#### **Supplemental Information**

3

2

# 4 ZFP560 facilitates KAP1-dependent chromatin repression to

## 5 regulate exit from totipotency

67

8

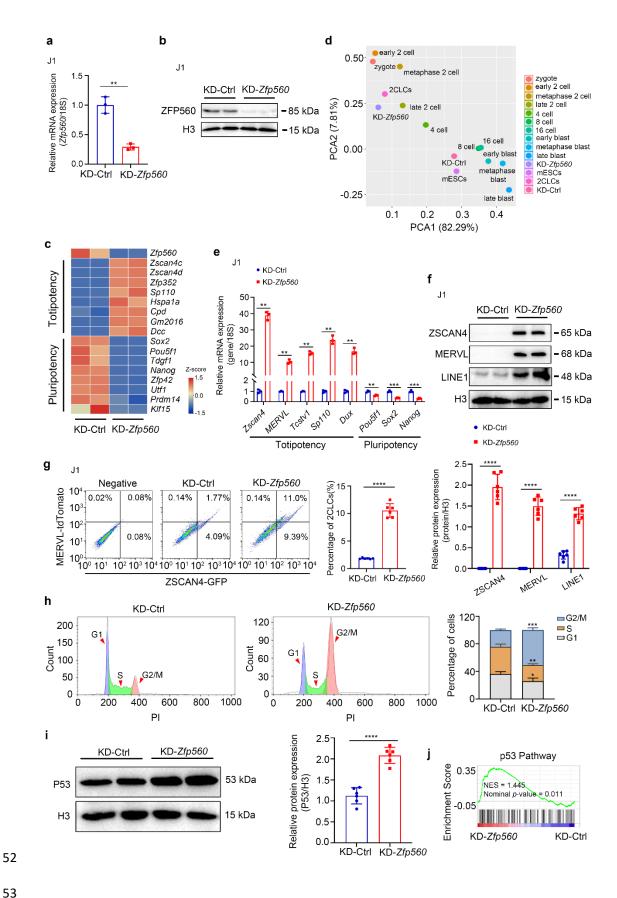
ŏ

9

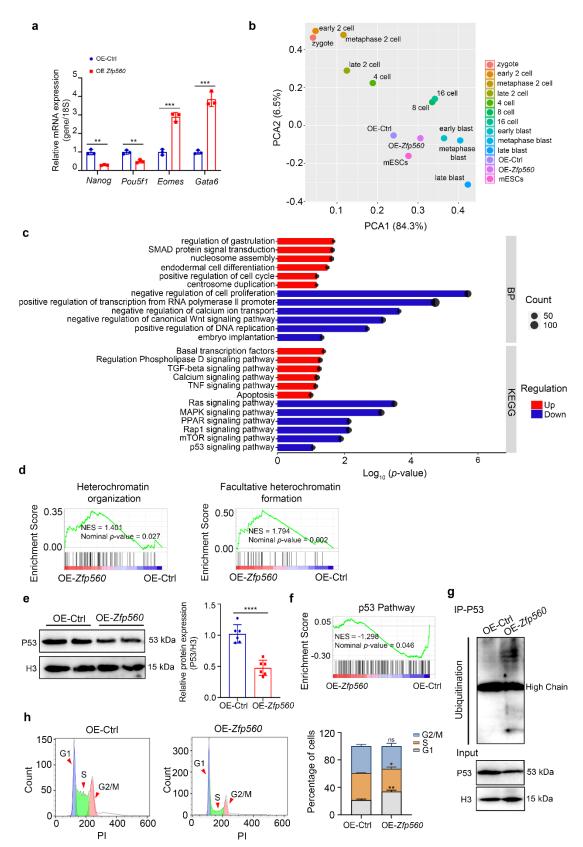
#### The Following Files are Included:

#### 10 Supplementary Figures and Legends

- Supplementary Fig. 1: *Zfp560* deficiency activates totipotency programs through P53 signaling
- and epigenetic derepression in mouse embryonic stem cells.
- 13 Supplementary Fig. 2: Integrated analysis identifies ZFP560 as a molecular switch linking
- 14 heterochromatin formation to P53-dependent cell fate decisions.
- Supplementary Fig. 3: The overexpression of *Zfp560* reduces its potential for differentiation
- into extraembryonic tissues.
- Supplementary Fig. 4: ZFP560 inhibited the expression of the three-germ-layer marker genes
- *in vitro*, but it still retained the ability to form teratomas.
- 19 Supplementary Fig. 5: KRAB domain-dependent KAP1 recruitment drives H3K9me3
- 20 deposition.
- 21 Supplementary Fig. 6: The analysis of ZNF778 (Zfp560 ortholog) reveals divergent expression
- 22 dynamics during human embryonic activation and stem cell reprogramming.
- 23 Supplementary Fig. 7: Western blot full membrane image 1
- 24 Supplementary Fig. 8: Western blot full membrane image 2

