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S1 INTRODUCTION

S1 Introduction

The Global Integrated Sustainable Power-system Optimization Model (GISPO) is an integrated

computational framework designed to simulate and optimize the expansion and hourly operations

throughout 8,760 hours in a full planning year of global power systems, with a particular focus on

novel investments in generation, storage, and transmission infrastructure for a specified target year

(e.g., 2050). The GISPO employs an optimization approach to determine the least-cost portfolio

for each planning year interval, which integrates a comprehensive array of input parameters, includ-

ing projected electricity demand, investment costs, technology performance metrics, planning and

operating reserve requirements, inertia constraints, and energy availability factors—encompassing

both installation capacity potential and hourly generation profiles. The model’s technological scope

is extensive, incorporating a diverse range of power generation sources: variable renewable energies

(VREs) such as onshore and offshore wind power, utility-scale and distributed solar photovoltaic

(PV) systems; conventional sources including hydropower, thermal power (coal, natural gas, and

biomass), and nuclear power; and energy storage solutions like battery systems and pumped hy-

dro storage (PHS). Additionally, the GISPO accounts for intra-grid, inter-grid, and inter-regional

transmission infrastructure, considering both alternating current (AC) and direct current (DC)

technologies. This approach enables the GISPO to provide a nuanced and realistic representation

of complex, interconnected power systems on a global scale, as the model framework in Figure S1.

Figure S1: Framework of the GISPO model.
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S1 INTRODUCTION

The GISPO model employs a geospatial framework delineating the world into 91 distinct regions.

These regions predominantly correspond to major nations (e.g., China, the United States, and the

Russian Federation) or amalgamate multiple countries and autonomous administrative territories

(e.g., the British Isles region encompasses Ireland, the United Kingdom, Isle of Man, Guernsey, and

Jersey)1. Each region is characterized by at least one or more power grid. Under this division,

there is a total of 144 grids in the GISPO. Table S1 provides a detailed inventory of the ID and

nomenclature for each region and grid, and Figure S2 shows the geographical visualization of this

division, elucidating the spatial relationships and boundaries of the defined regions and grids.

In this model, we optimize various parameters at the grid level, including power balance, elec-

tricity flow, energy storage deployment, dispatch route, carbon capture and source-sink matching,

and unit commitment of thermal and nuclear power. Additionally, the model also addresses grid

safety requirements at the power grid level, specifically inertia and spinning reserve requirements.

VREs are optimized at a resolved spatial resolution, using a cell-level approach with dimensions

of 0.25°×0.25° (approximately 25×25 km at middle latitude). This fine-grained analysis allows for

both capacity expansion and power dispatch optimization of VREs. Furthermore, the model con-

siders hydropower optimization at the individual dam site level for capacity expansion and power

generation, ensuring a comprehensive and nuanced approach to renewable energy integration.

Figure S2: Region and grid division in the GISPO model.

1In our region division, Taiwan is as a power grid of China; the SaudiArabia region includes Saudi Arabia, Bahrain,
and Qatar; and the Morocco region includes Morocco and Western Sahara.
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Table S1: Region and grid division in the GISPO model.
No. Region Grid Continent No. Region Grid Continent

1 Afghanistan Afghanistan AS 73 KyrgyzstanTajikistan KyrgyzstanTajikistan AS
2 Algeria Algeria AF 74 Laos Laos AS
3 Argentina East SA 75 Lebanon Lebanon AS
4 Argentina NorthEastUruguay SA 76 Libya Libya AF
5 Argentina West SA 77 Madagascar Madagascar AF
6 Australia East OA 78 Malaysia EastBrunei AS
7 Australia West OA 79 Malaysia WestSingapore AS
8 AustriaHungary AustriaHungary EU 80 Mexico Central NA
9 BalkanEast BalkanEast EU 81 Mexico North NA
10 BalkanWest BalkanWest EU 82 Mexico Northwest NA
11 Baltic Baltic EU 83 Mexico South NA
12 Bangladesh Bangladesh AS 84 Mongolia Mongolia AS
13 Belarus Belarus EU 85 Morocco Morocco AF
14 Benelux Benelux EU 86 Myanmar Myanmar AS
15 Brazil North SA 87 NepalBhutan NepalBhutan AS
16 Brazil Northeast SA 88 NewZealand NewZealand OA
17 Brazil SanPaulo SA 89 Nigeria North AF
18 Brazil South SA 90 Nigeria South AF
19 Brazil Southeast SA 91 NorthKorea NorthKorea AS
20 BritishIsles BritishIsles EU 92 Norway Norway EU
21 Cambodia Cambodia AS 93 Oman Oman AS
22 Canada East NA 94 Pakistan North AS
23 Canada West NA 95 Pakistan South AS
24 Caucas Caucas AS 96 Peru Peru SA
25 CentralAF CentralAF AF 97 Philippines Philippines AS
26 CentralAmerica CentralAmerica NA 98 Poland Poland EU
27 CentralSouthAmerica CentralSouthAmerica SA 99 Russia Central EU
28 Chile Chile SA 100 Russia Fareast EU
29 China Central AS 101 Russia Northwest EU
30 China East AS 102 Russia Siberia EU
31 China North AS 103 Russia South EU
32 China Northeast AS 104 Russia Ural EU
33 China Northwest AS 105 Russia Volga EU
34 China South AS 106 SaudiArabia SaudiArabia AS
35 China Taiwan AS 107 Slovakia Slovakia EU
36 China Xizang AS 108 Somalia Somalia AF
37 China Xinjiang AS 109 SouthAF SouthAF AF
38 Colombia Colombia SA 110 SouthEastAF SouthEastAF AF
39 Congo Congo AF 111 SouthKorea SouthKorea AS
40 Denmark Denmark EU 112 SouthWestAF SouthWestAF AF
41 Ecuador Ecuador SA 113 SriLanka SriLanka AS
42 Egypt Egypt AF 114 SudanEriteria SudanEriteria AF
43 Ethiopia Ethiopia AF 115 Sweden Sweden EU
44 Finland Finland EU 116 Switzerland Switzerland EU
45 France France EU 117 Syria Syria AS
46 GazaJordan GazaJordan AS 118 Tanzania Tanzania AF
47 Germany Germany EU 119 Thailand Thailand AS
48 Iberia Iberia EU 120 Tunisia Tunisia AF
49 Iceland Iceland EU 121 Turkey Turkey EU
50 India CentralEast AS 122 Turkmenistan Turkmenistan AS
51 India CentralSouth AS 123 USA Alaska NA
52 India CentralWest AS 124 USA California NA
53 India East AS 125 USA Carolinas NA
54 India North AS 126 USA Central NA
55 India NorthEast AS 127 USA Gulf NA
56 India NorthWest AS 128 USA MidAtlantics NA
57 India South AS 129 USA Midwest NA
58 India Up AS 130 USA NENY NA
59 India West AS 131 USA Northwest NA
60 Indonesia JavaTimorLeste AS 132 USA Southern NA
61 Indonesia KalimantanSulawesi AS 133 USA Southwest NA
62 Indonesia PapuaNewGuinea AS 134 USA TVA NA
63 Indonesia Sumatra AS 135 USA Texas NA
64 Iran Iran AS 136 UkraineMoldova UkraineMoldova EU
65 Iraq Iraq AS 137 UnitedArabEmirates UnitedArabEmirates AS
66 Israel Israel AS 138 Uzbekistan Uzbekistan AS
67 Italy Italy EU 139 Venezuela Venezuela SA
68 Japan East AS 140 Vietnam Vietnam AS
69 Japan West AS 141 WestNorthAF WestNorthAF AF
70 Kazakhstan Kazakhstan AS 142 WestSouthAF WestSouthAF AF
71 KenyaUganda KenyaUganda AF 143 WestWestAF WestWestAF AF
72 Kuwait Kuwait AS 144 Yemen Yemen AS



S2 ENERGY RESOURCE ASSESSMENT

S2 Energy Resource Assessment

S2.1 Assessment of wind and solar power

This section assesses the potential of renewable energy resources, specifically across onshore/offshore

wind systems and utility-scale/distributed solar PV technologies. The resource assessment frame-

work integrates two principal components: 1) hourly generation potential, defined by the capacity

factor (CF∈[0,1])—the ratio of actual power output to nameplate capacity, which serves as a stan-

dardized metric for temporal variability and generation efficiency; and 2) maximum installation

capacity (MW) per grid cell, derived by multiplying installation density (MW/km2) with the tech-

nically suitable development area (km2). High-resolution models, incorporating key meteorological

parameters (wind speed, ambient temperature, air density, and surface-level shortwave solar radia-

tion), facilitate the calculation of capacity factors. For wind and utility-scale solar PV, the analysis

prioritizes the identification of viable land areas. Distributed solar PV, particularly rooftop ap-

plications, employs distinct spatial criteria to address structural suitability and available building

rooftop area. This methodology yields a temporally resolved and spatially explicit characterization

of renewable energy potentials, accurately reflecting atmospheric dynamics and land-use constraints.

S2.1.1 Assessment of the hourly capacity factor for wind power

The determination of the hourly capacity factor for wind power generation hinges primarily on

the interaction between the specific power output curve of the wind turbine and the wind speed

as measured at hub height. This power output curve, in conjunction with a suite of additional

technical specifications, forms the quantitative foundation for assessing the hourly capacity factor

in wind power systems. Comprehensive technical parameters for diverse wind turbine configura-

tions, including critical metrics like nameplate capacity, cut-in and cut-out wind speeds, rated wind

speed, turbine hub elevation, and complete power output curves, are systematically compiled by the

National Renewable Energy Laboratory (NREL) within its wind energy assessment initiative [1].

In the present study, the hourly capacity factor assessments for onshore and offshore scenarios em-

ploy the 2020 ATB NREL Reference 5.5 MW 175 and the IEA 15MW 240 RWT turbine models,

respectively. The pertinent parameters for these selected models are provided in Table S2.

Table S2: Technical parameters of the wind turbine selected by the GISPO.

2020ATB NREL Reference 5.5MW 175 IEA 15MW 240 RWT

Nameplate capacity (MW) 5.5 15.0
Hub height (m) 120.0 150.0
Cut-in wind speed (m/s) 3.25 3.00
Cut-out wind speed (m/s) 25.0 25.0
Rated wind speed (m/s) 10.0 10.6

The power output curve of a wind turbine is a piecewise function contingent upon the wind
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S2 ENERGY RESOURCE ASSESSMENT

speed (vhw, m/s) at the turbine’s hub height:

P (vhw) =


0, vhw < vcut-in or vhw ≥ vcut-out

f(vhw), vcut-in ≤ vhw < vrated

Prated, vrated ≤ vhw < vcut-out

(S2-1)

where power generation remains zero when vhw falls below the cut-in threshold or exceeds the cut-

out limit. Within the operational range between cut-in and rated wind speeds, the turbine’s power

generation demonstrates a monotonically increasing relationship with wind speed. Upon attaining or

surpassing the rated wind speed and below the cut-out threshold, the turbine operates at maximum

efficiency, producing power equivalent to its nameplate capacity. To facilitate our capacity factor

analysis, we normalized the power output curves across various turbine configurations. Figure S3

illustrates these normalized output functions for multiple turbine variants documented by NREL

[1]. Because the non-linear relationship between wind speed and power output only lies within

the segment spanning from cut-in to rated wind speed, we implement a third-degree polynomial

regression methodology to fit a power output to wind speed function in this interval, with the fitted

results shown in Figure S4.
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Figure S3: Normalized power output curve of different wind power models [1].
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Figure S4: Illustration of the fitting results of the normalized power output curve for the selected
wind turbine models.

Wind speed at the turbine hub height is a fundamental variable for assessing the hourly capacity

factor of wind power. We adopt the re-analysis meteorological data from the European Centre for

Medium-Range Weather Forecasts Reanalysis Version 5 (ERA5) dataset, which provides a compre-

hensive global climate record spanning over eight decades (1940–current), with a spatial resolution

of 0.25° × 0.25° and hourly temporal resolution [3]. The wind speed data from ERA5 contains 10

m and 100 m heights (U10m, V10m, U100m, and V100m, m/s). In this study, the hub heights of

turbine models selected for output assessment are 120 m and 150 m for onshore and offshore wind

power, respectively (see Table S2), which are not available directly in the ERA5 dataset. Therefore,

we employ the vertical power law profile to estimate the target wind speed:

vhw = v100w × (
zh
z100

)α, (S2-2)

where vhw is the wind speed at height h (m/s), v100w is the wind speed at 100 m (m/s) calculated as

v100w =
√

U2
100 + V 2

100, zh is the target height (120 m for onshore wind and 150 m for offshore wind),

z100 = 100 m, and α is the wind shear coefficient, which varies with terrain. We apply Equation

S2-2 using wind speeds at 10 m and 100 m to estimate α for each hour at each 0.25° × 0.25° grid

cell [4].

A wind turbine’s power output curve is standardized based on measurements performed at a

standard air density (ρhstd=1.225 kg/m3). Hence, calculating power output at a given time step using

this curve requires converting the observed wind speed to the equivalent wind speed at standard

air density. The relationship between the wind speed under standard conditions (vhstd) and the

measured wind speed (vhmeas) is defined by the following equation [5]:

vhstd = vhmeas ×
(
ρhmeas

ρhstd

)1/3

, (S2-3)

this equation defines vhstd as the wind speed at height h under standard air density, where vhmeas

represents the measured wind speed derived from Equation S2-2, and ρhmeas denotes the actual air
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density. However, ERA5 reanalysis data do not directly provide observed air density. Instead, air

density is calculated using the ideal gas state equation, based on other reported meteorological

variables [5]:

ρhmeas =
phmeas − pvapour

RdryT
+

pvapour
RvapourT

, (S2-4)

where Rdry denotes the gas constant for dry air, which is 287.1 J/kg · K, and Rvapour represents

the specific gas constant for water vapor, equivalent to 461.5 J/kg · K. Furthermore, phmeas signifies

the measured atmospheric pressure in Pascals (Pa) at hub height (h), pvapour indicates the partial

pressure of water vapor (Pa) at a height of 2 meters, and T refers to the temperature in Kelvin (K)

at hub height. The determination of the partial pressure of water vapor, pvapour, relies on the air’s

relative humidity (ϕ, expressed in %) and temperature, using the Clausius-Clapeyron equation:

pvapour = ϕ× 610.78× exp

(
17.27(t− 273.15)

t− 273.15 + 237.3

)
, (S2-5)

where t represents the temperature at a 2 m height. It is assumed that the partial pressure of water

vapor at hub height is equivalent to that at 2 m [5]. And the air humidity, ϕ, is calculated from the

dewpoint temperature (K) at a 2 m height, as provided by ERA5 data, using the equation presented

by [6]:

ϕ = exp

(
17.625× (td − 273.15)

243.04 + (td − 273.15)
− 17.625× (t− 273.15)

243.04 + (t− 273.15)

)
× 100%. (S2-6)

Finally, we calculate the atmospheric pressure (Pa) at hub height (h), denoted as phmeas, using the

surface pressure from ERA5 (Pa, p0), by:

phmeas = p0 × e
− gh

Rdt , (S2-7)

where e is the base of the natural logarithm, g = 9.81 m/s2 is the gravitational acceleration at the

Earth’s surface, t is the temperature at 2 m height, and Rd is a function of the specific humidity of

the air (q, kg/m3):

Rd = qRvapour +
Rdry

1 + q
. (S2-8)

Following the acquisition of wind speed at hub height under standard air density via the afore-

mentioned calculations, the hourly capacity factor for wind power generation is determined for each

0.25° × 0.25° cell using the normalized power output curve of the specified wind turbine model.

Subsequent adjustments to this capacity factor are implemented based on the ensuing considera-

tions:

• The capacity factor at each timestep undergoes a 5% reduction to account for phenomena

such as wake effects and electrical losses within wind farms [7, 8].

• Wind turbine operation ceases when the temperature at hub height falls below −30°C due to

extreme cold conditions, necessitating a correction of the capacity factor to 0 [5].
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• The wind turbine halts operation if the wind speed exceeds the cut-out threshold. Reactivation

occurs only when specific wind speed criteria are met. The GISPO addresses this by employing

a hysteresis window approach, wherein turbine operation resumes only after the wind speed

first decreases to or below 20 m/s following a shutdown. The cut-out threshold for the wind

turbine is detailed in Table S2.

The GISPO model restricts the geographical extent of offshore wind power analysis to the

Exclusive Economic Zone (EEZ) of each respective country [9]. Figure S5 illustrates the annual

average capacity factor, calculated as
∑
t∈T

cft/|T |, for both onshore and offshore wind power within

each grid cell for the year 2019.

Figure S5: Cell level annual average capacity factor (0–1) for onshore and offshore wind power in
2019.

S2.1.2 Assessment of the hourly capacity factor for solar photovoltaic power

We adopt the fixed-tilt photovoltaic system model [10] to quantify the hourly capacity factor of

solar PV power at a given grid cell [11]. The solar PV power output constitutes a fraction of the

nameplate capacity, which can be derived from meteorological data. Specifically, we use surface

downwelling shortwave radiation (SSRD2M, J/m2), surface temperature (T2m, K), and 10-meter

height surface wind speed (U10m and V10m, m/s) at a 0.25°×0.25° spatial resolution from ERA5 [3].

Based on these inputs, we assess the DC power output to the nameplate capacity fraction using the

following equation [12]:

Pdc

Pdc0
= [1 + γ × (Tcell(t)− Tstd)]×

ssrd(t)

ssrdstd
× ηsys, (S2-9)

where Pdc/Pdc0 represents the ratio of the DC power output to the nameplate capacity. Tcell(t)

denotes the cell temperature of the solar PV module, and Tstd is its counterpart under standard

test conditions (25 °C). The temperature coefficient of the solar PV cell, γ, is set to −0.005 °C−1,
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reflecting the module’s efficiency variations with temperature. ssrd(t) indicates the hourly surface

downwelling shortwave radiation (W/m2, converted from J/m2) in the ambient environment, which

is derivable from the SSRD2M variable in the ERA5 dataset. The term ssrdstd signifies the short-

wave radiation flux incident on the solar PV panel under standard test conditions, defined as 1,000

W/m2. Lastly, ηsys ∈ [0, 1] represents the efficiency of the DC electrical system, set to 0.86 [12,13].

Consistent with previous studies [14,15], the solar PV cell temperature (Tcell(t), °C) is calculated

based on surface downwelling shortwave radiation (ssrd(t), W/m2), ambient temperature (T (t), °C),

and wind speed (vw(t), m/s) using Equation S2-10:

Tcell(t) = c1 + c2 × T (t) + c3 × ssrd(t) + c4 × vw(t). (S2-10)

In this equation, T (t) denotes the hourly ambient temperature and vw(t) represents the hourly

surface wind speed. The coefficients are c1 = 4.3 °C, c2 = 0.943, c3 = 0.028 °C·m2·W−1, and

c4 = −1.528 °C·s·m−1. The substitution of Tcell(t) from Equation S2-10 into Equation S2-9 (which

defines Pdc/Pdc0 as a function of Tcell(t), ssrd(t), and system parameters) and subsequent algebraic

rearrangement yields Equation S2-11:

Pdc

Pdc0
= [α1 × ssrd(t) + α2 × ssrd(t)2 + α3 × ssrd(t)× T (t) + α4 × ssrd(t)× vw(t)]× ηsys. (S2-11)

Here, the coefficients α1, α2, α3, and α4 are 1.1035×10−3, −1.4×10−7, −4.715×10−6, and 7.64×10−6,

respectively. The resulting ratio Pdc/Pdc0 is a dimensionless quantity. The fraction of AC output

to the nameplate AC capacity, Pac/Pac0, is derived according to the PVWatts model [13] using

Equation S2-12:

Pac

Pac0
= min

(
η × Pdc

Pac0
, 1

)
. (S2-12)

In this context, Pac0 is the nameplate AC capacity, defined as Pac0 = ηnom×Pdc0, where ηnom = 0.96

is the nominal DC-AC inverter efficiency. The term η represents the inverter efficiency, which is a

function of Pdc/Pdc0 (the ratio of DC output to nameplate DC capacity). The inverter performance

characteristic is described by Equation S2-13 [13]:

η =
ηnom
ηref

×
(
−0.0162× ζ − 0.0059

ζ
+ 0.9858

)
. (S2-13)

Here, ζ = Pdc/Pdc0 represents the ratio of DC output to nameplate DC capacity, and ηref = 0.9637

is the reference inverter efficiency. By combining Equations S2-11, S2-12, and S2-13, the fraction of

the AC output to the nameplate AC capacity, Pac/Pac0, is expressed as:

Pac

Pac0
= min

(
1

ηref
× (−0.0162× ζ2 + 0.9858× ζ − 0.0059), 1

)
. (S2-14)

It is assumed that utility-scale and distributed solar PV systems within the same grid cell share

the same capacity factor. Figure S6 illustrates the annual average capacity factor for solar PV in

each grid cell for the year 2019.
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Figure S6: Cell level annual average capacity factor (0–1) for solar photovoltaic power in 2019.

S2.1.3 Assessment of suitable area for developing wind, utility-scale solar photovoltaic
power

We estimate the installation capacity potential of wind and solar power based on the suitable land

area (km2) and assumed installation density (MW/km2) [16, 17] for each 0.25° × 0.25° grid cell,

consistent with the resolution of the ERA5 meteorological data. To evaluate the suitable land area,

we use the global 300 m gridded land cover data in 2020, provided by the European Space Agency

(ESA), which is represented at the “pixel” level within each grid cell, see the relationship between

land cover “pixel” and 0.25° × 0.25° grid cell in Figure S7. The ESA land cover dataset provides

global maps describing the land surface into 22 classes, which have been defined using the United

Nations Food and Agriculture Organization’s (UN FAO) Land Cover Classification System (LCCS).

