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SUPPLEMENTAL NOTE 1 - VIBRATION EQUATION OF
MEMBRANE RESONATOR

A. Free bending vibration of plates under tensile: the equation
of motion under nonuniform stress

Understanding the underlying mechanisms of mode break-
ing in the square membrane is essential for realizing its po-
tential applications. In this section, we derive the vibration
equation governing the square membrane and provide the an-
alytical expressions for its eigen frequencies. In our analysis,
we adopt the following assumptions about the membranes: (1)
The membrane is flexible, linearly elastic, and subject to ten-
sion that remains within the tangent plane of its surface. In
addition, the membrane undergoes relatively small deforma-
tions. (2) Due to their thin structure and significant internal
stresses, the bending effects in membranes are negligible. A
membrane under tensile stresses is illustrated in Supplemental
Fig. 1.

In the plane of the membrane, the stress matrix can be ex-

pressed as:
(

𝜎𝑥 0
0 𝜎𝑦

)

. The equilibrium equations for the

membrane can be readily derived as follows:

Δ𝑦[𝜎𝑥(𝑥 + Δ𝑥, 𝑦) sin(𝛼) − 𝜎𝑥(𝑥, 𝑦) sin(𝛽)]
+ Δ𝑥[𝜎𝑦(𝑥, 𝑦 + Δ𝑦) sin(𝛿) − 𝜎𝑦(𝑥, 𝑦) sin(𝛾)]

= 𝜌(Δ𝑥Δ𝑦) ⋅ 𝑢𝑡𝑡 (S.1)

Based on the geometric relationships between the displace-
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Supplemental Fig. 1. The diagram of a membrane subjected to ten-
sile stresses. 𝜎𝑥(𝑥, 𝑦) and 𝜎𝑥(𝑥 + Δ𝑥, 𝑦) represent the tensile stresses
acting along the x-direction, while 𝜎𝑦(𝑥, 𝑦) and 𝜎𝑦(𝑥, 𝑦 + Δ𝑦) depict
the tensile action in the y-direction. 𝛼, 𝛽, 𝛿 and 𝛾 indicate the angles
between the stresses and the horizontal plane, respectively.

ment and the angles, we obtain the following:

sin(𝛼) = 𝛼 = tan(𝛼) = 𝑢𝑥(𝑥 + Δ𝑥, 𝑦)
sin(𝛽) = 𝛽 = tan(𝛽) = 𝑢𝑥(𝑥, 𝑦)
sin(𝛿) = 𝛿 = tan(𝛿) = 𝑢𝑦(𝑥, 𝑦 + Δ𝑦)
sin(𝛾) = 𝛾 = tan(𝛾) = 𝑢𝑦(𝑥, 𝑦)

(S.2)

By substituting Eq. (S.2) into Eq. (S.1), Eq. (S.1) is trans-
formed into the following form:

[𝜎𝑥(𝑥 + Δ𝑥, 𝑦)𝑢𝑥(𝑥 + Δ𝑥, 𝑦) − 𝜎𝑥(𝑥, 𝑦)𝑢𝑥(𝑥, 𝑦)]Δ𝑦 (S.3)
+ [𝜎𝑦(𝑥, 𝑦)𝑢𝑦(𝑥 + Δ𝑥, 𝑦) − 𝜎𝑦(𝑥, 𝑦)𝑢𝑦(𝑥, 𝑦)]𝛿𝑥]Δ𝑥 (S.4)
= 𝜌 ⋅ (Δ𝑥Δ𝑦)𝑢𝑡𝑡 (S.5)

Next, we divide both sides of the equation by 𝜌Δ𝑥Δ𝑦 simulta-
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neously, we get:

𝑢𝑡𝑡 =
1
𝜌

[

𝜎𝑥(𝑥 + Δ𝑥, 𝑦)𝑢𝑥(𝑥 + Δ𝑥, 𝑦) − 𝜎𝑥(𝑥, 𝑦)𝑢𝑥(𝑥, 𝑦)
Δ𝑥

+
𝜎𝑦(𝑥, 𝑦)𝑢𝑦(𝑥 + Δ𝑥, 𝑦) − 𝜎𝑦(𝑥, 𝑦)𝑢𝑦(𝑥, 𝑦)

Δ𝑦

]

(S.6)

As Δ𝑥 and Δ𝑦 approach 0, the above equation reduces to the
following form:

𝑢𝑡𝑡 =
1
𝜌

[

(𝜕𝜎𝑥 ⋅ 𝑢𝑥)
𝜕𝑥

+
(𝜕𝜎𝑦 ⋅ 𝑢𝑦)

𝜕𝑦

]

(S.7)

= 1
𝜌

[

𝜕
𝜕𝑥

(𝜎𝑥
𝜕𝑢
𝜕𝑥

) + 𝜕
𝜕𝑦

(𝜎𝑦
𝜕𝑢
𝜕𝑦

)
]

(S.8)

When the stress distribution in the x- and y-directions are be-
ing of uniform, the equation simplifies to the following form:

𝜎𝑥
𝜕2𝑢
𝜕𝑥2

+ 𝜎𝑦
𝜕2𝑢
𝜕𝑦2

− 𝜌𝜕
2𝑢
𝜕𝑡2

= 0 (S.9)

The 𝑢(𝑥, 𝑦, 𝑡) can be written as 𝑢(𝑥, 𝑦, 𝑡) = 𝑋(𝑥) ⋅ 𝑌 (𝑦) ⋅ 𝑇 (𝑡).
Putting this expression into the original equation, and let 𝑐𝑥 =
√

𝜎𝑥
𝜌 , 𝑐𝑦 =

√𝜎𝑦
𝜌 , then we obtain:

𝑇𝑡𝑡(𝑡)
𝑇 (𝑡)

= 𝑐𝑥
2𝑋𝑥𝑥(𝑥)
𝑋(𝑥)

+ 𝑐𝑦
2 𝑌𝑦𝑦(𝑦)
𝑌 (𝑦)

= constant = −𝜔2 (S.10)

Equation (S.10) can be written as three independent ordinary
differential equations:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑇𝑡𝑡(𝑡) + 𝜔2𝑇 (𝑡) = 0

𝑋𝑥𝑥(𝑥) +
(

𝜔
𝑐𝑥

)2
𝑋(𝑥) = 0

𝑌𝑦𝑦(𝑦) +
(

𝜔
𝑐𝑦

)2
𝑌 (𝑦) = 0

(S.11)

It is easy to get the solution of the time-dependent equation,
that is:

𝑇 (𝑡) = 𝐴 sin(𝜔𝑡) + 𝐵 cos(𝜔𝑡) (S.12)

where 𝐴, 𝐵 are coefficients to be determined by the initial con-
ditions. Usually, we are more concerned with the displace-
ment distribution of the membrane in the x, y directions, while
the time-dependent term does not affect the spatial distribu-
tion. Similarly, the solution along the x-direction could be ex-
pressed as:

𝑋(𝑥) = 𝐶 sin
(

𝜔𝑥
𝑐𝑥

𝑥
)

+𝐷 cos
(

𝜔𝑥
𝑐𝑥

𝑥
)

(S.13)

Here, the coefficients𝐶 and 𝐷 are determined by the boundary
conditions. For a membrane, the general boundary conditions

are fixed at both ends, i.e., 𝑢 = 0 at 𝑥 = 0, 𝐿. Applying these
conditions yields the following result:

𝜔𝑥
𝑐𝑥

⋅ 𝐿 = 𝑚𝜋, 𝑚 = 1, 2, 3,⋯ (S.14)

Similar result can be obtained for the case of the y-direction:
𝜔𝑦

𝑐𝑦
⋅ 𝐿 = 𝑛𝜋 𝑛 = 1, 2, 3,⋯ (S.15)