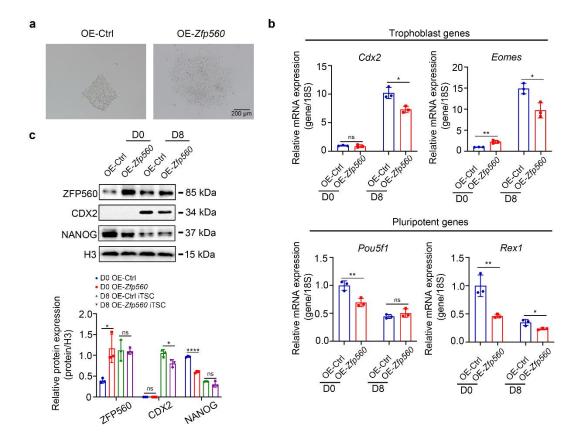

25

26

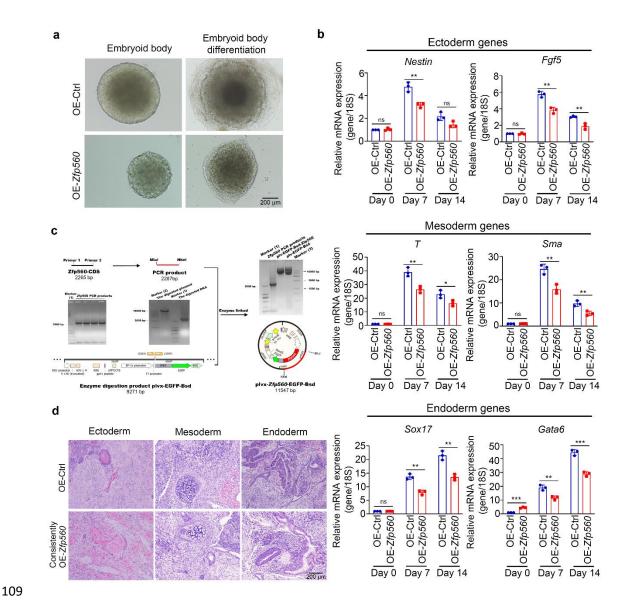

### Supplementary Table and Legends

- 27 Supplementary Table 1. Zinc finger protein family expression during early mouse embryonic
- 28 development.
- 29 Supplementary Table 2. Zinc finger protein family expression in totipotent 2 cell-like cells.
- 30 Supplementary Table 3. Zinc finger protein family expression in three cell states (Serum+Lif,

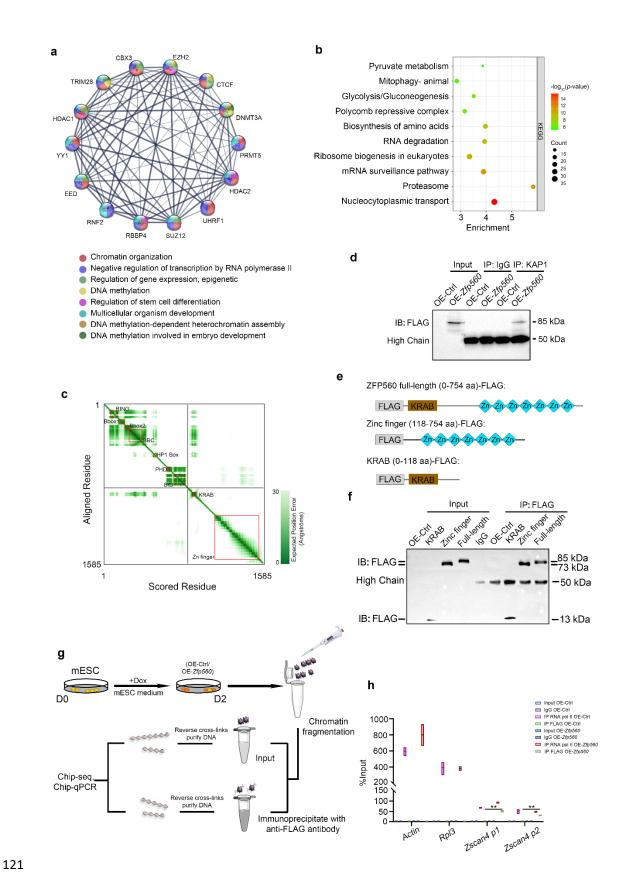
- 31 EpiLC, 2i+Lif).
- 32 Supplementary Table 4. Differentially expressed genes in RNA-seq of KD-Zfp560 and KD-Ctrl
- 33 mESCs.
- 34 Supplementary Table 5. Gene sets used for GSEA, related to Figures 2, 3, 5, and Supplementary
- 35 Figures 1, 2.
- 36 Supplementary Table 6. Differentially expressed genes in RNA-seq of OE-Zfp560 and OE-Ctrl
- 37 mESCs.
- 38 Supplementary Table 7. Mass spectrometry of ZFP560-FLAG binding proteins in OE-*Zfp560*
- 39 mESCs.
- 40 Supplementary Table 8. GO analysis of the ZFP560-FLAG candidate binding protein in the
- 41 mass spectrometry.
- 42 Supplementary Table 9. Zinc finger protein family expression during early human embryonic
- 43 development.
- Supplementary Table 10. Zinc finger protein family expression in LEUTX-, LEUTX+ (8CLCs),
- prEpiSCs, chemical-induced 8CLCs (ci8CLCs).
- Supplementary Table 11. 8CLC ZGA genes, and gene signatures based on 8-morula embryo
- and hESCs.
- 48 Supplementary Table 12. Primer sequences for qPCR.
- 49 Supplementary Table 13. Primer sequences for Chip-qPCR.
- 50 Supplementary Table 14. PCR primer sequences for molecular cloning.
- 51 Supplementary Table 15. Antibodies used in this study.