See the distribution and definition of each land use type in Figure S8 and Table S4. In addition to

the land cover maps, several quality flags, including nature reserve and biodiversity reserve area,

slope, altitude, shipping lanes, and water depth, are adopted to document the suitable land area

recognition. Using this land cover dataset as the base map, we first exclude the pixels within each

grid cell that are situated in nature reserves and biodiversity reserve areas due to environmental

protection reasons. Subsequently, we formulate three scenarios (open, base, and conservative) to

further eliminate the remaining pixels that do not meet natural condition constraints such as steep

slopes, high altitudes, and water depths. Additionally, for offshore wind applications, pixels located

within shipping lanes are also omitted for safety considerations. Following these steps, the suitability

factor is devised for the three scenarios to estimate the suitable area within the remaining pixels

based on land use types to represent different policy requirements. Finally, we aggregate the suitable

area of qualified pixels in each grid cell to determine the total suitable area for developing wind and

utility-scale solar PV power.
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Figure S7: Schema of the relationship between grid cells and land use pixels.
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Figure S8: Proportion of each land use type in the ESA land use dataset. Definition of each type
ID is shown in Table S4.

The threshold values2 for the natural conditions are presented in Table S3. Offshore areas

designated as shipping lanes are excluded based on shipping density thresholds that vary by scenario.

The shipping density data, obtained from the World Bank [21], quantifies the cumulative number

of hourly Automatic Identification System (AIS) positions reported by vessels within 0.005°×0.005°

grid cells (approximately 500 m resolution at the Equator) over the period of January 2015 to

February 2021, based on analysis by the IMF [21]. To delineate shipping lanes for the open, base,

and conservative scenarios, we follow the approach of [22] by employing historical shipping density

percentiles as exclusion thresholds. The 90th, 85th, and 80th percentiles are utilized for the open,

base, and conservative scenarios, respectively, effectively filtering out pixels within historically dense

shipping traffic areas. The corresponding absolute threshold values are approximately 400, 235, and

2Data source: The slope data is from OpenTopography [18], altitude data is from MERIT [19], and water depth
data is from GEBCO [20].
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104 ships per hour.

Table S3: Assessment of suitable area for developing wind and utility-scale solar PV power.
Natural condition Onshore wind Offshore wind Utility-scale solar PV

C B O C B O C B O
Slope (%) >15 >20 >25 - - - >3 >5 >7
Altitude (m) >3000 - - - - - - - -
Water depth (m) - - - >40 >60 >100 - - -

Upon excluding pixels within protected areas, or those constrained by natural conditions or

shipping safety, the suitable area of the retained pixels is determined by applying a land-use-specific

suitability factor [11, 16, 17, 23, 24]. This factor represents the fraction of a pixel’s area suitable for

deployment and is provided for each land use type in Table S4. The total suitable area for wind and

utility-scale solar PV within each grid cell is subsequently calculated by aggregating the suitable

areas of all included pixels. The spatial distribution of the resulting suitable areas for wind and

utility-scale solar PV is depicted in Figure S9 and Figure S10, respectively.

Table S4: Suitability factor of each land use type for determining suitable areas for onshore wind
and utility-scale solar PV. C: Conservative; B: Base; O: Open.
ID Land use Onshore wind (%) UPV (%)

C B O C B O
10 Cropland, rainfed 60 80 100 3 5 7
20 Cropland, irrigated or post-flooding 0 0 0 0 0 0
30 Mosaic cropland (>50%) /natural vegetation (tree, shrub, herbaceous cover) (<50%) 5 10 15 0 0 0
40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%) 5 10 15 3 5 7
50 Tree cover, broadleaved, evergreen, closed to open (>15%) 5 10 15 3 5 7
60 Tree cover, broadleaved, deciduous, closed to open (>15%) 5 10 15 3 5 7
70 Tree cover, needleleaved, evergreen, closed to open (>15%) 5 10 15 3 5 7
80 Tree cover, needleleaved, deciduous, closed to open (>15%) 5 10 15 3 5 7
90 Tree cover, mixed leaf type (broadleaved and needleleaved) 5 10 15 3 5 7
100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%) 80 90 100 15 20 25
110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%) 80 90 100 15 20 25
120 Shrubland 40 60 80 3 5 7
130 Grassland 70 80 90 3 5 7
140 Lichens and mosses 0 0 0 0 0 0
150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%) 80 90 100 15 20 25
160 Tree cover, flooded, fresh or brackish water 5 10 15 0 0 0
170 Tree cover, flooded, saline water 5 10 15 0 0 0
180 Shrub or herbaceous cover, flooded, fresh/saline/brackish water 5 10 15 0 0 0
190 Urban areas 0 0 0 0 0 0
200 Bare areas 80 90 100 30 40 50
210 Water bodies 0 0 0 0 0 0
220 Permanent snow and ice 0 0 0 0 0 0
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(a) Open

(b) Base

(c) Conservative

Figure S9: Suitable area (km2) for onshore and offshore wind power in open (a), base (b), and
conservative (c) scenarios at each grid cell (0.25°×0.25°).

13



S2 ENERGY RESOURCE ASSESSMENT

(a) Open

(b) Base

(c) Conservative

Figure S10: Suitable area (km2) for utility-scale solar photovoltaic power in open (a), base (b), and
conservative (c) scenarios at each grid cell (0.25°×0.25°).
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S2.1.4 Assessment of suitable area for developing distributed solar photovoltaic power

Within the scope of this study, distributed solar photovoltaic (DPV) systems correspond to building-

integrated photovoltaic (BIPV). Unlike assessments of suitable land for wind and utility-scale solar

PV power, estimating the suitable area for DPV at a global scale requires a preliminary approxi-

mation of the total rooftop area present in each grid cell. While the integration of remote sensing

imagery with deep learning computer vision algorithms allows for accurate rooftop area determina-

tion in regional studies [25], its application on a worldwide basis remains challenging. To address

this, earlier investigations [26, 27] demonstrate the viability of employing an XGBoost regression

model for predicting rooftop area (dependent variable). This model utilizes a set of independent

variables, including built-up area (BA), population (POP), road length (RL), and night lights (NL),

accessible from prior work for each grid cell. The predictions resulting from this modeling approach,

as depicted in Figure S11, exhibit acceptable errors in comparison to rooftop areas recognized via

a computer vision algorithm [26,27].

Figure S11: Framework for rooftop area assessment.

To build the XGBoost regression model, we collect CV-based vector rooftop footprint data from

multiple sources covering regions on the earth as much as possible, including Microsoft AI [28],

and Shi et al. [29] Independent variables are derived from publicly accessible datasets, where global

land cover raster data (resolution of 10 m) is from the Environmental Systems Research Institute

(ESRI) [30], population distribution raster data (resolution of 100 m) is from WorldPop [31], global

nighttime lights raster (resolution of 500 m) is from the Visible Infrared Imaging Radiometer Suite

(VIIRS) [32], and vectorized road network is from Microsoft AI [33]. Specifically, for cells in China,

vectorized road datasets are collected from the OpenStreetMap (OSM) [34] for better data quality.

We show the resolution and source of the datasets used in Table S5.
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Table S5: Resolution and sources of datasets used in this study for assessing rooftop areas.
Variable Resolution Data Sources

Built-up Area, BA 10m [30]
Population, POP 100m [31]
Night Light, NL 500m [32]
Road Length, RL Vector line [33,34]
Rooftop Area, RA Vector polygon [28,29]

Training data construction commences with the decomposition of the global landmass into fish-

net cells (designated hereafter as FN cells) with a spatial resolution of 0.125°×0.125°. This division

ensures that four FN cells reside within each 0.25°×0.25° ERA5 grid cell. The built area (BA) within

each FN cell is subsequently derived by aggregating land cover pixels labeled as “Built-up”. Corre-

spondingly, population and average nighttime light intensity for each FN cell are also estimated via

the aggregation of pixel-level data. Roads and rooftop footprints are characterized as vector lines

and polygons; therefore, embedded ArcGIS Pro functions compute their respective length and area

within each FN cell boundary. An FN cell in Bologna, Italy, as shown in Figure S12, exemplifies

this geographical arrangement, with yellow areas bordered by gray representing built area blocks

and red areas with brown lines indicating buildings and interior roads.

Figure S12: Illustration of vector rooftop data area.

An XGBoost regression model is trained and evaluated using BA, POP, RL, and NL as in-

dependent variables and RA as the dependent variable. This process utilizes a training dataset

comprising fishnet cells with recorded positive BA and RA values. Missing data within the POP,

RL, and NL variables are addressed through iterative multiple regression imputation before model

training commences. Model hyperparameters are tuned for optimal performance (See Table S6) via

10-fold cross-validation. The model demonstrates an accuracy (R2) of 0.885 on the test dataset,
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which represents 10% of the total training data. This performance translates to a mean absolute

prediction error of only 0.157 km2, with the majority of prediction errors lying within ±0.5 km2,

as depicted in Figure S13. The trained regression model then predicts the rooftop area for FN cells

lacking vector polygon data, employing the same independent variables. Figure S14 displays the

resulting rooftop area distribution for both the training and predicted datasets.

Table S6: Hyperparameters used in our XGBoost regression model.

Hyper-parameter Value Hyper-parameter Value

gamma 5 n estimators 50
learning rate 0.1 reg alpha 10
max depth 10 reg lambda 10
min child weight 10 subsample 1
colsample bytree 1

(a) Predicted Value Accuracy (b) Distribution of Prediction Errors

Figure S13: Performance of the XGBoost regression model on the test dataset.
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(a) Training

(b) Results

Figure S14: Rooftop area (km2) of training data (a) fed into XGBoost model, and predicted results
(b) by the trained XGBoost model in each fishnet cell (0.125°×0.125°).

Considering not all rooftops can be installed with PV panels, we adopt the appropriate area for

developing distributed solar PV power as 0.40, 0.35 [27], and 0.30 of the total rooftop area in each

FN cell in the open, base, and conservative scenarios, respectively. The suitable area within each

ERA5 land grid cell was obtained by aggregating the corresponding fishnet cells and is illustrated

in Figure S15.
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(a) Open

(b) Base

(c) Conservative

Figure S15: Suitable area (km2) for distributed solar photovoltaic power in open (a), base (b), and
conservative (c) scenarios at each grid cell (0.25°×0.25°).
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S2.1.5 Assessment of installation capacity potential

The installation capacity potential (MW) for wind (onshore and offshore) and solar PV power

(utility-scale and distributed) is determined by the product of the available deployment area (in

km2) and the technology-specific power installation density (in MW/km2). Mathematically, this

relationship is stated as:

Capmax
g = SA×Dg , (S2-15)

where Capmax
g is the installation capacity potential (MW) for generator g, SA denotes the geospa-

tially resolved suitable installation area (km2) within each grid cell, and Dg signifies the technology-

specific installation density (MW/km2) characteristic of generator g.

Wind power Wind turbine spacing represents a significant factor in wind farm layout, affecting

both power generation and turbine structural integrity. The optimal spacing largely depends on

the dominant wind direction and turbine rotor diameter. Previous research indicates that spacing

of 5–10 rotor diameters between turbines helps to alleviate wake effects and turbine fatigue [7, 35].

In this study, we consider utility-scale turbines with nameplate capacities above 1 MW. Installation

densities are computed utilizing NREL turbine specifications [1] and a 7×7 rotor diameter spacing

configuration [7, 36]. This yields onshore wind power installation densities ranging from 2.40 to

5.50 MW/km2 and offshore densities from 4.80 to 6.30 MW/km2. Tables S7 and S8 provide the

details of these ranges. For the assessment of wind power potentials, we adopt reference installation

densities of 4.0 MW/km2 for onshore wind [7] and 5.0 MW/km2 for offshore wind [36], consistent

with the definition in Equation S2-15. Figure S17 shows the resulting installation capacity potential

(MW) for onshore and offshore wind across open, base, and conservative scenarios for each grid cell.

The annual power generation potential is then determined by the installation capacity potential

multiplied by the annual average capacity factor.

Table S7: Onshore wind turbine parameters.

Wind turbine model
Rotor diameter
(m)

Nameplate capacity
(MW)

Installation density
(MW/km2)

2020 ATB NREL Reference 5.5 MW 175.0 5.50 3.60
2020 ATB NREL Reference 7 MW 200.0 7.00 3.50
BAR BAU LowSP 3.25 MW 166.0 3.25 2.40
BAR BAUa 5 MW 167.4 5.00 3.60
BAR LBNL-IEA 3.3 MW 156.0 3.30 2.72
BAR HighSP 5 MW 135.0 5.00 5.50
BAR LowSP 4.5 MW 194.0 4.50 2.40
BAR LowSP 6.5 MW 234.0 6.50 2.40
DOE GE 1.5 MW 77.0 1.50 5.00
IEA 3.4 MW Reference 130.0 3.37 4.00
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Table S8: Offshore wind turbine parameters.

Wind turbine model
Rotor diameter
(m)

Nameplate capacity
(MW)

Installation density
(MW/km2)

2016CACost NREL Reference 6 MW 155 155.0 6.00 5.00
2016CACost NREL Reference 8 MW 180 180.0 8.00 5.00
2016CACost NREL Reference 10 MW 205 205.0 10.00 4.80
2019ORCost NREL Reference 12 MW 222 222.0 12.00 4.90
2019ORCost NREL Reference 15 MW 248 248.0 15.00 4.90
2020ATB NREL Reference 12 MW 214 214.0 12.00 5.20
2020ATB NREL Reference 15 MW 240 240.0 15.00 5.20
2020ATB NREL Reference 18 MW 263 263.0 18.00 5.20
DTU 10 MW 178 RWT v1 178.0 10.00 6.30
IEA 10 MW 198 RWT 198.0 10.00 5.10
IEA 15 MW 240 RWT 240.0 15.00 5.20
LEANWIND 8 MW 164 RWT 164.0 8.00 6.00
NREL 5 MW 126 RWT 126.0 5.00 6.25

Solar power In this study, we assume a fixed tilt model for the installation of solar PV panels

to assess the capacity potential of utility-scale and distributed solar PV power, see the installation

schematic diagram in Figure S16. Under this assumption, it is imperative to calculate the optimal

tilt, orientation, and inter-panel distance in each grid cell. Initially, we determine the corresponding

optimal tilt based on the latitude of each grid cell as below [16]:

Σ =

{
1.3793 + θ(1.2011 + θ(−0.014404 + θ × 0.000080509)), (R = 0.96, North Hemisphere)

−0.41657 + θ(1.4216 + θ(0.024051 + θ × 0.00021828)), (R = 0.97, South Hemisphere)

(S2-16)

where θ is the latitude of the grid cell. In assessing the solar PV resource potential, it is hypothesized

that the PV arrays are oriented facing the equator to maximize solar radiation receipt. Inter-panel

spacing can be determined by avoiding shading from adjacent panels. Given that shadows reach

maximum length in the Northern Hemisphere on the winter solstice at 3 PM, the solar altitude and

azimuth at this time are adopted to evaluate the inter-panel distance of utility-scale solar PV to

preclude potential shading concerns. Similarly, the 3 PM at the southern winter solstice is used

for grid cells in the southern hemisphere. For the distributed solar PV systems, also referred to

as rooftop PV, examined in this study, certain configurations allow for the close packing of PV

modules to maximize the utilization of the available installation area. Therefore, the reference time

point for calculating inter-panel spacing in such distributed PV arrays has been revised to 3 PM on

the vernal equinox, specific to the Northern and Southern Hemispheres, respectively. The equation

for computing the separation between adjoining PV panels is [10]:

D = L×
(
cosΣ +

sinΣ

tanβn
× cosϕs

)
, (S2-17)

where D is the distance between adjacent PV panels, L is the length of the PV panel, Σ is the

optimal tilt angle in radians, βn and ϕs are the solar altitude angle and azimuth angle, respectively.
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After determining the distance D, we can calculate the packing factor, which represents the ratio

of the area occupied by PV panels to the installation area, as follows:

PF =
L

D
=

1

cosΣ + sinΣ
tanβn

× cosϕs

. (S2-18)

(a) Assessment schematic (b) PV tilt. Graphic: © Chen et al. 2019 [10]

Figure S16: Schematic diagram of installation capacity potential assessment for solar PV power.

Finally, we assume a unit capacity of 161.9 W/m2 [16] and determine the installation density for

solar power in each grid cell by multiplying it with the packing factor, denoted as Dpv = 161.9×PF .

The installation density is consistent for utility-scale and distributed solar PV within the same grid

cell. We show the resulting installation capacity potential (MW) for utility-scale and distributed

solar PV in each cell in Figure S18 and S19.
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(a) Open

(b) Base

(c) Conservative

Figure S17: Installation capacity potential (GW) for onshore and offshore power in open (a), base
(b), and conservative (c) scenarios at each grid cell (0.25°×0.25°).
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(a) Open

(b) Base

(c) Conservative

Figure S18: Installation capacity potential (GW) for utility-scale solar photovoltaic power in open
(a), base (b), and conservative (c) scenarios at each grid cell (0.25°×0.25°).
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(a) Open

(b) Base

(c) Conservative

Figure S19: Installation capacity potential (GW) for distributed solar photovoltaic power in open
(a), base (b), and conservative (c) scenarios at each grid cell (0.25°×0.25°).
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S2.2 Assessment of hydropower and pumped hydro storage

We quantify global hydropower potential through a comprehensive analysis of the least levelized

cost of energy (LCOE), see Figure S20 for hydropower resource potential assessment. This assess-

ment considers critical constraints, including inundated area, environmental protection, population

displacement, and grid integration distance, building upon established frameworks [37, 38]. The

methodology involves initially identifying hypothetical dam locations on the MERIT river net-

work [39] at 4.5 km intervals. Subsequently, we perform simulations to determine the inundated

area for each site across a range of dam heights, specifically from 10 m to 300 m. Using raster anal-

ysis, we rigorously filter out sites that intersect with designated natural and biodiversity protection

areas or result in the displacement of more than 50,000 individuals. For the technically feasible

dam heights, we calculate the LCOE for each prospective site, employing hydro discharge data from

Lin et al. [40] and cost parameters from Xu et al. [37]. The selection of the optimal dam height is

based on achieving the lowest LCOE. A LCOE threshold for potential hydropower development is

set at 0.25 $/kWh. The results reveal an untapped hydropower potential of over 1,500 GW world-

wide, bringing the total estimated potential capacity to approximately 2,811 GW, encompassing

the installed capacity in 2022. We show the installed and potential capacity of hydropower at the

dam-site level in Figure S21.

Figure S20: Assessment framework for global hydropower resource.
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Figure S21: Installed and potential capacity of hydropower assessed in this model.

The global installation potential of pumped hydro storage (PHS) is evaluated based on the

Global Greenfield Pumped Hydro Energy Storage Atlas dataset from Stocks et al. [41], which

delineates 616,000 potential closed-loop sites via high-resolution GIS analysis. This comprehensive

dataset undergoes methodological refinements to enhance its utility for modeling and to ascertain

the practical feasibility of PHS resources. For each identified reservoir site, installation capacity

potential is quantified in 100 MW increments, from a minimum of 100 MW up to a maximum

constrained by achieving storage durations of 4 to 18 hours, as determined by reservoir volumes. The

optimal installation capacity is subsequently determined by minimizing the levelized cost of storage

(LCOS). The assessment also incorporates data on existing and planned PHS projects from the

Global Hydropower Tracker (GHT) [42], Global Hydropower Database (GHD) [43], and Global Dam

Watch (GDW) [44] via spatial matching with potential sites, thereby creating a thorough inventory

of developed PHS capacity. Spatial conflicts among proximate alternative sites are resolved through

constraints prohibiting multi-shared reservoirs, intersecting reservoir areas, or pipeline crossings,

with preference given to the site offering the lowest LCOS. Beyond the initial dataset’s exclusion of

protected areas [45] and high urban density zones [46], additional environmental and socio-economic

criteria are enforced, removing sites within primary tropical rainforests [47], large lakes [48], built-up

regions [49], and disputed territories [50]. Sites that coincide with existing hydropower reservoirs

(from GHD, GHT, GDW) or the potential inundation areas of future hydropower installations are

also excluded. The analysis reveals an estimated total global PHS potential exceeding 10,000 GW

for undeveloped sites, assuming an LCOS below 0.05 $/kWh. Figure S22 shows the site-specific

installation capacity potentials for pumped storage.
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Figure S22: Installation capacity potential of pumped hydro storage assessed in this model.

S2.3 Assessment of biomass energy

In the GISPO, biomass energy’s installed capacity and annual generation are constrained by the

biomass fuel available in each power grid, which is strictly constrained from agricultural, forestry,

and grass residues to avoid potential side effects.

S2.3.1 Assessment of agricultural residues

This study assesses 14 crops for agricultural residues, including wheat, rice, maize, barley, sorghum,

potato, bean, soybean, sunflower, rapeseed, sugarbeet, banana, cotton, and groundnut. The gridded

yield and production data for the 14 crops are derived from the Spatial Production Allocation

Model 2010 (SPAM2010) [51], which provides the global gridded agricultural-production maps at

0.0833°×0.0833° resolution (about 9 km×9 km at the middle latitude). The annual energy carried

by each crop residue type per pixel in gigajoules per year (GJ/yr) is estimated using:

Ri
a = ξi × lhvi × rpr(yi)× pi, (S2-19)

where Ri
a is the energy (GJ) in crop residue i of each pixel; ξi is the collectible ratio (0.85 in this

study [52]) for crop residue; lhvi is the lower heating value (LHV, GJ/Mg) of dry mass for crop

i; yi is the crop yield in Mg/ha (dry weight); rpr(yi) is the residue-to-product (RPR); pi is the

production of crop (Mg), which accounts for multiple harvest of a crop within a year.

Residue-to-product is defined as the ratio of the above-ground biomass residue to the primary

crop yield [53], which is estimated as a function of yield. The LHV and RPR are key parameters to

assess the potential of crop residue production, in this study, we adopt these values for each crop

from the latest publication by Karan et al. 2023 [54], as shown in Table S9. The results indicate

that the 14 crops could provide a total of 72.8 EJ/yr biomass fuel potential globally, close to the

findings (66 EJ/yr with 6 type crops) in [54]. We show the gridded potential of crop residues used

in this study in Figure S23.
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Table S9: Low heating value and residue-to-product of crops used in this study.

