
Supplementary Materials1

1 Preliminaries2

1.1 Background of SAT3

Let V = {x1,x2, . . . ,xn} be a set of Boolean variables. A literal is either a variable x or its negation ¬x. A clause is a disjunction4

of literals. A conjunctive normal form (CNF) formula F = C1 ∧C2 ∧ ·· · ∧Cm is a conjunction of clauses. For simplicity we5

assume all clauses are non-tautological. In other words, no variable x occurs positively (x ∈C) and negatively (¬x ∈C) in the6

same clause.7

A (partial) mapping α : V → {0,1} is called an assignment. If α maps all variables to a boolean value, it is termed a8

complete assignment; otherwise, it is referred to as a partial assignment. The value of a variable x under an assignment α is9

denoted as α[x]. An assignment α satisfies a clause if at least one literal evaluates to true under α , and satisfies a CNF formula10

if it satisfies all its clauses. A CNF formula F is satisfiable if there is at least one satisfying assignment. The empty clause ⊥11

is always unsatisfiable and represents a conflict. SAT is the problem of deciding whether a given CNF formula is satisfiable.12

To solve such the SAT problem, a straightforward approach is to conduct exhaustively search over all possible truth13

assignments to the variables in V . A complete SAT solver implements this idea by exploring all possible assignments to14

determine if at least one satisfies F (proving F is satisfiable). If no satisfying assignment exists, the solver conclusively proves15

F is unsatisfiable. Within this framework, the strategies for branching (for choosing which variable to assign next and what16

value to assign it) are crucial. Key techniques to enhance the search efficiency include restart strategies, restart strategies, and17

activity-based heuristics (often implemented by "bumping" variable or clause activity scores).18

1.2 CDCL solver19

Conflict-Driven Clause Learning (CDCL)1 is the most common approach and plays a dominant role in modern high-performance20

SAT solvers. The core innovation is conflict analysis: when a conflict occurs, the solver analyzes it and derives a new clause21

that explains the inconsistency. These derived clauses, called learned clauses, enable the solver to prune large portions of the22

search space, which significantly improve the computational efficiency. However, an excessive number of learnt clauses can23

degrade unit propagation speed and thus consume excessive memory. Consequently, identifying high-quality learne clauses24

and reducing their quantity are essential for maintaining a solver’s performance.25

Specifically, CDCL solvers operate on a propagation and learning mechanism, complemented by decision heuristics. The26

implementation of propagation and learning is a standard practice and overall similar in different solvers. In contrast, the27

decision policies (for variable selection) and restart policies (for search restarts) which are crucial for performance vary28

significantly. Due to the need of manual design and the absence of rigorous mathematical proofs for their optimality, these29

policies are referred to as important heuristics.30

There is a long history of research on these heuristics in SAT solvers, among which branching heuristics play a crucial31

role and continue to impact the performance of CDCL solvers. For example, Variable State Independent Decaying Sum32

(VSIDS)2 is a family of branching heuristics that seek to assign a value to the most promising variable in the Make Decision33

phase. Another important branching heuristic is Learning-Rate Branching (LRB)3, which frames branching as an optimization34

problem that picks a variable to maximize a metric called learning rate.35

Restart heuristics is also essential for enhancing the performance of CDCL solvers. It allows the solver to abandon the36

current search path and backtrack to a specific decision level. In this process, the learnt clauses are usually maintained for37

the next search. Fast restart4 is a widely used method, and Luby restarts5 is also heavily used because they represent a prior38

optimal strategy. However, most implementations are now switched to Glucose-style restarts6, which are widely used in the39

SAT Competition. For more details, see the extensive overview given by Armin Biere7.40

Rephase is another technique in CDCL solvers. The primary objective is to reset or adjust the current partial assignment,41

thereby enabling the solver to explore a diverse search space. PrecoSAT and PicoSAT8 utilize a Jeroslow-Wang score9 to adjust42

the saved phases either on all or only on irreundant clauses in regular intervals following a luby sequence. StrangeNight10
43

employs a strategy of flipping values with a certain probability that depends on the depth of the assignment. The motivation44

is to avoid the heavy-tail phenomenon. These rephasing heuristics have been used and compared in the SAT solver Riss11.45

2 ModSAT: A Modularized SAT solver46

2.1 Overview of ModSAT47

In this section, details of the proposed modularized SAT solver are provided. ModSAT obeys the basic CDCL framework1
48

in Algorithm 1, which usually initiates with an empty set of partial assignments (line 2). The Unit Propagation (UP), also49

called Boolean Constraint Propagation, assigns values to variable in clauses which has only one variable. UP can always50

make a clause satisfied, and this operation will repeat until no more UP is possible (line 4). If no conflicts are detected in X51

1/23

Algorithm 1: CDCL Framework

1 Input: A CNF F of SAT instance;
2 Initialization: decision level d← 0, current assignment of variables X ← /0;
3 while True do
4 X ← Unit Propagation(F,X);
5 if Conflicts are detected in X then
6 if d == 0 then
7 return UNSAT
8 else
9 Ccon f lict ,dbacktrack← Analyze Conflict(F,X) ;

10 Clearned ← Learn Clause(Ccon f lict ,X) ;
11 F ← F ∧Clearned ;
12 X ← Backtrack(X ,dbacktrack);
13 d← dbacktrack;

14 else
15 if All variables are assigned with a value then
16 return SAT
17 else
18 d← d +1;
19 X ←Make Decision(X)

during the Decision Detection phase, the algorithm will select a variable to assign a value (line 19). This Make Decision step52

usually contains a few heuristics. When conflicts are detected (line 5), Analyze Conflict will identify the conflicted clauses53

(line 9), and a newly learnt clause will be derived based on the clause (i.e., the current partial assignment) of conflicts (line54

10). Afterwards, the algorithm backtracks to an earlier decision level (lines 12-13). Once all variables are assigned and no55

conflict is detected, the algorithm obtains a satisfied assignment (line 16); otherwise, detecting conflicts at the decision level 056

indicates that the given CNF is unsatisfiable (line 7).57

Various heuristics have been proposed in ModSAT to enhance its performance. For instance, reduce heuristics identify and58

remove the learnt clauses by controlling the size of the tracking list. In addition, bump var heuristics are usually incorporated59

in the Analyze Conflict step, which affect the choice of variables in the Make Decision function. While the order of choosing60

variables can determine the search path of branching, rephase heuristics can control the polarity in variales to be selected.61

Also, restart heuristics may abandon the current search path, allowing algorithms to explore possibly easier search regions.62

