

1 **Supplementary Data File for: MHC genetic diversity confers transgenerational fitness advantage in dolphins**

2 **SUPPLEMENTARY TABLES:**

3 **Supplementary Table 1 | Correlation Matrix**

	MHC Het Sites	Het PBR Sites	Het Msat Het	Soci- ability	Age at death	Age at last calf	Age last surv. calf	Calving Success	Repro Output 1	Repro Output 2	Offspring Viability 1	Offspring Viability 2
MHC Het Sites		0.9660	-0.0951	-0.2325	0.1118	0.0599	0.1331	0.3262	0.0155	-0.1214	0.3654	0.3282
MHC Het PBR Sites	<0.0001		-0.0167	-0.2371	0.1170	0.0189	0.0862	0.3008	0.0081	-0.1001	0.3323	0.2967
Msat Het	0.4509	0.8951		0.2678	-0.0897	-0.1271	-0.0134	-0.1164	0.1626	0.0599	-0.1669	-0.1334
Sociability	0.0477	0.0434	0.0310		-0.3690	-0.2189	-0.2174	-0.1854	0.1988	0.1387	-0.3869	-0.2213
Age at death	0.4255	0.4043	0.5488	0.0065		0.8689	0.8464	0.2690	-0.3987	-0.2242	0.4298	0.2909
Age at last calf	0.6198	0.8759	0.3130	0.0666	<0.0001		0.7963	0.3809	-0.0658	-0.2740	0.4528	0.4057
Age last surv. calf	0.3149	0.5165	0.9244	0.0981	<0.0001	<0.0001		0.3909	-0.1695	-0.3246	0.5177	0.4550
Calving Success	0.0049	0.0097	0.3556	0.1164	0.0515	0.0010	0.0022		0.4531	-0.4795	0.8539	0.9444
Repro Output 1	0.8965	0.9460	0.1956	0.0917	0.0031	0.5858	0.1992	<0.0001		-0.1072	0.0044	0.3248
Repro Output 2	0.3064	0.3992	0.6354	0.2418	0.1065	0.0208	0.0121	<0.0001	0.3667		-0.5861	-0.6277
Offspring Viability 1	0.0017	0.0046	0.1839	0.0009	0.0015	<0.0001	<0.0001	<0.0001	0.9711	<0.0001		0.8826
Offspring Viability 2	0.0046	0.0108	0.2894	0.0599	0.0346	0.0050	<0.0001	<0.0001	0.0051	<0.0001	<0.0001	

4 Pearson correlation r values are shown above the diagonal, and corresponding P -values shown below the diagonal. MHC Het Sites:
5 The number of heterozygous sites for the entire MHC sequence for each female. MHC Het PBR Sites = The number of heterozygous
6 sites for the putative peptide-binding region of the MHC sequences, as defined by previous studies on this region^{14,15} for each female.
7 Msat Het = the number of heterozygous sites per locus across 23 microsatellite loci. Repro Output 1 = observed reproductive output,
8 based on confirmed sightings of calves. Repro Output 2 = potential maximum reproductive output. Offspring viability 1: observed
9 offspring viability, based on confirmed sightings of calves. Offspring viability 2: potential minimum estimate. Sociability = the
10 proportion of sightings of adult female with one or more other adults. Age at death = the estimated age at death of adult female, i.e.
11 longevity; Age last calf = the estimated age of female when she produced her last offspring; Age at last surv. calf = the estimated age
12 of female when she produced her last calf that survived to weaning. This is depicted as a correlation matrix heat map in
13 Supplementary Fig. 1.

14 **Supplementary Table 2 | Principal component regression (PCR).** Table shows relationships between the predictor variables MHC
15 heterozygosity and age variables versus dependent fitness variables described below. Predictor variables are defined as: (1) ‘Het Sites’
16 = the number of heterozygous sites of entire MHC II DQB sequence; (2) ‘Het PBR Sites’ = the number of heterozygous sites of parts
17 of the MHC II DQB that code for putative peptide-binding regions (PBR), as defined by previous studies on this region^{14,15}; (3) Age at
18 death = the estimated age at death of adult female, i.e. longevity; (4) Age last calf = the estimated age of female when she produced
19 her last offspring. (5) Age surv. calf = the estimated age of female when she produced her last calf that survived to weaning.
20 Dependent variables are: Repro output 1 = observed reproductive output, based on confirmed sightings of calves; Repro output 2 =
21 potential maximum reproductive output; Offspring viability 1 = observed offspring viability, based on confirmed sightings of calves;
22 Offspring viability 2 = potential minimum estimate. Rows that are shaded represent significant positive relationships. The least square
23 estimates of the regression coefficients (‘Estimate’), corresponding 95% confidence interval (asymptotic; 95% CI) and regression *t*-
24 values are tabulated. Analysis of variance summary statistics of the analyses, including sum of squares (SS) for the regression (SS
25 Reg) and total, i.e. combined SS of regression and residuals (SS total), *F* ratios (*F*) and *P*-values are shown below ‘ANOVA’.
26 Goodness of fit results are presented as R-squared (R^2), i.e. coefficient of determination, and the standard deviation of the residuals
27 (Sy.x).