Due to 𝜔𝑥
2 + 𝜔𝑦

2 = 𝜔2, the resonance frequency can be ob-
tained:

𝜔2 =
( 𝜋
𝐿

)2
[

𝜎𝑥
𝜌
𝑚2 +

𝜎𝑦
𝜌
𝑛2
]

(S.16)

By simplifying this equation, the eigenfrequency can be ex-
pressed as:

𝜔𝑚𝑛
2𝜋

= 1
2𝐿

√

𝜎𝑥𝑚2 + 𝜎𝑦𝑛2

𝜌
(S.17)

B. Free bending vibration of plates under tensile: the equation
of motion under uniform stress

Consider the equation of the vibration of a membrane under
stress:

𝜎∇2𝑢 = 𝜌𝜕
2𝑢
𝜕𝑡2

(S.18)

From the equation, through the split-variable method, the form
of the solution can be written as:

𝑢(𝑥, 𝑦, 𝑡) = 𝑢(𝑥, 𝑦) cos(𝜔𝑡) (S.19)

As the vibrations in the x, y directions are uncoupled, vibra-
tional morphology can be written:

𝑢(𝑥, 𝑦) =
∞
∑

𝑚=0

∞
∑

𝑛=0
sin(𝑚𝜋𝑥

𝐿
) sin(

𝑛𝜋𝑦
𝐿

) (S.20)

Then we have:

𝜕2𝑢
𝜕𝑥2

= −(𝑚𝜋
𝐿

)2𝑢(𝑥, 𝑦) cos(𝜔𝑡) = −(𝑚𝜋
𝐿

)2𝑢(𝑥, 𝑦, 𝑡) (S.21)

𝜕2𝑢
𝜕𝑦2

= −(𝑛𝜋
𝐿

)2𝑢(𝑥, 𝑦) cos(𝜔𝑡) = −(𝑛𝜋
𝐿

)2𝑢(𝑥, 𝑦, 𝑡) (S.22)

And

𝜕2𝑢
𝜕𝑡2

= −𝜔2𝑢(𝑥, 𝑦) = −𝜔2𝑢(𝑥, 𝑦, 𝑡) (S.23)

Put Eq. (S.21), Eq. (S.22) and Eq. (S.23) into Eq. (S.18), we
get:

𝜎[−(𝑚𝜋
𝐿

)2 − (𝑛𝜋
𝐿

)2]𝑢(𝑥, 𝑦, 𝑡) + 𝜌𝜔2𝑢(𝑥, 𝑦, 𝑡) = 0 (S.24)
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a b ×10-4 μm

Supplemental Fig. 2. Surface displacement patterns for a mode(6,5)
and b mode(5,6).

We get:

𝜌𝜔2 = 𝜎[(𝑚𝜋
𝐿

)2 + (𝑛𝜋
𝐿

)2] (S.25)

Finally, we get:

𝜔𝑚𝑛
2𝜋

= 1
2𝐿

√

𝜎
𝜌

√

𝑚2 + 𝑛2 (S.26)

SUPPLEMENTAL NOTE 2 - EXPERIMENTAL AND FES
RESULTS OF SIC MEMBRANE RESONATOR

The experimental and Finite Element Simulation (FES) re-
sults for 57 mechanical modes at room temperature are shown
in Supplemental Table 1, with mode indices determined by
FES. The data show great agreement between experimental
and simulated results. Surface displacement patterns exhibit
multiple maxima along the x- and y-axes, governed by their
mode indices. The characteristic mode shapes of mode(6,5)
and mode(5,6), discussed in Fig. 2b of the main text, are pre-
sented in Supplemental Fig. 2.

a

b

Supplemental Fig. 3. Frequency stability versus time for a mode(3,1)
and b mode(1,3).