More precisely, in ModSAT, we have defined seven functions which are independently implemented: restart function,63

which manages restart heuristics; restart condition, which determines when to execute restart; reduce condition, which64

determines when to reduce; rephase function, which manages rephase heuristics; rephase condition, which determines65

when to rephase; bump var activity, which governs the order of variables selection in Make Decision; and bump cla activity66

that govern the order of clauses being removed during reduce. These functions collectively improve the solver’s ability to67

handle large and complex SAT instances by balancing exploration, exploitation, and resource management. The combination68

of conflict-driven learning, backtracking, and heuristic enhancements makes ModSAT an efficient and robust SAT solver.69

2.2 Three principles behind ModSAT70

As already mentioned in the paper, we follow three principles when developing ModSAT to ensure it is LLM-friendly:71

• Maintain functions simple and focus. The function optimized by LLMs should be simple and explicit, unlike common72

implementation in complex solvers.73

• Utilize class variables for shared information. Local variables should be declared as class member variables to give74

LLMs access to them.75

• Proactively prevent bugs during heuristics discovery. The bugs written by LLMs should be fixed proactively, so that76

the solver could compile correctly with the same heuristics, which helps LLMs to generate more diverse correct codes.77

The following example demonstrates the application of the principle Maintain functions simple and focus, with the original78

function given in Figure 1. Instead of modifying the whole search function by LLMs, we modularize it into three distinct79

2/23

Algorithm 2: ModSAT

1 Input: A CNF F of SAT instance;
2 Initialization: decision level d← 0, current assignment of variables X ← /0;
3 while True do
4 X ← Unit Propagation(F,X);
5 if Conflicts are detected in X then
6 if d == 0 then
7 return UNSAT
8 else
9 Ccon f lict ,dbacktrack← Analyze Conflict(F,X) ;

10 Clearned ← Learn Clause(Ccon f lict ,X) ;
11 F ← F ∧Clearned ;
12 X ← Backtrack(X ,dbacktrack);
13 d← dbacktrack;

14 if Restart condition then
15 d← Restart(d)
16 else
17 continue

18 if Rephase condition then
19 X ← Rephase(X)
20 else
21 continue

22 if Reduce condition then
23 Clearned ← Reduce(Clearned)
24 else
25 continue

26 else
27 if All variables are assigned with a value then
28 return SAT
29 else
30 d← d +1;
31 X ←Make Decision(X)

functions by isolating the components that significantly impact the performance and are suitable for LLM to modify, see80

Figure 2. The decomposition also enables LLMs to focus on refining one kind of heuristic at a time, thereby enhancing the81

code generation capability.82

For the principle use Class Variables for Shared information, we move variables that may reside in local scope into class83

members to ensure that LLMs can access this shared information, see Figure 3.84

Figures 4 and 5 provide two example on how to prevent bugs during heuristics discovery proactively. The first one is85

to include some extra packages to prevent LLMs from implementing extra functions, while the second one is to overload86

common functions to prevent LLMs from incorrectly implementing simple functions because of a misunderstanding of data87

structures.88

3 Automatic Prompt Optimization89

To tackle the problem of prohibitive execution time (5000s timeout per instance) and with large performance variance across90

different datasets, we propose an unsupervised automatic prompt optimization method using Shannon entropy as the evaluation91

metric. This approach eliminates the dependency on explicit labels while maintaining the adaptability to the evolvement of92

LLMs, particularly suitable for compute-intensive optimization tasks with ambiguous success criteria.93

The basic prompt template follows the instructions in OpenAI framework docs12, which obeys the following format:94

• Define the Role of an agent as a solver expert who needs to assess and improve the heuristics function in the SAT solver.95

3/23

Maintain functions simple: Original function to modify

1 lbool Solver :: search(int nof_conflicts){
2 // if there is a conflict
3
4 // if there is no conflict
5 if ((lbd_queue_size == 50 && 0.8 * fast_lbd_sum / lbd_queue_size > slow_lbd_sum /

conflicts) || !withinBudget ())
6 restart_function ();
7

8 // Simplify the set of problem clauses:
9 if (decisionLevel () == 0 && !simplify ())

10 return l_False;
11

12 // Reduce the set of learnt clauses:
13 if (learnts.size()-nAssigns () >= max_learnts)
14 reduceDB ();
15 if (rephase_condition ())
16 rephase_function ();
17

18 Lit next = lit_Undef;
19 while (decisionLevel () < assumptions.size()){
20 // Perform user provided assumption:
21 Lit p = assumptions[decisionLevel ()];
22 if (value(p) == l_True){
23 // Dummy decision level:
24 newDecisionLevel ();
25 }else if (value(p) == l_False){
26 analyzeFinal (~p, conflict);
27 return l_False;
28 }else{
29 next = p;
30 break;
31 }
32 }
33

34 if (next == lit_Undef){
35 // New variable decision:
36 decisions ++;
37 next = pickBranchLit ();
38

39 if (next == lit_Undef)
40 // Model found:
41 return l_True;
42 }
43 newDecisionLevel ();
44 uncheckedEnqueue(next);
45 }

Figure 1. Illustration of principle Maintain functions simple and focus.

• Clearly state the Goal, such as providing optimization suggestions, writing code, or feedback.96

• Enhance the agents’ capabilities by inserting optional Tips that guide them to avoid common mistakes during code97

generation. Additionally, through this flexible interface, agents can effectively utilize external codes and results and98

can be instructed to specify the types of modification directions such as changing parameters, modifying heuristics, or99

adding new heuristics.100

4/23

Maintain functions simple: modularized function to modify

1 // original function which has been modularized
2 lbool Solver :: search(int nof_conflicts){
3
4

5 if (restart_condition ())
6 restart_function ();
7 if (reduce_condition ())
8 reduceDB ();
9

10 if (rephase_condition ())
11 rephase_function ();
12

13
14 }
15

16 // functions to modify
17 bool Solver :: rephase_condition () {
18 if (rephases >= rephase_limit)
19 return true;
20 else
21 return false;
22 }
23

24 bool Solver :: reduce_condition () {
25 if (rephases >= rephase_limit)
26 return true;
27 else
28 return false;
29 }
30

31 bool Solver :: restart_condition (){
32 if ((lbd_queue_size == 50 && 0.8 * fast_lbd_sum / lbd_queue_size > slow_lbd_sum /

conflicts) || !withinBudget ())
33 return true;
34 else
35 return false;
36 }

Figure 2. Illustration of principle Maintain functions simple and focus.