28

Dep.	Par.	ANOVA										Goodness of Fit		
		Var	Est.	Variable	Estimate	SE	95% CI	t	P value	Sig.	SS Reg.	SS Total	F	P value
Calving Success	β0	Intercept	0.05473	0.03180	0.009544 to 0.1190	1.721	0.0930	ns	0.0210	0.1075	4.847	0.0130	0.1951	0.0465
	β1	MHC Het	0.001181	0.000433	0.0003059 to 0.002056	2.728	0.0094	**						
	β2	MHC PBR	0.001669	0.000614	0.0004273 to 0.002910	2.717	0.0097	**						
	β3	Age at death	0.000393	0.000300	-0.0002129 to 0.0009993	1.311	0.1973	ns						
	β4	Age last calf	0.000324	0.000356	-0.0003949 to 0.001043	0.9114	0.3676	ns						
	β5	Age sur. calf	0.000579	0.000338	-0.0001037 to 0.001261	1.714	0.0943	ns						
Repro Output 1	β0	Intercept	0.2764	0.03956	0.1965 to 0.3564	6.988	<0.0001	***	0.0114	0.1453	1.704	0.1950	0.0785	0.0579
	β1	MHC Het	-0.00011	0.000539	-0.001198 to 0.0009785	0.2039	0.8394	ns						
	β2	MHC PBR	-0.00015	0.000764	-0.001690 to 0.001399	0.1905	0.8499	ns						
	β3	Age at death	-0.00068	0.000373	-0.001432 to 7.635e-005	1.816	0.0768	ns						
	β4	Age last calf	-0.00078	0.000443	-0.001671 to 0.0001181	1.754	0.0871	ns						
	β5	Age sur. calf	-0.00078	0.000420	-0.001624 to 7.396e-005	1.845	0.0724	ns						
Repro Output 2	β0	Intercept	0.3597	0.04341	0.2719 to 0.4474	8.285	<0.0001	***	0.0151	0.1764	1.871	0.1672	0.0856	0.0635
	β1	MHC Het	-0.00023	0.000591	-0.001428 to 0.0009606	0.3956	0.6945	ns						
	β2	MHC PBR	-0.00032	0.000838	-0.002015 to 0.001374	0.3817	0.7047	ns						
	β3	Age at death	-0.00076	0.000409	-0.001590 to 6.501e-005	1.862	0.0699	ns						
	β4	Age last calf	-0.00086	0.000486	-0.001843 to 0.0001206	1.773	0.0839	ns						
	β5	Age sur. calf	-0.00088	0.000461	-0.001817 to 4.694e-005	1.919	0.0621	ns						
Offspring Viability 1	β0	Intercept	0.1510	0.1293	-0.1104 to 0.4124	1.167	0.2500	ns	0.6837	2.116	9.549	0.0004	0.3232	0.1892
	β1	MHC Het	0.005854	0.001761	0.002295 to 0.009412	3.324	0.0019	**						
	β2	MHC PBR	0.008253	0.002498	0.003204 to 0.01330	3.304	0.0020	**						
	β3	Age at death	0.003175	0.001220	0.0007100 to 0.005641	2.603	0.0129	*						
	β4	Age last calf	0.003035	0.001447	0.0001100 to 0.005960	2.097	0.0424	*						
	β5	Age sur. calf	0.004249	0.001374	0.001473 to 0.007026	3.093	0.0036	**						
Offspring Viability 2	β0	Intercept	0.1130	0.1465	-0.1832 to 0.4091	0.7710	0.4452	ns	0.4358	2.273	4.744	0.0142	0.1917	0.2143
	β1	MHC Het	0.004860	0.001995	0.0008290 to 0.008891	2.437	0.0194	*						
	β2	MHC PBR	0.006856	0.002830	0.001137 to 0.01258	2.423	0.0200	*						
	β3	Age at death	0.002368	0.001382	-0.0004248 to 0.005161	1.714	0.0943	ns						
	β4	Age last calf	0.002207	0.001640	-0.001106 to 0.005521	1.346	0.1858	ns						
	β5	Age sur. calf	0.003226	0.001556	8.103e-005 to 0.006371	2.073	0.0446	*						