Crop LHV (GJ/Mg) RPR (function of yield y)

wheat 18.19 2.183× exp{−0.127y}
rice 17.26 2.450× exp{−0.084y}
maize 18.00 2.656× exp{−0.103y}
barley 18.03 1.822× exp{−0.149y}
sorghum 17.74 2.302× exp{−0.100y}
potato 17.70 1.916× exp{−0.108y}
bean 17.26 3.232× exp{−0.300y}
soybean 19.00 3.869× exp{−0.178y}
sunflower 20.06 2.580× exp{−0.200y}
rapeseed 20.81 3.028× exp{−0.200y}
sugarbeet 17.44 1.328× exp{−0.200y}
banana 16.60 2.13
cotton 17.42 4.934× exp{−0.300y}
groundnut 18.13 1.07 + (1.54/y)

S2.3.2 Assessment of forestry and grass residues

The technical biomass energy of forestry and grass residues in gigajoule per year is calculated by:

Ri
f = ξi × lhvi ×Bi × (1− C − L), (S2-20)

where Ri
f is the technical bioenergy (GJ) for forestry or grass residues; ξi is the collectible ratio

(0.5 for forestry and 0.2 for grass residues [55]); lhvi is 17.3 GJ/Mg and 13.8 GJ/Mg for forestry

and grass residues [52,55], respectively; Bi is the total available biomass resources (Mg), estimated

using net primary production (NPP) and forestry/grass area for each pixel; C is the proportion of

soil returned to ecological purpose (0.3); and L is the physical loss in the utilization process (0.05).

We adopt the gridded net primary production in 2015 and the Global Land Cover Share (GLC-

Share) dataset from the National Aeronautics and Space Administration (NASA) [56] and the Food

and Agriculture Organization (FAO) [57] to estimate the biomass resources globally at 1 km×1 km

resolution. The results show that the annual biomass fuel potentials for forestry and grass residues

are about 132 EJ/yr and 9 EJ/yr, respectively. We show the distribution of biomass potential of

each pixel in Figure S23.
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(a) Agricultural

(b) Forestry

(c) Grass

Figure S23: Assessment results of biomass fuel potential from agricultural (a), forestry (b), and
grass (c) residues.
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S2.4 Assessment of carbon sequestration potential

In the GISPO model, carbon capture and storage (CCS) is a promising technology for power system

decarbonization. When integrated with biomass energy sources, this approach, known as bioenergy

with carbon capture and storage (BECCS), functions as a negative emissions technology (NET)

[58, 59]. Geological sequestration of carbon dioxide (CO2) occurs in various formations, including

sedimentary basins, oil and gas reservoirs, and aquifers [58]. This study specifically highlights deep

saline aquifers (DSAs) as the preferred storage option, primarily due to their substantial global

capacity [58].

We estimate the sequestration potential of DSA using the following equation [58]:

VCO2 = A× ηA × h× ϕ× ρCO2 × ηE , (S2-21)

where VCO2 is the sequestration potential (Gt), A is the geographical area of sedimentary basins, ηA

is the effective area ratio (0.025 [58]), h is the gross average thickness of the saline aquifer (250 m),

ϕ is the total porosity in volume (0.2 [58]), ρCO2 is the density of CO2 under storage conditions (710

kg/m3 [60]), and ηE is the effective CO2 storage ratio, which is set as 0.05 [61]. The surface area

of sedimentary basins is determined using the World Geologic Provinces dataset, refined based on

insights from [58] and [62]. Our analysis estimates a global CO2 storage potential of approximately

3,676 Gt within DSAs. The geographical distribution of this storage potential is presented in Figure

S24.

Figure S24: Deep saline aquifer carbon sequestration potential assessed in this study.
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S3 Assumption, Input Data, and Pre-process

S3.1 Power demand

S3.1.1 Annual power demand projections

The annual power demands (TWh/yr) of each region are projected for the mid-century (2050) in

three scenarios, considering historical trends, population projection, and decent living standards.

Combined with the base year’s annual demand and hourly load profile, we scale up to the hourly

demand profile in the optimization year (2050) using the increased ratios of annual power demand

in the three demand scenarios and input these profiles into the GISPO for hourly power balancing

constraints.

To project the annual demand according to historical trends (the scenario “Historical”), we

collect published reports, research papers, and governmental statistics as much as possible for each

region. Most of these published materials directly project the yearly electricity demand in 2050,

which is used for our 2050 projection in the “Historical” scenario. For data that only reports

the demand forecast toward 2030 or before 2050, we adopt the linear growth rate fitted methods,

additionally considering the current demand to project the annual demand in 2050. Although most

of the countries’ demand projections are directly derived from the World Energy Outlook 2022

released by the International Energy Agency (IEA) [63], there are some missing in this report, e.g.,

Argentina. In this case, we use the continent’s increasing rate to scale up the power demand of

these countries using the current demand. The demand projections of regions containing several

countries are the sum of each country’s projection. We show the annual demand projection in 2050

under the “Historical” scenario of each region in Table S10, and in this estimate, we find the global

annual electricity demand in 2050 is around 55 PWh/yr.
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Table S10: Annual power demand projection (TWh/yr) toward 2050 in this study.

Region Historical Base HigherDLS Region Historical Base HigherDLS

Afghanistan 28 [64] 192 269 Libya 64 [63] 64 64
Algeria 263 [63] 263 263 Madagascar 2 [65] 133 186
Argentina 108 [63] 129 180 Malaysia 399 [66] 399 399
Australia 336 [67] 336 336 Mexico 350 [68] 372 521
AustriaHungary 154 [63] 154 154 Mongolia 11 [69] 11 16
BalkanEast 247 [63] 247 247 Morocco 227 [70] 227 227
BalkanWest 151 [63] 151 151 Myanmar 287 [66] 287 287
Baltic 48 [63] 48 48 NepalBhutan 52 [71] 89 124
Bangladesh 275 [71] 537 751 NewZealand 49 [66] 49 49
Belarus 113 [63] 113 113 Nigeria 946 [72] 946 1257
Benelux 285 [63] 285 285 NorthKorea 64 [63] 64 90
Brazil 985 [63] 985 985 Norway 148 [73] 148 148
BritishIsles 530 [63] 530 530 Oman 140 [74] 140 140
Cambodia 90 [75] 90 90 Pakistan 1706 [76] 1706 1706
Canada 793 [77] 793 793 Peru 193 [63] 193 193
Caucas 61 [63] 61 61 Philippines 289 [78] 336 470
CentralAfrica 69 [63] 200 280 Poland 186 [79] 186 186
CentralAmerica 208 [63] 208 233 Russia 1650 [80] 1650 1650
CentralSouthAmerica 85 [63] 85 87 SaudiArabia 1180 [74] 1180 1180
Chile 132 [81] 132 132 Slovakia 157 [63] 157 157
China (mainland and Taiwan) 15379 [82–84] 15379 15379 Somalia 7 [63] 97 136
Colombia 251 [85] 251 251 SouthAfrica 365 [63] 365 365
Congo 83 [63] 546 764 SouthEastAfrica 378 [63] 412 577
Denmark 86 [86] 86 86 SouthKorea 675 [87] 675 675
Ecuador 57 [88] 57 75 SouthWestAfrica 102 [63] 206 288
Egypt 688 [89] 688 688 SriLanka 44 [90] 62 87
Ethiopia 286 [89] 563 788 SudanEriteria 81 [89] 227 318
Finland 172 [91,92] 172 172 Sweden 101 [93] 101 101
France 686 [94] 686 686 Switzerland 72 [95] 72 72
GazaJordan 31 [96,97] 41 57 Syria 157 [98] 157 157
Germany 795 [99] 795 795 Tanzania 55 [63] 441 618
Iberia 566 [63] 566 566 Thailand 495 [100] 495 495
Iceland 31 [101] 31 31 Tunisia 63 [102] 63 63
India 6930 [103] 6930 6930 TurkeyCyprus 650 [104] 650 650
Indonesia 872 [63] 872 1122 Turkmenistan 44 [105] 44 44
Iran 418 [106] 418 418 UkraineMoldova 210 [107] 210 210
Iraq 352 [108] 352 352 UnitedArabEmirates 861 [74] 861 861
Israel 117 [109] 117 117 USA 5482 [63] 5482 5482
Italy 305 [110] 305 305 Uzbekistan 149 [105] 149 183
Japan 977 [66] 977 977 Venezuela 497 [63] 497 497
Kazakhstan 229 [111] 229 229 Vietnam 1035 [112] 1035 1035
KenyaUganda 99 [63] 423 592 WestNorthAfrica 12 [63] 228 320
Kuwait 221 [74] 221 221 WestSouthAfrica 163 [63] 459 643
KyrgyzstanTajikistan 58 [105] 63 88 WestWestAfrica 68 [63] 347 486
Laos 39 [66] 39 39 Yemen 39 [113] 177 248
Lebanon 76 [114] 76 76 Total 54670 58271 61453

In the base scenario of this study, we use the energy requirement per capita for decent living

standards (DLS) and population projection to estimate the lower power demand for each region

in 2050. Rao et al. have simulated the final energy requirement for decent living in India, Brazil,

and South Africa using multiple integrated assessment models (IAMs) [115]. They find that 10–25

GJ/yr*capita final energy is required for people to live decently around 2050 [115]. Within these

findings, we assume the final energy consumption per capita in 2050 for DLS is 15 GJ/yr in the Base

scenario, and 21 GJ/yr in the “HigherDLS” scenario. To convert the final energy consumption to

electricity demand, we assume the electrification level is 60% in 2050, close to 63% reported by the
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Global Energy Interconnection Development and Cooperation Organization [116]. Combining these

assumptions, the electricity demands for decent living are 2,500 kWh/yr*capita in the Base scenario

and 3,500 kWh/yr*capita in the “HigherDLS” scenario, which is a little higher than the global

average electricity consumption (3,324 kWh/yr*capita) in 2023 [116]. The population of each region

in 2050 is derived from the projections under the main scenario in World Population Prospective

2024, released by the United Nations (UN) [117], as shown in Figure S25. Accordingly, the annual

electricity demand in each region for decent living is the result of multiplying the electricity demand

per capita by the population projection. Considering the electricity consumption per capita in areas

like the United States, Europe, and China is much higher than the global average level, we use the

value in the “Historical” scenario when it is larger than the projection in DLS scenarios (Base and

“HigherDLS”). Table S10 shows the results of the annual power demand projection in each region

in 2050. In the “HigherDLS” scenario, global power demand annually is around 61 PWh/yr, with

an increase of 7 PWh/yr to the “Historical” scenario.

Figure S25: Population projection in 2050.

We compare our power demand projections with the results from multiple IAMs in the AD-

VANCE database [118] using their region divisions. Across all the regions, our projections in the

three scenarios are in line with IAMs as shown in Figure S26. The most different demand projections

are in the MAF (the Middle East and Africa) area in our scenarios. In MAF, the total demand

projection in the “HigherDLS” scenario is a little higher than all the estimates from IAMs in the

ADVANCE database, which is because of the high population increase requiring more electricity

consumption for decent living than previous forecasts.

34



S3 ASSUMPTION, INPUT DATA, AND PRE-PROCESS

AI
M

/C
G

E 
V.

2

G
C

AM
4.

2_
AD

VA
N

C
EW

P6

IM
AC

LI
M

 V
1.

1

IM
AG

E 
3.

0

M
ES

SA
G

E-
G

LO
BI

O
M

_1
.0

PO
LE

S 
AD

VA
N

C
E

R
EM

IN
D

 V
1.

7

W
IT

C
H

20
16

0

5000

10000

15000

20000

25000

30000

35000

40000

El
ec

tri
ci

ty
 d

em
an

d 
(T

W
h/

yr
)

ASIA

AI
M

/C
G

E 
V.

2

G
C

AM
4.

2_
AD

VA
N

C
EW

P6

IM
AC

LI
M

 V
1.

1

IM
AG

E 
3.

0

M
ES

SA
G

E-
G

LO
BI

O
M

_1
.0

PO
LE

S 
AD

VA
N

C
E

R
EM

IN
D

 V
1.

7

W
IT

C
H

20
16

LAM

AI
M

/C
G

E 
V.

2

G
C

AM
4.

2_
AD

VA
N

C
EW

P6

IM
AC

LI
M

 V
1.

1

IM
AG

E 
3.

0

M
ES

SA
G

E-
G

LO
BI

O
M

_1
.0

PO
LE

S 
AD

VA
N

C
E

R
EM

IN
D

 V
1.

7

W
IT

C
H

20
16

MAF
HigherDLS
Base
Historical

AI
M

/C
G

E 
V.

2

G
C

AM
4.

2_
AD

VA
N

C
EW

P6

G
EM

-E
3_

V2

IM
AC

LI
M

 V
1.

1

IM
AG

E 
3.

0

M
ES

SA
G

E-
G

LO
BI

O
M

_1
.0

PO
LE

S 
AD

VA
N

C
E

R
EM

IN
D

 V
1.

7

W
IT

C
H

20
16

OECD90+EU

AI
M

/C
G

E 
V.

2

G
C

AM
4.

2_
AD

VA
N

C
EW

P6

IM
AC

LI
M

 V
1.

1

IM
AG

E 
3.

0

M
ES

SA
G

E-
G

LO
BI

O
M

_1
.0

PO
LE

S 
AD

VA
N

C
E

R
EM

IN
D

 V
1.

7

W
IT

C
H

20
16

REF

Figure S26: Comparison of electricity demand projection used in this study with multiple IAMs
in 2050. ASIA: Including most Asian countries with the exception of the Middle East, Japan, and
Former Soviet Union states; LAM: Including the countries of Latin America and the Caribbean;
MAF: Including the countries of the Middle East and Africa; OECD90+EU: Including the OECD
90 and EU member states and candidates; REF: Including countries from the Reforming Economies
of Eastern Europe and the Former Soviet Union.

S3.1.2 Hourly power demand profile

In this study, we collect the historical hourly normalized demand profile (divided by the peak demand

throughout a year, 0–1) and yearly power consumption to establish the hourly power demand profile

of 8,760 hours for each power grid in the base year (2022). For mainland China, we scale the hourly

demand load in representative days (weekdays and holidays) and the daily maximum-minimum load

throughout 2019 for each provincial power grid released by the National Development and Reform

Commission of People’s Republic of China [119] to 8,760 hours, and aggregate provincial demand

profile to the power grid’s (e.g., the grid of China East includes Shanghai, Jiangsu, Zhejiang, Anhui

and Fujian province). For the rest of the world, we use the power demand profiles of 8,760 hours

from the Neo Carbon Energy [120], which has been used in previous studies on the global power

sector [121,122]. The current power consumptions are derived from the Statistical Review of World

Energy [123] and Yearly Electricity Data [124]. With the projected annual electricity demand as

described above, we scale up the hourly demand profile to 2050 using the increase ratio to the

base year (2022). Figure S27 shows the hourly electricity demand profile in the base scenario by

aggregating each power grid’s value.
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Figure S27: Hourly electricity demand at the global scale.

S3.2 Wind and solar power

S3.2.1 Installed capacity allocation

We collect the existing installed capacity data at the project level of onshore wind, offshore wind,

and utility-scale solar PV Global Energy Monitor (GEM) 2024 [125]. Only projects labeled as

“Operating” in the GEM dataset are considered in the analysis, representing the existing installed

capacity input to the GISPO model, as shown in Figure S28. Under the “Operating” status, approx-

imately 1,009 GW of onshore wind, 108 GW of offshore wind, and 1,022 GW of utility-scale solar

PV projects are identified. The GEM dataset provides the location information with approximate

longitude and latitude for these projects, which are used to aggregate installed capacities within

each grid cell for modeling inputs. Since there is no location information for the globally distributed

solar PV installation, we allocate the solar PV project with installed capacity lower than 5 MW to

the distributed solar PV cell.

(a) Wind (b) Solar PV

Figure S28: Existing capacity (MW) of wind and solar PV power at project level.

S3.2.2 Cost projections

To project future investment costs for diverse renewable energy technologies, we first compile current

national investment data from an extensive range of technical reports and academic literature, with

the International Renewable Energy Agency’s (IRENA) investment reports serving as a primary

source [126–132]. Recognizing significant global disparities in data availability—for instance, more
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detailed reporting for nations like the United States and China compared to regions such as Africa

or the Middle East—we address data gaps by maximizing source collection and, where necessary,

by assuming uniform investment costs within broader geographical regions (e.g., applying South

America’s average cost to Argentina if specific data are absent). For future cost projections, we

utilize the U.S. NREL’ Annual Technology Baseline (ATB) database, a widely adopted technology

development forecast. As the ATB provides absolute future costs for the U.S., we convert these

into cost reduction ratios relative to a base year and apply this derived declining curve universally

across all countries. Figure S29 illustrates these cost reduction trends under base and conservative

scenarios. Furthermore, considering the dispersed nature, extended negotiation times, and higher

installation complexity of distributed rooftop PV, we assume its investment cost to be 1.25 times that

of utility-scale PV. Table S11 details the projected 2050 renewable energy investment costs for each

country under the base scenario. It is important to note that while investment costs for offshore wind

are listed, its deployment capacity is constrained by prior resource potential assessments. The fixed

operation and maintenance (O&M, $/kW*yr) costs are specified as a fraction of CapEx [35, 133].

We set the fixed O&M (% of CapEx) at 1.5% for onshore/offshore wind [35], 0.5% for utility-

scale/distributed solar PV [35].
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Figure S29: CapEx ratio of VRE toward 2050 to the base year.

37



S3 ASSUMPTION, INPUT DATA, AND PRE-PROCESS

Table S11: Cost projections ($/kW) for wind and solar power in 2050 under the base scenario.

Region Onshore Offshore UPV DPV Region Onshore Offshore UPV DPV

Afghanistan 1351 1309 327 409 Libya 1080 1797 564 705
Algeria 1080 1797 564 705 Madagascar 1080 1797 564 705
Argentina 1046 1797 382 478 Malaysia 1351 1309 368 460
Australia 1078 1797 455 569 Mexico 993 1797 484 605
AustriaHungary 1059 1550 496 620 Mongolia 1351 1309 555 694
BalkanEast 1059 1550 322 402 Morocco 1080 1797 564 705
BalkanWest 1059 1550 384 480 Myanmar 1351 1309 368 460
Baltic 1059 1550 322 402 NepalBhutan 1351 1309 327 409
Bangladesh 1351 1309 327 409 NewZealand 1078 1797 455 569
Belarus 1059 1550 322 402 Nigeria 1080 1797 564 705
Benelux 1059 1604 337 421 NorthKorea 1351 3439 555 694
Brazil 722 1797 335 419 Norway 1059 1441 440 550
BritishIsles 1059 1550 430 538 Oman 1351 1309 366 458
Cambodia 1351 1309 368 460 Pakistan 1351 1309 327 409
Canada 993 1797 614 768 Peru 1046 1797 335 419
Caucas 1351 1309 327 409 Philippines 1351 1309 368 460
CentralAfrica 1080 1797 564 705 Poland 1059 1550 322 402
CentralAmerica 1176 1797 484 605 Russia 1078 1550 575 719
CentralSouthAmerica 1046 1797 335 419 SaudiArabia 1351 1309 366 458
Chile 1046 1797 439 549 Slovakia 1059 1550 322 402
China 660 1170 309 386 Somalia 1080 1797 564 705
Colombia 1046 1797 335 419 SouthAfrica 1080 1797 564 705
Congo 1080 1797 564 705 SouthEastAfrica 1080 1797 564 705
Denmark 1059 1441 440 550 SouthKorea 1351 3439 555 694
Ecuador 1046 1797 335 419 SouthWestAfrica 1080 1797 564 705
Egypt 1080 1797 564 705 SriLanka 1351 1309 327 409
Ethiopia 1080 1797 564 705 SudanEriteria 1080 1797 564 705
Finland 1059 1441 440 550 Sweden 1059 1441 440 550
France 1059 1550 440 550 Switzerland 1059 1430 337 421
Gaza 1351 1309 366 458 Syria 1351 1309 366 458
Germany 1059 1430 337 421 China, Taiwan 1351 1309 555 694
Iberia 1059 1550 384 480 Tanzania 1080 1797 564 705
Iceland 1059 1441 440 550 Thailand 1351 1309 368 460
India 809 1309 327 409 Tunisia 1080 1797 564 705
Indonesia 1351 1309 368 460 Turkey 1059 1550 366 458
Iran 1351 1309 366 458 Turkmenistan 1351 1309 327 409
Iraq 1351 1309 366 458 USA 993 1797 511 639
Israel 1351 1309 366 458 UkraineMoldova 1059 1550 322 402
Italy 1059 1550 384 480 UnitedArabEmirates 1351 1309 366 458
Japan 1351 2730 859 1074 Uzbekistan 1351 1309 327 409
Kazakhstan 1351 1309 327 409 Venezuela 1046 1797 335 419
KenyaUganda 1080 1797 564 705 Vietnam 1351 1309 368 460
Kuwait 1351 1309 366 458 WestNorthAfrica 1080 1797 564 705
KyrgyzstanTajikistan 1351 1309 327 409 WestSouthAfrica 1080 1797 564 705
Laos 1351 1309 368 460 WestWestAfrica 1080 1797 564 705
Lebanon 1351 1309 366 458 Yemen 1351 1309 366 458

S3.3 Hydropower

In this study, we collect the installed hydropower plants at the dam site from multiple resources,

including Global Hydropower Tracker (GHT) [42], Global Hydropower Database (GHD) [43], and

Global Dam Watch (GDW) [44]. These datasets provide key technical parameters like reservoir

volume, water head, dam site location, and capacity for hydropower modeling. We show the installed

capacity of hydropower worldwide in Figure S30.
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Figure S30: Installed capacity (MW) of hydropower at the dam-site level.