• Key code of SAT solver is appended at the end of each prompt to ensure all agents are in the same context. Note that the101

key code includes member parameters in cpp class of the solver (LLMs may utilize), along with the main loop function,102

and all corresponding functions LLMs may need to understand (e.g. such as the functions call the target optimized103

function).104

The previous three components, role, goal and tips can be automatically optimized by LLMs. In each iteration, we105

randomly select one component to optimize by LLMs, compute the correctness and diversity (entropy) of the generated codes,106

and update the component in prompt with better performance in both correctness and diversity. This loop will iterate until107

the stopping criteria is met, see Algorithm 3 for details. An empirical evaluation of the original and optimized prompts is108

presented in Figure 6. It is clear that optimized prompt achieves better performance than the original one.109

4 Presearch strategy110

To overcome this combinatorial explosion when searching over all candidate functions, we propose a novel two-phase opti-111

mization strategy:112

5/23

Add class member variables

1 // LBD heuristics
2 int lbd_queue [500] , // circled queue saved the recent 500 LBDs.
3 lbd_queue_size , // The number of LBDs in this queue
4 lbd_queue_pos;
5 double fast_lbd_sum , slow_lbd_sum;
6

7 // rephase heuristics
8 int rephases , rephase_limit , rephase_count , threshold;
9 double last_rephase_progress;

10

11 // restart heuristics
12 int curr_restarts;
13 double last_restart_progress;

Figure 3. Illustration of principle Utilize class variables for shared information

Prevent bugs: add more packages

1 #include <math.h>
2 #include <unordered_set >
3 #include <algorithm >
4 using namespace std;

Figure 4. Illustration of principle Proactively prevent bugs during heuristics discovery

• Presearh function candidate: Conduct small-scale preliminary testing to identify and eliminate functions that consis-113

tently degrade the performance.114

• Refined evolutionary search: Execute a focused (1+λ) Evolutionary Algorithm (EA) search only on the high-impact115

candidate functions identified in the last phase.116

A detailed description of this strategy can be found in Algorithm 4. For the phase of presearh function candidate, we construct117

a compact and representative evaluation subset comprising the 50% problem instances from the original dataset. This subset118

can capture the essential solver behavior while minimizing the evaluation cost. Each candidate function is evaluated separately119

on the sub-dataset for its impact on the solver’s PAR-2 score (where lower values indicate better performance), which measures120

the standalone effect of adding the function to a baseline solver. Then functions that degrade the PAR-2 score are identified and121

pruned. For each dataset, the pruned functions will be not be further considered for evolutionary search. This phase typically122

retains a small set of high-impact functions (e.g., 4 functions) that consistently show a positive or neutral effect on PAR-2123

in the preliminary tests. For the evolutionary optimization phase, we use the significantly refined function set (e.g., about 4124

functions) to execute a standard (1+λ) Evolutionary Algorithm on the full target dataset to find optimal combinations.125

It is also helpful to investigate the contribution of each function to the final results. To this end, we have calculated the126

number of times that a function contributes to the final performance improvement in each experiment, see Figure 8, where each127

subfigure shows the results for one dataset. It can be observed that almost all functions we select could contribute substantially128

to the final performance,129

5 Heuristics discovery130

The details of heuristics discovery in AutoModSAT in presented in Figure 9, which contains three agents, LLMs coder, LLMs131

evaluator, LLMs repairer. Since the LLM coder agent is already optimized in automatic prompt optimization, here we give a132

brief discussion of the LLMs evaluator and LLMs repairer.133

In our experiments, we find that sometimes LLMs coder would generate synonymous code compared with original one,134

even though we have optimized the prompt. This will lead to redundant iterations in the evolutionary search. Thus, we135

6/23

Prevent Bugs: overloading functions

1 #include <type_traits >
2

3 template <typename T1 , typename T2 >
4 typename std:: common_type <T1 , T2 >:: type max(T1 a, T2 b) {
5 static_assert(std:: is_integral <T1 >:: value && std:: is_integral <T2 >::value ,
6 "max: Both types must be integers (int or long int)");
7 return (a < b) ? b : a;
8 }
9

10 template <typename T1 , typename T2 >
11 typename std:: common_type <T1 , T2 >:: type min(T1 a, T2 b) {
12 static_assert(std:: is_integral <T1 >:: value && std:: is_integral <T2 >::value ,
13 "min: Both types must be integers (int or long int)");
14 return (a < b) ? a : b;
15 }
16

17 template <typename T1 , typename T2 >
18 typename std:: common_type <T1 , T2 >:: type max(T1 a, T2 b) {
19 static_assert(std:: is_floating_point <T1 >:: value && std:: is_floating_point <T2 >::value ,
20 "max: Both types must be floating -point (float or double)");
21 return (a < b) ? b : a;
22 }
23

24 template <typename T1 , typename T2 >
25 typename std:: common_type <T1 , T2 >:: type min(T1 a, T2 b) {
26 static_assert(std:: is_floating_point <T1 >:: value && std:: is_floating_point <T2 >::value ,
27 "min: Both types must be floating -point (float or double)");
28 return (a < b) ? a : b;
29 }

Figure 5. Illustration of principle Proactively prevent bugs during heuristics discovery.

develop an LLMs evaluator agent, which identifies whether the generated code is synonymous. If the code is synonymous,136

LLMs coder needs to regenerate a code; otherwise, the code will be sent to compile.137

In addition, LLMs sometimes make mistakes, such as missing parentheses or utilizing incorrect data types. To address this138

issue, an LLM repairer agent is introduced. LLM repairer analyzes the LLM-generated code and the corresponding errors, and139

then seeks to fix the bug. This agent can successfully resolves some common errors. While there are some errors remaining140

uncorrectable, LLM Coder will re-generate the code.141

6 Experimental details142

6.1 Dataset description143

Here we give more details about the datasets, including 7 datasets selected from SAT Competition 2023 and 2024, 3 generated144

ones by Picat, and another one from an industrial EDA scenario.145

• Argumentation problem involves finding acceptable sets of arguments in a directed graph where attacks between146

arguments are represented by edges.147

• Social Golfer problem is a combinatorial problem that aims to assign golfers to groups over several weeks, ensuring148

no two golfers play in the same group more than once.149

• Hashtable Safety problem focuses on verifying the correctness of operations in a hash table to avoid collisions and150

ensure the integrity of the structure.151

7/23

Algorithm 3: Automatic Prompt Optimization
Input: initial prompt template P, solver codebase S, max_iterations i, prompt optimized part R = {Role,Goal,Tips}
Output: optimized prompt template P∗

1 i← 10 // prompt optimization iterations
2 j← 20 // number of code generation in each iteration
3 while i≥ 0 do
4 select prompt part r from R uniformly at random
5 P′← refine_prompt(r,P) // LLMs refine the prompt template
6 while j ≥ 0 do
7 generated code c← call_llm(current_prompt)
8 compilation error e← compile(c, S)
9 if ¬e then

10 C←C∪ c
11 else
12 execute_code(corrected_code)
13 end
14 j← j−1
15 end
16 diversity di← compute_code_diversity(C)
17 success rate si← compute_code_success(C)
18 if di > d and si > threshold then
19 d← di
20 P← update_prompt(S,P′)
21 else
22 end
23 i← i−1
24 end

Figure 6. Comparison over Different Prompts. This figure shows the performance of AutoModSAT using different
prompts. The vertical axis shows the PAR-2 improvement ratio compared to the original solver, while the two coordinates in
the horizontal axis correspond to the original prompt (Original) and optimized prompt (Updated), respectively.