30 **Supplementary Table 3 | Linear regression analysis for regression plots (Fig. 1a-c, main**
 31 **text).** Association between the number of MHC heterozygous sites of entire sequence (predictor)
 32 and fitness measures (calving success, reproductive output and offspring viability).

Predictor: MHC Heterozygous Sites

Fitness	<i>n</i>	Slope (SE)	<i>R</i>²	<i>F</i>	<i>p</i>	sig.^c
Calving success	73	0.2869 (0.09868)	0.1064	8.46	0.0049	**
Repro Output 1 ^a	73	0.01565 (0.1199)	0.00024	0.017	0.8965	ns
Repro Output 2 ^a	73	-0.1261 (0.1224)	0.01473	1.064	0.3064	ns
Offspring viability 1 ^b	71	1.458 (0.4471)	0.1335	10.63	0.0017	**
Offspring viability 2 ^b	73	1.156 (0.3950)	0.1077	8.57	0.0046	**

33 ^aRepro Output 1 = observed reproductive output, based on confirmed sightings of calves; Repro
 34 Output 2 = potential maximum reproductive output. ^bOffspring viability 1 = observed offspring
 35 viability, based on confirmed sightings of calves. ^bOffspring viability 2 = potential minimum
 36 estimate of offspring viability. ^csig. = statistical significance testing whether slope is significantly
 37 non-zero, based on linear regression: ns = not significant ($P \geq 0.05$), $*P < 0.05$; $**P < 0.01$.

39 **Supplementary Table 4 | Two-tailed Mann-Whitney *U* tests: Comparing fitness measures**
 40 **for MHC heterozygous vs homozygous adult females**

Mann-Whitney *U*: All Sites

FITNESS	Het.^c	Hom.^c	<i>n</i> Het.^d	<i>n</i> Hom.^d	<i>Mann-Whitney U</i>	<i>P</i>	sig.^e
Calving success	0.1109 (0.008450)	0.06335 (0.01938)	66	7	130.0	0.0571	ns
Repro output 1 ^a	0.1942 (0.009687)	0.2174 (0.03815)	66	7	177.5	0.3254	ns
Repro output 2 ^a	0.3017 (0.02986)	0.3179 (0.02986)	66	7	191.5	0.4699	ns
Offspring viability 1 ^b	0.5694 (0.03814)	0.2738 (0.07867)	64	7	90.5	0.0076	**
Offspring viability 2 ^b	0.4153 (0.03371)	0.2190 (0.06730)	66	7	125	0.0451	*

41
 42 ^aRepro Output 1 = observed reproductive output, based on confirmed sightings of calves; Repro
 43 Output 2 = potential maximum reproductive output. ^bOffspring viability 1 = observed offspring
 44 viability, based on confirmed sightings of calves. ^bOffspring viability 2 = potential minimum
 45 estimate of offspring viability. ^cmean fitness estimates for adult females that were heterozygous
 46 ('Het.') and homozygous ('Hom') for the MHC region. Standard errors are shown in brackets.
 47 ^dsample sizes for adult females that were heterozygous ('Het.') and homozygous ('Hom') for the
 48 MHC region. Standard errors are shown in brackets. ^esig. = statistical significance testing for
 49 Mann-Whitney *U* test: ns = not significant ($P \geq 0.05$), * $P < 0.05$; ** $P < 0.01$. Results for Mann-
 50 Whitney *U* tests, based on heterozygotes versus homozygotes for the peptide-binding region
 51 (PBR) of the MHC sequences are tabulated in Supplementary Table 5.
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68

69 **Supplementary Table 5 | Two-tailed Mann-Whitney *U* tests: Comparing fitness measures**
 70 **for MHC heterozygous vs homozygous adult females, based on peptide-binding region**
 71 **(PBR)**

