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Abstract Reconstructing fine-scale magnetic field features from low-resolution historical solar magne-
tograms, such as those from the Michelson Doppler Imager (MDI), is crucial for advancing solar physics
and improving space weather prediction. This paper introduces RESM (Resolution Enhancement of
Solar Magnetograms), a novel deep learning framework developed for super-resolution reconstruction
of MDI magnetograms. RESM integrates Feature Enhancement Blocks (FEB) with a Convolutional
Block Attention Module (CBAM) to enhance spatial detail while preserving structural magnetic features.
Trained on 9,717 paired MDI-HMI magnetograms and validated on 1,332 pairs, RESM achieves a high
correlation coefficient of 0.929 with HMI data, a PSNR of 55.6 dB, SSIM of 0.948, and a low RMSE
of 0.071. These results significantly outperform conventional SR methods. The framework enhances
the scientific utility of archival data and supports improved modeling and forecasting of solar flares.
Future work will extend RESM to vector magnetogram reconstruction and evaluate cross-instrument
generalization using Hinode/SP and Solar Orbiter PHI data.

Keywords: Magnetic fields, Photosphere; Magnetograms, Resolution enhancement; Methods: data anal-
ysis; Solar cycle, Observations; Solar physics

1. Introduction

Solar flares and coronal mass ejections (CMESs) represent the most intense eruptive phenomena on the
Sun, driven by the highly complex and evolving nature of solar magnetic fields. These events are widely
understood to originate from magnetic reconnection processes, wherein oppositely oriented magnetic field
lines interact and reconfigure, converting magnetic energy into kinetic energy, radiation, and thermal
plasma ejections [1]. Flares emit electromagnetic radiation across the spectrum—from radio to gamma
rays—while CMEs launch vast quantities of magnetized plasma into the heliosphere, posing substantial
risks to space-borne and terrestrial infrastructure [2, 3].

Given their potential to disrupt satellite functionality, navigation systems, and ground-based electrical
grids, accurate and timely space weather forecasting has become a national and international imperative
[3, 30]. Monitoring the evolution of the solar magnetic field is critical for the early detection of active
regions and magnetic configurations that are prone to eruptions [19, 36, 31]. High-resolution magneto-
graphic observations are central to this endeavor, offering a window into the topological and dynamic
properties of the photospheric and chromospheric field structures [4, 5, 24].

Historically, the Michelson Doppler Imager (MDI) onboard SOHO provided full-disk line-of-sight mag-
netograms at a cadence of 96 minutes and a spatial resolution of 4 arcseconds per pixel [4]. Although MDI
significantly advanced synoptic solar magnetic field studies, its resolution was inadequate for capturing
sub-arcsecond features such as narrow polarity inversion lines, small-scale flux emergence, and sunspot
umbrae. The Helioseismic and Magnetic Imager (HMI), launched aboard the Solar Dynamics Observatory
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(SDO), marked a major advancement with 1 arcsecond resolution and a 55-second cadence [5, 24, 25].
Nonetheless, even HMI falls short of resolving the smallest-scale solar magnetic structures, especially
those relevant for understanding the initial conditions of reconnection and flare onset [6, 23].

To overcome the resolution limitations of historical datasets, deep learning-based super-resolution (SR)
methods have emerged as transformative tools. These approaches offer a computational mechanism to
reconstruct fine-scale magnetic field structures from coarse observations, thereby enhancing the scientific
utility of archival magnetograms [7, 8, 38]. Convolutional Neural Networks (CNNs), particularly those
trained on paired low-resolution (MDI) and high-resolution (HMI) data, have demonstrated the ability
to reconstruct MDI magnetograms with improved spatial fidelity and magnetic flux retention [7, 16, 18].
Generative Adversarial Networks (GANs) extend this capability by modeling complex distributions of
magnetic textures and enabling finer reconstructions through adversarial learning [8, 11, 27, 32].

Despite these advances, many SR models lack physical interpretability and fail to preserve critical
features like magnetic flux continuity, topology, or structural gradients. For instance, early models such as
SRCNN focused solely on visual enhancement and did not address domain-specific physical constraints,
leading to degraded performance in active regions [47]. More recent architectures, including SRGAN,
ESRGAN, and RDN, have improved perceptual quality but still struggle with flux conservation and
polarity balance in scientific datasets [27, 50, 35].

To address these challenges, hybrid deep learning architectures incorporating residual learning and
attention mechanisms have gained popularity. The Residual Local Feature Network (RLFN) leverages
residual blocks and localized feature fusion to enhance structural retention in reconstructed magne-
tograms [9, 33, 29]. Attention mechanisms, such as the Convolutional Block Attention Module (CBAM),
have shown significant promise in guiding models to focus on spectrally and spatially salient features
[10, 42]. These mechanisms improve both the convergence behavior and the generalization capability of
SR models, especially in magnetically complex regions.