56 Supplementary Fig. 1: Zfp560 deficiency activates totipotency programs through P53 signaling and epigenetic derepression in mouse embryonic stem cells. a RT-qPCR was used 57 to detect the expression changes of Zfp560 after Zfp560 deficiency in J1 mESCs. Data are 58 mean  $\pm$  S.D. of three independent experiments. \*\*P < 0.01. **b** Western blot was used to detect 59 the expression changes of ZFP560 after Zfp560 deficiency in J1 mESCs. c Heat map comparing 60 61 RNA-seq analysis of pluripotency- or totipotency-specific gene expression in KD-Ctrl and KD-Zfp560 mESCs. d Transcriptome-based PCA of bulk RNA-seq data from KD-Ctrl, KD-Zfp560, 62 mESCs and 2CLCs, and scRNA-seq data from mouse embryos from zygote to late blastocyst. 63 e RT-qPCR was used to detect the expression changes of Zscan4, MERVL, Tcstv1, Sp110, Dux, 64 Pou5f1, Sox2 and Nanog after Zfp560 deficiency in J1 mESCs. Data are mean  $\pm$  S.D. of three 65 independent experiments. \*\*P < 0.01, \*\*\*P < 0.001. f Western Blot was used to detect the 66 expression changes of ZSCAN4, MERVL and LINE1 after Zfp560 deficiency in J1 mESCs. 67 Gray scale statistical analysis. Data are mean  $\pm$  S.D. of three independent experiments. \*\*\*\*P68 < 0.0001. g Changes in the proportion of totipotent 2-cell-like cells after Zfp560 deficiency in 69 J1 mESCs by flow cytometry and analyzed statistically. Data are mean  $\pm$  S.D. of three 70 independent experiments (n=2). \*\*\*\*P < 0.0001. h Flow cytometry analysis of cell cycle 71 changes after Zfp560 deficiency. Data are mean  $\pm$  S.D. of three independent experiments. \*P <72 0.05, \*\*P < 0.01, \*\*\*P < 0.001. i The protein level of P53 after Zfp560 deficiency was detected 73 by Western blot, and the gray scale statistical analysis was performed. Data are mean  $\pm$  S.D. of 74 three independent experiments (n=2). \*\*\*\*P < 0.001. i GSEA analysis showed that the 75 transcriptome of KD-Zfp560 vs KD-Ctrl mESCs was enriched in P53 signaling pathway. 76 77