72

73 **Mann-Whitney *U*: PBR Sites**

FITNESS	Het.^c	Hom.^c	<i>n</i> Het.^d	<i>n</i> Hom.^d	<i>Mann-Whitney U</i>	<i>P</i>	sig.^e
Calving success	0.1128 (0.008535)	0.06003 (0.01700)	64	9	153	0.0214	*
Repro output 1 ^a	0.1941 (0.009954)	0.2127 (0.02988)	64	9	237	0.4003	ns
Repro output 2 ^a	0.3028 (0.01011)	0.3065 (0.02496)	64	9	262	0.6705	ns
Offspring viability 1 ^b	0.5780 (0.03828)	0.2796 (0.07826)	62	9	118.5	0.0040	**
Offspring viability 2 ^b	0.4214 (0.03414)	0.2180 (0.06260)	64	9	155.5	0.0239	*

83

84

85 ^aRepro Output 1 = observed reproductive output, based on confirmed sightings of calves; Repro
 86 Output 2 = potential maximum reproductive output. ^bOffspring viability 1 = observed offspring
 87 viability, based on confirmed sightings of calves. ^bOffspring viability 2 = potential minimum
 88 estimate of offspring viability. ^cmean fitness estimates for adult females that were heterozygous
 89 ('Het.') and homozygous ('Hom') for the MHC region. Standard errors are shown in brackets.

90 ^dsample sizes for adult females that were heterozygous ('Het.') and homozygous ('Hom') for the
 91 peptide-binding region (PBR)^{14,15} of the MHC sequence. Standard errors are shown in brackets.

92 ^esig. = statistical significance testing for Mann-Whitney *U* test: ns = not significant (*P* ≥ 0.05),

93 **P* < 0.05; ***P* < 0.01. Results of Mann-Whitney *U* tests, based on heterozygotes versus

94 homozygotes for the entire MHC sequences are tabulated in Supplementary Table 4.