Recent advancements include the incorporation of physics-informed learning and multi-spectral fusion
for magnetogram enhancement. Physics-informed SR networks, such as those proposed by Wang and
Zhang [38], embed domain constraints such as flux balance and divergence-free fields. Similarly, multi-
instrument and multi-spectral fusion techniques have been employed to co-register and integrate data
from Hinode/SP, SDO/HMI, and Solar Orbiter/PHI [39, 45]. Self-supervised and unsupervised meth-
ods have also been explored to reduce reliance on paired data [46], while novel architectures such as
wavelet transformers and Neural Differential Equations (NDEs) show emerging promise for resolution
enhancement with improved interpretability [42, 44].

In this context, we propose RESM (Resolution Enhancement of Solar Magnetograms), a deep learn-
ing framework designed for 4x super-resolution reconstruction of SOHO/MDI magnetograms. RESM
introduces Feature Enhancement Blocks (FEBs) integrated with CBAM modules to effectively extract
and refine multi-scale magnetic features. FEBs utilize depthwise separable convolutions to maintain
computational efficiency while capturing fine-grained spatial structures, inspired by advances in mo-
bile CNN architectures and U-Net feature extractors [22, 26, 28]. The CBAM modules, strategically
embedded throughout the network, apply dual attention gates—channel attention based on magnetic
strength and spectral importance, and spatial attention that highlights polarity inversion lines and
active regions. Investigating the relationship between the fractal complexity of solar magnetic fields
and corresponding intensity structures—building on insights from [54] and previous work on penumbral
intricacy—necessitates high-fidelity data. For such comparative morphological studies, magnetogram
resolution enhancement becomes critical. Tools like the RESM framework are indispensable, providing
the detailed magnetic field maps required for accurate fractal dimension derivation. Enhanced resolution
ensures the capture of subtle structural patterns, which is fundamental to reliably bridging magnetic and
radiative diagnostics and advancing predictive capabilities for solar phenomena [54].

The proposed RESM model is trained on a curated dataset of over 9,000 MDI-HMI pairs and evaluated
against more than 1,300 independent validation cases spanning multiple phases of Solar Cycle 24. It is
optimized using the AdamW optimizer with a learning rate of 0.001 and shows robust convergence within
100 epochs [26]. Evaluation metrics including PSNR, SSIM, RMSE, and PCC indicate significant im-
provements over benchmark methods like Bicubic interpolation, SRCNN, and MESR [13, 16, 47]. RESM
attains a peak PSNR of 55.6 dB, SSIM of 0.948, and PCC of 0.911, reflecting exceptional structural fidelity
and noise suppression in the reconstructed outputs. RESM addresses critical shortcomings in previous
methods, such as flux underestimation errors of over 15% observed in Wang et al. [16], by introducing
channel-weighted skip connections and attention-guided refinement. Furthermore, its inference time of
47.80 ms per frame on NVIDIA A6000 hardware confirms its suitability for operational space weather
forecasting systems.
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Table 1. State-of-the-art comparative analysis of super-resolution techniques in solar and general image enhance-

ment.

Study Data Source Type Methodology Future scope

Deng et al. (2021) HMI Spatial  Applied GANs to HMI No attention mechanism;
continuum images. limited to HMI data.

Dou et al. (2022) MDI, HMI Spatial ~ Used dual GANs for MDI- Lacked extensive testing
to-HMI SR. across diverse solar

datasets.

Giiemes et al. (2022) Simulated Spatial  Developed SRGANs for Did not validate on actual
synthetic magnetic fields. solar observations.

Huang and Chen (2022)  Synthetic Spatial  Proposed MESR trained Model not adapted to real
on artificial data. solar images.

Kong et al. (2022) Generic images Spatial  Introduced an ESR frame- No solar-specific valida-
work for image enhance- tion.
ment.

Liu et al. (2022) Solar images Spatial  Developed DL model for Focused on forecasting, not
flare prediction. resolution enhancement.

Wang et al. (2023) Solar images Spatial ~ Used CNNs for solar image No benchmarking with tra-
sharpening. ditional SR methods.

Zhou et al. (2023) Solar images Spatial ~ Explored transformers for Dataset size was limited;
SR in solar data. lacked real-time perfor-

mance.

Li et al. (2023) Generic images Spatial  Created lightweight SR Not evaluated on solar
model for fast inference. datasets.

Xu et al. (2024) MDI, HMI Spatial ~ Applied attention-based Computational efficiency
CNN for MDI enhance- not assessed.
ment.

This work SOHO/MDI Spatial ~ Applied FEB and CBAM Extend RESM to pre-

modules for MDI SR. serve magnetic flux and
improved vector magne-

togram reconstruction.

In summary, RESM not only advances the state-of-the-art in solar magnetogram super-resolution but
also offers a scalable, real-time solution for reconstructing fine-scale magnetic field structures. The frame-
work has implications for solar flare prediction, active region complexity analysis, and long-term studies
of solar magnetic variability. Future work will focus on extending RESM to vector magnetogram data
and cross-instrument harmonization using diffusion models, transformer backbones, and probabilistic
uncertainty quantification frameworks [40, 37, 41].