• Register Allocation problem is a problem that arises in compiler optimization, where the goal is to assign a limited152

number of CPU registers to variables in a program.153

• Cryptography-Ascon problem is a lightweight cryptographic algorithm challenge focused on implementing and ver-154

8/23

Original Prompt

(Role) You are a SAT solver researcher trying to rewrite the {{ func_name }} function(s).

(Goal) Your goal is to improve the SAT solver by rewriting the {{ func_name }} function(s), after reading and
understanding the <key code> of SAT solver below.

(Tips) Tips:
1) Your rewrited function code must start with ”’// start function name”’ and end with ”’// end function name”’
2) Your rewrited function(s) code must be different from original code, not just rewrite code synonymous!
3) You are not allowed to create your own new function(s) in the rewrited function(s). You are not allowed to create
your own new global variables, but you can use the global variables existing in the <key code>.
4) Make sure the rewrited function(s) code can be executed correctly.

<key code> of SAT solver is:
{{ replace_key_code }}

Updated Prompt

(Role) You are a SAT solver researcher trying to improve the {{ func_name }} function.

(Goal) Objective:
Your goal is to improve the SAT solver by rewriting the {{ func_name }} function.

Instructions:
1. Carefully read and comprehend the <key code> of the SAT solver provided below.
2. Analyze potential improvements and devise a strategy for optimizing the heuristics of function.
3. Deliver your improved function(s) with the following format:
- Begin with: ‘// start function name‘
- End with: ‘// end function name‘

(Tips) Tips:
1. Ensure that your rewritten function(s) are substantially different from the original, beyond mere synonym
replacements.
2. You may utilize existing global variables from the <key code>, but refrain from introducing new global variables.
3. Verify that the rewritten function(s) execute correctly.

Take a deep breath and think it step by step.

<key code> of SAT solver is:
""" {{ replace_key_code }} """ ...

Figure 7. Comparison of original prompt and optimized prompt

ifying the Ascon cipher, a NIST-standardized authenticated encryption scheme, for resource-constrained IoT devices,155

balancing security against differential attacks with minimal computational overhead.156

• Hamiltonian problem is a graph theory problem that involves determining whether a given graph contains a Hamilto-157

nian cycle, a closed loop visiting each vertex exactly once, which is NP-complete and often applied to route optimization158

or circuit design verification.159

• MineSweeper problem is derived from the classic MineSweeper game, where the objective is to determine the place-160

ment of hidden mines on a grid based on numerical clues.161

• LangFord problem is a combinatorial mathematics problem that involves finding a specific permutation of the sequence162

9/23

Algorithm 4: PreSearch Strategy in AutoModSAT

1 Input: Datasets P, modularized SAT solver with seven functions {h1, . . . ,h7}, prompt template, baseline functions
{b1, . . . ,b7}

2 Phase 1: PreSearch Function Candidate Pcompact← 50% representative instances from P
3 R← /0 ; // Retained function set
4 for each function hi ∈ {h1, . . . ,h7} do
5 Atest← build solver replacing hi with baseline bi
6 fi,si← evaluate(Atest, Pcompact) ; // Get PAR-2 metric

7 F ← sort(f1, ..., f7) ; // Sort PAR-2 metric in different functions
8 Get top 4 function index R from F
9 Phase 2: Evolutionary Algorithm Optimization A← solver with functions: (∀i ∈ R : hi)∪ (∀i /∈ R : bi)

10 f ∗← evaluate(A, P) ; // Full dataset evaluation
11 evalBudget← 50 ; // Maximum evaluations
12 while evalBudget > 0 do
13 M← /0
14 ℓ∼ Bin(|R|, 1

|R|) ; // Sample modification count

15 chosen ℓ distinct values M←{m0, . . . ,mℓ} from R uniformly at random;
16 Generate new functions {h′m}m∈M via LLM using A and M
17 A′← update A with {h′m}m∈M
18 f (A′)← evaluate(A′, P)
19 if f (A′)≤ f ∗ then
20 A← A′

21 f ∗← f (A′)

22 evalBudget← evalBudget−1

1,1,2,2, ...,n,n where the two copies of each number k are exactly k units apart.163

• KnightTour problem aims to find a path for a knight on a chessboard that visits every square exactly once, with164

possible extensions to different board sizes and types.165

• Zamkeller problem involves finding a permutation of integers from 1 to n that maximizes the number of differential166

alternations in subsequences divisible by integers from 1 to k, where (1 < k < n).167

• EDA problem involves formally proving whether two design specifications are functionally equivalent, which is one of168

the most essential techniques in Electronic Design Automation and digital IC design. It has a wide range of applications,169

such as functional equivalent logic removal, sequential equivalence checking, circuit-based method for symmetries170

detection, engineering change orders, among others.171

For the generated instances using Picat13, we adopt the settings in Chapters 2 and 3 of the book by NengFa Zhou13 and172

conduct grid sampling within a parameter space. Specifically, the parameter space Θ= {θ1,θ2, . . .},θ L
i ≤ θi≤ θU

i is defined to173

ensure that three baseline solvers including EasySAT, MiniSat and Kissat, can obtain a solution within proper cputime range,174

i.e., [1s, 5000s]. The we apply a space Θ′ to generate the dataset by enlarging the upper bound of Θ, e.g., θ ′Ui = θ ′Ui ∗ 1.2,175

such that we can test whether AutoModSAT can solve the instances where the baseline solvers cannot.176

• MineSweeper problem177

Parameter Θ: {m,n,k, p}178

Parameter Space: [500,1,600]× [400,3200]× [72,689,1,572,118]× [0.32,0.38]179

Notes: m,n represent the grid size of the Minesweeper game. k is the total number of mines. p is the probability that a180

given cell contains a mine (range: 0.32 to 0.38).181

• KnightTour problem182

Parameter Θ: {k}183

Parameter Space: [12,75]184

Notes: A k× k chessboard where a knight’s tour is attempted, covering all squares and returning to the start point. (A185

solution is not possible for odd-sized boards, i.e., they are unsatisfiable.)186

10/23

Figure 8. Function Contribution: where the vertical axis lists different function candidates and the horizontal axis denotes
the frequency of contributions.