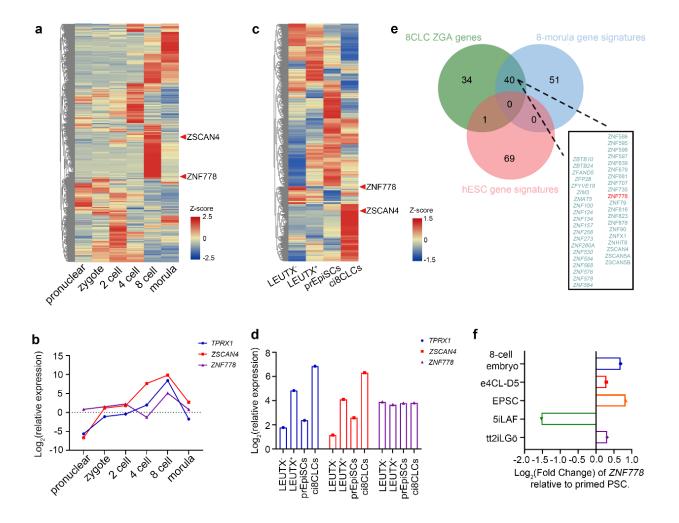



Supplementary Fig. 2: Integrated analysis identifies ZFP560 as a molecular switch linking heterochromatin formation to P53-dependent cell fate decisions. a RT-qPCR was performed to measure mRNA expression levels of Nanog, Pou5f1, Eomes, and Gata6 after Zfp560 overexpression. Data are mean  $\pm$  S.D. of three independent experiments. \*\*P < 0.01, \*\*\*P < 0.001. b Transcriptome-based PCA of bulk RNA-seq data from OE-Ctrl, OE-Zfp560, mESCs,


and scRNA-seq data from mouse embryos from zygote to late blastocyst. **c** GO analysis biological processes and KEGG analysis based on RNA-Seq data OE-Zfp560 vs OE-Ctrl. Upregulated and down-regulated genes are shown in red and blue, respectively. **d** Gene enrichment for heterochromatin organization and facultative heterochromatin formation in OE-Ctrl and OE-Zfp560 mESCs was analyzed by GSEA. The signaling pathway gene sets were obtained from the GSEA official website database. **e** The protein level of P53 after Zfp560 overexpression was detected by Western blot, and the gray scale statistical analysis was performed. Data are mean  $\pm$  S.D. of three independent experiments. \*\*\*\*P < 0.001. **f** GSEA analysis showed that the transcriptome of OE-Zfp560 vs OE-Ctrl mESCs was enriched in P53 signaling pathway. **g** Ubiquitination of P53 was detected after Zfp560 overexpression, and P53 expression was displayed in the Input group. **h** Flow cytometry analysis of cell cycle changes after Zfp560 overexpression. Data are mean  $\pm$  S.D. of three independent experiments. \*P < 0.05, \*\*P < 0.01, ns was not statistically significant.

