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1 Simulation experiment setup
The ICVL dataset consists of 200 HS images, all of which are outdoor scenes. Each image has
1392×1300 pixels and 31 spectral bands, with a spectral range from 400 nm to 700 nm and a spectral
resolution of 10 nm. We randomly select 160 images as the training data and the remaining 40 images
as the test data. We anticipate that the proposed fusion architecture is also applicable to remote
sensing satellites, so we test our algorithm on the Houston2013 dataset, which consists of a single HS
image captured by the satellite. The HS image consists of 144 spectral bands covering wavelengths
from 380 nm to 1050 nm, with a resolution of 349 × 1905 pixels. We select the left 349 × 400 area as
the test set, and the rest as the training set.

We treat the original HS image as the high-resolution HS image, which is only used for quantitative
evaluation and does not participate in training. For the ICVL dataset, we apply a 5 × 5 gaussian
blur operation followed by a downsampling operation with a factor of 4 to obtain low-resolution
HS images. MS images are then generated using the spectral response function of the Nikon D700
camera. For the Houston dataset, following the procedure in work [1, 2], we average every 36 bands
to obtain the MS images. The low-resolution HS image is generated by applying a 7 × 7 gaussian
blur operation followed by a downsampling operation with a factor of 4. Before generating the data,
the original images are normalized to a range between 0 and 1.

2 Modeling and Solving the Imaging System
The relative observation model refer to the relationships among the corresponding frames of the low-
resolution HS video, the PAN video, and the high-resolution HS video, which have been extensively
explored in numerous studies [1, 3]. The high-resolution HS video frame to be estimated is denoted

1



Zt

Gaussian Blur 

𝒙𝒊

w,1 wi,2 wi,3 wi,4

wi,5 wi,6 wi,7 wi,8

wi,9 wi,10 wi,11 wi,12

wi,13 wi,14 wi,15 wi,16

Spatial downsampling

Yt =(Zt ∗ K)D

Xt

Zt

Spectral degradation 

Yt =RZt

Yt

R
X

t

(Y
t
∗
K
)D

RXt = (Yt ∗ K)D

Xt Yt

Spectral degradation 

Gaussian Blur 

𝒙𝒊

w,1 wi,2 wi,3 wi,4

wi,5 wi,6 wi,7 wi,8

wi,9 wi,10 wi,11 wi,12

wi,13 wi,14 wi,15 wi,16

Spatial downsampling

Spatial degradation model

Spectral degradation model Potential Relationship

෍

𝑖

𝑅𝑖 = 1

෍

𝑖,𝑗

𝐾𝑖,𝑗 = 1

∀𝑖 𝑅𝑖,𝑗≥ 0

∀𝑖,𝑗 𝐾𝑖,𝑗≥ 0

Prior constraints

Fig. 1 The relationship among the observed HS image, the observed PAN image, and the ideal high-
resolution HS image.

as Zt, while the low-resolution HS video frame and PAN video frame are represented as Xt and Yt,
respectively. Figure 1 illustrates their relationships.

Without considering the influence of mosaic coding, the spatial degradation model from Zt to Xt

can be regarded as gaussian blur and downsampling according to previous studies [3, 4]. The process
is expressed as:

Xt = (Zt ∗ K)D + εx (1)
where ∗ denotes the convolution operation along the spatial dimensions, K represents the spatial
blur kernel, D denotes the mean downsampling operation, which corresponds to pixel binning in our
cameras, and εx represents the noise. The spectral degradation model from Zt to Yt can be written as:

Yt = (RZt) + εy (2)

where R ∈ RL×l is the spectral response operator, and εy is the noise. Equation (1) and (2) not only
reveal the relationship between the ideal high-resolution HS image and the two observed images, but
also provide a theoretical foundation for HS fusion imaging.

According to Wald protocol [5], the relationship between Xt and Yt can be further obtained as:

(RXt) = (Yt ∗ K)D + ε (3)

where ε is the noise, which is ignored in the subsequent solving process. To estimate both spatial
and spectral degradation models, we developed a relative observation model learning network that
models spatial degradation using learnable blur kernels and spatial downsampling operations, while
representing the spectral degradation with a bias-free fully connected layer. In addition, we applied a
series of physics-based sensor priors, including:

∑
i
Ri = 1,

∑
i,j

Ki,j = 1, ∀i Ri ≥ 0, and ∀i,j Ki,j ≥
0.

The relative observation model learning network can implicitly capture the noise present in the real
imaging process and accurately estimate the spatial blur kernel K and spectral response operator R
in the observation model described by Eqs. (1) and (2). As demonstrated by simulation experiments,
even in the presence of noise, the proposed reconstruction algorithm still achieves excellent results.

3 Efficient fusion network
Our cameras support video-rate imaging, which raises the efficiency requirements for the fusion
algorithm. Thus, we develop an efficient fusion network to generate high-resolution HS video by fusing
the HS video and the PAN video frame by frame. As shown in Fig. 2, the network primarily consists
of two parts: first, a feature extraction module (FEM) based on shared convolutional layers is used
to extract image features at multiple scales. Second, a reconstruction module (RM) with efficient
spatial-spectral attention (ESSA) blocks is employed to reconstruct the corresponding video frame
from these features.

In the FEM, the HS video frame is spatially upsampled by a factor of 4 using the PixelShuffle
operation, while the PAN video frame is spatially downsampled by a factor of 2 using the PixelUn-
shuffle operation. Then the features are then stacked and fed into the lightweight convolution (LC)
block to obtain low-resolution feature. Next, the low-resolution feature is spatially upsampled by a
factor of 2 using the PixelShuffle operation to be stacked with the original PAN video frame. Finally,
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Fig. 2 Schematic of efficient fusion network.

the stacked feature is processed by an LC block to obtain the final feature. The LC block comprises
a shared convolutional layer and a standard convolutional layer.