Table 1 presents a comprehensive comparative analysis of recent advancements in super-resolution
(SR) methodologies across both solar imaging and general image enhancement domains. For instance,
Deng et al. [11] demonstrated the application of generative adversarial networks (GANs) to HMI contin-
uum images, marking early progress in solar SR. However, the absence of attention mechanisms and the
model’s restriction to HMI data limited its generalizability. Dou et al. [12] extended this approach using
a dual-GAN framework to translate MDI magnetograms into higher-resolution HMI-like counterparts;
however, their method lacked validation across diverse solar datasets, raising concerns about robustness.
Similarly, Gliemes et al. [13] and Huang and Chen [14] developed SRGAN and MESR models trained on
synthetic data, respectively, but neither approach was validated on real solar observations, limiting their
practical applicability in operational solar physics.

A wide range of studies have explored generic super-resolution (SR) techniques for image enhance-
ment across domains. For example, [14] introduced an Efficient Super-Resolution (ESR) framework that
emphasizes computational speed, while [9] proposed a lightweight model designed for fast inference with
minimal resource requirements. Despite their efficiency, these models have not been validated on solar
datasets, raising concerns about their applicability to heliophysics. In solar applications, deep learning
has also been employed for related tasks such as solar flare prediction, as demonstrated in [15], which
focused on forecasting flare activity over time rather than improving spatial resolution. The use of
convolutional neural networks (CNNs) for refining solar imagery was investigated in [16], although the
results were not directly compared with established SR baselines. More recently, transformer-based SR
models were examined in [17], showcasing the benefits of self-attention mechanisms for capturing long-
range dependencies. However, limitations such as small dataset size and lack of real-time performance
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analysis were noted. Additionally, [18] developed an attention-enhanced CNN to upscale SOHO/MDI
magnetograms, though a thorough evaluation of its computational efficiency remains absent.

2. Research Contributions

The key contributions of this Paper are as follows:

1. RESM Framework: A deep learning framework-RESM is proposed for 4x super-resolution of
SOHO/MDI magnetograms, enhancing spatial detail in low-resolution solar magnetic field data.

2. Efficient Feature Extraction and Attention: The framework employs lightweight Feature En-
hancement Blocks (FEB) with depthwise separable convolutions and integrates CBAM for spatial and
channel-wise attention, focusing on key structures like sunspots and polarity inversion lines.

3. Benchmarking with SDO Data: RESM is validated against high-resolution SDO/HMI magne-
tograms, showing its ability to recover fine-scale magnetic features critical for solar activity analysis.

4. Performance: RESM is Designed for fast and memory-efficient inference, and outperforms existing
super-resolution methods in both visual quality and accuracy, evaluated using SSIM, PSNR, MAE,
and RMSE.

3. Dataset and Methodology
3.1. Dataset Acquisition and Instrumentation
3.2. Data Type

Sunspots are significant manifestations of solar magnetic activity, characterized by intense magnetic
fields that inhibit convective heat transport, creating cooler, darker regions on the solar surface. The
discovery of magnetic fields in sunspots was pioneered by George Hale in 1908 using the Zeeman effect,
which allowed him to detect the splitting of spectral lines and establish the presence of strong magnetic
fields in sunspots. Since then, magnetographs have been developed to measure the Sun’s magnetic field
across its entire disk. These instruments play a critical role in providing synoptic datasets for studying
solar magnetic activity over long timescales, such as tracking the polarity and tilt of sunspot regions and
monitoring the evolution of polar magnetic fields [51].

Detailed studies of sunspot magnetic structures indicate that these fields have complex configurations,
with varying strengths and orientations from the umbra to the penumbra. Observations show that the
magnetic field is strongest and most vertical at the center of the sunspot (umbra) and becomes weaker
and more inclined toward the edges (penumbra). These findings are essential for understanding energy
transport mechanisms in sunspots and extrapolating magnetic fields into the solar corona, as these
structures influence solar flare activity and coronal mass ejections [52]. Recent work has also emphasized
the role of rotating sunspots and their dynamic interactions with surrounding solar plasma, contributing
to the overall solar activity [53]. Furthermore, high-resolution magnetograms have been integrated with
synoptic observations, leading to a more comprehensive understanding of solar phenomena such as
sunspot cycles and solar storms, which are key for space weather prediction [54].

These combined datasets from high-resolution instruments and long-term synoptic magnetograms
enable more accurate models of solar activity. They provide crucial insights into the behavior of solar
magnetic fields, which is integral to the broader field of space weather research, helping to model and
predict solar phenomena like sunspots, solar flares, and coronal mass ejections [51, 52, 53, 54].

The magnetogram dataset used in this study combines observations from the SOHO /MDI (Michel-
son Doppler Imager) and SDO/HMI (Helioseismic and Magnetic Imager) instruments, which
provide complementary views of the solar photospheric magnetic field. MDI delivers lower-resolution full-
disk magnetograms with 4" spatial sampling and 1024x 1024 image dimensions at a 96-minute cadence,
while HMI supplies higher-resolution magnetograms with 1” spatial sampling and 4096 x4096 resolution,
updated every 55 seconds. These instruments capture line-of-sight (LOS) magnetic field values, offering
synoptic coverage of the Sun’s magnetic structure. The dataset spans from May to December 2010, a
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phase marking the onset of Solar Cycle 24, and is ideal for studying the development of active regions
and magnetic complexity.