The GISPO model co-optimizes hydropower capacity expansion and system operation over an

8,760-hour planning horizon, incorporating technical parameters for installed and potential resources

(Section S2.2). A core function for reservoir hydropower involves optimizing hourly reservoir man-

agement to address supply-demand discrepancies. The spatial allocation of those hydropower plants

which we do not have full technical parameters from existing database, is initially imprecise rela-

tive to actual river routes [40], and involves assigning them to virtual dam sites from Section S2.2

within a 5 km search radius [37] to match the missing parameters. From the installed capacity,

the nearest dam height is selected, which then allows the derivation of design flow and capacity

factor. Plants explicitly labeled as reservoir hydropower and for which reservoir capacity data ex-

ist are modeled as installed reservoir hydropower. These installations, distinct from run-of-river

counterparts, are linked to the nearest river routes to account for natural water inflow. Model-

ing reservoir hydropower critically depends on the minimum reservoir capacity. This parameter

is directly available for projects totaling approximately 44,000 MW, yielding an average minimum

capacity coefficient of about 0.58. For installed reservoir projects with known capacity but unspeci-

fied minimum reservoir capacity, the latter is estimated by applying this average coefficient to their

reservoir capacity. Potential dam sites are categorized based on design capacity: sites exceeding 50

MW (mid-size hydropower) are treated as reservoir hydropower, with minimum reservoir capacity

estimated using the aforementioned average coefficient. Remaining potential sites are modeled as

run-of-river hydropower.

Input water discharge (m3/s) for each hydropower plant is sourced from the Global Reach-Level

Flood Reanalysis (GRFR) [40], a dataset computed using a 90 m digital elevation model that defines

discrete watersheds and river reaches. The determination of the environmental flow requirement

(Qe) adheres to the methodology of [37], setting Qe at the 10th percentile of historical discharge

from 1980-2019. The 3-hourly discharge data for the year 2019 provide the basis for calculating
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capacity factors for run-of-river hydropower and act as the natural inflow for reservoir hydropower.

To match the hourly operational resolution of our model, these 3-hourly discharge rates are applied

consistently across each hour within any given 3-hour period. The simulation results for the base

year 2022 indicate a generation of approximately 4.45 PWh from the GISPO model. This output

closely aligns with the actual generation figure of about 4.25 PWh [134], thereby validating the core

methodology of the model.

Consistent with the investment cost projections for VRE, we first collect current values for

each nation as much as possible, and then use the CapEx prediction curve from NREL ATB to

project the cost of hydropower to 2050. As previous studies and reports show that the investment

cost of hydropower is stable, and this is also true in the ATB database. We list the investment

cost of hydropower in 2050 used in the GISPO in Table S12. The results show that investment

costs of hydropower range from 1,565 to 6,043 $/kW. Fixed O&M expenditures are defined as 2%

of CapEx [37], a rate consistent with the 1.8% found in [135]. The capital recovery period for

hydropower is assumed to be 40 years. We assume the continued operation of all currently installed

hydropower capacity until the year 2050.

Table S12: Investment cost ($/kW) of hydropower in 2050 under the base scenario.

Region CapEx Region CapEx Region CapEx

Afghanistan 1956 Iberia 3304 Poland 3304
Algeria 2593 Iceland 3304 Russia 3391
Argentina 2565 India 1565 SaudiArabia 2043
Australia 4565 Indonesia 1956 Slovakia 3304
AustriaHungary 3304 Iran 2043 Somalia 2593
BalkanEast 3304 Iraq 2043 SouthAfrica 2593
BalkanWest 3304 Israel 2043 SouthEastAfrica 2593
Baltic 3304 Italy 3304 SouthKorea 1956
Bangladesh 1956 Japan 1956 SouthWestAfrica 2593
Belarus 3304 Kazakhstan 1956 SriLanka 1956
Benelux 3304 KenyaUganda 2593 SudanEriteria 2593
Brazil 1695 Kuwait 2043 Sweden 3304
BritishIsles 3304 KyrgyzstanTajikistan 1956 Switzerland 3304
Cambodia 1956 Laos 1956 Syria 2043
Canada 6043 Lebanon 2043 China, Taiwan 1956
Caucas 1956 Libya 2593 Tanzania 2593
CentralAfrica 2593 Madagascar 2593 Thailand 1956
CentralAmerica 3956 Malaysia 1956 Tunisia 2593
CentralSouthAmerica 2565 Mexico 6043 Turkey 2043
Chile 2565 Mongolia 1956 Turkmenistan 1956
China 2056 Morocco 2593 USA 6043
Colombia 2565 Myanmar 1956 UkraineMoldova 3304
Congo 2593 NepalBhutan 1956 UnitedArabEmirates 2043
Denmark 3304 NewZealand 4565 Uzbekistan 1956
Ecuador 2565 Nigeria 2593 Venezuela 2565
Egypt 2593 NorthKorea 1956 Vietnam 1956
Ethiopia 2593 Norway 3304 WestNorthAfrica 2593
Finland 3304 Oman 2043 WestSouthAfrica 2593
France 3304 Pakistan 1956 WestWestAfrica 2593
Gaza 2043 Peru 2565 Yemen 2043
Germany 3304 Philippines 1956
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S3.4 Thermal and nuclear power

The GISPO model addresses the optimization of both generation asset investment (installation

capacity) and operational strategy (hourly dispatch) for an array of thermal and nuclear power

technologies. Specifically, it considers power generation from coal, natural gas, and biomass, inclu-

sive of their combined heat and power (CHP) applications and variants equipped with CCS. Nuclear

power generation is also integral to the modeled system. To adhere to overarching carbon emission

constraints, the model allows for the retrofitting of existing coal, gas, and biomass power plants

with CCS. The deployment of biomass and nuclear power is subject to upper limits, determined by

considerations of biofuel supply sustainability and nuclear security requirements, respectively.

The analysis draws upon project-level installation data for coal, gas, and nuclear power, sourced

from the GEM database [125], a widely cited and authoritative resource. This dataset furnishes com-

prehensive details regarding construction year, operational status (e.g., operating, retired, under-

construction), technological specifications, and precise geographical coordinates. A critical method-

ological step involves differentiating coal and gas plants based on their CHP designation within the

GEM dataset, reflecting their distinct operational profiles. For the base year, 2022, the installed

capacity is defined by currently operating units, reaching 1,916 GW for coal, 100 GW for coal CHP,

1,730 GW for gas, 539 GW for gas CHP, 81 GW for biomass power, and 366 GW for nuclear. A key

assumption for the post-2030 period is the full completion of under-construction units, which then

contribute to the total installed capacity. Furthermore, installations are assumed to retire upon

reaching their designated lifetime of 40 years within the optimization horizon (e.g., 2050). We show

the installed capacity of thermal and nuclear power in Figure S31.

(a) Coal (including CHP plants) (b) Natural gas (including CHP plants)

(c) Nuclear (d) Biomass

Figure S31: Existing capacity (MW) of thermal and nuclear power at project level.
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S3.4.1 Technical parameters

The GISPO optimizes the hourly operation of thermal and nuclear power generation through the

application of a relaxed unit commitment (RUC) algorithm. This algorithm exhibits high fidelity,

demonstrating a validated accuracy with less than 1% loss in regional power modeling [136], and

serves as a fundamental component in numerous optimization models [35, 135, 137]. The RUC al-

gorithm incorporates a four-state operational model for thermal and nuclear units: online, load,

start-up, and shut-down. Unit loading is restricted by available online capacity and defined max-

imum/minimum output rates. These output parameters are drawn from diverse sources: [35] for

coal, coal CHP, and gas plants; [59, 135] for biomass plants; and [5, 133] for nuclear facilities.

Thermal power plants integrated with CCS systems maintain identical maximum/minimum output

rates [135]. Units transition to online status from start-up and to offline status via shut-down. Both

newly started and shut-down units adhere to minimum online/offline durations. We obtain these

durations for coal and gas from [35], for nuclear from [133], and assume equivalent values for biomass

as for coal. Start-up costs for thermal and nuclear power are derived from [135], with shut-down

costs presumed equal [138]. Committed thermal and nuclear power plants contribute system inertia,

quantified as the product of online capacity and specific inertia constants [135]. These inertia con-

stants are adopted from [135]. Ramp-up/down rates govern the permissible load changes between

consecutive timesteps. These rates are specified as 25%/h for coal [11], 50%/h for gas [35], 25%/h

for biomass [11], and 5%/h for nuclear [5]. Fuel consumption for coal, gas, biomass, and nuclear

power plants is consistent with parameters provided in [35, 133, 137, 139, 140], which report either

standard coal consumption per kWh, thermal efficiency, or non-load unit fuel consumption.

Carbon emissions within the power system primarily originate from coal-fired and gas-fired

generation units. Emission factors (EF), expressed in kgCO2/kWh, serve to quantify CO2 emissions

from these thermal plants. This study adopts emission factors for coal and gas power of 0.82

kgCO2/kWh and 0.37 kgCO2/kWh, respectively, for the year 2030, and 0.65 kgCO2/kWh and

0.30 kgCO2/kWh for 2040, based on [82]. Values for 2050 are determined via linear interpolation.

Biomass power, which relies on biofuel combustion, is considered to have net-zero emissions [59].

Carbon capture and storage systems offer a mechanism to mitigate carbon emissions from thermal

power plants. Existing literature [59] indicates that CCS systems capture approximately 90% of

total emissions, thereby reducing the emission factor for CCS-equipped plants by this percentage.

For biomass energy with CCS, this research adopts the EFs reported by Fan et al. [59], which is

−1.21 kgCO2/kWh in 2050. It is recognized that CCS implementation incurs an efficiency loss,

estimated at 5% following [11]. Detailed technical parameters are presented in Table S13.
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Table S13: Technical parameters for thermal and nuclear power.

Technology
φ
pt

[%]

φpt

[%]
τpt,up
[h]

τpt,dn
[h]

κsupt /κ
sd
pt

[yuan/MW]

ιpt
[s]

δuppt /δ
dn
pt

[%/h]

f load
pt

[MJ/kWh]

ξccspt

[%]

Biomass 35 100 8 8 72 2.94 25 9.0 0
Biomass CCS 35 100 8 8 72 2.94 25 10.30 5
Coal 40 100 8 8 157 5.89 25 9.00 0
Coal CCS 40 100 8 8 157 5.89 25 11.25 5
Coal CHP 60 90 8 8 157 5.89 25 9.47 0
Coal CHP CCS 60 90 8 8 157 5.89 25 11.25 5
Gas 30 100 4 2 43 4.97 50 6.31 0
Gas CCS 30 100 4 2 43 4.97 50 7.83 5
Gas CHP 30 100 4 2 43 4.97 50 6.31 0
Gas CHP CCS 30 100 4 2 43 4.97 50 7.83 5
Nuclear 85 100 22 22 314 4.07 5 10.00 0

In this table, φpt is the maximum output rate of thermal and nuclear power if online; φ
pt

is the minimum output

rate of thermal and nuclear power if online; τpt,up is the minimum online duration of thermal and nuclear power
if started up; τpt,dn is the minimum offline duration of thermal and nuclear power if shut down; κsu

pt /κ
dn
pt is the

start-up/shut-down cost of thermal and nuclear power; efpt is the carbon emissions factor of thermal power; ιpt
is the inertia constant of thermal and nuclear power; δuppt /δ

dn
pt is the maximum ramp-up/down rate for thermal

and nuclear power; f load
pt is the fuel consumption by the load capacity of thermal and nuclear power; ξccspt is the

efficiency loss of thermal power if equipped with CCS technology; these symbols are consistent with that in the
model formula section.

S3.4.2 Cost projections

The objective function in GISPO comprehensively evaluates the annual financial implications of

thermal and nuclear power generation. This evaluation encompasses several cost components: capi-

tal expenditure (CapEx), fixed O&M costs, variable O&M costs, start-up/shut-down costs, and fuel

costs. Similar to the cost projections for VRE and hydropower, we use current values at the national

scale and the future CapEx ratio forecast from NREL ATB to project the investment for thermal

and nuclear power. Figure S32 shows the CapEx ratio toward 2050 to the base year estimated in

this study. Figure S33 details these CapEx projections for both thermal and nuclear power. The

annual fixed O&M cost, expressed in yuan/MW*yr, is derived as a specific fraction of the CapEx.

For conventional thermal plants (coal, coal CHP, gas, and gas CHP), this fraction is 2%, a value

consistent with the 1.9%–2.6% range provided by Chen et al. [35]. A modestly increased fraction of

2.5% of CapEx applies to plants incorporating CCS technology. Nuclear power facilities assume a

fixed O&M cost of 1.5% of CapEx, as per Li et al. [133]. Variable O&M costs, measured in $/MWh,

are defined as 4.4 for coal (non-CHP and CHP), 8.3 for coal CCS (non-CHP and CHP), 3.3 for gas

(non-CHP and CHP), 6.6 for gas CCS (non-CHP and CHP), 5 for biomass, 8.6 for biomass CCS,

and 2 for nuclear, based on estimations from Zhang et al. [137], Ai et al. [141], and Li et al. [133].
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Figure S32: CapEx ratio of thermal and nuclear power toward 2050 to the base year.

Within the GISPO modeling framework, electricity generation relies upon a portfolio of fuel

inputs, encompassing coal, natural gas, biomass, and nuclear energy. The procurement of cost data

for these fuels is as follows. Coal and gas fuel costs collected from the International Energy Agency

(IEA) Energy Price dataset [142], as shown in Table S14. Bio-fuel is treated as a locally sourced

commodity, and the availability is constrained by resource assessment, with its price standardized

at 100 $/ton. The fuel cost component for nuclear power is defined as 0.01 $/kWh, incorporating

expenditures for spent fuel treatment, based on the findings of [143].
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Figure S33: Investment cost of thermal and nuclear power in 2050 under the base scenario.
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Table S14: Fuel cost for coal and gas used in this study.

Region Coal ($/ton) Gas ($/mbtu) Region Coal ($/ton) Gas ($/mbtu)

Afghanistan 136 6 Lebanon 168 5
Algeria 179 5 Libya 179 5
Argentina 164 5 Madagascar 179 5
Australia 47 4 Malaysia 136 6
AustriaHungary 202 22 Mexico 99 16
BahrainQatar 168 5 Mongolia 136 6
BalkanEast 202 22 Morocco 179 5
BalkanWest 202 22 Myanmar 136 6
Baltic 202 22 NepalBhutan 136 6
Bangladesh 136 6 NewZealand 136 4
Belarus 92 13 Nigeria 179 5
Benelux 202 22 NorthKorea 136 6
Brazil 164 14 Norway 202 22
BritishIsles 202 22 Oman 168 5
Cambodia 136 6 Pakistan 136 6
Canada 87 16 Peru 164 5
Caucas 92 13 Philippines 136 6
CentralAfrica 179 5 Poland 202 22
CentralAmerica 164 5 Russia 47 7
CentralSouthAmerica 164 5 SaudiArabia 168 5
Chile 164 5 Slovakia 202 22
China 57 11 Somalia 179 5
Colombia 47 5 SouthAfrica 47 5
Congo 179 5 SouthEastAfrica 179 5
Denmark 202 22 SouthKorea 156 13
Ecuador 164 5 SouthWestAfrica 179 5
Egypt 179 5 SriLanka 136 6
Ethiopia 179 5 SudanEriteria 179 5
Finland 202 22 Sweden 202 22
France 202 22 Switzerland 202 22
Gaza 168 5 Syria 168 5
Germany 202 22 Tanzania 179 5
Iberia 202 22 Thailand 136 6
Iceland 202 22 Tunisia 179 5
India 83 8 Turkey 202 22
Indonesia 47 6 Turkmenistan 92 13
Iran 168 5 USA 47 5
Iraq 168 5 UkraineMoldova 92 13
Israel 168 5 UnitedArabEmirates 168 5
Italy 202 22 Uzbekistan 92 13
Japan 156 13 Venezuela 164 5
Kazakhstan 92 13 Vietnam 136 6
KenyaUganda 179 5 WestNorthAfrica 179 5
Kuwait 168 5 WestSouthAfrica 179 5
KyrgyzstanTajikistan 92 13 WestWestAfrica 179 5
Laos 136 6 Yemen 168 5

S3.5 Transmission lines

In the GISPO, we model two types of transmission lines, one is intra-grid lines integrating wind,

solar PV, and hydropower from cells or dam sites to major load centers, and the other is inter-grid

high voltage lines transmitting electricity between power grids.
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S3.5.1 Integration of wind, solar PV, and hydropower

In the real world, some renewable energy farms are located far from load centers due to resource

availability, which requires intra-grid transmission for integration. In the GISPO model, we consider

spur lines connecting renewable energy from cells (wind and utility-scale solar PV) or dam sites

(hydropower) to substations, and then trunk lines integrating the substations to major load centers

[11,144].

To model these integration requirements, we collect the location of global substations from

OSM [145] with a voltage level larger than 220 kV. For major load centers, we adopt the urban

area recognized using 1:50 M zoom resolution from the Natural Earth [146], which are generally

major cities in each power grid. For some grids (e.g., Xizang and North Korea) lacking urban

area in 1:50 M scale, we use the results under 1: 10 M resolution from the Natural Earth [146],

where smaller cities could be recognized, to balance integration distance. Figure S34 (a) shows

the geographical distribution of the substation and load centers modeled in this study. Within the

location information of cells (for wind and solar PV power), and dam sites (for hydropower), we

adopt the least distance rule to match cells (or dam sites) with substation and load centers in each

power grid, as shown in Figure S34 (b).

We evaluate the cost of spur lines and trunk lines based on the required capacity to be strength-

ened and incorporate these costs into the objective function of the GISPO model. For a spur

line that connects a grid cell to a substation, its capacity is equal to the total capacity installed

in this cell (existing capacity discussed in Section S3.2 plus capacity for future development op-

timized by the model) multiplied by the maximum hourly capacity factor of this grid cell. For

a trunk line that connects a substation to a major node, its capacity depends on the peak out-

put of aggregated profiles of the total capacity in all the cells connected to this substation. Since

the peak output of each cell connected to the substation may occur at different timesteps (i.e.,

max
t

[cfwe(t) + cfpv(t)] ≤ max
t

[cfwe(t)] + max
t

[cfpv(t)]), we do not simply sum the peak output over

all the cells to obtain the required capacity of the trunk line. A detailed representation of the spur

line and trunk line in our optimization model is described in Section S4.3.3.

We assume 220 kV alternating-current (AC) transmission is used for trunk lines [5], and spur

lines connecting onshore wind, utility-scale solar PV, and hydropower to the nearest substation.

Additionally, 220 kV AC submarine transmission lines are used to connect the power generated by

offshore wind to onshore substations [147]. We show the spur and trunk line connecting offshore

wind to the major node in Figure S35. Capital expenditure (CapEx) for onshore and submarine 220

kV AC transmission lines is given as 172 ×103 $/km [148] and 578 ×103 $/km [147], respectively, and

CapEx for 220 kV substation is given as 374 ×103 $/kW [148]. The fixed operation & maintenance

costs for overhead lines and substations are given as 1.2% of CapEx [147].
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(a) Substations and load centers

(b) Integration of VRE

Figure S34: Existing transmission lines, substations, and load centers incorporated in this model.

Figure S35: Illustration of the integration to the major node for offshore wind.
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S3.5.2 Estimate the capacity of existing transmission lines

The capacity of existing transmission lines is fundamental input data to model the topology of

power grids for electricity exchange. In this study, we collect the geographical shape and voltage

level information for global power transmission lines from the OSM [145] and merge these data if

they are missing with the Open Infrastructure Map (OIM) [149]. For each line, the surge impedance

loading (SIL) is estimated using the formula, which aligns with other estimates [150,151]:

SIL [MW] = α× (Voltage [kV])2

Surge Impedance [Ohms]
, (S3-1)

where α = sin π
6 is a multiplier representing the function of phase differences between transmission

ends [151]. In this study, we use the line length (L, km) and positive-sequence reactance related

to voltage (x, Ohms) to estimate the surge impedance of each line (Ohms), which is expressed as

SI = L · x [151], and we adopt the parameters for x from [151].

As the distribution networks are not modeled by previous power system expansion models [5,11,

35,144,152,153], we use the power grid boundary to filter out the transmission lines that cross two

different grids. And then aggregate the estimated capacity of these lines as the installed numbers

for inter-grid and region transmission modeling according to [5, 11, 35, 144, 152–154]. Figure S36

and S37 show the voltage level of existing transmission lines derived from OSM and OIM and the

aggregated capacity between power grids, respectively.

Figure S36: Existing transmission lines used for capacity estimate in this study.
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Figure S37: Estimated capacity (GW) between power grids in aggregation.

S3.5.3 Configuration of inter-grid transmission expansion

The distances of transmission lines are key factors influencing investment planning. The GISPO

model uses the geographical distance (km) between representative grid centers to formulate the

transmission expansion. To determine the representative center of each power grid, we first generate

the convex hull containing all the major load centers within the power grid as described in Figure

S34 (a). For each convex hull, we compare the geographical centroid with the power grid boundary

and select it as the representative grid center if it is located within the grid boundary, as shown in

Figure S38. For those centroids of the load center convex hull that fall out of the power grid (e.g.,

Vietnam), we adopt the grid’s geographical representative point within its boundary as the grid

center using the method provided by GeoPandas, a GIS tool in Python [155]. Using this estimate,

the representative nodes of the power grid are located near most of the major load centers in each

grid (see Figure S38). For those load centers far from the node, we also model a high-voltage line

connecting them to the representative nodes for balancing purposes by adopting the 75th percentile

(765 km) threshold of all geographical distances between major load centers and representative

nodes.
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Figure S38: Load centers and representative nodes of inter-grid UHV transmission lines.

Transmission capacity between power grids can be enhanced through two mechanisms: strength-

ening existing lines or expanding new corridors. For grids with existing interconnections or geo-

graphic adjacency within the same region (as shown in Section S3.5.2), direct capacity enhancement

is feasible. For non-adjacent grids without existing connections, power can be transmitted from grid

A to C via sequential corridors (< A → B1 → B2 → · · · → C >), where each node represents an

intermediate connection point.

The voltage levels for strengthened existing transmission lines are determined based on the

maximum voltage of the current infrastructure, while new corridor expansions are standardized at

400 kV. We use the line length (l, km) and loss rate (%/km) to estimate the efficiency of long-

distance power transmission line as [5, 11]:

ηuhv = (1− 0.0032%)l, (S3-2)

where l is the geographical distance (km) between representative grid centers. The cost of an inter-

grid transmission line contains two main parts–substation and overhead line, with the per unit of

capacity distance depending on its voltage level. We adopt the cost assumption on the CapEx of

transmission line and substation by voltage level from [148], shown in Table S15. The lifetime for
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substations is assumed to be 25 years, which lies in the range from [147] (20 years) to an actual

case (30 years) [156]. The lifetime for overhead lines is assumed to be 50 years following [157].