The RM consists of several LC blocks and ESSA blocks. The spatial and spectral attention
mechanisms have shown advantages in many image reconstruction tasks, particularly global attention
based on Transformers. However, Transformers typically require substantial computational resources,
rendering them unsuitable for high-resolution image reconstruction. Furthermore, their inference
speed is insufficient to meet the demands of real-time fusion imaging. To address this challenge, we
propose the ESSA block, which models global features with lower computational cost. In particular,
the ESSA block is mainly composed of two branches: spatial attention and spectral attention. Let the
input feature be denoted as Vt ∈ Rc×w×h. For spatial attention, the PAN video frame Yt is passed
through a convolutional layer to expand the number of channels, yielding the feature Fy ∈ Rc×w×h.
Meanwhile, the input feature Vt undergoes global average pooling to generate the feature Fv1 ∈
Rc×1×1. The feature Fy is then transposed and reshaped into wh × c, and Fv1 is reshaped into c × 1.
Subsequently, Fy is multiplied by Fv1 and the resulting tensor is passed through a convolutional layer
to generate the final spatial attention matrix Mspa ∈ Rw×h. The above processes are formulated as
follows:

Mspa = fspa(Vt, Xt, Yt) (4)
where fspa(·) is the function of spatial attention block. For spectral attention, the low-resolution
HS video frame Xt undergoes a convolutional layer to to expand the number of channels, resulting
in Fx ∈ Rc×wx×hx . The input feature Vt is processed through two convolutional layers for spatial
downsampling and one convolutional layer for channel downsampling, yielding Fv2 ∈ R1×wx×hx . The
feature Fv2 is then transposed and reshaped into wh × 1, while Fx is reshaped into c × wh. Finally,
Fx and Fv2 are multiplied, and the resulting tensor is passed through a linear layer to obtain the
spectral attention vector Mspe ∈ Rc×1. The processes described above are formulated as follows:

Mspe = fspe(Vt, Xt, Yt) (5)

where fspe(·) is the function of spectral attention block. Finally, the input feature Vt is sequentially
multiplied by the spatial attention matrix and the channel attention vector to obtain the refined
feature V̄t.

V̄t = Conv(Vt · Mspa) · Mspe (6)
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4 Model Training Details
We first train the relative observation model learning network, and its objective function can be
obtained from Eq.(3) as:

Lbkl = 1 − SSIM(Xt ∗ R, (Yt ∗ K)D) (7)
where SSIM(·) represents structural similarity index (SSIM) [6]. Figure 3 depicts the training and
inference processes. In the real data experiments, we employ the trained blur kernel learning network
to generate training data by spatially downsampling the observed HS and PAN images. Similarly, for
the simulated data, spatial downsampling is applied to the MS and low-resolution HS images. The
resampled data is then used as training data to train our efficient fusion network.

5 Evaluation metrics
Peak Signal-to-Noise Ratio (PSNR): PSNR is calculated based on the ratio between the maximum
possible pixel value of the image and the error.

Error Relative Global Dimensional Synthesis (ERGAS): ERGAS measures the overall similarity
between the reconstructed image and the reference image by quantifying the error of the reconstructed
image relative to the reference image to evaluate the fidelity of the image.

Spectral Angle Mapper (SAM): SAM evaluates the similarity between the spectral vectors of
corresponding pixels in the reference image and the reconstructed image by calculating the angle
between them. The smaller the angle, the higher the similarity between the two spectral vectors,
indicating better preservation of spectral information.

Structural Similarity Index (SSIM): SSIM compares the images in terms of luminance, contrast,
and structure, aligning more closely with the human visual system’s perception of image quality.

6 Application Experiments
To evaluate the application potential of the developed VIS-HS and NIR-HS, we conducted a series
of experiments, including the recognition of real and artificial objects for material discrimination,
monitoring of land desertification for environmental protection, identification of drug components for
pharmaceutical safety, and dynamic target tracking. The experimental environment is divided into
outdoor and indoor. The outdoor light source is natural light, while the indoor lighting is provided
by a full-spectrum lamp in a dark box, as shown in Fig. 4. The spectrum of the full-spectrum lamp
light covers 400nm-2500nm.

Segmentation for sand and soil To assess the potential of the developed HS cameras for remote
sensing applications, we acquire HS images of sand and soil in an outdoor environment via VIS-HS.
A central region of 1100 × 1100 pixels is selected for analysis. Within this region, two 100 × 100 pixel
areas—one from the sand region and one from the soil region—are extracted as training data. A
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Fig. 3 Overview of the zero-shot training strategy.
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5 × 5 sliding window is used to crop the training data, generating training samples. These samples
are used to train an SVM classifier, which is subsequently applied to perform segmentation across
the entire 1100 × 1100 pixel region.

Classification for medicinal powder To assess the advantages of HS imaging over RGB
imaging, we conduct a classification experiment using medicinal powders. Since ensuring that RGB
images from different devices maintain the same spatial resolution as HS images is challenging, we
create pseudo-RGB images by selecting the 536 nm, 550 nm, and 663 nm bands from the HS data.
This approach eliminates the effect of resolution differences, ensuring that variations in classification
results are solely caused by spectral information. We choose four medicinal powders with very similar
visible colors: Dioscorea powder, Poria powder, lily powder, and starch. From each sample, we extract
a 1200 × 1200 pixel region and apply non-overlapping 16 × 16 pixel windows to crop the data,
generating the required samples. The SVM algorithm is then used, with half of the samples randomly
selected as the training set and the remaining half as the test set.
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