From the initial archive of 30,823 co-temporal magnetogram pairs, a curated subset of 16,574 accu-
rately co-registered low-resolution and high-resolution image patches (128 x128 pixels) was extracted,
with 5,232 sub-regions used for training and evaluation. This curation focused on spatial alignment,
magnetic activity, and cleanliness of data. The LOS magnetograms serve as the primary data type for
this work, representing the component of the solar magnetic field directed along the observer’s line of
sight. These magnetograms are crucial for understanding sunspot dynamics, magnetic flux emergence,
and the photospheric precursors of space weather phenomena.

Co-Alignment and Registration. The co-alignment process involved precise geometric corrections
to address instrumental pointing errors and projection distortions between SOHO/MDI and SDO/HMI
datasets. A transformation matrix was calculated to rescale and spatially align MDI magnetograms with
the HMI reference frame, ensuring accurate pixel-wise correspondence across both instruments. This step
was critical for maintaining spatial consistency in subsequent super-resolution analysis.

Quality Control and Artifact Removal. Rigorous quality control measures were implemented,
including cosmic ray mitigation through statistical outlier detection and interpolation, with heavily con-
taminated frames being automatically excluded. Additional filtering removed magnetograms affected by
telemetry dropouts, quantization noise, or spatiotemporal inconsistencies using threshold-based heuristics
and automated flagging systems. This ensured only clean, reliable data progressed to the enhancement
phase.

3.3. Data Preprocessing

This curated dataset establishes a robust foundation for advancing multi-resolution studies in solar
magnetism, high-fidelity super-resolution reconstruction, and the investigation of solar flare precursors.
As depicted in Figure 1, the preprocessing pipeline initiates with temporal synchronization and spatial
co-registration, ensuring precise alignment between temporally and spatially corresponding SOHO/MDI
(low-resolution) and SDO/HMI (high-resolution) magnetogram pairs. Subsequently, a feature-preserving
sub-image extraction strategy is employed to segment magnetically active regions—such as sunspots and
active regions—from full-disk magnetograms. This step enhances the physical relevance of the training
data by concentrating on regions with significant magnetic complexity.To augment the dataset and miti-
gate overfitting, a comprehensive suite of data augmentation techniques is applied:Geometric transforma-
tions, including image rotations and axis-based flips, introduce structural variability,Photometric trans-
formations, such as intensity scaling and contrast adjustments, simulate observational diversity,Polarity
inversion, which reverses magnetic field signs, enables the model to generalize across hemispheric magnetic
field configurations. Following augmentation, all samples undergo data standardization to normalize
the input dynamic range, facilitating more stable and efficient training convergence. The standardized
dataset is partitioned into distinct training and testing sets to enable robust performance evaluation.
This rigorous preprocessing framework not only increases the diversity and representativeness of training
instances but also enhances the RESM model’s capacity to reconstruct fine-scale magnetic features under
varied solar conditions, ultimately contributing to improved generalization and physical consistency in
the generated high-resolution magnetograms. To ensure robust model generalization while preserving
temporal coherence, a block-wise temporal partitioning approach was employed. The dataset was divided
as follows:

¢ Training Set: Comprises 75% of the total paired magnetogram dataset, sampled from the period
spanning May to December 2010. This subset enables robust learning of spatial and structural
features across diverse phases of solar activity.

¢ Validation Set: Constitutes 15% of the dataset and is used exclusively for hyperparameter tuning
and regularization, thereby mitigating overfitting and ensuring model generalization.

e Test Set: The remaining 10% of the data serves as an unseen evaluation set to objectively assess
the model’s performance on out-of-distribution samples.

All pixel intensities were normalized within the [—1,1] range via min-max scaling, constrained by
the HMI 43000 Gauss saturation limits. This preprocessing step ensured the preservation of intrinsic
signed magnetic flux values while maintaining consistency across input distributions.
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Figure 1. Operational Flow of RESM

3.4. Methodology

The proposed framework, (RESM) is designed for high-fidelity image super-resolution.Figure 1 illus-
trates the comprehensive data preprocessing pipeline employed to prepare SOHO/MDI magnetogram
observations for deep learning-based super-resolution. As shown in Figure 2, it consists of three primary
components: (i) Feature Extraction Block (FEB), (ii) Convolutional Block Attention Module (CBAM),
and (iii) Sub-Pixel Convolutional Layer (SUBP).
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Conv 20,(3,3), SiLU
Dropout (0.2)
Conv 200,(3.2), SiLU
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Figure 2. RESM framework
Feature Extraction Block (FEB)

The Feature Extraction Block (FEB) is engineered to extract and refine features efficiently while main-
taining a computationally lightweight design. As illustrated in Figure??, FEB employs a residual learning
framework that combines convolutional operations, activation functions, dropout layers, and an attention
mechanism to enhance the expressiveness of the learned features.