Figure 9. Details about heuristics discovery

11/23

• Zamkeller problem:187

Parameter Θ: {k,n}188

Parameter Space: [3,34]× [25,100]189

Notes: k represents the total sequence length, and n represents the subsequence length. For all subsequences of length190

k, the goal is to change them into the minimum number of distinct sequences.191

The detailed configuration of the training dataset and the function candidates in heuristics discovery are presented in192

Table 1 .193

6.2 Evaluation Metric194

We consider two specific metrics for evaluation of a SAT solver: (1) the number of SAT instances solved within the given195

timeout bound, and (2) the Penalized Average Runtime with a factor of 2 score (PAR-2). Both metrics are commonly used in196

the SAT Competitions.197

Consider a dataset of n instances. Let ti be the runtime of the SAT solver on the instance i. The PAR-2 score is formally198

defined as:199

PAR-2 =
1
n

n

∑
i=1

τi where: τi =

{
ti, if ti ≤T

2T , if ti > T or the solver fails to return a result,

where T is the predefined timeout bound. For example, consider a benchmark dataset with three instances and a timeout200

bound T = 100 seconds. The runtimes (in seconds) for the three instances are: t1 = 80 for instance 1, t2 = 120 for instance201

2, the solver fails to return a result for instance 3. Then202

• since t1 ≤B, we have τ1 = 80;203

• since t2 > B, we have τ2 = 200 (penalized);204

• since the solver fails for instance 3, we have τ3 = 200 (penalized).205

Therefore, The PAR-2 score is given by206

PAR-2 =
1
3
(80+200+200) =

480
3

= 160.

Table 1. Configuration of training set, where the indices 1 to 7 represent the following function candidates in order:
rephase_condition, rephase_function, reduce_condition, restart_condition, restart_function, varBumpActivity,
claBumpActivity.

Dataset Training Timeout Function candidate

cryptography-ascon 800 1,2,3,6
register-allocation 5000 2,3,5,6
social-golfer 2000 1,4,5,6
hashtable-safety 500 2,4,5,7
argumentation 2023 2000 1,2,3,6
argumentation 2024 2000 1,2,3,5
hamiltonian 800 3,4,5,6
MineSweeper 500 2,4,3,7
KnightTour 2000 1,3,4,7
Zamkeller 2000 1,3,4,6
EDA 800 2,5,6,7

6.3 Search Space for Parameter Tuning207

In this paper, we adopt SMAC3 to optimize the baseline SAT solver parameters across different datasets. The search space for208

each solver, including the parameter name, type, description and range, are presented in Tables 2, 3, and 4.209

12/23

Table 2. ModSAT configuration parameters

Parameter Type Description Search Space

var-decay double Variable activity decay factor (0,1)
cla-decay double Clause activity decay factor (0,1)
rnd-freq double Frequency for random variable selection [0,1]
rnd-init bool Randomize initial activities {true, false}
rfirst int Base restart interval [1,1e4]
rinc double Restart interval increase factor (1.5,4)
gc-frac double Wasted memory fraction triggering garbage col-

lection
(0,1)

min-learnts int Minimum learnt clause limit [0,1e6]

Table 3. Kissat configuration parameters

Parameter Type Description Search Space

chrono bool Enable chronological backtracking {0,1}
eliminate bool Enable variable elimination {0,1}
forcephase bool Force initial phase assignment {0,1}
minimize bool Enable clause minimization {0,1}
phase bool Set initial decision phase {0,1}
phasesaving bool Enable phase saving during restarts {0,1}
probe bool Enable failed literal probing {0,1}
reduceint int Conflict interval for clause DB reduction {101,102,103,104,105}
rephaseint int Conflict interval for phase resetting {101,102,103,104,105}
restartint int Base restart interval (conflicts) {1,102,103,104}
restartmargin int Rapid restart margin threshold {0,5,10,15,20,25}
simplify bool Enable periodic simplification {0,1}
stable int Search stability mode (0=focused, 1=stable,

2=switching)
{0,1,2}

target int Target phase selection strategy (0=negative, 1=posi-
tive, 2=best)

{0,1,2}

tier1 int Tier 1 glue limit for learned clauses {2,3,4,5}
tier2 int Tier 2 glue limit for learned clauses {6,7,8,9,10,20,50}

7 More Examples of Discovered Heuristics210

In this section, to demonstrate LLMs’ ability of generating effective heuristics, we provide more contrastive examples (one211

for each function candidate), along with the explanations for the changes.212

Figure 10 provides an example for the updated claBumpActivity function, which introduces two key enhancements in con-213

trast to the original implementation. First, during activity rescaling, it enforces a minimum activity threshold (min_activity =214

1e− 20) to prevent clauses from becoming numerically insignificant after scaling. This preserves the relevance of histori-215

cally important clauses and avoids premature elimination from the learning process. Second, it incorporates dynamic decay216

adjustment based on recent conflict rates: when conflicts exceed 1000 and the LBD queue surpasses 50 entries, cla_inc is217

scaled down proportionally to the conflict density (with a floor of 0.8). This adaptively moderates activity growth during high-218

conflict phases, prioritizing recent impactful clauses while maintaining stability. Together, these refinements yield a more219

balanced clause management strategypreventing underutilization of valuable learned clauses while dynamically optimizing220

activity decay for solver efficiency.221

Figure 11 provides an example of the updated varBumpActivity function, which introduces three key improvements over222

the original. First, it scales the increment by (1.0 + 0.1 * decisionLevel()), prioritizing variables involved in recent decisions223

to accelerate conflict-driven learning. Second, the rescaling mechanism uses a larger threshold (1e100) and finer scale factor224

(1e-100), while preserving variable relevance by enforcing a minimum activity floor (1e-100) to maintain relative ordering and225

prevent premature underflow. Third, it optimizes heap management through conditional updates: dynamically adjusting the226

variable’s heap position only when its activity exceeds the current maximum, or inserting undefined decision variables lazily.227

13/23

Table 4. CaDiCaL configuration parameters

Parameter Type Description Search Space

chrono int Chronological backtracking mode (0: none, 1:
limited, 2: always)

{0,1,2}

elim bool Enables variable elimination during simplification {0,1}
forcephase bool Forces phase saving for decision variables {0,1}
minimize bool Enables clause minimization during conflict anal-

ysis
{0,1}

phase bool Initial decision phase assignment (0: negative, 1:
positive)