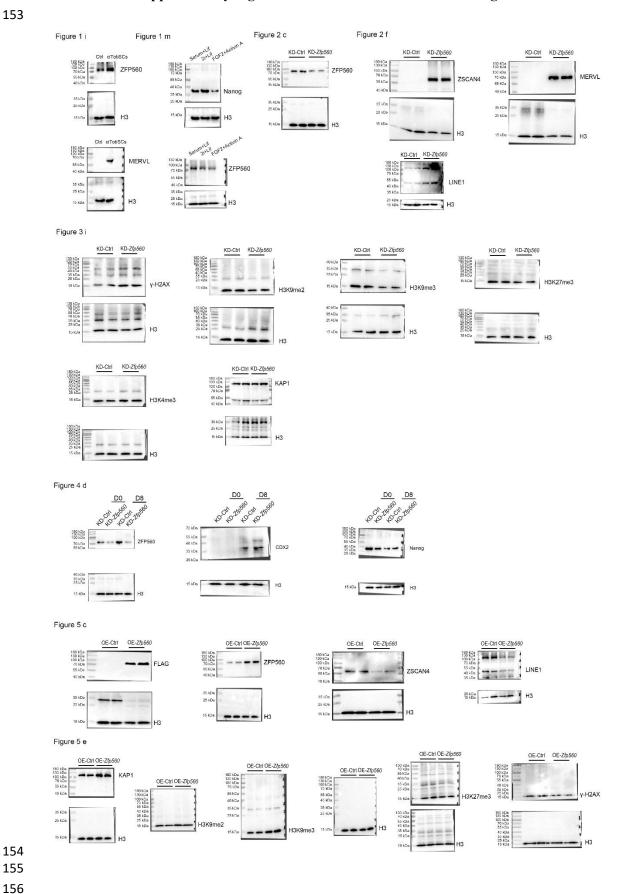


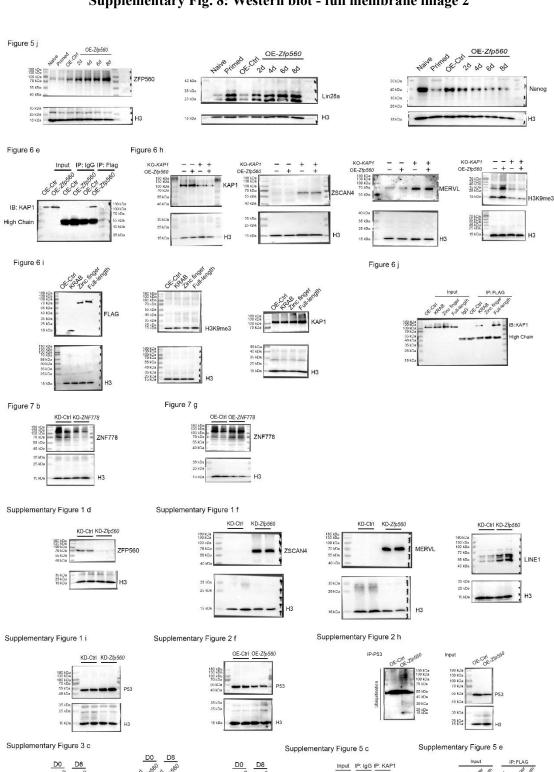
Supplementary Fig. 3: The overexpression of Zfp560 reduces developmental potential. a Clonal morphology of induced trophoblast stem cells in OE-Ctrl and OE-Zfp560 mESCs at day 8. Scale bar, 200 µm. **b** RT-qPCR to detect the expression levels of the trophoblast and pluripotent marker genes. Data are mean  $\pm$  S.D. of three independent experiments. \*P < 0.05, \*\*P < 0.01, ns was not statistically significant. **c** Western blot was used to detect the expression of ZFP560, CDX2 and Nanog in induction of trophoblast cells after Zfp560 overexpression. Gray scale statistical analysis. Data are mean  $\pm$  S.D. of three independent experiments. \*P < 0.05, \*\*\*\*P < 0.0001, ns was not statistically significant.




Supplementary Fig. 4: ZFP560 inhibited the expression of the three-germ-layer marker genes *in vitro*, but it still retained the ability to form teratomas. a Morphological diagram of embryoid body formation and differentiation after Zfp560 overexpression. Scale bar, 200 µm. b RT-qPCR was performed to measure mRNA levels of ectoderm genes (*Nestin* and Fgf5), mesoderm genes (T and T and




Supplementary Fig 5: KRAB domain-dependent KAP1 recruitment drives H3K9me3 deposition. a Protein-Protein Interaction Networks (PPI) analysis was performed on the core molecules in the gene pathway enrichment network analysis, and the biological processes involved in each core molecule were displayed. b KEGG analysis was performed based on the


mass spectrometry data obtained for ZFP560-FLAG. **c** Predicted Aligned Error (PAE) plot of the best scoring model using AlphaFold 3 to predict the interaction between ZFP560 and KAP1. **d** COIP was used to detect the interaction between ZFP560 and KAP1. **e** Schematic representation of the FLAG-tagged full-length ZFP560, zinc finger, KRAB domain. **f** Expression of the KRAB domain, zinc finger domain, and full-length Flag of ZFP560 was examined by COIP. **g** Schemata of sample preparation for ChIP-qPCR. **h** ChIP-qPCR experiments were performed in OE-Ctrl, OE-*Zfp560* mESCs induced with Dox for 2 days. Chromatin was prepared from each cell line and subjected to ChIP analysis using an anti-FLAG antibody. The resulting DNA samples were subjected to RT-qPCR in triplicate. Data are mean ± S.D. of three independent experiments. \*\*P < 0.01.



**Supplementary Fig. 6: The analysis of** *ZNF778* (*Zfp560* **ortholog**) **reveals divergent expression dynamics during human embryonic activation and stem cell reprogramming. a** Heat map of zinc finger protein family expression during early human embryonic development. Data were normalized, and scale bars indicate Z-score. **b** The relative expression of *ZNF778* and 8C stage-specific marker genes (*TPRX1*, *ZSCAN4*) at different developmental stages in panel a was analyzed. **c** Heat map of zinc finger protein family expression in LEUTX<sup>-</sup>, LEUTX<sup>+</sup> (8CLCs), prEpiSCs, chemical-induced 8CLCs (ci8CLCs). Data were normalized, and scale bars indicate Z-score. **d** The relative expression of *ZNF778* and stage 8C specific marker genes in different cell states in panel c was analyzed. **e** The Venn diagram shows the intersection of 8CLC ZGA genes and gene signatures based on human 8-morula embryos and hESCs. **f** The fold change of *ZNF778* relative to primed pluripotent stem cell (PSC) in 8-cell embryo, e4CL-D5, EPSC, 5iLAF and tt2iLGö.