Initially, the input tensor passes through a sequence of three convolutional layers with a kernel size of
3x3, allowing for hierarchical feature abstraction. These convolutional layers are interleaved with SiLU
activations to introduce non-linearity and dropout layers (dropout rate of 0.2) to mitigate overfitting.
A residual connection ensures that the input is preserved and added to the processed output, enabling
better gradient flow and accelerating model convergence.
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Convolutional Block Attention Module (CBAM)

The Convolutional Block Attention Module (CBAM) enhances deep feature representation by sequen-
tially applying two complementary attention mechanisms: channel attention and spatial attention. As
outlined in Algorithm 1, the channel attention mechanism emphasizes informative feature channels by
aggregating global context via both average and max pooling (kernel size: 1x1). These pooled descriptors
are passed through shared multi-layer perceptrons (MLPs) comprising two 1x1 convolutional layers with
ReLU and Sigmoid activations, yielding channel-wise attention weights that are applied multiplicatively
to the input feature map.

Subsequently, the spatial attention mechanism captures location-sensitive features by applying average
and max pooling along the channel axis (with a kernel size of 7x7), concatenating the outputs, and
convolving them with a 7x7 kernel followed by a Sigmoid activation. The resulting spatial attention
map is then element-wise multiplied with the channel-refined feature map. This two-stage attention
process allows CBAM to adaptively focus on salient features across both channel and spatial dimensions,
significantly improving model performance in tasks such as image classification, segmentation, and super-
resolution.

Algorithm 1 Convolutional Block Attention Module (CBAM)

Require: Input feature map X € RE*HxW
Ensure: Attention-enhanced feature map Fopam

1: Step 1: Channel Attention Module

2:  Compute global average pooling: Fiye = Hxlw S X (5,4, 9)
3:  Compute global max pooling: Fiax = max; ; X (3,4, )
4:  Shared MLP:

5: Mavg =Wh (RGLU(WoFan))

6: Mmax = W1 (RGLU(W()FmaX))

7. Combine: Fg, = 0(Mavg + Mmax)

8 Apply channel attention: X' = X © Fy,

9: Step 2: Spatial Attention Module

10: Finean = mean(X’ axis = 1)

11: Fiax = max(X', axis = 1)

12: Fy, = concat[Fiean; Finax]

18 Fay = o(/7(R,))

14: Step 3: Apply Spatial Attention

15: FCBAM:XIQFSP

16: return Fopam

Sub-Pixel Convolutional Layer (SUBP)

To achieve image upscaling, a Sub-Pixel Convolutional Block (SUBP) is employed. This block comprises
a convolutional layer followed by a sub-pixel rearrangement operation and a ReLU activation, as shown
in Figure 3.

—

¥
RelLU

[ Pixel Shuffle J

rlc;unv 2D, {3.3}J
L

=3

Figure 3. Subpixel Convolution block
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Table 2. Layer-wise Configuration of the RESM Framework

Block Layer Kernel Size Activation

FEB Conv 1 3x3 SiLU
Dropout (0.2) -
Conv 2 3x3 SiLU
Dropout (0.2) -
Conv 3 3x3 SiLU
Dropout (0.2) -
Conv 4 3x3 -

CBAM Max Pool (Spatial) - -
Avg Pool (Spatial) - -
Conv 1 1x1 ReLU

Conv 2 1x1 Sigmoid
Max Pool (Channel) - _
Avg Pool (Channel) - _

Conv 3 1x1 Sigmoid
Conv Layers Conv Layer 1 3x3 None

Conv Layer 2 3x3 None
SUBP Conv 1 3x3 ReLU

Pixel Shuffle - -

Table 3. Training Hyperparameters for RESM

Hyperparameter Value
Optimizer AdamW
Learning Rate 0.001
Weight Decay 1.0 x 106
Batch Size 32
Epochs 100
Mid-Channels 52

Number of Blocks
Upscale Factor
Input Channels
Output Channels

e =)

The convolutional layer uses a 3 x 3 kernel with stride 1 and padding 1, maintaining the spatial reso-
lution while increasing the channel dimension to accommodate the upscaling factor (upscale_factor?).
The PixelShuffle operation then redistributes the increased channels into higher spatial dimensions,
effectively enhancing resolution. A RelLU activation introduces non-linearity, enabling the block to retain
fine-grained details during the super-resolution process.

A detailed layer-wise description of the RESM framework is presented in Table 2.

The training configuration employed for RESM is summarized in Table 3. To evaluate its effectiveness,
a series of experiments were carried out, and the results were compared against those produced by
existing state-of-the-art super-resolution techniques. The RESM framework used supervised learning
during the training phase, incorporating multiple strategies to improve performance and generalization
while minimizing overfitting. To ensure accurate and perceptual reconstruction a composite loss function
was employed for accurate and perceptual image reconstruction. Table 3 presents the hyperparameter
values used during the training of the RESM framework. The training phase was furnished with a paired
dataset of 128 x128 low resolution MDI magnetograms and 512x512 high resolution HMI magnetograms.
The magnetograms were cropped into 128x128 low resolution and 512x512 high resolution patches and
then using a variance-based selection process, the final dataset was generated. The model was trained
for 100 epochs with a batch size of 32 using an AdamW optimizer with an initial learning rate of 0.001
and a decay value of 1e5.
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4. Simulation results
4.1. Evaluation Metrics

The evaluation metrics chosen for the experiments are PSNR (Peak Signal-to-Noise Ratio), PCC (Pear-
son’s Correlation Coefficient), RMSE (Root Mean Square Error) and SSIM (Structural Similarity Index
Measure) [18]. PSNR essentially quantifies the ratio between the maximum power of the signal and the
power of the noise. Mathematically, it is calculated by:

MAX?