Table S15: CapEx assumptions of substations and overhead lines.

Voltage (kV) ±1100 1000 ±800 750 ±500 500 330

Substation ($/kW) 91 53 85 21 130 23 35
Overhead line (1000 $/km) 1,000 1,010 708 427 284 377 173

S3.6 Energy storage

The GISPO model simulates energy storage by incorporating two primary technology categories

widely represented in the modeling literature [5, 11, 35, 135, 158]. These categories are mechanical

storage, exemplified by 8-hour pumped hydro storage (PHS) [11], and electrochemical storage,

characterized by 4-hour lithium-ion batteries (BAT). Current CapEx for PHS and BAT are derived

from [127,130,131,159]. Consistent with reports of its cost stability, PHS CapEx remains at current

values for projections to 2050. For BAT, CapEx reduction ratios are adopted from the NREL

ATB [160], as depicted in Figure S39. Table S16 presents the PHS and BAT investment costs

utilized in the base scenario.
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Figure S39: CapEx ratio of battery storage toward 2050 to the base year.
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Table S16: Investment cost ($/kW) of energy storage in 2050 under the base scenario.

Region BAT ($/kW) PHS ($/kW) Region BAT ($/kW) PHS ($/kW)

Afghanistan 509 1412 Libya 509 1412
Algeria 509 1412 Madagascar 509 1412
Argentina 509 1412 Malaysia 509 1412
Australia 509 1412 Mexico 509 1412
AustriaHungary 592 1412 Mongolia 509 1412
BalkanEast 592 1412 Morocco 509 1412
BalkanWest 592 1412 Myanmar 509 1412
Baltic 592 1412 NepalBhutan 509 1412
Bangladesh 509 1412 NewZealand 509 1412
Belarus 592 1412 Nigeria 509 1412
Benelux 592 1412 NorthKorea 509 1412
Brazil 509 1412 Norway 592 1412
BritishIsles 592 1412 Oman 509 1412
Cambodia 509 1412 Pakistan 509 1412
Canada 509 1412 Peru 509 1412
Caucas 509 1412 Philippines 509 1412
CentralAfrica 509 1412 Poland 592 1412
CentralAmerica 509 1412 Russia 509 1412
CentralSouthAmerica 509 1412 SaudiArabia 509 1412
Chile 509 1412 Slovakia 592 1412
China 307 617 Somalia 509 1412
Colombia 509 1412 SouthAfrica 509 1412
Congo 509 1412 SouthEastAfrica 509 1412
Denmark 592 1412 SouthKorea 509 1412
Ecuador 509 1412 SouthWestAfrica 509 1412
Egypt 509 1412 SriLanka 509 1412
Ethiopia 509 1412 SudanEriteria 509 1412
Finland 592 1412 Sweden 592 1412
France 592 1412 Switzerland 592 2465
Gaza 509 1412 Syria 509 1412
Germany 592 1412 China, Taiwan 307 1412
Iberia 592 1412 Tanzania 509 1412
Iceland 592 1412 Thailand 509 617
India 509 617 Tunisia 509 1412
Indonesia 509 1412 Turkey 509 1412
Iran 509 1412 Turkmenistan 509 1412
Iraq 509 1412 USA 611 1412
Israel 509 1412 UkraineMoldova 592 1412
Italy 592 1412 UnitedArabEmirates 509 1412
Japan 509 2465 Uzbekistan 509 1412
Kazakhstan 509 1412 Venezuela 509 1412
KenyaUganda 509 1412 Vietnam 509 1412
Kuwait 509 1412 WestNorthAfrica 509 1412
KyrgyzstanTajikistan 509 1412 WestSouthAfrica 509 1412
Laos 509 1412 WestWestAfrica 509 1412
Lebanon 509 1412 Yemen 509 1412

For PHS, the fixed O&M costs is set at 1.5% of CapEx [161], and variable O&M cost at 0.25

$/MWh [162]. A lifespan of 40 years is adopted [163]. Based on prior analyses [163, 164], PHS

charge and discharge efficiencies are both established at 88%, with a self-discharge rate of 0%. Given

that geographical constraints, such as elevation differences, limit PHS deployment, its installation
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potential is assessed at the individual site level in Section S2.2. Table S17 presents the national-scale

installation potential for PHS.

Table S17: Installation capacity potential (GW) of pumped hydro storage at the national scale.

Region Potential Region Potential

Algeria 71.4 Madagascar 87.3
Argentina 3.9 Mexico 2233.8
Australia 31.4 Mongolia 28
AustriaHungary 76.4 Morocco 165.3
BalkanEast 140.2 NepalBhutan 9.8
BalkanWest 447.7 Nigeria 84
Benelux 7.8 NorthKorea 23.7
Brazil 15.9 Norway 23.4
BritishIsles 17.2 Peru 2.6
Canada 390.7 Philippines 16.4
Caucas 77.5 Poland 15.6
CentralAfrica 39.2 Russia 129.7
CentralAmerica 658.9 Slovakia 12.2
Chile 1.3 SouthAfrica 250.9
China 1975.6 SouthEastAfrica 93.8
Congo 1.4 SouthKorea 18.9
Ecuador 1.4 SouthWestAfrica 148.4
Egypt 2.4 SudanEriteria 28.5
Ethiopia 33.6 Sweden 1.3
France 38.4 Switzerland 58.1
Germany 36.6 China, Taiwan 4.2
Iberia 104.4 Tanzania 131.6
India 44.5 Thailand 5.2
Indonesia 5.2 Tunisia 2.7
Iran 1.3 Turkey 411.2
Iraq 1.3 USA 1067.8
Israel 3.1 UkraineMoldova 9.1
Italy 115.2 Uzbekistan 1.3
Japan 94.5 Vietnam 2.8
Kazakhstan 66.8 WestNorthAfrica 180
KenyaUganda 109.2 WestSouthAfrica 7
KyrgyzstanTajikistan 201.4 WestWestAfrica 79.8
Libya 22.4 Total 10172

The assumed O&M cost structure for BAT comprises a fixed component equivalent to 1.0% of

CapEx, a figure substantiated by [133]. The variable O&M cost is set at 2.85 $/MWh, which falls

within the empirically observed range of 1.2–4.8 $/MWh documented by [164]. A monthly self-

discharge rate of 2% (approximately 0.07%/day) is employed, drawing from the findings of [165].

Additionally, a round-trip efficiency of 90% is presumed, consistent with the data presented by [166].

The projected lifespan for the battery energy storage system is 15 years, a duration supported by the

literature, specifically [163]. As the deployment of BAT storage is flexible, we do not set installation

constraints for this kind of technology. The overview of these technical parameters is provided in
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Table S18.

Table S18: Performance parameters for storage technologies.

Type
Fixed O&M
(% of CapEx)

Variable O&M
($/MWh)

Charge
efficiency (%)

Discharge
efficiency (%)

Self-discharge
rate (%/day)

Duration
(hrs)

Lifetime
(yrs)

PHS 1.5 0.25 88 88 0 8 40
BAT 1.0 2.85 95 95 0.07 4 15

S3.7 Carbon source and sink match

The spatial allocation of captured carbon dioxide (CO2) from emission points to injection sites is

modeled via a minimum geographic distance heuristic. This methodological choice stems from the

exogenous specification of newly installed coal, gas, and biomass power unit locations within the

overarching optimization framework. Consequently, each power grid is endowed with the flexibility

to direct emissions to any proximate onshore or offshore carbon storage reservoir situated within

its regional demarcation. The GISPO model subsequently co-optimizes endogenously the optimal

annual source-sink assignments for CO2 conveyance, incorporating the following cost parameters: 37

$/tCO2 for capture, 0.12 (0.17) $/tCO2·km and 5.5 (22.6) $/tCO2 for transportation to and being

stored in onshore (offshore) aquifer, as established by [62, 167–171]. A stringent model constraint

enforces that all CO2 captured from thermoelectric facilities integrated with CCS technology must

undergo transportation and subsequent injection solely into the pre-defined storage locations.

S3.8 Direct air capture

The GISPO model optimizes the deployment of four direct air capture (DAC) technologies at the

power grid scale: KOH absorption paired with regeneration via calcium looping (KOH-Ca looping),

KOH absorption paired with regeneration via bipolar membrane electrodialysis (BPMED), solid

sorbent DAC using temperature vacuum swing adsorption, and MgO ambient weathering with re-

generation via calcination. A key methodological assumption permits CO2 captured within a power

grid to be transported to any identified storage site without distance constraints. The associated

transportation expenditures are estimated from the centroids of power grid DAC operations to

storage locations, while both transportation and injection costs are consistent with the framework

presented in Section S3.7.

The cost parameters underpinning this study are principally derived from Young et al. [172]. This

includes the total overnight cost—comprising plant cost, owner’s cost, spare parts, and startup capi-

tal, labor, energy, and chemicals—and annual fixed O&M costs, which consist of labor, maintenance,

insurance, and local taxes and fees. Variable O&M costs for DAC, such as water, chemical/mineral

consumption, and gasoline, are also adapted from [172]. However, our approach diverges in that

DAC operational electricity is modeled endogenously, with heat directly supplied by the power

system and annual electricity consumption assumed to be uniformly distributed across all hours
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(e.g., 8,760 GWh/yr implies 1 GWh/hr in the electricity balance constraint). Consequently, and

unlike [172], variable O&M costs herein exclude CO2 transportation and storage costs, as these are

determined endogenously. The base-year cost and technological parameters for each DAC technol-

ogy are summarized in Table S19 and S20. A DAC operational lifetime of 25 years is assumed,

with a coefficient of performance (COP) of 2.5 for heat pumps providing electricity-derived heat.

To project future CapEx and O&M costs from 2030 to 2060, we adopt the most conservative “Low

uptake, 25% technology dominance” scenario from [172], with projections detailed in Table S21.

Table S19: Technical parameters and variable O&M (2022) for direct air capture.

Technology KOH with Ca looping KOH with BPMED Solid sorbent
MgO looping with
ambient weathering

Direct electricity
use (GJ/tCO2)

1.32 22.5 0.99 0.78

Direct heat use
(GJ/tCO2)

5.3 N/A 9.8 6.2

Variable O&M
($/tCO2*yr)

2.4 260 123 2

Table S20: CapEx ($/tCO2*yr) and fixed O&M cost
($/tCO2*yr) for direct air capture in 2022.

Region
KOH with
Ca looping

KOH with
BPMED

Solid sorbent
MgO looping with
ambient weathering

CapEx FOM CapEx FOM CapEx FOM CapEx FOM
Afghanistan 842 24 797 23 7251 197 915 26
Algeria 1282 50 1211 48 11016 312 1393 53
Argentina 1338 40 1263 38 11516 314 1453 44
Australia 1455 65 1374 63 12481 362 1580 69
AustriaHungary 1392 62 1315 59 11947 346 1512 65
BalkanEast 1392 62 1315 59 11947 346 1512 65
BalkanWest 1392 62 1315 59 11947 346 1512 65
Baltic 1392 62 1315 59 11947 346 1512 65
Bangladesh 842 24 797 23 7251 197 915 26
Belarus 1392 62 1315 59 11947 346 1512 65
Benelux 1392 62 1315 59 11947 346 1512 65
Brazil 1338 40 1263 38 11516 314 1453 44
BritishIsles 1392 62 1315 59 11947 346 1512 65
Cambodia 842 24 797 23 7251 197 915 26
Canada 1243 57 1175 55 10668 310 1350 60
Caucas 842 24 797 23 7251 197 915 26
CentralAfrica 1282 50 1211 48 11016 312 1393 53
CentralAmerica 1338 40 1263 38 11516 314 1453 44
CentralSouthAmerica 1338 40 1263 38 11516 314 1453 44
Chile 1338 40 1263 38 11516 314 1453 44
China 842 24 797 23 7251 197 915 26
Colombia 1338 40 1263 38 11516 314 1453 44
Congo 1282 50 1211 48 11016 312 1393 53
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Table S20 continued from previous page

Region
KOH with
Ca looping

KOH with
BPMED

Solid sorbent
MgO looping with
ambient weathering

Denmark 1392 62 1315 59 11947 346 1512 65
Ecuador 1338 40 1263 38 11516 314 1453 44
Egypt 1282 50 1211 48 11016 312 1393 53
Ethiopia 1282 50 1211 48 11016 312 1393 53
Finland 1392 62 1315 59 11947 346 1512 65
France 1392 62 1315 59 11947 346 1512 65
Gaza 1313 40 1240 38 11303 309 1426 43
Germany 1392 62 1315 59 11947 346 1512 65
Iberia 1392 62 1315 59 11947 346 1512 65
Iceland 1392 62 1315 59 11947 346 1512 65
India 842 24 797 23 7251 197 915 26
Indonesia 842 24 797 23 7251 197 915 26
Iran 1313 40 1240 38 11303 309 1426 43
Iraq 1313 40 1240 38 11303 309 1426 43
Israel 1313 40 1240 38 11303 309 1426 43
Italy 1392 62 1315 59 11947 346 1512 65
Japan 842 24 797 23 7251 197 915 26
Kazakhstan 842 24 797 23 7251 197 915 26
KenyaUganda 1282 50 1211 48 11016 312 1393 53
Kuwait 1313 40 1240 38 11303 309 1426 43
KyrgyzstanTajikistan 842 24 797 23 7251 197 915 26
Laos 842 24 797 23 7251 197 915 26
Lebanon 1313 40 1240 38 11303 309 1426 43
Libya 1282 50 1211 48 11016 312 1393 53
Madagascar 1282 50 1211 48 11016 312 1393 53
Malaysia 842 24 797 23 7251 197 915 26
Mexico 1243 57 1175 55 10668 310 1350 60
Mongolia 842 24 797 23 7251 197 915 26
Morocco 1282 50 1211 48 11016 312 1393 53
Myanmar 842 24 797 23 7251 197 915 26
NepalBhutan 842 24 797 23 7251 197 915 26
NewZealand 1455 65 1374 63 12481 362 1580 69
Nigeria 1282 50 1211 48 11016 312 1393 53
NorthKorea 842 24 797 23 7251 197 915 26
Norway 1392 62 1315 59 11947 346 1512 65
Oman 1313 40 1240 38 11303 309 1426 43
Pakistan 842 24 797 23 7251 197 915 26
Peru 1338 40 1263 38 11516 314 1453 44
Philippines 842 24 797 23 7251 197 915 26
Poland 1392 62 1315 59 11947 346 1512 65
Russia 1392 62 1315 59 11947 346 1512 65
SaudiArabia 1313 40 1240 38 11303 309 1426 43
Slovakia 1392 62 1315 59 11947 346 1512 65
Somalia 1282 50 1211 48 11016 312 1393 53
SouthAfrica 1282 50 1211 48 11016 312 1393 53
SouthEastAfrica 1282 50 1211 48 11016 312 1393 53
SouthKorea 842 24 797 23 7251 197 915 26
SouthWestAfrica 1282 50 1211 48 11016 312 1393 53
SriLanka 842 24 797 23 7251 197 915 26
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Table S20 continued from previous page

Region
KOH with
Ca looping

KOH with
BPMED

Solid sorbent
MgO looping with
ambient weathering

SudanEriteria 1282 50 1211 48 11016 312 1393 53
Sweden 1392 62 1315 59 11947 346 1512 65
Switzerland 1392 62 1315 59 11947 346 1512 65
Syria 1313 40 1240 38 11303 309 1426 43
China, Taiwan 842 24 797 23 7251 197 915 26
Tanzania 1282 50 1211 48 11016 312 1393 53
Thailand 842 24 797 23 7251 197 915 26
Tunisia 1282 50 1211 48 11016 312 1393 53
Turkey 1313 40 1240 38 11303 309 1426 43
Turkmenistan 842 24 797 23 7251 197 915 26
USA 1243 57 1175 55 10668 310 1350 60
UkraineMoldova 1392 62 1315 59 11947 346 1512 65
UnitedArabEmirates 1313 40 1240 38 11303 309 1426 43
Uzbekistan 842 24 797 23 7251 197 915 26
Venezuela 1338 40 1263 38 11516 314 1453 44
Vietnam 842 24 797 23 7251 197 915 26
WestNorthAfrica 1282 50 1211 48 11016 312 1393 53
WestSouthAfrica 1282 50 1211 48 11016 312 1393 53
WestWestAfrica 1282 50 1211 48 11016 312 1393 53
Yemen 1313 40 1240 38 11303 309 1426 43

Table S21: Cost projection (ratio to 2022) from 2030 to 2050.

Year KOH with Ca looping KOH with BPMED Solid sorbent
MgO looping with
ambient weathering

2022 1.00 1.00 1.00 1.00
2030 0.94 0.83 0.41 0.95
2040 0.91 0.79 0.36 0.89
2050 0.88 0.75 0.32 0.84

S3.9 Financial parameters

We convert the upfront capital expenditure cost to yearly annuities using a capital recovery factor

(CRF) ξ by [5, 11]:

CRF = ξ =
WACC × (1 +WACC )τ

(1 +WACC )τ − 1
, (S3-3)

whereWACC is the real weighted average cost of capital, which is as a fraction; and τ is the financial

lifetime (or capital recovery period) of the investment. In this model, we adopt 7.4% for the WACC ,

close to [35,173]. The annualized CapEx cost is given by the upfront CapEx cost multiplied by the

CRF. In this study, one US$ is equal to seven RMB yuan.
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S4 Formula of the Power-system Optimization Model

S4.1 Variables and parameters

S4.1.1 Indices

• pt: Power technology, including

– onshore and offshore wind;

– utility-scale and distributed solar photovoltaic (PV);

– run-of-river (ror) and reservoir (resvor) hydropower;

– coal, coal combined heat power (CHP) plant, coal with carbon capture and storage

(CCS), and coal CHP CCS;

– nuclear;

– natural gas, natural gas CHP, natural gas CCS, and natural gas CHP CCS;

– biomass and biomass CCS.

• z: Optimization spatial site (cell for wind and solar PV; dam site for hydropower).

• st: Energy storage technology, including lithium-ion battery (BAT) and pumped hydro storage

(PHS).

• g: Power grid.

• sub: Substation that meets the modeling condition (≥220 kV).

• lc: Load center.

• lg,g′ : Transmission line between g and g′.

• c: Potential carbon sequestration site.

• rg,c: Carbon transportation route from grid g to sequestration site c.

• dac: Direct air capture (DAC), including KOH with scrubbing with bipolar membrane elec-

trodialysis (BPME, koh b), MgO looping with ambient weathering (mgo am), solid sorbent

(ssor), and KOH with Ca looping (koh cl).

• t: Timestep, one hour in this study.

S4.1.2 Sets

• WE : Wind power, including onshore wind and offshore wind, WE = {onshore, offshore}.

• PV : Solar PV power, including utility-scale and distributed solar PV, PV = {upv , dpv}.

59



S4 FORMULA OF THE POWER-SYSTEM OPTIMIZATION MODEL

• HP : hydropower, including run-of-river and reservoir hydropower, HP = {ror , resvor}.

• CP : Coal-fired power, CP = {coal , coalccs , cchp, cchpccs}.

• GP : Gas-fired power, GP = {gas, gasccs , gchp, gchpccs}.

• BP : Biomass power, BP = {bio, bioccs}.

• NP : Nuclear power, NP = {nuclear}.

• TP : Thermal power, TP = CP ∪GP ∪ BP .

• CCHP : Coal-fired combined heat and power, CCHP = {cchp, cchpccs}.

• GCHP : Gas-fired combined heat and power, GCHP = {gchp, gchpccs}.

• CHP : Combined heat and power, CHP is a set of sets, CHP = {CCHP ,GCHP}.

• CCS : Generator equipped with carbon capture and storage,

CCS = {coalccs , cchpccs , gasccs , gchpccs , bioccs}.

• CCSpair : Power technology equipped with or without CCS,

CCSpair = {(coal , coalccs), (cchp, cchpccs), (gas, gasccs), (gchp, gchpccs), (bio, bioccs)}.

• PT : Power technologies, PT = WE ∪ PV ∪HP ∪ TP ∪NP .

• ST : Energy storage technologies, ST = {BAT, PHS}.

• Zg,pt: Optimization spatial sites for wind, solar PV, and hydropower in grid g, Zg,pt = {z}, pt ∈

WE ∪ PV ∪HP .

• G: Provincial power grids, G = {g}.

• SUBg : Substations in grid g that meet the modeling condition, SUBg = {sub} ∩G .

• Zsub
g,pt: Spatial sites of power pt connected to substation sub in grid g, Zsub

g,pt = SUBg ∩ Zg,pt .

• LCg : Load centers in grid g, LCg = {lc} ∩G .

• SUB lc
g : Substations in grid g connected to load center lc, SUB lc

g = SUBg ∩ LCg .

• C: Potential carbon sequestration sites, C = {c}.

• DAC : Direct air capture technologies, DAC = {koh b,mgo am, ssor , koh cl}.

• T : Optimization timesteps, which covers the whole year, T = {0, 1, 2, 3, . . . , 8759}.

• Tw: Timesteps in winter, including January to March-mid and November-mid to December for

the Northern Hemisphere, and June, July, and August for the Southern Hemisphere, Tw ⊆ T .
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S4.1.3 Decision variables

In the GISPO model, decision variables are non-negative by default if not specified.

• pg,z,pt: Optimized installation capacity of renewable energy pt at site z in grid g, GW.

• Ig,pt,t: Integrated capacity of renewable energy pt to the grid g at timestep t, GW.

• qgeng,z,resvor,t: Generation flow of reservoir hydropower at site z in grid g at timestep t, m3/s.

• qspillg,z,resvor,t: Spillage flow of reservoir hydropower at site z in grid g at timestep t, m3/s.

• vg,z,resvor,t: Reservoir level of reservoir hydropower at site z in grid g at timestep t, m3.

• Ig,z,resvor,t: Integration of reservoir hydropower at site z in grid g at timestep t, GW.

• utotg,pt: Optimized installation units of thermal and nuclear power pt in grid g, unit.

• uong,pt,t: Online units of thermal and nuclear power pt in grid g at timestep t, unit.