130 kDa 100 kDa 70 kDa 55 kDa 40 kDu 35 kDu 25 kDu 10 kDa

High Chain

159 160

| 162 | Supplementary Table 12. Primer sequences for qPCR |         |                                       |                          |  |  |  |  |
|-----|---------------------------------------------------|---------|---------------------------------------|--------------------------|--|--|--|--|
|     | Primer                                            | Species | Forward (5' to 3')                    | Reverse (5' to 3')       |  |  |  |  |
|     | Zscan4                                            | Mouse   | GAGATTCATGGAGAGTCTGACTG               | GCTGTTGTTTCAAAAGCTTGATGA |  |  |  |  |
|     | MERVL                                             | Mouse   | CTCTACCACTTGGACCATATGAC               | GAGGCTCCAAACAGCATCTCTA   |  |  |  |  |
|     | Dux                                               | Mouse   | AAAGGAAGAGCATGTGCCAGC                 | GCAGTAAGCTGTCCTGGGAAC    |  |  |  |  |
|     | Zfp560                                            | Mouse   | GGAGAACTACCAGAACCTGGCTA               | CCCGCTGAAACATTGTCCCT     |  |  |  |  |
|     | Nanog                                             | Mouse   | GCTCCGCTCCATAACTTCG                   | ACCTGGCTTTGCCCTGACT      |  |  |  |  |
|     | Prdm14                                            | Mouse   | TGTGTGGTACGGAAATGGCT                  | GGCGTGTACTTCAGGTGCTT     |  |  |  |  |
|     | Dnmt3a                                            | Mouse   | GATGCTGGGGACAAGAATGCT                 | CCATCTCCGAACCACATGACC    |  |  |  |  |
|     | Dnmt3b                                            | Mouse   | GCTATTTGTCTTGAGGCGCT                  | AACTTAGAACCCAGGAGACGC    |  |  |  |  |
|     | Sp110                                             | Mouse   | CCGGGACAATTCCTTCATC                   | ATTGTGCACCACTTTGGACA     |  |  |  |  |
|     | Tcstv1                                            | Mouse   | GAACCATCCATCCTCAGGAAC                 | CCCTGAAGGTAAATCCTCCAC    |  |  |  |  |
|     | Pou5f1                                            | Mouse   | CCCAACGAGAAGAGTATGAGG                 | GAGCAGTGACGGGAACAGA      |  |  |  |  |
|     | Sox2                                              | Mouse   | CCAAGACTGGAGCTCACAATC                 | CAGGTGGAGCCTGAAAAGAAG    |  |  |  |  |
|     | HP1a                                              | Mouse   | AGGAGGTGAAAACAATAAGCC                 | AATCTGTTGCTCCGATGATCTTT  |  |  |  |  |
|     | LINE 1                                            | Mouse   | AGAACGCCACAAAGATACTCCTC               | CTCTCTTCTGGCTTGTAGGGTTTC |  |  |  |  |
|     | Eomes                                             | Mouse   | GGAAGTGACAGAGGACGGTG                  | TTGGCGAAGGGGTTATGGTC     |  |  |  |  |
|     | Cdx2                                              | Mouse   | GGACTCCGCGAGCCAA                      | CTCAGCCCACGGTGCTC        |  |  |  |  |
|     | Rex1                                              | Mouse   | TCACTGTGCTGCCTCCAAGT                  | GGGCATTGATCCGCAAAC       |  |  |  |  |
|     | Nestin                                            | Mouse   | GCTGGAACAGAGATTGGAAGG                 | CCAGGATCTGAGCGATCTGAC    |  |  |  |  |