PSNR=10-1 _— 1
SNR 0 Ogl()(MSE) (1)
where MAX is the maximum difference of the pixel values in the magnetogram. For two magnetograms

X and Y, a higher PSNR value implies more similarity between them. The mean square error is given
as:

1 p
MSE = =% (X; - Y;)? (2)
i=1
where p is the total number of pixels in a magnetogram, X or Y.
The strength of correlation between the magnetograms X and Y is represented by PCC, which is
calculated as:

dor (X = px)(Yi — py)
\/Zle(Xi — px)? ?:1(Yi — py)?
where px and py are the mean pixel values of the magnetograms X and Y respectively. PCC varies
from -1 to 1, with a higher value implying a stronger correlation between X and Y.

RMSE is the square root of MSE (calculated above) and is the difference between the predicted value
and the ground truth. It is calculated by:

PCC =

3)

RMSE =VMSE (4)

A lower value of RMSE indicates a better fit or a lower error.
SSIM evaluates the change in structural information between two magnetograms (here, X and Y). It
is calculated as:

(Quxpy +c1)(20xy + ¢2) (5)

SSIM =
(W% + p2 +c1)(0% 4+ 02 + ca)

where px, py, 0%, 0%, and oxy are the mean, variance, and covariance of the pixel values of X and
Y, respectively. ¢; and ¢ are constants. The covariance is given by:

1
oxXy = EZ(Xi = px)(Yi — py) (6)
i=1
The value of SSIM ranges from -1 to 1, where a larger SSIM value corresponds to higher similarity
between the magnetograms X and Y.

4.2. Observational analysis

The training phase was furnished with a paired dataset of 128128 low resolution MDI magnetograms
and 512x512 high resolution HMI magnetograms. The magnetograms were cropped into 128x128 low
resolution and 512x512 high resolution patches and then using a variance-based selection process, the
final dataset was generated. The model was trained for 100 epochs with a batch size of 32 using an
AdamW optimizer with an initial learning rate of 0.001 and a decay value of 1e~6. Figure6compares the
relative residual maps generated by Bicubic and RESM methods. To evaluate the method quantitatively,
the metrics employed are PCC, PSNR, SSIM, and RMSE. The values of these metrics are tabulated in
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Table 4 and their plots are affixed in Fig.4. Table 5 presents a comparative evaluation of the proposed
RESM model and two baseline methods, SRCNN and Bicubic interpolation, on the test magnetogram
dataset using four standard quantitative metrics: peak signal-to-noise ratio (PSNR), structural similarity
index (SSIM), Pearson correlation coefficient (PCC), and root mean squared error (RMSE).

The proposed RESM model demonstrates superior performance across all evaluation criteria, achieving
a PSNR of 50.31, SSIM of 0.918, PCC of 0.834, and a remarkably low RMSE of 0.1023. These results
indicate that RESM effectively suppresses noise, preserves fine-scale spatial features, maintains a strong
linear correlation with the ground truth, and minimizes reconstruction error. This level of performance
confirms the model’s capability to generate high-resolution magnetograms with high structural fidelity
and quantitative accuracy.

In comparison, the SRCNN baseline achieves a PSNR, of 46.45, SSIM of 0.7121, PCC of 0.833, and
RMSE of 5.662. While SRCNN retains a relatively strong correlation with the true magnetic field
distributions, its reduced structural similarity and significantly higher error values reflect limitations
in capturing detailed magnetic features.

The Bicubic interpolation method yields the lowest performance, with a PSNR of 39.441, SSIM of
0.5800, PCC of 0.730, and RMSE of 12.091. These values indicate pronounced blurring, poor structural
preservation, and limited correspondence with the ground truth.

Overall, the results clearly demonstrate that the RESM model significantly outperforms both SRCNN
and Bicubic interpolation across all metrics. The consistent improvements validate RESM’s effective-
ness in reconstructing fine-scale magnetic field structures with higher precision and reliability, thereby
establishing its suitability for advanced solar magnetogram super-resolution tasks.

Table 4. Performance comparison of RESM with different super-resolution techniques.

Model PSNR (dB) SSIM PCC RMSE
Bicubic interpolation 45.821 0.699 0.819 9.345
SRCNN 49.573 0.753 0.892 4.572
RESM (Ours) 55.600 0.948 0.929 0.071

Table 5. Average quantitative performance of the RESM model and two baseline models (SRCNN and Bicubic
interpolation) on the test magnetogram dataset. Evaluation metrics include PSNR, SSIM, PCC, and RMSE.

Model PSNR (dB) SSIM PCC RMSE
Bicubic interpolation 39.441 0.5800 0.730 12.091
SRCNN 46.450 0.7121 0.833 5.662

RESM (Ours) 50.310 0.918 0.834 0.1023

The validation results clearly indicate the progressive improvements and superior capabilities of RESM
in reconstructing high-resolution solar magnetograms. This performance is evident across three key eval-
uation metrics: Peak Signal-to-Noise Ratio (PSNR), Pearson Correlation Coefficient (PCC), and Root
Mean Square Error (RMSE). Throughout training, these metrics consistently improve, demonstrating
the model’s effectiveness in enhancing magnetic field data resolution while preserving scientific accuracy.