{0,1}

probe bool Enables probing (failed literal detection) {0,1}
reduceint int Conflict interval for clause database reduction {102,103,104,105}
rephaseint int Conflict interval for resetting variable phases {101,102,103,104,105}
restartint int Base restart interval (conflicts between restarts) {2,102,103,104}
restartmargin int Restart margin percentage (Luby sequence scal-

ing)
{0,5,10,15,20,25}

stabilize bool Stabilizes search by limiting activity updates {0,1}
target int Search target (0: SAT, 1: UNSAT, 2: balanced) {0,1,2}

These enhancements collectively improve search guidance, reduce floating-point stability issues, and minimize unnecessary228

data structure operations.229

Figure 12 provides an example of the updated restart_condition function significantly improves upon the original by230

replacing its static threshold approach with a dynamic, performance-driven restart strategy that adapts to real-time solver231

behavior. Instead of relying on fixed queue sizes and hardcoded multipliers, the new version intelligently calculates restart232

thresholds using multiple runtime metrics: it combines average LBD (measuring clause quality) with conflict rates (tracking233

solver progress) to dynamically adjust restart timing based on problem difficulty. Crucially, it introduces a progress-sensitive234

mechanism that aggressively lowers thresholds when stagnation is detected (progressEstimate changes < 0.01), enabling235

proactive recovery from plateausa capability absent in the original. This multi-factor approach yields more precise restart236

decisions, reduces wasteful recomputations, and enhances solver adaptability across diverse SAT instances while maintaining237

robustness during initialization through default thresholds.238

Figure 13 provide an example of the updated restart_function, which introduces significant improvements over the original239

implementation by incorporating adaptive restart strategies based on real-time solver performance metrics. Unlike the original240

version, which always resets to decision level 0 (a full restart), the enhanced function dynamically calculates two exponential241

moving averages of conflict difficulty (fast_avg and slow_avg) using Literal Block Distance (LBD) scores. By analyzing the242

ratio between these averages, it intelligently selects one of three restart depths: full restart (level 0) for deteriorating conflict243

quality, partial restart (mid-level) for moderately harder conflicts, or minimal restart (current level -1) for stable conditions.244

This adaptability preserves useful learned clauses during partial/minimal restarts, reducing redundant recomputation. Ad-245

ditionally, periodic clause database reduction (every 16 restarts) curbs memory growth, while rebuilding the variable order246

heap ensures branching decisions reflect updated activity scores. Collectively, these optimizations balance exploration and247

exploitation, enhancing solver efficiency through context-aware restarts and resource management.248

Figure 14 provides and examples of the updated rephase_condition function, which introduces an adaptive rephasing mech-249

anism that significantly enhances the original static threshold approach. Unlike the prior version which solely relied on a fixed250

rephase limit, the new implementation dynamically adjusts rephasing intervals based on real-time search progress and conflict251

density. By calculating normalized progress through trail size changes and setting variable-driven thresholds (e.g., 2% of total252

variables), it detects stagnation when progress falls below expectations and responds by reducing subsequent rephase inter-253

vals exponentially. Conversely, substantial progress triggers gradual interval expansion. This self-tuning capability optimizes254

computational efficiency: it minimizes unnecessary rephasing during productive search phases while aggressively countering255

stagnation, thereby improving solution convergence without compromising robustness.256

Figure 16 provides an example of the updated rephase_function, which introduces several key improvements over the257

original implementation, enhancing adaptability and search efficiency. First, it implements dynamic rephase limit adjustment258

by scaling rephase_limit based on progress measured through conflict resolution (conflictR). If progress occurs, the limit in-259

creases by 50% to exploit productive phases more aggressively; otherwise, it decays by 10% (with a lower bound of 512) to260

conserve resources during stagnation. This replaces the originals static increment (+= 8192) and fixed decay (threshold *= 0.9),261

14/23

enabling context-sensitive resource allocation. Second, the refined phase selection strategy uses weighted probabilities with262

four distinct policies: local-best phases (40%), global phase inversion (30%), randomized phases for low-activity variables263

(20%), and user-specified phases (10%). This replaces the originals rigid three-policy cascade, adding targeted randomization264

for less-active variableswhich helps escape local optimaand reintroducing user phases for domain-specific guidance. Finally,265

adaptive threshold reset (threshold = trail.size() * 0.8) dynamically scales with the solvers state, replacing the fixed decay,266

while verbosity-controlled logging aids debugging. These changes collectively improve the solvers ability to balance explo-267

ration versus exploitation, mitigate stagnation, and leverage problem-specific knowledge.268

Figure 17 provides an example of the updated reduce_condition function, which significantly enhances the original version269

through four key improvements that collectively the optimize memory management and solver adaptability. First, it retains the270

core check for absolute learnt clause limits (learnts.size() >= max_learnts), ensuring baseline constraint adherence. Second,271

it introduces memory pressure awareness by triggering reduction when wasted clause memory exceeds 80% of the garbage272

collection threshold (ca.wasted() > ca.size() * garbage_frac * 0.8). This proactively mitigates memory bloat and improves273

cache efficiency. Third, a learnt-to-original clause ratio check (learnts.size() > 2 * nClauses()) prevents learnt clauses from274

disproportionately dominating the formula, maintaining balanced reasoning. Finally, a conflict-driven heuristic (conflictR >275

1000 && learnts.size() > max_learnts * 0.8) adapts to high-conflict phases by initiating earlier reduction, thus accelerating276

recovery from solver stagnation. These layered criteria synergistically boost robustness: they minimize redundant computation277

through memory-sensitive garbage collection, preserve clause quality via ratio controls, and dynamically respond to runtime278

behaviorultimately yielding faster, more memory-efficient SAT solving.279

References280

1. Marques-Silva, J. P. & Sakallah, K. A. Grasp: A search algorithm for propositional satisfiability. IEEE Transactions on281

Comput. 48, 506–521 (1999).282

2. Biere, A., Heule, M., van Maaren, H. & Walsh, T. Conflict-driven clause learning sat solvers. Handb. Satisf. Front. Artif.283

Intell. Appl. 4, 131–153 (2009).284

3. Liang, J. H., Ganesh, V., Poupart, P. & Czarnecki, K. Learning rate based branching heuristic for SAT solvers. In Theory285

and Applications of Satisfiability Testing–SAT 2016: 19th International Conference, 123–140 (2016).286

4. Ramos, A., Van Der Tak, P. & Heule, M. J. Between restarts and backjumps. In Theory and Applications of Satisfiability287

Testing-SAT 2011: 14th International Conference, SAT, 216–229 (2011).288

5. Luby, M., Sinclair, A. & Zuckerman, D. Optimal speedup of las vegas algorithms. Inf. Process. Lett. 47, 173–180 (1993).289