• usug,pt,t: Start-up units of thermal and nuclear power pt in grid g at timestep t, unit.

• usdg,pt,t: Shut-down units of thermal and nuclear power pt in grid g at timestep t, unit.

• uloadg,pt,t: Load units dispatched to thermal and nuclear power pt in grid g at timestep t, unit.

• pg,st: Optimized installation capacity of storage st in grid g, GW.

• stocharg,st,t: Charging capacity from the grid g to storage st at timestep t, GW.

• sr+,char
g,st,t : Upward reserve capacity provided by storage st while charging in grid g at timestep

t, GW.

• stodisg,st,t: Post-loss discharging capacity from storage st to the grid g at timestep t, GW.

• sr+,dis
g,st,t : Upward reserve capacity provided by storage st while discharging in grid g at timestep

t, GW.

• stoeg,st,t: Energy stored within storage st in grid g at timestep t, GWh.

• plAC
g,g′

: Optimized installation capacity of AC line lg,g′ , connecting grid g and g′, GW.

• plDC
g,g′

: Optimized installation capacity of DC line lg,g′ , from grid g to g′, GW.

•
−→
f lAC

g,g′ ,t
: Power transmitted from grid g to g′ along AC line lAC

g,g′ at timestep t, GW.

•
←−
f lAC

g,g′ ,t
: Power transmitted from grid g′ to g along AC line lAC

g,g′ at timestep t, GW.

•
−→
f lDC

g,g′ ,t
: Power transmitted from grid g to g′ along DC line lDC

g′,g at timestep t, GW.
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• pg,dac: Optimized installation capacity of DAC in grid g, MtCO2/yr.

• mg,dac: Annual carbon captured by DAC in grid g, MtCO2.

• mrg,c : Annual carbon transported from grid g to carbon sequestration site c, MtCO2.

• load+g,t: Load increment of grid g at time step t for modeling demand side management, GW.

• load−g,t: Load reduction of grid g at time step t for modeling demand side management, GW.

S4.1.4 Intermediate variables

• I localg,t : Load dispatched to local generation in grid g at timestep t, GW.

• rampupg,pt,t: Ramp up capacity of thermal and nuclear power pt in grid g at timestep t, GW.

• rampdng,pt,t: Ramp down capacity of thermal and nuclear power pt in grid g at timestep t, GW.

• eleg,dac: Electricity load consumption by DAC dac in grid g, GW.

S4.1.5 Parameters

Technical parameters

• cfg,z,pt,t: Capacity factor of power pt at site z in grid g at timestep t, where pt ∈WE ∪PV ∪

{ror}, cf ∈ [0, 1].

• pg,z,pt: Maximum installation capacity potential of power pt at site z in grid g, GW.

• p
g,z,pt

: Installed capacity before optimization year of power pt at site z in grid g, GW.

• qing,z,t: Natural inflow for hydropower at site z in power grid g at time t, m3/s.

• V
cap
g,z,resvor: Upper reservoir level of reservoir hydropower at site z in grid g, m3.

• V cap
g,z,resvor: Lower reservoir level of reservoir hydropower at site z in grid g, m3.

• Hg,z,resvor: Water head of reservoir hydropower at site z in grid g, m;

• f load
pt : Fuel consumption by load capacity of thermal and nuclear power pt, GJ/GWh.

• fon
pt : Fuel consumption by online capacity of thermal and nuclear power pt, GJ/GWh.

• ξccspt : Efficiency loss of thermal power pt if equipped with CCS technology, ξccspt ∈ [0, 1].

• ηccspt : Carbon capture rate of thermal power pt if equipped with CCS technology, ηccspt ∈ [0, 1].

• ϱpt: Per-unit capacity of thermal and nuclear power, GW/unit.

• δuppt : Maximum ramping up rate of thermal and nuclear power pt, %/h.
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• δdnpt : Maximum ramping down rate of thermal and nuclear power pt, %/h.

• φ
pt
: Minimum output rate of thermal and nuclear power pt if online, %.

• φpt: Maximum output rate of thermal and nuclear power pt if online, %.

• τpt,up: Minimum online duration of thermal and nuclear power pt if started up, h.

• τpt,dn: Minimum offline duration of thermal and nuclear power pt if shut down, h.

• efpt: Carbon emissions factor of thermal power pt, where pt ∈ TP, MtCO2/GWh.

• therm
cal
g,bio: Maximum available biomass fuel for power generation in grid g, GJ/yr.

• pg,st: Maximum installation capacity potential of storage st in power grid g, GW.

• p
g,st

: Installed capacity before optimization year of storage st in grid g, GW.

• ηcharst : Charge efficiency of storage technology st, %.

• ηdisst : Discharge efficiency of storage technology st, %.

• stodurst : Duration of storage technology st, h.

• ζst: Self-discharge rate of storage technology st, %/h.

• dsubg,z,pt: Geographical distance from site z in power grid g to the nearest substation connecting

renewable energy pt, where pt ∈WE ∪ PV ∪HP , km.

• dlcg,sub: Geographical distance from substation sub in power grid g to the nearest load center,

km.

• ξtransl : Power loss rate of transmission line, %/km,

• dl: Geographical distance of transmission line l, km.

• ηl: Transmission efficiency of transmission line l given by (1− ξl)
dl , %.

• p
g,dac

: Installed capacity of DAC (dac) before optimization year in grid g, MtCO2/yr.

• ηdac: Carbon sequestration efficiency of DAC (dac), which refers to the ratio of valid carbon

sequestrated to the total carbon captured, ηdac ∈ [0, 1].

• drg,c : Geographical distance of carbon transport route rg,c, km.

• E: Annual carbon emissions limitation, where E < 0 indicates negative emissions, MtCO2.

• Cc: Annual carbon injection capacity limitation in each carbon sequestration site c, MtCO2.
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• demg,t: Power demand in grid g at timestep t, GW.

• ρ+sr: Upward spinning reserve capacity requirement, %.

• ρvre: Reserve capacity requirement for variable renewable energy integration, %.

• ιpt: Inertia constant of power pt, s.

• ιst: Inertia constant of storage st, s.

• ι0: Current inertia level, determines inertia requirement with power demand, s.

• ιtol: Ratio of current inertia level, which reflects the tolerance of system inertia drop, %.

Economic parameters

• κcappt : Capital cost of power pt, $/GW.

• κcapst : Capital cost of storage technology st, $/GW.

• κcapl : Capital cost of transmission line l, $/GW·km.

• κcappt,spur: Capital cost of spur line spur connecting power pt to the substation, the GISPO

assumes AC 220 kV line for onshore wind, solar PV, hydropower, and AC 220 kV submarine

cable for offshore wind, $/GW·km.

• κcapsub: Capital cost of substation sub, $/GW.

• κcaptrunk: Capital cost of trunk line trunk connecting substation to load center, $/GW·km.

• κcapdac: Capital cost of DAC dac, $/(MtCO2/yr).

• χpt: Capital recovery factor of investment to power pt, %/yr.

• χst: Capital recovery factor of investment to storage technology st, %/yr.

• χl: Capital recovery factor of investment to transmission line l, %/yr.

• χpt,spur: Capital recovery factor of investment to spur line spur for power pt, %/yr.

• χtrunk: Capital recovery factor of investment to trunk line trunk, %/yr.

• χdac: Capital recovery factor of investment to DAC dac, %/yr.

• κfuelpt : Fuel cost of thermal and nuclear power pt, $/GJ.

• κsupt : Start-up cost of thermal and nuclear power pt, $/GW.

• κsdpt : Shut-down cost of thermal and nuclear power pt, $/GW.
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• κfompt : Fixed operation and maintenance (O&M) cost of power pt, $/GW·yr.

• κfomst : Fixed O&M cost of storage technology st, $/GW·yr.

• κfoml : Fixed O&M cost of transmission line l, $/GW·yr.

• κfompt,spur: Fixed O&M cost of spur line spur connecting power pt, $/GW·yr.

• κfomtrunk: Fixed O&M cost of trunk line trunk, $/GW·yr.

• κfomdac : Fixed O&M cost of DAC dac, $/(MtCO2/yr)·yr.

• κvompt : Variable O&M cost of power pt, $/GWh.

• κvomst : Variable O&M cost of storage technology st, $/GWh.

• κvoml : Variable O&M cost of transmission line l, $/GWh.

• κvomdac : Variable O&M cost of DAC dac, $/MtCO2.

• κcaptureccs : Cost of capturing CO2 in carbon source, $/MtCO2.

• κinjectccs : Cost of injecting CO2 to storage well, $/MtCO2.

• κtransportccs : Cost of transporting CO2 from source to sink, $/km·MtCO2.
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S4.2 Objective function

The optimization objective of the GISPO is to minimize the annual system-wide cost subject to sets

of engineering, economics, and policy-related constraints, similar to [5,11,35,133,144,174], including

1) annual investment and O&M costs of wind, solar PV, hydropower, thermal and nuclear power,

energy storage and transmission line; 2) ramp, start-shut and fuel-consumption costs of thermal

and nuclear power; 3) CO2 capture, transport and storage costs; and 4) costs of equipped other

technology in specific scenarios. Formally, the objective function is as follows:

min : f =
∑
g

∑
pt

∑
z

(χpt × κcappt + κfompt )× pg,z,pt (S4-1a)

+
∑
g

∑
pt

∑
z

[(χpt × κcappt + κfompt )× pg,z,pt +
∑
t

κvompt × Ig,pt,t] (S4-1b)

+
∑
g

∑
pt

[(χpt × κcappt + κfompt )× utotg,pt × ϱpt +
∑
t

κvompt × uloadg,pt,t × ϱpt] (S4-1c)

+
∑
g

∑
pt

∑
t

[κfuelpt × (f load
pt × uloadg,pt,t + fon

pt × uong,pt,t)× ϱpt ×∆t] (S4-1d)

+
∑
g

∑
pt

∑
t

(κsupt × usug,pt,t + κsdpt × usdg,pt,t) (S4-1e)

+
∑
g

∑
pt

∑
t

(κuppt × rampupg,pt,t + κdnpt × rampdng,pt,t) (S4-1f)

+
∑
g

∑
st

[(χst × κcapst + κfomst )× pg,st +
∑
t

κvomst × (stocharg,st,t + stodisg,st,t)] (S4-1g)

+
∑
lAC
g,g′

[(χl × (κcapl × dl + κcapsub) + κfoml )× pl +
∑
t

κvoml × (
−→
f AC

l,t +
←−
f AC

l,t )] (S4-1h)

+
∑
lDC
g,g′

[(χl × (κcapl × dl + κcapcon) + κfoml )× pl +
∑
t

κvoml ×
−→
f DC

l,t ] (S4-1i)

+
∑
g

∑
pt

∑
z

(χpt,spur × (κcapspur × dsubg,z,pt + κcapsub) + κfompt,spur)× psubg,z,pt (S4-1j)

+
∑
g

∑
sub

(χtrunk × (κcaptrunk × dlcg,sub + κcapsub) + κfomtrunk)× plcg,sub (S4-1k)

+
∑
g

∑
dac

[(χdac × kcapdac + kfomdac )× pg,dac + kvomdac ×mg,dac] (S4-1l)

+
∑
g

κcaptureccs × ηccspt × εpt ×∆t ×
∑
t

uloadg,pt,t (S4-1m)

+
∑
<g,c>

(κinjectccs + κtransportccs × drg,c)×mrg,c (S4-1n)

+O. (S4-1o)

In the objective function:

- g ∈ G, z ∈ Zg,pt, t ∈ T ;

- Formula S4-1a is the annual cost of wind, and solar PV installation, pt ∈WE ∪ PV ;

- Formula S4-1b is the annual cost of hydropower installation, pt ∈ HP ;
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- Formula S4-1c is the annual investment cost and O&M cost of thermal and nuclear power,

pt ∈ TP ∪NP ;

- Formula S4-1d is the yearly fuel cost of thermal and nuclear power, pt ∈ TP ∪NP ;

- Formula S4-1e is the yearly start-up and shut-down cost of thermal and nuclear power, pt ∈

TP ∪NP ;

- Formula S4-1f is the yearly ramping cost of thermal and nuclear power, pt ∈ TP ∪NP ;

- Formula S4-1g is the annual investment and O&M cost of energy storage, st ∈ ST ;

- Formula S4-1h and S4-1i is the annual investment and O&M cost of inter-grid transmission

lines, where kvoml is a slight value (0.0001 $/kWh in this study) introduced to avoid hourly

bidirectional power flows [5], which is also imposed in DC lines to avoid artificial preference

in AC/DC line;

- Formula S4-1j is the annual investment cost of spur line, where psubg,z,pt represents the capacity

of spur line connecting power pt at site z to substation sub. The capacity constraint can be

found in formula S4-13, pt ∈WE ∪ PV ∪HP ;

- Formula S4-1k is the annual investment cost of reinforced trunk line, where plcg,sub represents

the capacity of trunk line connecting substation sub to the nearest load center. The capacity

constraint can be found in formula S4-14, sub ∈ SUB lc
g ;

- Formula S4-1l is the annual investment and maintenance cost of DAC, dac ∈ DAC ;

- Formula S4-1m and S4-1n is the yearly cost of capturing, transporting and injecting CO2 from

grid g to carbon sequestration site c;

- Formula S4-1o is the annual cost when applying other technologies in specific scenarios, such

as demand response, etc.

S4.3 Constraints

S4.3.1 Wind and solar PV power output

Wind and solar PV power generation at each timestep t depends on the installation capacity and the

capacity factor at t. The installation capacity of wind and solar PV is constrained by the installation

capacity potential and installed capacity before the optimization year. When the GISPO optimizes

the power system in 2050, the installed capacity before 2050 (considering retirement) is the lower

installation bound. The GISPO takes the installed capacity as the lower bound and assumes these

installations will be replaced if retired. See Section S2.1 for the installation capacity potential and

67



S4 FORMULA OF THE POWER-SYSTEM OPTIMIZATION MODEL

hourly capacity factor, and Section S3.2 for the installed capacity determination for each site by

the end of 2022. The constraints are:

p
g,z,pt

≤ pg,z,pt ≤ pg,z,pt, ∀g, pt ∈WE ∪ PV , z ∈ Zg,pt , (S4-2)

Ig,pt,t ≤
∑

z∈Zg,pt

cfg,z,pt,t × pg,z,pt, ∀g, pt ∈WE ∪ PV , t , (S4-3)

where p
g,z,pt

denotes the installed capacity before optimization year at site z; pg,z,pt denotes the in-

stallation capacity potential of renewable energy pt; Ig,pt,t is the integrated capacity from renewable

energy source gt (i.e. wind or solar PV) to grid g at timestep t.

S4.3.2 Hydropower output

Run-of-River hydropower

The maximum power output of run-of-river hydropower at each timestep t is less than or equal

to the installation capacity multiplied by the capacity factor (determined by the river flow, as

discussed in Section S2.2). The installation capacity of run-of-river hydro at site z is constrained

to be within the bounds of the existing installed capacity and the assessed maximum installation

capacity potential. The constraints are as follows:

p
g,z,ror

≤ pg,z,ror ≤ pg,z,ror, ∀g, z ∈ Zg,ror, (S4-4)

Ig,ror,t ≤
∑

z∈Zg,ror

cfg,z,ror,t × pg,z,ror, ∀g, t. (S4-5)

Reservoir hydropower

The installation capacity of reservoir hydropower at site z should be larger than or equal to the

existing installed capacity and less than or equal to the installation capacity potential, as follows:

p
g,z,resvor

≤ pg,z,resvor ≤ pg,z,resvor, ∀g, z ∈ Zg,resvor, (S4-6)

where p
g,z,resvor

is the installed capacity before optimization year; pg,z,resvor is the installation capac-

ity potential estimated in the hydropower resource assessment; p
g,z,resvor

= pg,z,resvor = pg,z,resvor

for those installed reservoir hydropower by 2022 because their capacity are fixed.

Reservoir hydropower differs from run-of-river hydropower in that it is equipped with a reservoir,

allowing for water storage. For a specific reservoir hydropower site, the GISPO requires the reservoir

capacity to remain consistent at the beginning and end of the optimization period. At each timestep

t, the reservoir level must be larger than or equal to the minimum safe level and less than or equal

to the maximum designed level. The constraints are as follows:

vg,z,resvor,t0 = vg,z,resvor,tT , ∀g, z, t, (S4-7)

V g,z,resvor ≤ vg,z,resvor,t ≤ V g,z,resvor, ∀g, z, t, (S4-8)
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where vg,z,resvor,t is the reservoir level of hydropower z at timestep t, and t0 and tT are the beginning

and end of the optimization period, respectively; V g,z,resvor and V g,z,resvor are minimum safe and

maximum designed reservoir level.

The maximum power output for reservoir hydropower at each timestep t is subject to two

constraints: 1) less than the installation capacity, and 2) the water consumption for power generation

must be less than or equal to the usable water volume (the gap between reservoir capacity at timestep

t− 1 and the minimum safe capacity plus natural infow), according to:

Ig,z,resvor,t = qgeng,z,resvor,t ×Hg,z × ηresvor × ge × ρh, ∀g, z, t, (S4-9)

Ig,z,resvor,t ≤ pg,z,resvor, ∀g, z, t, (S4-10)

where Ig,z,resvor,t is the generation from reservoir hydropower z in grid g at timestep t; qgeng,z,resvor,t

is the generation flow, qspillg,z,resvor,t is spillage flow, Hg,z is the water head of reservoir hydropower,

ηresvor is the generating efficiency of reservoir hydropower (0.85 in this study), ge is the acceleration

of earth gravity, ρh is the density of water; ∆t is time length of timestep, 3600 seconds. In the

power grid g, the integrated capacity from reservoir hydropower is the sum of each site:

Ig,resvor,t =
∑

z∈Zg,resvor

Ig,z,resvor,t, ∀g, t. (S4-11)

The reservoir capacity at each timestep t is from water stored at the previous timestep t − 1

plus net-in water volume at timestep t, which is the volume of inflow water minus used water (for

generation and spillage), which is:

vg,z,resvor,t = vg,z,resvor,t−1 + (qing,z,resvor,t − qgeng,z,resvor,t − qspillg,z,resvor,t)×∆t, ∀g, z, t. (S4-12)

S4.3.3 Intra-grid transmission

In the GISPO model, integration of wind, solar PV, and hydropower into the power grid is repre-

sented through a two-stage approach: 1) spur lines connecting generation sites z to substations sub,

and 2) trunk line reinforcements from substations sub to load centers lc. See the match procedure

of sites, substations, and load centers in Section S3.5.1, and the configuration of lines in Section

S3.5.3. Spur line capacities must meet or exceed the maximum potential wind and solar PV power

output to preclude congestion, constrained as:

psubg,z,pt ≥ pg,z,pt ×max
t

[cfg,z,pt,t], ∀g, pt ∈WE ∪ PV , z ∈ Zg,pt , (S4-13)

where psubg,z,pt is the spur line capacity connecting the renewable energy pt at site z to the corre-

sponding substation sub; max
t

[cfg,z,pt,t] is the historical maximum capacity factor (1980–2019) of

the renewable energy pt at site z, which determines the minimum capacity of the spur line together

with the decision variable pg,z,pt. For hydropower, the spur line capacity is larger than or equal
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to the installation capacity for their energy storage module, reservoir storage, or designed flow

requirement [37].

The temporal complementarities between wind and solar PV generation suggest that sim-

ply summing their historical peak capacities overestimates the required capacity for trunk line

reinforcement after integrating wind and solar PV generation at the same substation. This is

because the intermittent nature of wind and solar resources can lead to non-coincident peaks,

where the maximum output from the two generation sources may not occur simultaneously, i.e.,

max
t

[cfwe(t) + cfpv(t)] ≤ max
t

[cfwe(t)] + max
t

[cfpv(t)]. To address this, the GISPO first aggregates

the potential capacities of all wind and solar PV connected to each substation, effectively creating

a virtual renewable generation source, which enables calculating an equivalent historical peak ca-

pacity. Subsequently, the ratio between planned and historical peak capacities is used to determine

the minimum trunk line capacity needed, according to:

p̃lcg,sub ≥ (
∑
pt

∑
z∈Zsub

g,pt

pg,z,pt)×max
t


∑
pt

∑
z
cfg,z,pt,t × pg,z,pt∑
pt

∑
z
pg,z,pt

 , ∀g, sub ∈ SUB lc
g , pt ∈WE ∪ PV ,

(S4-14)

where, p̃lcg,sub is an intermediate variable representing the trunk reinforcement capacity connecting

wind and solar PV from the substation sub to the load center lc. The right-hand side is the com-

bined formula of the planning capacity ratio, the installation capacity potential, and the historical

maximum equivalent capacity factor (1980–2019).
∑
pt

∑
z∈Zsub

g,pt

pg,z,pt is equivalent to:

∑
pt

∑
z∈Zsub

g,pt

pg,z,pt =

∑
pt

∑
z∈Zsub

g,pt

pg,z,pt∑
pt

∑
z
pg,z,pt

×
∑
pt

∑
z

pg,z,pt. (S4-15)

Substations also need to transfer power from connected hydropower to load centers, therefore,

the total reinforcement capacity for a substation is:

plcg,sub ≥ p̃lcg,sub +
∑
pt

∑
z∈Zsub

g,pt

pg,z,pt, ∀g, sub, pt ∈ HP , (S4-16)

where the trunk line reinforcement for hydropower is larger than or equal to the installation capacity,

similar to the spur line capacity requirement.

S4.3.4 Thermal and nuclear power

Unit commitment algorithms are often used for thermal and nuclear power dispatch, employing

mixed-integer optimization to determine the commitment status of individual generating units.

However, unit commitment is a non-deterministic polynomial (NP)-hard problem, limiting the solv-

able scale. In long-term power system planning studies encompassing larger scales, the computa-

tional burden of unit commitment renders solution times unacceptably long. Studies have shown
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that relaxing the integer unit status variables to continuous values dramatically improves solve

times with negligible loss of accuracy (<1%) compared to strict integer unit commitment [136].

The GISPO adopts this relaxed formulation, referred to as Relaxed Unit Commitment (RUC),

enabling tractable inclusion of detailed operational constraints while well-approximating rigorous

unit-level optimization.

