visual Quality677

The results reveal that 3D videos enhance spatial presence but also highlight a need for678

improvement in the quality of the 3D videos, as highlighted by 50% of the participants.679

Participants P14, P16, and P17 commented on the artifacts they encountered along the edges of680

the subject, such as ”shakiness” or a ”saw-tooth effect.” These visual artifacts can be attributed681

to the discrepancy between the user’s viewpoint and the original camera position where the682

video was captured. The distortion they perceive becomes more pronounced as the user moves683

their head further from the camera’s original position. This is an inherent challenge when684

generating 3D videos from monocular input. The background mesh of the video could also685
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be improved. Due to the fusion of images, the visual quality is not as clear as the 2D video, 686

which P14 and P17 mentioned. P10 also mentioned that they wanted a full 360°experience. 687

However, this is not possible with monocular video. 688

5.6 Limitations 689

While our user study indicates some promising results, there are a few limitations that need to 690

be considered. 691

The user study used an old version of Mono2VR, hence why there is an observable 692

difference in the quality of the outputs in this section (Figure 10, Figure 11) and the previous 693

section (Figure 3). The difference between these sample outputs is due to the following three 694

changes. Firstly, the old version did not perform gamma correction, leading to incorrect colors. 695

Secondly, the old version uniformly sampled frames for the background reconstruction, often 696

leading to blurry textures. Thirdly, the old version used sub-optimal settings for the TSDF step, 697

leading to background meshes that lacked detail and blurry textures. 698

One of the limitations is the relatively low resolution of the LiDAR sensor used for 699

capturing depth information. The limited resolution may result in less accurate depth maps, 700

which can impact the overall visual quality of the 3D-GT videos. This is particularly obvious 701

for the detection of the subject in the video. The edges of the human subject in the 3D-GT 702

videos are often pixelated. This could be improved by smoothing the edges to provide a similar 703

experience to the 3D-EST videos where every pixel is used for depth estimation and results in 704

smoother boundaries. Despite there being higher resolution LiDAR scanners available, our 705

target is to use consumer hardware that is widely available and suitable for casual video capture. 706

Another limitation in our study is that the 3D videos have a “sweet spot” around the 707

camera’s position during video capture. Deviation from this position results in visual distortions 708

and artifacts. We limited the impact of this by placing participants in a swivel chair. 709

Lastly, the quality of the captured videos and the complexity of the background scenes can 710

also affect the performance of the 3D video generation pipeline. Complex background scenes 711

can pose challenges for the depth estimation and reconstruction algorithms, leading to less 712

accurate 3D video generation. A good example was the moving leaves in our courtyard video, 713

which made the leaves’ texture appear blurry. In addition, the video capture must have enough 714

movement so that it works as input for the SfM methods. This requirement could be addressed 715

by using a spherical SfM approach [59, 60]. 716

In the study, we occasionally experienced an Oculus Link bug where videos were not 717

loaded initially (the screen in the headset showed an hourglass symbol) until the user removed 718

the headset and put it back on again. As this did not happen during the trials but just while 719

starting a trial, we are confident that this was not a confounding factor. 720

6 Conclusion and Future Work 721

In this work, we presented Mono2VR, a pipeline for creating and exploring immersive 3D 722

video experiences from a monocular video. Mono2VR automatically handles the estimation 723

of the camera parameters, depth maps, 3D reconstruction of dynamic foreground and static 724

background elements on consumer hardware within a reasonable time frame. We showed 725

that with our pipeline, we are able to render VR videos on computers or VR headsets with 726

interactive framerates, providing an immersive and engaging experience for users. 727
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Through our technical evaluation, we demonstrated the key advantages of Mono2VR rel-728

ative to NeRF and 3D-GS methods. Mono2VR can run on a greater proportion of existing729

computers with consumer hardware, is significantly faster to run, achieves significantly higher730

framerates, and provides direct support for VR rendering. Our user study served as an eval-731

uation of the technology, identifying its strengths and areas requiring further improvement.732

Participants provided valuable feedback on aspects such as depth perception, visual quality,733

and presence, indicating the potential of our pipeline in delivering an engaging and immersive734

experience. Nevertheless, the study also revealed limitations, such as visual artifacts and the735

need for higher-quality output.736

The insights from the user study and technical evaluations will help guide our future work,737

as we continue refining the pipeline in iterations and addressing identified shortcomings. The738

main areas we consider for future work are as follows. A more general approach to separating739

foreground and background is needed to improve the reconstruction quality on scenes where740

dynamic elements other than just people, perhaps using optical flow, and will help improve the741

outputs for datasets like HyperNeRF [32]. Handling effects such as shadows and reflections742

would also help improve the visual quality. The accuracy of single image depth estimation743

models leads to inaccurate geometry and inconsistencies between frames. Therefore, depth744

estimation models that can leverage video data should be investigated. There is also a need for745

reducing the compute time for depth estimation models; the model we use [41] takes up close746

to a third of the runtime of Mono2VR.747

Overall, Mono2VR opens new areas of research targeting novel ways of replaying, editing748

and interacting with VR videos. We hope that our open source software framework will support749

future research in this direction.750
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