6. Audemard, G. & Simon, L. Glucose 2.1: Aggressive, but reactive, clause database management, dynamic restarts. In290

Pragmatics of SAT 2012 (2012).291

7. Biere, A. & Fröhlich, A. Evaluating cdcl restart schemes. In Proceedings of Pragmatics of SAT, 1–17 (2015).292

8. Biere, A. Lingeling, plingeling, picosat and precosat at sat race 2010. FMVReport Ser. Tech. Rep. 10 (2010).293

9. Jeroslow, R. G. & Wang, J. Solving propositional satisfiability problems. Annals mathematics Artif. Intell. 1, 167–187294

(1990).295

10. Soos, M. Strangenight. In Proceedings of SAT Competition 2013: Solver, Benchmark and Proof Checker Descriptions,296

89–90 (Department of Computer Science, University of Helsinki, 2013).297

11. Balint, A., Belov, A., Järvisalo, M. & Sinz, C. Overview and analysis of the sat challenge 2012 solver competition. Artif.298

Intell. 223, 120–155 (2015).299

12. OpenAI. OpenAI API Documentation. https://platform.openai.com/docs (2023).300

13. Zhou, N.-F., Kjellerstrand, H. & Fruhman, J. Constraint solving and planning with Picat, vol. 11 (Springer, 2015).301

15/23

https://platform.openai.com/docs

original claBumpActivity

1 inline void Solver :: claBumpActivity (Clause& c) {
2 if ((c.activity () += cla_inc) > 1e20) {
3 // Rescale:
4 for (int i = 0; i < learnts.size(); i++)
5 ca[learnts[i]]. activity () *= 1e-20;
6 cla_inc *= 1e-20; }
7 }

discovered claBumpActivity

1 inline void Solver :: claBumpActivity (Clause& c) {
2 // Adaptive scaling based on clause length and conflict participation
3 if ((c.activity () += cla_inc) > 1e20) {
4 // Maintain minimum activity while scaling to preserve relevance
5 double scale_factor = 1e-20;
6 double min_activity = 1e-20;
7 for (int i = 0; i < learnts.size(); i++) {
8 ca[learnts[i]]. activity () *= scale_factor;
9 if (ca[learnts[i]]. activity () < min_activity)

10 ca[learnts[i]]. activity () = min_activity;
11 }
12 cla_inc *= scale_factor;
13

14 // Stabilize scaling by maintaining lower bound on clause activity
15 if (cla_inc < min_activity)
16 cla_inc = min_activity;
17 }
18 // Dynamic decay adjustment based on recent conflict rate
19 if (conflicts > 1000 && lbd_queue_size > 50) {
20 double conflict_scale = 1.0 - 0.01 * (lbd_queue_size / 50.0);
21 cla_inc *= conflict_scale > 0.8 ? conflict_scale : 0.8;
22 }
23 }

Figure 10. Example of LLM discovered heuristics of claBumpActivity

16/23

original varBumpActivity

1 inline void Solver :: varBumpActivity(Var v, double inc) {
2 activity[v] += inc;
3 // Rescale condition to prevent floating -point overflow earlier
4 if (activity[v] > 1e50) {
5 for (int i = 0; i < nVars (); i++)
6 activity[i] *= 1e-50;
7 var_inc *= 1e-50;
8 }
9 }

discoverd varBumpActivity

1 inline void Solver :: varBumpActivity(Var v, double inc) {
2 // Scale the increment based on decision level to prioritize recent variables
3 double scaled_inc = inc * (1.0 + 0.1 * decisionLevel ());
4 activity[v] += scaled_inc;
5 // More gradual rescaling that preserves relative ordering better
6 if (activity[v] > 1e100) {
7 double scale_factor = 1e-100;
8 for (int i = 0; i < nVars (); i++) {
9 activity[i] *= scale_factor;

10 // Prevent variables from becoming completely inactive
11 if (activity[i] < 1e-100) activity[i] = 1e -100;
12 }
13 var_inc *= scale_factor;
14 }
15 // Optimized heap update with early exit for common case
16 if (order_heap.inHeap(v)) {
17 if (activity[v] > activity[order_heap [0]]) {
18 order_heap.decrease(v);
19 }
20 } else if (decision[v] && value(v) == l_Undef) {
21 order_heap.insert(v);
22 }
23 }

Figure 11. Example of LLM discovered heuristics of varBumpActivity

17/23

original restart_condition

1 bool Solver :: restart_condition (){
2 if ((lbd_queue_size == 50 && 0.8 * fast_lbd_sum / lbd_queue_size > slow_lbd_sum /

conflicts) || !withinBudget ())
3 return true;
4 else
5 return false;
6

7 }

discoverd restart_condition

1 bool Solver :: restart_condition () {
2 // Base restart condition on conflict count
3 if (conflicts <= 0) return false;
4

5 // Dynamic restart threshold based on recent solver performance
6 double restart_threshold;
7

8 if (lbd_queue_size > 0) {
9 // Use both average LBD and conflict rate for adaptive restart

10 double avg_lbd = fast_lbd_sum / lbd_queue_size;
11 double conflict_rate = (double)conflictR / (double)conflicts;
12

13 // Adjust threshold based on problem difficulty (higher LBD = harder problem)
14 restart_threshold = restart_first * (0.8 + 0.4 * avg_lbd) * (1.0 + 0.5 *

conflict_rate);
15

16 // More aggressive restart if we’re making little progress
17 if (progressEstimate () - last_rephase_progress < 0.01) {
18 restart_threshold *= 0.7;
19 }
20 } else {
21 // Default threshold for initial phase
22 restart_threshold = restart_first;
23 }
24

25 // Check if we’ve reached the threshold
26 if (conflictR >= restart_threshold) {
27 conflictR = 0;
28 return true;
29 }
30 return false;
31 }

Figure 12. Example of LLM discovered heuristics of restart condition

18/23

original restart_function

1 void Solver :: restart_function (){
2 fast_lbd_sum = lbd_queue_size = lbd_queue_pos = 0;
3 int level = 0;
4 cancelUntil(level);
5 }

discovered restart_function

1 void Solver :: restart_function () {
2

3 // Update restart statistics
4 static double fast_avg = 0, slow_avg = 0;
5 static int restart_count = 0;
6

7 // Calculate moving averages of LBD scores
8 if (lbd_queue_size > 0) {
9 double curr_fast = fast_lbd_sum / lbd_queue_size;

10 fast_avg = 0.9 * fast_avg + 0.1 * curr_fast;
11 slow_avg = 0.99 * slow_avg + 0.01 * curr_fast;
12 }
13