95

96

97

98

99

100

101

102

103

104

105

106

107

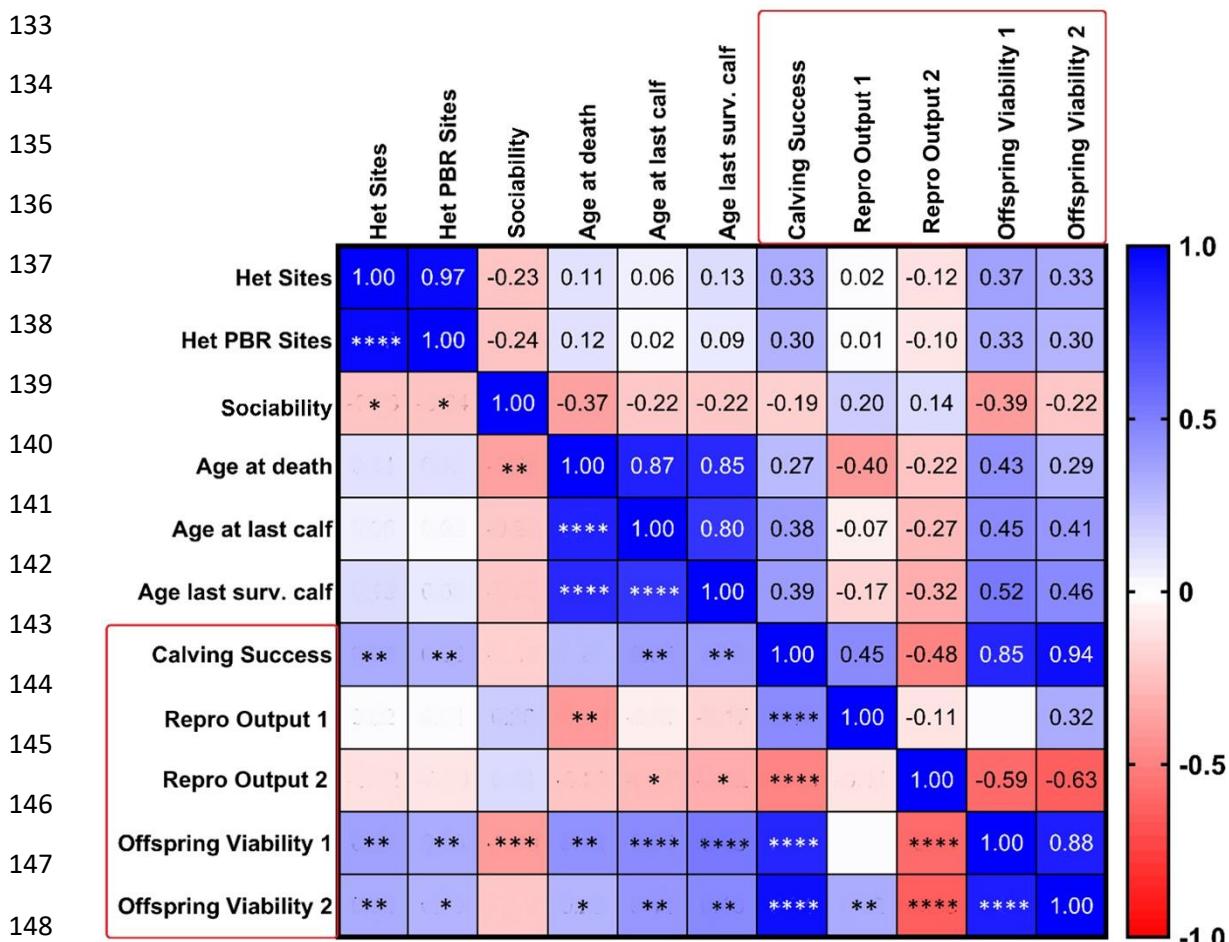
108

109

110 **Supplementary Table 6 | Two-tailed Mann-Whitney U tests: Comparing MHC F_{IS} for high
111 vs low fitness measures**

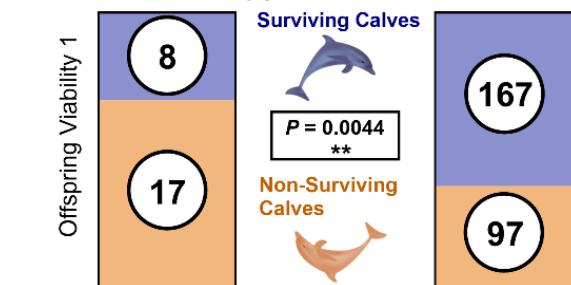
112

Fitness Measure^a		n^b	F_{IS}^c	U	P	<i>sig</i>
Calving Success	High	36	-0.120 (0.034)	1437	0.0438	*
	Low	36	0.057 (0.037)			
Repro Output 1	High	36	-0.030 (0.038)	1972	0.5208	ns
	Low	36	-0.071 (0.030)			
Repro Output 2	High	36	-0.024 (0.033)	1988	0.4632	ns
	Low	36	-0.088 (0.031)			
Offspring Viability 1	High	35	-0.155 (0.039)	1421	0.0074	**
	Low	35	0.029 (0.031)			
Offspring Viability 2	High	36	-0.103 (0.037)	1448	0.0402	*
	Low	36	0.042 (0.035)			

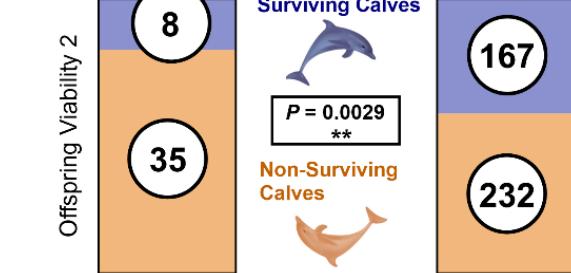

113 ^aRepro Output 1 = observed reproductive output, based on confirmed sightings of calves; Repro
114 Output 2 = potential maximum reproductive output. ^bOffspring viability 1 = observed offspring
115 viability, based on confirmed sightings of calves. ^bOffspring viability 2 = potential minimum
116 estimate of offspring viability. 'High' = subset of sample with fitness values above the median;
117 'Low' = subset of sample with fitness values below the median. ^b n = the number of adult
118 females/sequences in the sample. ^c F_{IS} = inbreeding coefficient (standard error in brackets) for the
119 MHC locus. *sig.* = statistical significance comparing diversity measures for 'high' vs 'low',
120 based on Mann-Whitney U tests: ns = not significant ($P \geq 0.05$), * $P < 0.05$; ** $P < 0.01$.