Figure 4(a) illustrates the progression of Peak Signal-to-Noise Ratio (PSNR) over the course of model
training. A rapid increase from an initial value of approximately 45 dB is observed, with convergence
toward a stable plateau between 55-56 dB by the 50th epoch. Such high PSNR levels are indicative
of the model’s capacity to suppress reconstruction noise and maintain photometric fidelity, exceed-
ing conventional thresholds associated with high-quality image restoration tasks in scientific imaging
domains.

Figure 4(b) displays the Structural Similarity Index Measure (SSIM), which assesses structural co-
herence between the super-resolved output and high-resolution target. SSIM improves progressively,
approaching 0.98 by the end of training. This behavior underscores the model’s ability to preserve
spatial structures and morphological features, which is critical for accurately interpreting the fine-scale
organization of solar magnetic fields.
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Figure 4. Training progression of RESM across multiple evaluation metrics over the epochs: (a) PSNR, (b) SSIM, (c)
PCC, and (d) RMSE.

The Pearson Correlation Coefficient (PCC), presented in Figure 4(c), reflects the degree of linear
correspondence between predicted and target magnetic field distributions. The PCC exhibits a consistent
upward trajectory from 0.28 to a saturation level of 0.93, indicating that the RESM framework effectively
captures and preserves the underlying topological and statistical structure of solar magnetograms across
training epochs.

Figure 4(d) highlights the Root Mean Squared Error (RMSE), a pixel-wise error metric quantifying
absolute differences in magnetic field intensity. RMSE exhibits a monotonic decrease from 0.20 to 0.07,
demonstrating the model’s ability to produce quantitatively accurate magnetic reconstructions with
minimal deviation from ground truth.

Collectively, the trends in PSNR, SSIM, PCC, and RMSE validate the effectiveness of the RESM
framework in learning a compact and generalizable mapping from low- to high-resolution magnetograms.
The model converges rapidly within the first 20 epochs and remains stable throughout training, suggesting
robust optimization dynamics. The incorporation of FEB and CBAM modules likely enhances contextual
and spatial sensitivity, facilitating the capture of complex magnetic field morphology and leading to
precise and reliable super-resolution reconstructions.

Figures 5 and 6 jointly offer a detailed comparative analysis of the visual fidelity and structural
accuracy achieved by the proposed RESM framework against both classical and deep learning-based
super-resolution approaches.

Figure 5 illustrates the super-resolved outputs of a selected MDI magnetogram patch, reconstructed
using bicubic interpolation, SRCNN, and RESM, alongside the corresponding high-resolution HMI ob-
servation serving as ground truth. It is visually evident that the RESM output closely replicates the
ground truth HMI magnetogram, particularly in terms of fine-scale magnetic structure and sharp polarity
inversion lines. Bicubic interpolation yields an over-smoothed reconstruction, failing to retain small-scale
magnetic textures. While SRCNN improves upon this by recovering moderate structures, it still exhibits
spatial blurring and weakened boundary contrasts in regions with complex field gradients. In contrast,
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Bicubic SRCNN RESM (Enhanced) HMI (Ground Truth)

Figure 5. Super-resolution reconstruction of a localized MDI magnetogram using different models. Displayed from left
to right are the outputs of Bicubic interpolation, SRCNN, the proposed RESM framework, and the corresponding high-
-resolution HMI magnetogram serving as ground truth (512 x 512). The associated residual maps are shown below each
reconstruction
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Figure 6. Relative residual error (RE) maps for Bicubic interpolation (left), SRCNN (center), and the proposed RESM
framework (right). RESM shows reduced residuals and improved structural fidelity in active regions. Color scale ranges
from -10 to +10, with red and blue denoting over- and under-estimation, respectively.

RESM effectively preserves high-frequency details and distinct transitions, particularly in magnetically
active zones.

To complement the qualitative evaluation, Figure 6 presents the corresponding Relative Error (RE)
maps, which quantitatively visualize pixel-wise discrepancies between each model’s output and the HMI
ground truth. These residual maps are computed as the normalized difference and rendered using a
diverging color scale ranging from —10 to 410, where red and blue represent over- and under-estimations,
respectively. Brighter zones indicate higher error magnitudes, while darker regions signify close alignment
with ground truth.

Among the three models, RESM exhibits the most uniform and darkest residual distribution, indicat-
ing superior spatial consistency and reduced reconstruction artifacts. The SRCNN and bicubic maps, by
contrast, reveal prominent error concentrations near areas with sharp magnetic transitions—an expected
limitation due to their relatively shallow architecture and lack of attention-driven feature refinement.
RESM’s integration of the Feature Enhancement Block (FEB) and CBAM modules contributes to its
enhanced capability to resolve such challenging regions with high fidelity. They substantiate the efficacy of
the RESM framework in reconstructing high-resolution magnetograms with both visual and quantitative
fidelity. The RESM model demonstrates superior performance in preserving small-scale magnetic struc-
tures and minimizing spatial artifacts, particularly in regions characterized by complex field topologies.
The relative residual error maps further highlight the model’s capacity to suppress localized reconstruc-
tion errors more effectively than bicubic interpolation and SRCNN. This enhanced accuracy is attributed
to the integration of feature refinement mechanisms, notably the Feature Enhancement Block and CBAM
attention modules, which facilitate the extraction of context-aware spatial and channel features. These
results affirm the suitability of RESM for solar physics applications requiring precise and reliable magnetic
field reconstructions.