In the GISPO, coal, natural gas, and biomass power, including units equipped with CCS tech-

nology and CHP, are collectively modeled as thermal power. Within each grid, generating units

of the same thermal technology are grouped together, with the model distinguishing: coal, coal

CCS, coal CHP, coal CHP CCS, gas, gas CCS, gas CHP, gas CHP CCS, biomass, biomass CCS,

and nuclear. Detailed information on existing installed capacity and maximum installation capacity

potential (for biomass and nuclear power) in each grid is provided in Section S3.4.

For each power group, the RUC represents unit status over time using a typical per-unit capacity

and three continuous decision variables: the number of online units, startup units, and shutdown

units in each timestep, as shown in Fig. S40.

0 20 40 60 80 100
Units

St
at

us

Online (t-1) Start up (t) Spare Shut down (t)

Figure S40: Commitment status at each timestep. The number of online units at timestep t equals
the pre-timestep (t− 1) online units plus start-up and minus shut-down units in timestep t.

Operate constraints

For each timestep t, the online units of each power group are determined by the online unit at

timestep t− 1 plus start-up and minus shut-down unit at timestep t, and the unit number of each

state can’t exceed the total units, according to :

0 ≤ uong,pt,t, u
su
g,pt,t, u

sd
g,pt,t ≤ utotg,pt, ∀g, pt ∈ TP ∪NP , t , (S4-17)

uong,pt,t = uong,pt,t−1 + usug,pt,t − usdg,pt,t, ∀g, pt ∈ TP ∪NP , t , (S4-18)

where uong,pt,t, u
su
g,pt,t, u

sd
g,pt,t represent the online unit, start-up unit and shut-down unit of power pt in

grid g at timestep t; and utotg,pt is a decision variable which reflects the optimized installation unit of

power pt in grid g.

Thermal generating units require a minimum offline time after shutdown before being available

to start up again. Similarly, newly started-up units must remain online for a minimum up-time
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before shutdown is permissible. These constraints are formulated as:

uong,pt,t ≤ utotg,pt − usug,pt,t+1 −
t∑

k=max(t−τuppt +2,1)

usdg,pt,k, ∀g, pt ∈ TP ∪NP , t , (S4-19)

uong,pt,t ≥ usdg,pt,t+1 +

t∑
k=max(t−τdnpt +2,1)

usug,pt,k, ∀g, pt ∈ TP ∪NP , t , (S4-20)

where τuppt and τdnpt are the required minimum online/offline time length after start up/shut down,

respectively;
t∑

k=max(t−τuppt +2,1)

usdg,pt,k and
t∑

k=max(t−τdnpt +2,1)

usug,pt,k indicate the shut down units and

start up units in timestep period [t − τ
dn/up
pt + 2, t], and the summation item is zero when t = 0

which represents the specific requirement at the beginning of the optimization.

Functionally, online thermal units can directly serve load demand and provide upward spin-

ning reserve. Thermal units have minimum stable generation levels required for normal operation.

Additionally, CHP units must reserve some capacity for heat supply, imposing maximum output

constraints [175]. These are formulated as:

φ
pt
× uong,pt,t ≤ uloadg,pt,t ≤ φpt × uong,pt,t, ∀g, pt ∈ TP ∪NP , t , (S4-21)

where φpt and φ
pt

are the maximum and minimum output rate for the online unit, see Table S13

for detailed values.

The operating characteristics of thermal and nuclear power impose ramp rate limits on the

amount of load changes that can be accommodated over time. The GISPO represents two types of

ramping constraints:

uloadg,pt,t − uloadg,pt,t−1 ≤ δuppt × (uong,pt,t − usug,pt,t − usdg,pt,t+1) + φ
pt
× (usug,pt,t − usdg,pt,t), ∀g, pt ∈ TP ∪NP , t ≥ 1 ,

(S4-22)

uloadg,pt,t−1 − uloadg,pt,t ≤ δdnpt × (uong,pt,t − usug,pt,t − usug,pt,t−1)− φ
pt
× (usug,pt,t − usdg,pt,t), ∀g, pt ∈ TP ∪NP , t ≥ 1 ,

(S4-23)

where δuppt and δdnpt are the maximum ramp-up and ramp-down rates of power pt, respectively.

These constraints enforce limits on the change in power generation between time steps based on

the inherent ramp rate capabilities of each thermal technology. This represents the operational

flexibility of thermal fleets to accommodate load variations. With ramping constraints introduced,

thermal and nuclear power output in each timestep must also satisfy an additional constraint [35]:

uloadg,pt,t ≤ φpt × (uong,pt,t − usug,pt,t − usdg,pt,t+1) + φ
pt
× (usug,pt,t + usdg,pt,t+1), ∀g, pt ∈ TP ∪NP , t .

(S4-24)

Additionally, ramping incurs incremental costs that must be accounted for. The GISPO introduces

two non-negative continuous variables (rampupg,pt,t ∈ R+, rampdng,pt,t ∈ R+) along with constraints to
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represent ramping quantities in each timestep t:

rampupg,pt,t ≥ (uloadg,pt,t − uloadg,pt,t−1)× ϱpt, ∀g, pt ∈ TP ∪NP , t , (S4-25)

rampdng,pt,t ≥ (uloadg,pt,t−1 − uloadg,pt,t)× ϱpt, ∀g, pt ∈ TP ∪NP , t . (S4-26)

These variables measure the magnitude of ramp-up and ramp-down between sequential timesteps.

These measurements are then used within the objective function.

In power grids deployed with combined heat and power units, these units are required to sup-

ply heat; therefore, all the units are required to remain online during the winter season. In the

GISPO, coal-fired and gas-fired CHP power are considered, see Section S3.4 for detailed installation

information and technical-economic parameters. The expressions are as follows:

uong,pt,t = utotg,pt, ∀g, pt ∈ CCHP ∪GCHP , t ∈ Tw , (S4-27)

where Tw represents the timestep during the winter heating period.

Biomass energy is a zero-emissions power generation technology employed in power systems

where fuel costs exceed those of coal or natural gas. Given the annual energy generation of 182

TWh in 2022 from the installed capacity of approximately 41 GW in China, we have established a

lower bound for the number of online units for both biomass power and BECCS power, based on

the following:

uong,pt,t ≥ σon
pt × utotg,pt, ∀g, pt ∈ BP , t , (S4-28)

where σon
pt is the online unit requirement factor (0.5 in this study).

Capacity Constraints

The available biomass fuel supply constrains the deployable capacity for biomass and BECCS power.

In the GISPO model, the biomass feedstock is limited to agricultural and forestry residues and

dedicated energy crops grown on abandoned land. In Section S2.3, we introduced the annual

available biomass fuel resource amount (in GJ/yr) for each power grid. Based on assumptions of

a 0.35 thermal efficiency [139] for biomass power generation units and 6,132 equivalent hours of

annual average power generation, we calculate the maximum installable biomass capacity for each

power grid and apply this as a constraint:∑
pt∈BP

utotg,pt ≤ utotg,bio, ∀g, (S4-29)

where the set BP includes both biomass and BECCS power. Besides the installable capacity

constraints, the yearly fuel consumed by biomass and BECCS power can not exceed the available

fuel supply in each power grid:∑
t∈T,pt∈BP

(f load
pt × uloadg,pt,t + fon

pt × uong,pt,t)× ϱpt ×∆t ≤ therm
cal
g,bio, ∀g, (S4-30)

73



S4 FORMULA OF THE POWER-SYSTEM OPTIMIZATION MODEL

where, ∆t is the time length for each timestep, which is 1 hour; f load
pt is the fuel consumption by

load unit; fon
pt is the fuel consumption required to keep the units online; therm

cal
g,bio is the annual

available biomass fuel (GJ/yr) in grid g.

Regarding nuclear power, the optimized installation capacity should be larger than or equal to

the existing installed capacity. The upper bound for the installation capacity on each grid is set

using the projections outlined in [176]. Detailed information can be found in Section S3.4, and the

constraints are as follows:

utotg,pt ≤ utotg,pt ≤ utotg,pt, ∀g, pt ∈ NP . (S4-31)

Thermal power generation, such as coal power, natural gas power, and biomass power, can be

retrofitted with CCS devices to reduce or achieve negative carbon emissions. For units that have

already been equipped with CCS before the optimization year (e.g., 2050), they will continue to

keep the CCS equipment. Therefore, additional constraints are designed to allow the model to

endogenously determine how many non-CCS units in each grid can be retrofitted to CCS-equipped

units. Here, we group thermal power generation technologies by whether they are equipped with

CCS, i.e., coal and coal CCS as one group, coal CHP and coal CHP CCS as one group, etc. For

each group, we require the total optimized installation capacity to be larger than or equal to the

existing installed capacity before the planning year, and the CCS-equipped capacity to be larger

than or equal to the installed capacity. That is:

utotg,pt ≥ utotg,pt, ∀g, pt ∈ CCS , (S4-32)∑
pt∈Gen

utotg,pt ≥
∑

pt∈Gen

utotg,pt, ∀g,Gen ∈ CCSpair , (S4-33)

where the capacity without CCS can be less than the existing installed capacity, but within con-

straint S4-33, the reduced capacity will be shifted to the capacity with CCS equipment. For CHP

units, the GISPO assumes the total installed capacity remains unchanged, but retrofitting with

CCS is still possible. That is, constraint S4-33 becomes:∑
pt∈Gen

utotg,pt =
∑

pt∈Gen

utotg,pt, ∀g,Gen ∈ CHP . (S4-34)

S4.3.5 Energy storage

In large-scale power system planning models, energy storage systems are typically represented at

the grid level, with optimal capacity expansion decisions and hourly charging/discharging schedul-

ing [5, 11, 35, 133, 144, 174]. Generally, representative technologies are selected to characterize each

storage type in the model, for example, lithium-ion battery and pumped hydropower storage for elec-

trochemical and mechanical storage, respectively. Different storage technologies are distinguished

through key techno-economic parameters, including charge/discharge efficiency, energy-to-power ra-

tio (duration), self-discharge rate, and investment costs. In the GISPO model, lithium-ion battery
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(BAT) and pumped hydro storage (PHS) are default options, with additional scenarios also evalu-

ating Vanadium redox-flow battery (VRB) and compressed air energy storage (CAES). See Section

S3.6 for detailed parameters used in this study.

Capacity constraints

Similar to formula S4-2, the installed power capacity of storage can be constrained to lie within the

lower and upper limits:

p
g,st
≤ pg,st ≤ pg,st, ∀g, st, (S4-35)

where pg,st is the decision variable representing the optimized installation capacity of storage st in

grid g; p
g,st

is the installed capacity before each optimization year, and pg,st represents the maximum

storage installation potential in grid g. The upper deployment constraints are only used for PHS in

each grid; see Section S3.6 for the detailed installation potential.

Operational constraints

The GISPO represents energy storage operation at an hourly resolution using decision variables

including charging/discharging capacity from/to the grid, and upward spinning reserve capacity

provided during the charging/discharging process. For each energy storage technology, the charging

capacity from charging at each timestep should be less than the installed capacity, and the energy

(post-loss) charged into the storage system can’t exceed the remaining energy capacity. The upward

spinning reserve capacity from charging is constrained to be less than the charge capacity at each

timestep t. These constraints are as follows:

stocharg,st,t ≤ pg,st, ∀g, st, t, (S4-36)

stocharg,st,t ×∆t × ηcharst ≤ pg,st × stodurst − stoeg,st,t−1, ∀g, st, t, (S4-37)

sr+,char
g,st,t ≤ stocharg,st,t, ∀g, st, t, (S4-38)

where stocharg,st,t is the charge capacity of storage st from grid g at timestep t; ∆t is the length of

each timestep, which is 1 hour, and together with the charging efficiency ηcharst of storage st, the

item stocharg,st,t ×∆t × ηcharst represents the post-loss energy charged into storage; stodurst indicates the

energy-to-power ratio (duration) of storage st, and thereby pg,st × stodurst is the maximum energy

that can be stored; stoeg,st,t−1 refers to the energy stored in storage st at the end of timestep t−1 in

grid g; sr+,char
g,st,t is the upward spinning reserve capacity can be provided from the charging process

of storage st at timestep t, respectively.

For each timestep t and storage technology st, the sum of discharging and upward spinning

reserve capacity from discharging can not exceed the installation power capacity or state of charge
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of storage st, considering the discharge efficiency.

stodisg,st,t + sr+,dis
g,st,t ≤ ηdisst × pg,st, ∀g, st, t, (S4-39)

(stodisg,st,t + sr+,dis
g,st,t )×∆t ≤ ηdisst × stoeg,st,t−1, ∀g, st, t, (S4-40)

where stodisg,st,t is the discharge capacity of storage st to grid g at timestep t; ηdisst is the discharge

efficiency of storage st; and sr+,dis
g,st,t is the upward spinning reserve capacity while discharging at

timestep t.

Finally, the total upward spinning reserve capacity provided by charging/discharging of storage

st in grid g is also constrained by the installation capacity with discharge efficiency:

sr+,char
g,st,t + sr+,dis

g,st,t ≤ ηdisst × pg,st, ∀g, st, t. (S4-41)

Energy constraints

For each timestep t, the energy (in GWh) stored is bounded by the energy capacity, which is

calculated by multiplying installed capacity (in GW) and duration (in hours). Additionally, the

GISPO requires that the energy stored in each type of storage system remains consistent at the

beginning and end of the optimization period. The constraints are as follows:

stoeg,st,t ≤ pg,st × stodurst , ∀g, st, t, (S4-42)

stoeg,st,t0 = stoeg,st,tT , ∀g, st, (S4-43)

where stoeg,st,t0 and stoeg,st,tT are the energy stored in storage st at the very beginning and end of

the optimization period in this study, respectively.

For each storage technology st, the energy stored at timestep t is from the energy stored in

the previous timestep t − 1 and post-loss energy charged in, and additionally minus net energy

discharged, constrained as follows:

stoeg,st,t = (1− ζselfst )× stoeg,st,t−1 + ηcharst × stocharg,st,t ×∆t − stodisg,st,t ×∆t/η
dis
st , ∀g, st, t, (S4-44)

where ζselfst is the hourly self-discharge rate (%/h) of storage st, which can be derived from daily

self-discharge rate by ζselfst = 1− 24
√
ζ ′.

S4.3.6 Inter-grid transmission

The GISPO model applies the pipeline (or transportation) model to simulate inter-grid transmission

flow, avoiding the introduction of binary variables. This approach has been validated in reference

[177] and is commonly used in mid-long term power planning models [5, 11, 35, 133, 144, 174]. A

pre-optimized procedure considering distance and unit cost is employed to determine whether AC

or DC and which voltage level should be chosen for each line. Refer to Section S3.5.3 for detailed

information.
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The optimized installation capacity of each inter-grid transmission line should be larger than

the installed capacity before the optimization year, constraints are as follows:

p
lAC
g,g′
≤ plAC

g,g′
, ∀lAC

g,g′ , (S4-45)

p
lDC
g,g′
≤ plDC

g,g′
, ∀lDC

g,g′ , (S4-46)

where plAC
g,g′

and plDC
g,g′

are the optimized capacity of AC and DC transmission line within the model;

p
lAC
g,g′

and p
lDC
g,g′

are the installed capacity before the optimization year.

The power capacity transmitted along the line from g to g′ and the reverse direction at each

timestep t in AC line should be less than or equal to the optimized installation capacity, constrained

as:

−→
f lAC

g,g′ ,t
≤ plAC

g,g′
, ∀lAC

g,g′ , t, (S4-47)

←−
f lAC

g,g′ ,t
≤ plAC

g,g′
, ∀lAC

g,g′ , t, (S4-48)

−→
f lDC

g,g′ ,t
≤ plDC

g,g′
, ∀lDC

g,g′ , t. (S4-49)

For each timestep t, the bidirectional power transmitted through a line is not allowed [5]. DC

line meets this constraint as it is modeled with a fixed transmission direction [35,135]. For the AC

line, in modeling practice, if no additional constraints are imposed,
−→
f lAC

g,g′ ,t
> 0 and

←−
f lAC

g,g′ ,t
> 0 can

be true at the same timestep. To avoid this, a slight variable cost (0.0001 $/kWh) can be added to

the objective function, and an additional constraint can be introduced [5]:

−→
f lAC

g,g′ ,t
+
←−
f lAC

g,g′ ,t
≤ plAC

g,g′
, ∀lAC

g,g′ , t. (S4-50)

S4.3.7 Power demand balance

The power demand of each grid g in each timestep t must be strictly satisfied. In the GISPO,

there are three parts of the power supply side, including power integrated from the local power

generator, power discharged from the energy storage system, and power transmitted-in through

inter-grid transmission line. And the sum of these three parts should be equal to the power demand

for each timestep, constrained as:

I localg,t +
∑
st

stodisg,st,t +
∑
g′

ηlAC
g,g′
×
←−
f lAC

g,g′ ,t
+
∑
g′

ηlDC
g′,g
×
−→
f lDC

g′,g ,t
= demg,t +

∑
dac

eleg,dac, ∀g, t,

(S4-51)

where I localg,t is a intermediate variable representing the power integrated from local generators in

grid g;
∑
st

stodisg,st,t is total post-loss power discharged from energy storage system in grid g;
∑
g′

ηlAC
g,g′
×

←−
f lAC

g,g′ ,t
+
∑
g′

ηlDC
g′,g
×
−→
f lDC

g′,g ,t
indicates the total post-loss power transmitted from other grid g′, and the

transmission efficiency ηlg,g′ is related to transmission distance (km) and power loss rate (%/km) by

ηlg,g′ = (1− ξl)
dl ; demg,t is the electricity demand in grid g at each timestep t, see Section S3.1 for
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the hourly demand data collection and processing; and eleg,dac is a intermediate variable indicating

the electricity demand by DAC, see equation S4-64.

The power capacity integrated from wind, solar PV, hydropower, thermal, and nuclear sources

into grid g in the GISPO can be used in three distinct ways: meeting local power demand, charging

energy storage systems, and transmitting to other grid g′, as follows:

I localg,t +
∑
st

stocharg,st,t +
∑
g′

−→
f lAC∪DC

g,g′ ,t =
HP∑

pt∈WE∪PV
Ig,pt,t +

∑
pt∈TP∪NP

(1− ξpt)× uloadg,pt,t × ϱpt, ∀g, t,

(S4-52)

where
∑
st

stocharg,st,t represents the aggregated power charged into the energy storage system;
∑
g′

−→
f lAC∪DC

g,g′ ,t

denotes the cumulative power exported to other grids; ξpt is power loss (%) for thermal power

equipped with CCS technology (equals to 0 if not equipped).

S4.3.8 Reserve requirement

Reserve requirements in the GISPO model include spinning reserve, and power reserve (also called

marginal reserve in some models [144]). The spinning reserve considered in the GISPO contains

upward operating reserves during each timestep to meet the forecast error or unexpected contingency

or power output uncertainty from VRE. The spinning reserve demand in grid g is a fraction of power

demand and integrated power capacity from VRE. The spinning reserve capacity is from thermal

and nuclear power, curtailed VRE and hydropower, and energy storage systems, as constrained

in the corresponding formula. The upward spinning reserve capacity requirement constraint is as

follows:

∑
pt

sr+g,pt,t +
∑
st

sr+g,st,t ≥ ρ+sr × demg,t + ρ+vre ×
∑

pt∈WE∪PV
Ig,pt,t, ∀g, t, (S4-53)

sr+g,pt,t ≤ (1− ξpt)× (φpt × uong,pt,t − uloadg,pt,t)× ϱpt, ∀pt ∈ TP ∪NP (S4-54)

sr+g,pt,t ≤
∑

z∈Zg,pt

cfg,z,pt,t × pg,z,pt − Ig,pt,t, ∀pt ∈WE ∪ PV , (S4-55)

sr+g,ror,t ≤
∑

z∈Zg,ror

cfg,z,ror,t × pg,z,resvor − Ig,resvor,t, ∀g, t, (S4-56)

sr+g,resvor,t ≤
∑

z∈Zg,resvor

pg,z,resvor − Ig,z,resvor,t, ∀g, t, (S4-57)

sr+g,st,t = sr+,char
g,st,t + sr+,dis

g,st,t , ∀st ∈ ST , t , (S4-58)

where ρ+sr and ρ+vre denote the upward spinning reserve requirement rates caused by the forecast

error and power output uncertainty of VRE, which is 5% in this study.

If needed, power reserve requires the installed capacity of generators and storage to be larger

than the peak demand within a year in each grid g to guarantee system reliability. This constraint
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is formulated as:

∑
pt∈TP∪NP

λpt × pg,pt +
∪HP∑

pt∈WE∪PV

∑
z∈Z

λpt × pg,z,pt +
∑

st∈ST
λst × pg,st ≥ (1 + ρcap)× dempeak

g , ∀g,

(S4-59)

where λpt and λst are capacity credits for power generator pt and storage st, ρcap is power capacity

requirement for peak demand (set as 5% in this study), and dempeak
g is the peak demand of grid g

within the planning year, which is the maximum demand during this year.

S4.3.9 Inertia requirement

Maintaining the stable operation of the power system also necessitates fulfilling minimum inertia

requirements. That is, the aggregate inertia provided by thermal power, nuclear power, hydropower,

and energy storage systems must exceed the minimum inertia demand. The inertia demand is a

specific percentage of the power demand, where this percentage is determined based on statistical

analyses of the current power system operation [135]. Because of the growing integration of renew-

able energy sources into the power system, future inertia levels may not fully meet the requirements.

Consequently, the GISPO model introduces a factor to reflect the tolerance of system inertia drops.

This constraint is expressed as:

∑
pt∈TP∪NP

ιpt × uong,pt,t +
∑

pt∈HP

∑
z

ιpt × pg,z,pt +
∑
st

ιst × pg,st ≥ ιtol × ι0 × demg,t,∀g, t. (S4-60)

where ι0 is the current inertia level (3.5 in this study) and ιtol ∈ [0, 1] is the inertia tolerance factor,

which determines the minimum inertia requirement together with power demand; ιpt and ιst are

inertia constant of power pt and storage st, see Section S3.4–S3.6 for detailed values. Thermal

and nuclear power can only provide inertia from the online capacity. The inertia provided by

hydropower and energy storage is the product of the inertia constant and installed capacity for

their fast grid-connection ability.

