

Comparative genomics and transcriptomics of the *Spiroplasma glossinidiae* strain sGff reveal insights into host interaction and trypanosome resistance in *Glossina fuscipes fuscipes*

Daniel J. Bruzzese<sup>1\*</sup>, Fabian Gstöttenmayer<sup>1,2\*</sup>, Brian L. Weiss<sup>1</sup>, Hager Khalil<sup>2</sup>, Robert Mach<sup>3</sup>  
Adly M.M Abd-Alla<sup>2</sup>, and Serap Aksoy<sup>1</sup>

<sup>1</sup>*Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States*

<sup>2</sup>*Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria*

<sup>3</sup>*Institute of Chemical, Environmental, and Bioscience Engineering, Vienna University of Technology, Gumpendorfer Straße 1a, 1060 Vienna, Austria.*

\* equally contributing first authors

Corresponding authors:

Daniel J. Bruzzese; email: [daniel.bruzzese@yale.edu](mailto:daniel.bruzzese@yale.edu)

Fabian Gstöttenmayer; email: [fabian.gstoettenmayer@yale.edu](mailto:fabian.gstoettenmayer@yale.edu)

## **Supplementary Document 1**

## Supplementary Document 1: detailed protocol

Adapted from Masson, F., Calderon Copete, S., Schüpfer, F., Garcia-Arraez, G., Lemaitre, B., 2018. *In Vitro* Culture of the Insect Endosymbiont *Spiroplasma poulsonii* Highlights Bacterial Genes Involved in Host-Symbiont Interaction. *mBio* 9, e00024-18.

<https://doi.org/10.1128/mBio.00024-18>

### Preparation of fly extract

- Collect 6 g flies (*Gff*) aged 10-24 days, starved for 2 days
- Crush with sterile mortar and pestle in BSK-H, 30 ml per 6 g flies
- Incubate 20 min at 56 °C, let cool to room temperature
- Centrifuge 15' at 4000 rpm
- Centrifuge 15' at 13200 rpm
- Filter at 0.45 µM
- Filter at 0.22 µM
- Aliquot and store at -20 °C

### Components of lipid mix

|                                                        |        |
|--------------------------------------------------------|--------|
| Cholesterol                                            | 10 mg  |
| Palmitic acid                                          | 5 mg   |
| Sphingomyelin                                          | 10 mg  |
| Ethanol absolute warmed to 30 °C                       | 1.8 mL |
| 1-Palmitoyl-2-oleoyl-sn-glycerol (10 mg/ml in Ethanol) | 100 µl |
| 1,2-dioleoyl-sn-glycerol (20 mg/ml in Ethanol)         | 100 µl |
| Tween 40                                               | 50 µl  |
| Tween 80                                               | 50 µl  |
| Oleic acid                                             | 5.6 µl |

Prepare 6% BSA stock (fatty acid free) and mix 19.6 mL BSA 6% + 400 µl lipids

### BSK-H preculture medium: 33.6 mL

|                                             |        |
|---------------------------------------------|--------|
| BSK-H medium without L-glutamine (Bio&Sell) | 32 mL  |
| Fly extract in BSK-H                        | 1.6 mL |

### BSK-H-spiro medium: 50 mL

|                                             |          |
|---------------------------------------------|----------|
| BSK-H medium without L-glutamine (Bio&Sell) | 39.25 mL |
| Penicillin                                  | 0.25 mL  |
| Arginine                                    | 1.25 mL  |
| Rabbit Serum                                | 3 mL     |
| Fly extract in BSK-H                        | 3.75 mL  |
| Lipids mix                                  | 2.5 mL   |

Adjust pH to 7.5 and filter at 0.22 µm. Store at 4 °C for up to 1 week.

Protocol: Initiation of sGff in vitro culture

Establishment of the sGff *in vitro* culture followed the protocol of [1], developed and optimized for the cultivation of *Spiroplasma poulonii* MSRO. This protocol is based on Barbour-Stoenner-Kelly H (BSK-H) media without L-Glutamine (Bio&Sell, Germany), originally designed for *Borrelia burgdorferi*. The method comprises of a precultivation step in BSK-H with fly extract before inoculation in complete BSK-H-spiro media supplemented with rabbit serum, fly extract, lipids, antibiotics and amino acids. Culture inoculation and maintenance steps were all performed under sterile conditions.

The *Spiroplasma*-infected *Gff* line used for the initiation of the preculture was selected for high *Spiroplasma* infection prevalence, as described in [2]. Hemolymph was extracted from 10 females and 10 males aged seven to 21 days by surface-sterilization, removal of one prothoracic leg and aspiration of the exposed hemolymph droplet using a 10  $\mu$ l pipette tip. Precultures were initiated in three biological replicates by inoculating 3.2 ml of preculture medium (BSK-H with 5% filtered fly extract) with 10  $\mu$ l hemolymph and incubated at 25°C for 14 days without agitation under microaerobic atmospheric conditions using the CampyGen™ Gas-Pak system (ThermoFisher Scientific) to maintain an atmosphere of 8-9% O<sub>2</sub> and 7-8% CO<sub>2</sub>. The presence of sGff was validated by fluorescent microscopy using a Leica DMI8 inverted fluorescent microscope (Leica Microsystems) following staining with SYTO 9 (0.025 mM; ThermoFisher Scientific). *Spiroplasma* presence was further confirmed by PCR-amplification using *Spiroplasma*-specific 16s rRNA primers (Supplementary Table 1).

Precultures were pelleted by centrifugation for 40 min at 2000g, resuspended in 3.2 ml of BSK-H-spiro media (BSK-H + 7.5% fly extract, 6% rabbit serum, 0.5% Penicillin, 2.5% arginine, 5% lipid mix) and aliquots of 100  $\mu$ l stored at -80°C. Cultures were prepared using 100  $\mu$ l frozen preculture aliquots in 3.2 ml of BSK-H-spiro media at 25°C in microaerobic conditions without agitation for the establishment of active long-term cultures and cultures for growth curve analysis. Cultures underwent routine microscopy checks every 10-14 days to validate presence of sGff and to assess bacterial density before passaging. Passaging of bacteria was done every 10-14 days by diluting the culture 1:1 with freshly prepared BSK-H-spiro media. Every fourth passage until at least passage 12, bacteria were pelleted at 2000 x g for 40 minutes and the media were completely renewed.

### References

1. Masson F, Calderon Copete S, Schüpfer F, Garcia-Arraez G, Lemaitre B. *In Vitro* Culture of the Insect Endosymbiont *Spiroplasma poulsonii* Highlights Bacterial Genes Involved in Host-Symbiont Interaction. *mBio*. 2018;9:e00024-18.
2. Dera KM, Barro DT, Kaboré BA, Gstöttenmayer F, Dieng MM, Pagabeleguem S, et al. *Spiroplasma* infection in colonized *Glossina fuscipes fuscipes*: impact on mass rearing and the sterile insect technique. *Insect Sci*. 2025;1744-7917.70078.