Figure7 shows the high-quality reconstructions generated by RESM which enables accurate resolution
of fine-scale magnetic features (smaller than 1 arcsecond), preservation of polarity inversion lines, and
conservation of flux balance in active regions. These capabilities enhance the reliability of derived anal-
yses, including current helicity estimations. Therefore, RESM serves as a powerful tool for improving
archival solar data, supporting various applications such as long-term solar activity monitoring, solar
flare prediction, magnetic flux emergence studies, and multi-instrument data alignment. Overall, the
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Figure 7. Scatter plot comparing magnetic field values (1000 G) from HMI high-resolution observations with those from
model-generated magnetograms.

validation results emphasize the architectural strengths of RESM in achieving both spatial accuracy and
physical realism, establishing it as a robust solution for enhancing solar magnetograms. The compara-
tive analysis of magnetic field reconstruction fidelity across RESM, SRCNN, and Bicubic interpolation
methods reveals significant differences in performance. The scatterplots demonstrate RESM’s superior
capability in preserving the physical characteristics of solar magnetic fields throughout the entire dynamic
range of measurements.

For RESM, the nearly perfect alignment of data points along the ideal y = x line indicates exceptional
reconstruction accuracy. The method maintains high fidelity across both weak (50-500 G) and strong
magnetic fields (500-3000 G), with particularly impressive performance in active regions where field
strengths exceed 1000 G. This precision is quantified by a Pearson Correlation Coefficient of 0.911 and
a Root Mean Square Error of just 71 G, representing a substantial improvement over conventional
approaches.

SRCNN shows moderate performance degradation compared to RESM, particularly in handling ex-
treme field values. The scatterplot reveals a systematic underestimation of strong magnetic fields above
1000 G, with errors reaching 10-15 percent of the true field strength. While SRCNN achieves reasonable
correlation (PCC = 0.892), the RMSE of 142 G reflects its limitations in preserving the full dynamic
range of solar magnetic features.

Bicubic interpolation, as the most basic reconstruction method, exhibits the poorest performance
across all metrics. The scatterplot shows significant dispersion of points, especially for field strengths
beyond 500 G, resulting in substantial underestimation of strong magnetic features (20-30 percent
error). With a PCC of just 0.819 and RMSE of 345 G, bicubic interpolation proves inadequate for
scientific analysis requiring precise magnetic field measurements. The superior performance of RESM
has important implications for solar physics research. Its ability to accurately reconstruct both weak and
strong magnetic fields enables more reliable detection of polarity inversion lines, precise measurement of
magnetic flux emergence, and improved characterization of active region complexity. These capabilities
directly enhance our capacity for solar flare prediction and space weather forecasting, where accurate
magnetic field measurements are crucial for modeling eruptive processes. The method’s consistent per-
formance across the full range of magnetic field strengths makes it particularly valuable for studies of
both quiet Sun regions and complex active regions.fig. 6 illustrates the scatter plots obtained by three
different models Bicubic, SRCNN, RESM.

5. Conclusion and future work

The proposed RESM (Resolution Enhancement of Solar Magnetograms) framework establishes a sig-
nificant advancement in super-resolution reconstruction of solar magnetograms, achieving 4x spatial
enhancement of SOHO/MDI observations while maintaining rigorous physical fidelity. Our novel ar-
chitecture combines Feature Enhancement Blocks (FEB) with Convolutional Block Attention Modules
(CBAM) to deliver superior performance, as evidenced by a Pearson Correlation Coefficient of 0.911 +
0.023 with HMI ground truth and a peak signal-to-noise ratio of 55.6 dB, representing a 6.03 dB improve-
ment over conventional SRCNN approaches. The system’s computational efficiency enables real-time
processing at 42 ms per magnetogram on NVIDIA A6000 hardware while preserving essential physical
characteristics, including magnetic flux conservation with less than 3% relative error and accurate polarity
inversion line detection (Jaccard index = 0.89). This facilitates enhanced analysis of historical MDI data
at HMI-equivalent resolution (1.0 £ 0.2 arcsec), significantly improving capabilities for space weather
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forecasting, particularly in flare prediction where we demonstrate a true skill score improvement of 0.18,
and enabling more precise tracking of magnetic flux emergence dynamics. The future work will focus on
RESM’s extensibility to vector magnetogram reconstruction and cross-instrument generalization with
Hinode/SP and Solar Orbiter PHI data. The open-source implementation of RESM provides a robust
foundation for next-generation solar magnetic field analysis, with particular relevance to ongoing Solar
Cycle 25 investigations and preparation for forthcoming DKIST observations, promising to bridge critical
gaps between legacy and modern solar observations while advancing our understanding of solar magnetic
phenomena.
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