121 **Supplementary Table 7 | Two-tailed Mann-Whitney U tests: Comparing microsatellite F_{IS}**
 122 **for high vs low fitness measures**

Fitness Measure ^a		n^b	F_{IS}^c	U	P	<i>sig</i>
Calving Success	High	32	0.0076 (0.032)	263.5	0.9871	ns
	Low	32	0.0193 (0.035)			
Repro Output 1	High	32	0.0010 (0.024)	227	0.4167	ns
	Low	32	0.0391 (0.032)			
Repro Output 2	High	32	0.030 (0.023)	240	0.5975	ns
	Low	32	0.011 (0.034)			
Offspring Viability 1	High	32	0.034 (0.033)	233.5	0.5031	ns
	Low	32	0.014 (0.032)			
Offspring Viability 2	High	32	0.038 (0.035)	235	0.5241	ns
	Low	32	0.010 (0.036)			


123
 124 ^aRepro output 1 = observed reproductive output, based on confirmed sightings of calves; Repro
 125 output 2 = potential maximum reproductive output. ^bOffspring viability 1 = observed offspring
 126 viability, based on confirmed sightings of calves. ^bOffspring viability 2 = potential minimum
 127 estimate of offspring viability. 'High' = subset of sample with fitness values above the median;
 128 'Low' = subset of sample with fitness values below the median. ^b n = the number of adult
 129 females/sequences in the sample. ^c F_{IS} = inbreeding coefficient (standard error in brackets) across
 130 23 polymorphic microsatellite loci. *sig.* = statistical significance comparing diversity measures
 131 for 'high' vs 'low', based on Mann-Whitney U tests: ns = not significant ($P \geq 0.05$).

132 **SUPPLEMENTARY FIGURES:**



149 **Supplementary Fig. 1 | Correlation matrix heat map.** Pearson correlation r values for
 150 significant correlations are shown above the diagonal, and corresponding significance, based on
 151 P -values shown as asterisks below the diagonal: * $P < 0.05$; ** $P < 0.01$, *** $P < 0.001$, **** $P <$
 152 0.0001. Corresponding P -values are shown in Supplementary Table 1. Het Sites = The number
 153 of heterozygous sites for the entire MHC sequence for each female. Het PBR Sites = The number
 154 of heterozygous sites for the putative peptide-binding region of the MHC sequences, as defined
 155 by previous studies on this region^{14, 15} for each female. Sociability = the proportion of sightings
 156 of adult female with one or more other adults. Age at death = the estimated age at death of adult
 157 female, i.e. longevity; Age last calf = the estimated age of female when she produced her last
 158 offspring; Age at last surv. calf = the estimated age of female when she produced her last calf
 159 that survived to weaning. Fitness measures are highlighted in red box: Repro Output 1 =
 160 observed reproductive output, based on confirmed sightings of calves. Repro Output 2 =
 161 potential maximum reproductive output. Offspring viability 1 = observed offspring viability,
 162 based on confirmed sightings of calves. Offspring viability 2 = potential minimum estimate of
 163 offspring viability.

165 **a MHC PBR Homozygous MHC PBR Heterozygous**

166 **b** Offspring Viability 2

175 **Supplementary Fig. 2 | Bar graphs & two-tailed Fisher's exact test results (MHC-PBR).**

176 Comparison between the number of surviving and non-surviving calves collectively produced by
 177 adult females that were homozygous or heterozygous for the MHC peptide-binding region
 178 (PBR). Stacked bar graphs show the relative percentages of surviving (blue) and non-surviving
 179 calves (orange) cumulatively produced by adult females who were homozygous or heterozygous
 180 for the entire MHC region. The numbers of surviving and non-surviving calves are shown in
 181 white font and black shading; percentages of surviving and non-surviving calves are shown in
 182 parentheses (black font). Fisher's exact test P -values are shown for each comparison in boxes
 183 between stacked bar graphs: ** $P < 0.01$. **a**, estimates for non-surviving calves based on
 184 confirmed sightings of calves (offspring viability 1); **b**, estimates for non-surviving calves, based
 185 on potential minimum estimate for offspring viability (offspring viability 2). Results for the
 186 entire MHC II DQB region are shown in Fig. 2 of main text.

195 **References:**

196 14. Heimeier, D., Baker, C.S., Russell, K., Duignan, P. J., Hutt, A., & Stone, G.S. Confirmed
197 expression of MHC class I and class II genes in the New Zealand endemic Hector's dolphin
198 (*Cephalorhynchus hectori*). *Mar. Mammal Sci.* **25**, 68–90 (2009).

199

200 15. Manlik, O., Krützen, M., Kopps, A.M., Mann, J., Bejder, L., Allen, S.J., Frère, C., Connor,
201 R.C. & Sherwin, WB. Is MHC diversity a better marker for conservation than neutral genetic
202 diversity? A case study of two contrasting dolphin populations. *Ecol. Evol.* **9**, 6986-6998
203 (2019a).

204