The SiC membrane exhibits superior frequency stability,
quantified by the relative frequency deviation (𝑓 − 𝑓0)∕𝑓0,
where 𝑓 is the measured frequency and 𝑓0 is the nominal res-
onance frequency under reference conditions. As shown in
Supplemental Fig. 3, the frequency stability was monitored
over a 214-hour period at 10 mK, revealing deviations as low
as tens of parts per billion (ppb) for the degeneracy-broken
pairs. This remarkable stability at cryogenic temperatures is
attributed to the superior thermal conductivity and ultralow
mechanical dissipation of SiC, underscoring its potential ap-
plications in quantum storage and quantum state manipulation.
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Supplemental table 1. Experimental and Finite Element Simulation (FES) results of the SiC membrane resonator at room temperature.

Number 𝑓Exp. (kHz) Quality factor (×104) 𝑓FEM (kHz) m n 𝑚2 + 𝑛2

1 390.03 2.58 390.02 1 1 2
2 614.84 23.00 616.67 2 1 5
3 618.55 18.70 616.67 1 2 5
4 780.01 50.39 780.03 2 2 8
5 868.70 4.13 872.1 3 1 10
6 875.54 2.26 872.1 1 3 10
7 992.16 28.60 994.35 3 2 13
8 996.86 12.60 994.35 2 3 13
9 1132.24 6.56 1137.1 4 1 17
10 1141.79 11.16 1137.1 1 4 17
11 1170.43 34.85 1170.0 3 3 18
12 1229.68 65.40 1233.3 4 2 20
13 1237.29 79.30 1233.3 2 4 20
14 1376.74 54.35 1378.9 4 3 25
15 1381.68 56.10 1378.9 3 4 25
16 1412.77 39.60 1406.2 5 1 26
17 1400.03 33.36 1406.2 1 5 26
18 1480.04 49.30 1485.1 5 2 29
19 1490.92 56.90 1485.1 2 5 29
20 1560.42 105.93 1560.1 4 4 32
21 1604.80 57.80 1608.1 5 3 34
22 1612.59 45.10 1608.1 5 3 34
23 1669.93 41.80 1677.5 6 1 37
24 1685.52 39.40 1677.5 1 6 37
25 1737.70 60.20 1744.2 6 2 40
26 1752.01 74.81 1744.2 2 6 40
27 1763.72 48.50 1765.9 5 4 41
28 1769.23 47.20 1765.9 4 5 41
29 1845.05 60.40 1850.0 6 3 45
30 1856.27 61.20 1850.0 3 6 45
31 1950.83 176.00 1950.1 5 5 50
32 1959.43 21.20 1950.1 7 1 50
33 1941.17 43.68 1950.1 1 7 50
34 1985.82 52.94 1988.7 6 4 52
35 1993.53 79.80 1988.7 4 6 52
36 1999.69 59.10 2007.7 7 2 53
37 2017.19 33.66 2007.7 2 7 53
38 2093.94 29.00 2100.3 3 7 58
39 2108.62 50.80 2100.3 7 3 58
40 2151.71 66.40 2153.9 6 5 61
41 2158.30 53.34 2153.9 5 6 61
42 2213.14 8.72 2223.5 7 4 65
43 2234.39 23.10 2223.5 4 7 65
44 2264.86 71.10 2274.2 8 2 68
45 2285.43 71.10 2274.2 2 8 68
46 2341.01 57.80 2340.2 6 6 72
47 2366.62 95.52 2356.4 3 8 73
48 2370.18 53.80 2372.4 7 5 74
49 2378.05 59.85 2372.4 5 7 74
50 2460.91 73.89 2466.8 8 4 80
51 2475.89 46.35 2466.8 4 8 80
52 2486.13 13.90 2497.4 9 1 82
53 2510.02 27.30 2497.4 1 9 82
54 2532.32 29.22 2542.7 6 7 85
55 2540.76 51.80 2542.7 7 6 85
56 2547.83 36.72 2542.7 9 2 85
57 2555.88 36.70 2542.7 2 9 85
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