|     | Fgf5                                              | Mouse   | AGCGCGACGTTTTCTTCGT                   | GCCATTGACTTTGCCATCCG     |  |  |  |  |
|     | T                                                 | Mouse   | CACCGCTGGAAATATGTGAA                  | CACGATGTGAATCCGAGGTT     |  |  |  |  |
| SMA |                                                   | Mouse   | CATCACCAACTGGGACGACA                  | TCCGTTAGCAAGGTCGGATG     |  |  |  |  |
|     | Sox17 Mouse AAAGCGC                               |         | AAAGCGGAGTCTCGCATCC CGCTTCTCTGCCAAGGT |                          |  |  |  |  |
|     |                                                   |         | GCTGAACGGAACGTACCACC                  | ACAGTGGCGTCTGGATGGAG     |  |  |  |  |
|     | 18S                                               | Mouse   | GTAACCCGTTGAACCCCATT                  | CCATCCAATCGGTAGTAGCG     |  |  |  |  |
|     | ZNF778                                            | Homo    | AGAGCAGTTTTCCGTGTTGGG                 | CTTCTCCGTTGTGACTTCCCG    |  |  |  |  |
|     | TPRX1                                             | Homo    | CCTCGGGAATCCTTCCAGC                   | GATGCCCTTCTGGGCTCT       |  |  |  |  |
|     | ZSCAN4                                            | Homo    | TGGAAATCAAGTGGCAAAAA                  | CTGCATGTGGACGTGGAC       |  |  |  |  |
|     | POU5F1                                            | Homo    | GGGCTCTCCCATGCATTCAAAC                | CACCTTCCCTCCAACCAGTTGC   |  |  |  |  |
|     | SOX2                                              | Homo    | CCATGCAGGTTGACACCGTTG                 | TCGGCAGACTGATTCAAATAATAC |  |  |  |  |
|     | NESTIN                                            | Homo    | TGGCTCAGAGGAAGAGTCTGA                 | TCCCCCATTCACATGCTGTGA    |  |  |  |  |
|     | FGF5                                              | Homo    | AAGGAAGTGGCTTGGAGCAG                  | CATCTGTGAACTTGGCTTAACAT  |  |  |  |  |
|     | SMA                                               | Homo    | GATGATTCTGACATTTGGGATG                | TGGCTTTTATTCTTCTTAGCAG   |  |  |  |  |
|     | T                                                 | Homo    | ACCCAGTTCATAGCGGTGAC                  | CCATTGGGAGTACCCAGGTT     |  |  |  |  |
|     | SOX17                                             | Homo    | GAGCCAAGGGCGAGTCCCGTA                 | CCTTCCACGACTTGCCCAGCAT   |  |  |  |  |
|     | GATA6                                             | Homo    | CCCACAACACAACCTACAGC                  | GCGAGACTGACGCCTATGTA     |  |  |  |  |
|     | GAPDH                                             | Homo    | CGCTTCGCTCTCTGCTCCTGT                 | GGTGACCAGGCGCCCAATACGA   |  |  |  |  |
|     | Minor                                             | Mouse   | CATGGAAAATGATAAAAACC                  | CATCTAATATGTTCTACAGTGTGG |  |  |  |  |
|     | satellite<br>RNA                                  |         |                                       |                          |  |  |  |  |
|     | Major<br>satellite<br>RNA                         | Mouse   | TGGAATATGGCGAGAAAACTG                 | AGGTCCTTCAGTGGGCATTT     |  |  |  |  |