14 // Determine restart level based on recent performance
15 int restart_level = 0;
16 if (fast_avg > 0 && slow_avg > 0) {
17 double ratio = fast_avg / slow_avg;
18 if (ratio > 1.2) {
19 // Recent conflicts are harder - do a full restart
20 restart_level = 0;
21 } else if (ratio > 1.0) {
22 // Partial restart - keep some learned clauses
23 restart_level = std::max(0, decisionLevel () / 2);
24 } else {
25 // Recent conflicts are easier - minimal restart
26 restart_level = std::max(0, decisionLevel () - 1);
27 }
28 }
29

30 // Reset LBD statistics
31 fast_lbd_sum = lbd_queue_size = lbd_queue_pos = 0;
32

33 // Perform the restart
34 cancelUntil(restart_level);
35

36 // Occasionally reduce the clause database after restarts
37 if (restart_count ++ \% 16 == 15) {
38 reduceDB ();
39 }
40

41 // Rebuild the order heap to reflect any activity changes
42 rebuildOrderHeap ();
43 }

Figure 13. Example of LLM discovered heuristics of restart function

19/23

original rephase_condition

1 bool Solver :: rephase_condition () {
2 if (rephases >= rephase_limit) return true;
3 else return false;
4 }

discovered rephase_condition

1 bool Solver :: rephase_condition () {
2 // Adaptive rephasing based on progress and conflict density
3 const int base_rephase_limit = 1024;
4 const double progress_factor = 0.02; // 2% of total variables
5

6 if (conflictR < rephase_limit)
7 return false;
8

9 // Calculate normalized progress since last rephase
10 int progress = trail.size() - last_rephase_progress;
11 int progress_threshold = std::max(50, (int)(nVars () * progress_factor));
12

13 // Dynamic limit adjustment based on search progress
14 if (progress < progress_threshold) {
15 // Stagnation detected - reduce next rephase interval
16 rephase_limit = std::max(base_rephase_limit , rephase_limit * 2/3);
17 } else {
18 // Good progress - expand next rephase interval
19 rephase_limit = std::min(base_rephase_limit * 16, rephase_limit * 3/2);
20 }
21

22 // Reset conflict counter and update progress tracker in rephase_function
23 return true;
24 }

Figure 14. Example of LLM discovered heuristics of rephase condition

20/23

original rephase_function

1 void Solver :: rephase_function () {
2 int var_nums = nVars ();
3 conflictR = 0, rephases = 0, threshold *= 0.9, rephase_limit += 8192; Add commentMore

actions
4 int phase_rand = rand() \% 100;
5 if ((phase_rand -= 40) < 0){
6 for (int i = 0; i < var_nums; i++){
7 polarity[i] = local_best[i];
8 }
9 }

10 else if ((phase_rand -= 25) < 0){
11 for (int i = 0; i < var_nums; i++){
12 polarity[i] = 1-local_best[i];
13 }
14 }
15 else if ((phase_rand -= 15) < 0){
16 for (int i = 0; i < var_nums; i++){
17 polarity[i] = !polarity[i];
18 }
19 }
20 else {
21 for (int i = 0; i < var_nums; i++){
22 polarity[i] = saved[i];
23 }
24 }
25 }

Figure 15. Example of LLM discovered heuristics of rephase function

21/23

discovered rephase_function

1 void Solver :: rephase_function () {
2 // Adaptive rephase limit adjustment
3 if (rephases > 0 && conflictR > last_rephase_progress) {
4 // Progress was made - be more aggressive with rephasing
5 rephase_limit = rephase_limit * 1.5;
6 } else {
7 // No progress - be more conservative
8 rephase_limit = rephase_limit * 0.9;
9 if (rephase_limit < 512) rephase_limit = 512;

10 }
11 last_rephase_progress = conflictR;
12 rephase_count ++;
13

14 // Dynamic phase selection strategy
15 double rand_val = drand(random_seed);
16 if (rand_val < 0.4) {
17 // 40\% chance: Use local best phases
18 for (int v = 0; v < nVars (); v++) {
19 polarity[v] = local_best[v];
20 }
21 if (verbosity >= 1) printf("| Rephase: Local best phases |\n");
22 } else if (rand_val < 0.7) {
23 // 30\% chance: Invert all phases
24 for (int v = 0; v < nVars (); v++) {
25 polarity[v] = !polarity[v];
26 }
27 if (verbosity >= 1) printf("| Rephase: Inverted all phases |\n");
28 } else if (rand_val < 0.9) {
29 // 20\% chance: Random phases for variables with low activity
30 double activity_threshold = 0.2 * var_inc;
31 for (int v = 0; v < nVars (); v++) {
32 if (activity[v] < activity_threshold) {
33 polarity[v] = drand(random_seed) < 0.5;
34 }
35 }
36 if (verbosity >= 1) printf("| Rephase: Randomized low -activity phases |\n");
37 } else {
38 // 10\% chance: Original user phases
39 for (int v = 0; v < nVars (); v++) {
40 if (user_pol[v] != l_Undef) {
41 polarity[v] = (user_pol[v] == l_True);
42 }
43 }Add commentMore actions
44 if (verbosity >= 1) printf("| Rephase: Reset to user phases |\n");
45 }
46

47 // Reset the threshold for next local best phase tracking
48 threshold = trail.size() * 0.8;
49 cancelUntil (0);
50 }

Figure 16. Example of LLM discovered heuristics of rephase function

22/23

original reduce_condition

1 bool Solver :: reduce_condition ()
2 {
3 if (learnts.size() >= max_learnts) return true;
4 else return false;
5 }

discovered reduce_condition

1 bool Solver :: reduce_condition ()
2 {
3 // Check if we’ve reached the absolute limit of learnt clausesAdd commentMore actions
4 if (learnts.size() >= max_learnts) return true;
5

6 // Consider memory pressure and garbage collection needs
7 if (ca.wasted () > ca.size() * garbage_frac * 0.8) return true;
8

9 // Consider the ratio between learnt and original clauses
10 if (learnts.size() > 0 && learnts.size() > 2 * nClauses ()) return true;
11

12 // Consider recent solver performance (conflict rate)
13 if (conflictR > 1000 && learnts.size() > max_learnts * 0.8) return true;
14

15 return false;
16 }

Figure 17. Example of LLM discovered heuristics of reduce condition

23/23

	Preliminaries
	Background of SAT
	CDCL solver

	ModSAT: A Modularized SAT solver
	Overview of ModSAT
	Three principles behind ModSAT

	Automatic Prompt Optimization
	Presearch strategy
	Heuristics discovery
	Experimental details
	Dataset description
	Evaluation Metric
	Search Space for Parameter Tuning

	More Examples of Discovered Heuristics
	References