S4.3.10 Carbon emissions limitations

To align with decarbonization mandates, the GISPO optimizes the power system’s operation within

an upper limit on annual carbon emissions, as stipulated by exogenous factors. Among thermal

power generators, coal-fired and gas-fired power plants are the primary contributors to carbon

emissions. In contrast, biomass power generation is regarded as a zero-emission technology and can

even achieve negative emissions if equipped with CCS systems. The constraint is as follows: 3

∑
g∈G

∑
pt∈TP

(1− ηccspt )× efpt ×
∑
t∈T

uloadg,pt,t × ϱpt ×∆t −
∑
g∈G

∑
dac∈DAC

ηdac ×mg,dac ≤ E, (S4-61)

3This constraint is not modeled when in the specific scenario, e.g., without emissions limitation scenario.
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where ηccspt ∈ [0, 1] is the carbon capture rate of thermal power when equipped with CCS, and

ηccspt = 0 if CCS is not installed; efpt is carbon emissions factor of power pt, MtCO2/GWh; E is the

upper limit of annual carbon emissions, which is an exogenous parameter.

S4.3.11 Direct air capture

For each direct air capture technology, the installed capacity in the planning year needs to be larger

than the previous year, and the carbon captured in a year should be less than the installed capacity:

p
g,dac

≤ pg,dac, ∀g, dac, (S4-62)

mg,dac ≤ pg,dac, ∀g, dac. (S4-63)

Direct air capture consumes electricity and heat energy when capturing CO2 from the air. In

the GISPO, we assume the heat energy is from heat pumps that transform electricity to heat.

Therefore, the electricity used by each DAC technology can be expressed as:

eleg,dac =
1

|T |

(
edac +

hdac
cop

)
×mg,dac, ∀g, (S4-64)

where edac (GWh/MtCO2) and hdac (GWh/MtCO2) are electricity and heat consumed by dac for

unit carbon captured, respectively, and cop is the coefficient of performance (COP) for heat pump,

which is a ratio between the rate at which the heat pump transfers thermal energy, and the amount

of electrical power required to do the pumping. As mg,dac is the total carbon captured during

the modeling period (typically one year), we assume the carbon is equally captured hour by hour.

Therefore, the hourly electricity demand for DAC is calculated by multiplying a factor 1
|T | , where

|T | is the period length (hours). See Section S3.8 for detailed parameters of DAC used in this model.

S4.3.12 Carbon source-sink match

Carbon dioxide emitted from power plant units can be captured and transported for storage in

carbon sequestration sites. Onshore deep saline aquifers are considered potential carbon storage

locations in the GISPO. Assessments in Section S2.4 show the overall carbon sequestration potential

is around 3,600 Gt. For each storage site, the annual injection rate is calculated based on a full

lifetime of 65 years. The shortest geographical distance from grid center points to storage sites

approximates the carbon transport distance. In the GISPO model, each grid can transport CO2 to

all potential storage sites. The constraints are expressed as:∑
g

mg,c ≤ Cc, ∀c, (S4-65)∑
c

mg,c ≥
∑
dac

mg,dac +
∑

pt∈TP

ηccspt × efpt ×∆t ×
∑
t∈T

uloadg,pt,t × ϱpt, ∀g, (S4-66)

where mg,c is the annual carbon transported from grid g to carbon sequestration site c; Cc is the

annual inject rate (MtCO2/yr) at carbon sequestration site c, formula S4-65 constrains the total
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carbon stored in site c can’t exceed the injection rate; and formula S4-66 requires that the carbon

captured in grid g should be all stored.

S4.3.13 Demand response

To model the demand side management, the GISPO model introduces two time series variables for

each power grid, including load+g,t and load−g,t. load
+
g,t (load

−
g,t) is defined as the increased (decreased)

power demand in grid g at time step t. These variables are only in place when the scenario is

specified, i.e., the demand response module is not in use by default. Using these variables, the

power load in constraint S4-51 is renewed as:

dem
′
g,t = demg,t + load+g,t − load−g,t, ∀g, t, (S4-67)

where demg,t is the input electricity demand for grid g as an exogenous parameter. In this model,

load−g,t means the electricity load in peak periods can be shifted to other time steps. Therefore,

we require the reduced demand to be equal to the increased demand at a certain temporal window

(e.g., one week, one month):

t0+Tdr∑
t=t0

load−g,t =

t0+Tdr∑
t=t0

load+g,t, ∀g, (S4-68)

where Tdr is the temporal window for demand response modeling, in this study, we use one month.

Additionally, the gross load reduction is contained as a certain fraction of the total annual demand:

T∑
t=0

load−g,t ≤ αdr ×
T∑
t=0

demg,t, ∀g, (S4-69)

where αdr is set as 0.05 in this study.
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S5 Model implementation

The GISPO model employs the Gurobi optimizer via Python to solve a simultaneous capacity expan-

sion and hourly operational dispatch problem for global power systems over 8,760 hours. Spatially,

wind (onshore/offshore) and solar PV (utility/distributed) resources are optimized at a 0.25°×0.25°

grid resolution (about 600,000 points), while hydropower is sited at dams. This formulation leads to

a linear programming problem with dimensions for each optimization year (e.g., 2050) on the order

of 2.4×108 constraints, 1.4×108 variables, and 3.5×109 non-zero elements after Gurobi’s presolve.

The model’s extensive scale is a direct consequence of addressing the generation uncertainty inher-

ent in high-renewable systems due to the temporal and spatial heterogeneity of renewable feed-ins,

facilitating robust, dynamic planning of sustainable power infrastructure worldwide.

Figure S41: Optimization pipeline of the GISPO model.

We address the challenge of solving a 3.5 billion-parameter optimization model, which, to the best

of our knowledge, exceeds the capabilities of current direct solvers such as Gurobi. Our innovative

solution introduces a novel power-system model solver, which integrates transmission line topology

network cutting with parallel optimization (Figure S41). The solver first ingests the topological

network of transmission lines for potential expansion (see Section S3.5.3) and builds a graph ac-

cording to connectivity between power grids. This graph is then partitioned into multiple sub-trees

via a maximum tree search algorithm, with each sub-tree forming a distinct sub-model. Corre-

sponding base model instances are generated and solved in parallel to optimize these sub-models

simultaneously. It is noteworthy that even after this strategic decomposition, the largest resulting

sub-model, which covers Eurasia and North Africa, comprises 1.5 billion non-zero elements, and its

optimization to optimality takes 15 days on a huge-memory (1,500 GB) machine.
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S6 Scenario design

In this study, we design ten parallel scenarios to test the feasibility of net-zero power systems for

all. These scenarios, anchored by a central Base case, systematically investigate the impact of

variations in key parameters such as decent living standards, technological advancement, demand-

side response, international trade, and power transmission capabilities. The specifics of each scenario

are detailed as follows:

• Base: This central reference scenario assumes an annual global power demand of 58.3 PWh/yr.

Land availability for VRE is determined using a mid-case suitability factor (base). Expansion

of cross-border transmission is permitted between grids with existing interconnections.

• “HigherDLS”: This scenario posits an elevated energy consumption threshold for decent living

standards at 3,500 kWh/yr per capita, representing a 1.4-fold increase compared to the base

DLS electricity demand (2,500 kWh/yr per capita). The global annual power demand escalates

to 61.45 PWh/yr. Regional electricity demand projections are provided in Table S10.

• “FreeTrade”: Simulates a global market with minimal trade impediments by assuming that

the CapEx for renewable energy and storage technologies worldwide converge with those of

the region (i.e., China) projected to have the lowest investment costs by 2050.

• “WithoutDLS”: Power demand projections in this scenario exclude the DLS energy consump-

tion floor, relying solely on historical trends (see Table S10).

• “LowerVRESupply”: Constrains VRE deployment potential by utilizing a conservative land

suitability factor, as detailed in the renewable energy assessment methodology (Section S2.1).

• “LimitedTxExpansion”: Prohibits the expansion of new cross-border transmission capacity.

Domestic inter-grid configurations remain consistent with the Base scenario, and existing

cross-border transmission lines continue to operate without capacity augmentation.

• “SlowerTechAdvancement”: Models a decelerated rate of technological progress by applying

conservative cost reduction trajectories for electricity generation and energy storage technolo-

gies, as outlined in the cost projections section.

• “DemandingDLS”: Represents a ‘most challenging’ pathway by synergistically integrating the

restrictive assumptions from the “HigherDLS”, “LowerVRESupply”, “LimitedTxExpansion”,

and “SlowerTechAdvancement” scenarios to assess the attainment of higher DLS under strin-

gent conditions.

• “WithoutEmisCap”: This scenario omits the imposition of carbon emission target constraints.
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• “DemandResponse”: Incorporates Demand-side Response mechanisms to assess their impact

on system feasibility.

S7 Supplementary results

In this section, we show the supplementary results from the GISPO across sensitivity scenarios,

including key material needs for renewable-dominated power system across scenarios in Figure S42,

VRE siting from Figure S43 to S52, the cumulative distribution of distance from load centers to

installed VRE capacity in Figure S53, installation area for solar PV in Figure S54, installation

and discharge capacity of energy storage in Figure S55, daily power generation and supply profile

in the base and “DemandResponse” scenario in Figure S56, installation factor for VRE in Table

S22, distribution of marginal generation cost across continents in Figure S57, regional profit and

integrated generation from VRE in Figure S58.
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Figure S42: Key material needs for renewable-dominated power systems across scenarios. Key
parameters (e.g., materials needed for one unit installation) are extracted from [2].
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(a) Wind power

(b) Solar PV

Figure S43: Cell-level installation (GW) of wind and solar PV in the base scenario.
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(a) Wind power

(b) Solar PV

Figure S44: Cell-level installation (GW) of wind and solar PV in the “HigherDLS” scenario.
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(a) Wind power

(b) Solar PV

Figure S45: Cell-level installation (GW) of wind and solar PV in the “WithoutDLS” scenario.
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(a) Wind power

(b) Solar PV

Figure S46: Cell-level installation (GW) of wind and solar PV in the “SlowerTechAdvancement”
scenario.
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(a) Wind power

(b) Solar PV

Figure S47: Cell-level installation (GW) of wind and solar PV in the “LowerVRESupply” scenario.
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(a) Wind power

(b) Solar PV

Figure S48: Cell-level installation (GW) of wind and solar PV in the “LimitedTxExpansion” sce-
nario.
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(a) Wind power

(b) Solar PV

Figure S49: Cell-level installation (GW) of wind and solar PV in the “DemandingDLS” scenario.
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(a) Wind power

(b) Solar PV

Figure S50: Cell-level installation (GW) of wind and solar PV in the “FreeTrade” scenario.
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(a) Wind power

(b) Solar PV

Figure S51: Cell-level installation (GW) of wind and solar PV in the “DemandResponse” scenario.
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(a) Wind power

(b) Solar PV

Figure S52: Cell-level installation (GW) of wind and solar PV in the “WithoutEmisCap” scenario.
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Figure S54: Installation area (km2) of solar PV across scenarios in 2050 optimized by the GISPO
model.
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(a) Energy capacity

(b) Annual discharge

Figure S55: Energy capacity (GWh) and annual discharge capacity (TWh/yr) of energy storage
system for each power grid in the base scenario.
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(b) Demand response

Figure S56: Daily power generation and demand profile in the base scenario (a) and “Deman-
dResponse” scenario (b).
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Table S22: Installation factors of VRE for each power grid in the base scenario.
Region Grid UPV DPV Onshore Offshore Region Grid UPV DPV Onshore Offshore

Afghanistan Afghanistan 0.01 0.82 0.00 - KyrgyzstanTajikistan KyrgyzstanTajikistan 0.01 0.43 0.00 -
Algeria Algeria 0.00 0.01 0.00 0.00 Laos Laos 0.07 0.67 0.00 -
Argentina West 0.00 0.01 0.00 0.00 Lebanon Lebanon 0.26 0.80 0.00 0.00
Argentina NorthEastUruguay 0.00 0.00 0.00 0.00 Libya Libya 0.00 0.00 0.01 0.00
Argentina East 0.00 0.00 0.06 0.00 Madagascar Madagascar 0.01 0.06 0.01 0.01
Australia West 0.00 0.50 0.00 0.00 Malaysia WestSingapore 0.38 0.99 0.00 0.00
Australia East 0.00 0.23 0.01 0.00 Malaysia EastBrunei 0.11 0.64 0.00 0.00
AustriaHungary AustriaHungary 0.02 0.01 0.05 - Mexico North 0.03 0.22 0.02 0.00
BalkanEast BalkanEast 0.05 0.31 0.03 0.02 Mexico Central 0.01 0.21 0.00 0.00
BalkanWest BalkanWest 0.05 0.16 0.01 0.00 Mexico Northwest 0.02 0.13 0.00 0.00
Baltic Baltic 0.01 0.01 0.13 0.00 Mexico South 0.00 0.05 0.02 0.00
Bangladesh Bangladesh 0.50 0.99 0.00 0.00 Mongolia Mongolia 0.00 0.00 0.00 -
Belarus Belarus 0.00 0.00 0.21 - Morocco Morocco 0.00 0.00 0.08 0.00
Benelux Benelux 0.13 0.01 0.66 0.08 Myanmar Myanmar 0.05 0.73 0.00 0.00
Brazil North 0.00 0.50 0.00 0.00 NepalBhutan NepalBhutan 0.15 0.90 0.00 -
Brazil SanPaulo 0.00 0.28 0.00 0.00 NewZealand NewZealand 0.01 0.10 0.01 0.00
Brazil Southeast 0.00 0.23 0.00 0.00 Nigeria North 0.05 0.05 0.00 -
Brazil Northeast 0.00 0.23 0.05 0.00 Nigeria South 0.00 0.00 0.00 0.00
Brazil South 0.00 0.01 0.07 0.00 NorthKorea NorthKorea 0.00 0.00 0.00 0.00
BritishIsles BritishIsles 0.08 0.02 0.21 0.14 Norway Norway 0.00 0.00 0.03 0.05
Cambodia Cambodia 0.03 0.85 0.00 0.00 Oman Oman 0.00 0.84 0.00 0.00
Canada East 0.00 0.00 0.09 0.03 Pakistan North 0.53 0.96 0.00 -
Canada West 0.00 0.00 0.01 0.00 Pakistan South 0.03 0.88 0.02 0.00
Caucas Caucas 0.00 0.00 0.01 0.13 Peru Peru 0.01 0.35 0.01 0.00
CentralAfrica CentralAfrica 0.00 0.05 0.00 0.00 Philippines Philippines 0.36 0.95 0.01 0.03
CentralAmerica CentralAmerica 0.02 0.23 0.01 0.00 Poland Poland 0.02 0.00 0.17 0.11
CentralSouthAmerica CentralSouthAmerica 0.00 0.17 0.00 - Russia South 0.00 0.00 0.05 0.00
Chile Chile 0.00 0.01 0.02 0.00 Russia Volga 0.00 0.00 0.02 -
China Taiwan 1.00 0.99 0.22 0.88 Russia Siberia 0.00 0.00 0.01 0.00
China North 0.06 0.98 0.36 0.02 Russia Central 0.00 0.00 0.04 -
China East 0.39 0.88 0.13 0.21 Russia Fareast 0.00 0.00 0.00 0.00
China South 0.41 0.69 0.09 0.29 Russia Northwest 0.00 0.00 0.04 0.00
China Northeast 0.01 0.55 0.19 0.01 Russia Ural 0.00 0.00 0.10 0.00
China Tibet 0.02 0.54 0.00 - SaudiArabia SaudiArabia 0.01 0.83 0.01 0.00
China Central 0.21 0.51 0.06 - Slovakia Slovakia 0.01 0.02 0.01 -
China Northwest 0.09 0.44 0.08 - Somalia Somalia 0.00 0.31 0.01 0.00
China Uygur 0.01 0.31 0.03 - SouthAfrica SouthAfrica 0.01 0.00 0.02 0.00
Colombia Colombia 0.00 0.36 0.03 0.00 SouthEastAfrica SouthEastAfrica 0.03 0.00 0.03 0.00
Congo Congo 0.02 0.14 0.00 0.00 SouthKorea SouthKorea 0.04 0.00 0.08 0.00
Denmark Denmark 0.29 0.00 0.76 0.36 SouthWestAfrica SouthWestAfrica 0.00 0.05 0.01 0.03
Ecuador Ecuador 0.02 0.26 0.00 0.00 SriLanka SriLanka 0.02 0.97 0.00 0.03
Egypt Egypt 0.00 0.00 0.04 0.00 SudanEriteria SudanEriteria 0.00 0.00 0.03 0.00
Ethiopia Ethiopia 0.00 0.00 0.02 0.00 Sweden Sweden 0.01 0.00 0.07 0.05
Finland Finland inf 0.00 0.06 0.02 Switzerland Switzerland 0.00 0.40 0.00 -
France France 0.03 0.02 0.16 0.05 Syria Syria 0.03 0.36 0.01 0.00
Gaza Gaza 0.04 0.52 0.00 0.00 Tanzania Tanzania 0.03 0.22 0.01 0.00
Germany Germany 0.11 0.05 0.29 0.86 Thailand Thailand 0.05 0.86 0.00 0.00
Iberia Iberia 0.12 0.37 0.11 0.02 Tunisia Tunisia 0.00 0.00 0.05 0.00
Iceland Iceland - 0.49 0.02 0.03 Turkey Turkey 0.01 0.24 0.02 0.09
India Up 0.46 1.00 0.00 - Turkmenistan Turkmenistan 0.00 0.58 0.00 0.00
India South 0.06 0.99 0.02 0.10 UkraineMoldova UkraineMoldova 0.01 0.01 0.03 0.00
India CentralEast 0.17 0.98 0.00 - UnitedArabEmirates UnitedArabEmirates 0.00 0.96 0.00 0.00
India NorthWest 0.47 0.98 0.06 - USA Southwest 0.06 0.46 0.06 -
India CentralSouth 0.09 0.96 0.04 0.00 USA Southern 0.07 0.22 0.00 0.00
India North 0.78 0.96 0.00 - USA Central 0.01 0.17 0.15 -
India East 0.31 0.96 0.00 0.00 USA California 0.15 0.10 0.02 0.05
India CentralWest 0.27 0.94 0.03 0.00 USA Midwest 0.02 0.08 0.09 -
India West 0.23 0.92 0.20 0.00 USA Texas 0.06 0.08 0.19 0.00
India NorthEast 0.07 0.88 0.00 - USA Northwest 0.01 0.07 0.05 0.00
Indonesia JavaTimorLeste 0.35 0.99 0.00 0.00 USA Carolinas 0.08 0.06 0.00 0.00
Indonesia Sumatra 0.11 0.89 0.00 0.00 USA NENY 0.00 0.04 0.08 0.17
Indonesia KalimantanSulawesi 0.00 0.68 0.00 0.00 USA MidAtlantics 0.05 0.02 0.03 0.01
Indonesia PapuaNewGuinea 0.00 0.02 0.00 0.00 USA TVA 0.00 0.00 0.00 -
Iran Iran 0.00 0.29 0.00 0.00 USA Gulf 0.01 0.00 0.00 0.00
Iraq Iraq 0.01 0.66 0.00 0.00 USA Alaska 0.00 0.00 0.00 0.00
Israel Israel 0.02 0.73 0.00 0.00 Uzbekistan Uzbekistan 0.00 0.37 0.00 -
Italy Italy 0.37 0.44 0.10 0.00 Venezuela Venezuela 0.01 0.74 0.02 0.05
Japan West 0.80 0.85 0.22 0.38 Vietnam Vietnam 0.21 0.70 0.02 0.14
Japan East 0.86 0.43 0.44 0.58 WestNorthAfrica WestNorthAfrica 0.00 0.01 0.03 -
Kazakhstan Kazakhstan 0.00 0.00 0.00 0.00 WestSouthAfrica WestSouthAfrica 0.00 0.11 0.00 0.00
KenyaUganda KenyaUganda 0.00 0.14 0.08 0.00 WestWestAfrica WestWestAfrica 0.00 0.16 0.02 0.00
Kuwait Kuwait 0.22 0.90 0.03 0.00 Yemen Yemen 0.01 0.49 0.00 0.04
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Figure S57: Box-plot of shadow price at the continent level in the base scenario.
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Figure S58: Regional profit and cumulative integrated electricity (PWh) for wind (onshore+offshore)
and solar PV (utility-scale and distributed) in the base scenario.
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greenhouse gas emissions analysis in colombia: A leap model application. Energy, 169:380–

397, 2019.

[86] Danish Energy Agency. Denmark’s climate status and outlook 2021. Technical report, Danish

Energy Agency, Copenhagen, Denmark, 2021.

[87] Jong Ho Hong, Jitae Kim, Wonik Son, Heeyoung Shin, Nahyun Kim, Woong Ki Lee, and

Jintae Kim. Long-term energy strategy scenarios for south korea: Transition to a sustainable

energy system. Energy Policy, 127:425–437, 2019.

[88] Luis Rivera-González, David Bolonio, Luis F Mazadiego, and Robert Valencia-Chapi. Long-

term electricity supply and demand forecast (2018–2040): A leap model application towards

a sustainable power generation system in ecuador. Sustainability, 11(19):5316, 2019.

[89] Md Alam Hossain Mondal and Claudia Ringler. Long-term optimization of regional power

sector development: Potential for cooperation in the eastern nile region? Energy, 201:117703,

2020.

[90] DC Hapuarachchi, KTMU Hemapala, and AGBP Jayasekara. Long term annual electricity

demand forecasting in sri lanka by artificial neural networks. In 2018 IEEE PES Asia-Pacific

Power and Energy Engineering Conference (APPEEC), pages 290–295. IEEE, 2018.

[91] Fingrid’s electricity system vision 2022 – draft scenarios for the future electricity system, 2021.

[92] Main grid development plan 2022–2031, 2021.

[93] Mathias Gustavsson, Erik S”̈arnholm, Peter Stigson, and Lars Zetterberg. Energy scenario

for sweden 2050. Swedish Environmental Research Institute, Gothenburg, 2011.
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