Supplementary Table 13. Primer sequences for Chip-qPCR

|           |         | <u> </u>                 |                       |  |
|-----------|---------|--------------------------|-----------------------|--|
| Primer    | Species | Forward (5' to 3')       | Reverse (5' to 3')    |  |
| Zscan4 p1 | Mouse   | GCATTATCTGTTCCTCTGGGTC   | AACTCCTGTTCCTGGGTGGG  |  |
| Zscan4 p2 | Mouse   | TGCTGGGTAAGGTAGTGTTT     | CATCAGGCTAGGAGAAGTCA  |  |
| Rpl3      | Mouse   | GCCTATGCGTCAACACGTTC     | CGCAGATAGAGAGCGACCAG  |  |
| Actin     | Mouse   | CGTGTGACAAAGCTAATGAGGCTG | CTAAGTTCAGTGTGTGCTGGG |  |

Supplementary Table 14. PCR primer sequences for molecular cloning

| 58 <b>S</b> ı | Supplementary Table 14. PCR primer sequences for molecular cloning |                          |                           |  |  |  |
|---------------|--------------------------------------------------------------------|--------------------------|---------------------------|--|--|--|
| Primer        | Species                                                            | Forward (5' to 3')       | Reverse (5' to 3')        |  |  |  |
| shRNA-        | Mouse                                                              | CCGGGCTGGACAAGTAGTTACCAG | AATTCAAAAAGCTGGACAAGTAGT  |  |  |  |
| Zfp560        |                                                                    | GCTCGAGGCCTGGTAACTACTTGT | TACCAGGCTCGAGGCCTGGTAACT  |  |  |  |
|               |                                                                    | CCAGCTTTTG               | ACTTGTCCAGC               |  |  |  |
| shRNA-        | Homo                                                               | CCGGGGACTCAGTCTGCCTTCATG | AATTCAAAAAGGACTCAGTCTGCC  |  |  |  |
| ZNF778        |                                                                    | ACTCGAGTCATGAAGGCAGACTGA | TTCATGACTCGAGTCATGAAGGCA  |  |  |  |
|               |                                                                    | GTCCTTTTTG               | GACTGAGTCC                |  |  |  |
| sgRNA-        | Mouse                                                              | CACCGTGCTGGACAAGTAGTTACC | AAACGGTAACTTGTCCAGCAC     |  |  |  |
| Zfp560-1      |                                                                    |                          |                           |  |  |  |
| sgRNA-        | Mouse                                                              | CACCGCTATACAACTTAACCCCAG | AAACCTGGGGTTAAGTTGTATAGC  |  |  |  |
| Zfp560-2      |                                                                    |                          |                           |  |  |  |
| sgRNA-        | Mouse                                                              | CACCGGCCGCAGCGAATAATTCGG | AAACCCGAATTATTCGCTGCGGCC  |  |  |  |
| Kap1-1        |                                                                    |                          |                           |  |  |  |
| sgRNA-        | Mouse                                                              | CACCGGTCCTGGTACGAACTCCAC | AAACGTGGAGTTCGTACCAGGACC  |  |  |  |
| Kap1-2        |                                                                    |                          |                           |  |  |  |
| Zfp560-       | Mouse                                                              | CGACGCGTCGATGGAAGCTATCAG | CTAGCTAGCTAGTTACACTGATAAG |  |  |  |
| full          |                                                                    | TTTGTCC                  | CTTTCTTGCC                |  |  |  |
|               |                                                                    |                          |                           |  |  |  |
| Zfp560-       | Mouse                                                              | GCCACCATGGATTACAAGGATGAC | CTAGCTAGCTAGTTACACTGATAAG |  |  |  |
| full-Flag     |                                                                    | GACGATAAGATGGAAGCTATCAGT | CTTTCTTGCC                |  |  |  |
|               |                                                                    | TTGTCC                   |                           |  |  |  |
| Zfp560-       | Mouse                                                              | GACTGGGCTATACAACTTAACCCC | CTAGCTAGCTAGTTACACTGATAAG |  |  |  |
| ZNF           |                                                                    | AG                       | CTTTCTTGCC                |  |  |  |
|               |                                                                    |                          |                           |  |  |  |
| Zfp560-       | Mouse                                                              | GCCACCATGGATTACAAGGATGAC | CTAGCTAGCTAGTTACACTGATAAG |  |  |  |
| ZNF-Flag      |                                                                    | GACGATAAGATGACTGGGCTATAC | CTTTCTTGCC                |  |  |  |
|               |                                                                    | AACTT                    |                           |  |  |  |
| Zfp560-       | Mouse                                                              | GCCACCATGGATTACAAGGATGAC | TTACACTGATAAGCTTTCTTGCCAT |  |  |  |
| KRAB-         |                                                                    | GACGATAAGATGGAAGCTATCAGT | TGTG                      |  |  |  |
| Flag          |                                                                    | TTGTCC                   |                           |  |  |  |

| Antibodies | host   | supplier                        | application | Catalog<br>number |
|------------|--------|---------------------------------|-------------|-------------------|
| IgG        | Mouse  | RD systems                      | COIP        | MAB2566           |
| Flag       | Rabbit | ProteinTech Group, Chicago, Inc | COIP        | 20543-1-AP        |
| ZFP560     | Rabbit | ABclonal Biotechnology, Inc     | WB, COIP    | A18557            |
| MERVL      | Rabbit | Beyotime Biotechnology, Inc     | WB, IF      | AF0240            |
| ZSCAN4     | Rabbit | Merck Millipore, Inc            | WB          | AB4340            |
| LINE1      | Rabbit | Novus Biologicals, Inc          | WB          | NBP2-66934        |
| NANOG      | Rabbit | BethylLaboratories              | WB, IF      | A300-397A-T       |
| CDX2       | Rabbit | Abcam, Cambridge, MA            | WB, IF      | ab76541           |
| Lin28a     | Rabbit | Cell signaling technology, Inc  | WB          | 86417             |
| γ -H2AX    | Mouse  | Cell signaling technology, Inc  | WB, IF      | 80312             |
| H3K9me3    | Rabbit | Abcam, Cambridge, MA            | WB, IF      | ab8898            |
| H3K9me2    | Mouse  | Abcam, Cambridge, MA            | WB          | ab1220            |
| H3K27me3   | Rabbit | Cell signaling technology, Inc  | WB          | 9733              |
| H3K4me3    | Rabbit | Abcam, Cambridge, MA            | WB          | ab8580            |
| KAP1       | Rabbit | BethylLaboratories              | WB, IF      | A300-274A         |
| P53        | Mouse  | Santa Cruz, Dallas, TX          | WB          | sc-71815          |
| Ubiquitin  | Rabbit | Cell signaling technology, Inc  | WB          | 43124             |
| Н3         | Rabbit | Abcam, Cambridge, MA            | WB          | ab1791            |