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Overview of segmentation methods
Image pre-processing
MRI images are innately grayscale representations of the signal intensities of imaged tissues [1]. Several mathematical morphological operations extensively studied in binary images can be applied to grayscale images to enhance certain structures and reduce noise [2]. The concept behind binary morphological operations uses a structuring element that is shifted across the image, transforming it according to how the element matches the underlying data. Erosion, dilation, opening, closing, and finally, top- and bottom-hat transforms are fundamental operations in this regard. Erosion reduces the size of objects and eliminates fine features, while dilation expands structures whenever one of the pixels at the edge of the foreground falls within the structural element defined. For grayscale images, the maximum or minimum gray value of the pixels found within each instance of the structural element is used to perform the operation. Opening and closing are operations that are composed of dilation and erosion in succession. Opening first erodes and then dilates the image with the same structuring element, while closing implies a reversed order of these operations. Opening can aid in noise removal, while closing can be useful for filling small holes. Finally, top-hat and bottom-hat transforms use opening and closing to enhance images. The Top-Hat transform accentuates small, bright regions within an image that stand out against a darker background by computing the difference between the input image and its opening. In comparison, the Bottom-Hat transform emphasizes dark areas that are distinct amidst a brighter background by computing the difference between the closing of the image and its original state [2,3]. 
Among further manipulation methods which can reduce noise, the Wiener filter stands out as a prominent technique in signal processing, offering a means to restore signals corrupted by additive noise. By leveraging statistical estimation and spectral analysis, the Wiener filter optimally attenuates noise while preserving the essential characteristics of the original signal. At the core of the Wiener filter lies a statistical model that characterizes the corrupted signal and noise. By assuming stationarity and Gaussian statistics, the filter estimates the power spectral densities of the signal and noise components and leverages this information to construct a frequency-dependent filter that adaptively suppresses noise while preserving the desired signal components [4,5]. Wiener filtering has been previously used and validated in studies using slices obtained through magnetic resonance imaging where discrimination of fat tissue was necessary [6].
These brief descriptions cover the functioning concepts behind the techniques used, while more detailed information can be found in the cited literature.
Thresholding
Adipose tissue identification can be approached by grayscale analysis of single slices and assigning a threshold grey level value for adipose tissue [7]. A histogram of the grey-level intensities can be used to identify the characteristic peak for adipose tissue based on the image acquisition protocol implemented [8]. Inhomogeneities in the magnetic field must be corrected to provide optimal results [8]. In this respect, initial manual selection of a region of interest known to contain only adipose tissue can expand the interval of grey-level values identified as adipose tissue in later segmentation [9]. Alternatively, the interval can be calculated based on statistical methods, where a Gaussian curve is defined with a mean value equal to the representative fat grey-level value identified, and the curve's height is given by the number of pixels corresponding to the grey level. Determining the standard deviation of the obtained curve can aid in establishing a threshold that accounts for possible inhomogeneities of the magnetic field [10]. A commonly used method for automatic threshold identification has been proposed by Otsu in 1979 [11] and has been successfully implemented in MRI-based abdominal adipose tissue segmentation [12]. The original principle of the method aims to distinguish an image from its background. The purpose is to effectively separate two classes of pixels from the original image by setting a threshold gray-level value discerning between foreground and background pixels. It assumes a bimodal distribution of grey levels, i.e., two distinct peaks in the histogram, which require separation – one for the background and one for the image of interest (in our case – adipose tissue). The algorithm is based on maximizing inter-class variance to find the appropriate threshold between the two classes mentioned above. Although the method has its limitations, its ease of use and efficiency have kept it in use while searching for ways to improve its performance [13]. For the precise workflow implemented in the Otsu method as well as the various improvements attempted, please refer to the cited literature [11,13]. Manual adjustment of the thresholds can also be implemented after the obtained initial results [8,9].
Fuzzy C-means clustering
An alternative approach is represented by the fuzzy clustering or fuzzy c-means algorithm [14–16]. This approach is based on the fact that there are generally 3 peaks in the gray value histograms of T1-weighted images – one corresponding to the background, one corresponding to lean mass, and one corresponding to adipose tissue. Consequently, three clusters can be identified based on the maximal points of each peak. Due to the clusters overlapping, a function of probability having possible values ranging from 0 to 1 can be defined for each individual pixel and cluster, which essentially returns the chance of a given pixel being classified as belonging to one of the clusters. The final results are usually used to create so-called "hard" membership masks by assigning each image element completely to the class in which it has the highest membership. The formulations on which the method is based are described in depth in the cited literature [15].
K-means clustering
While Fuzzy C-means clustering allows data points to have partial membership to multiple clusters, K-means clustering assigns data points strictly to a single cluster from a prespecified number of clusters. It is a centroid clustering algorithm designed to reduce the distances within each cluster as much as possible while maximizing the distances between distinct clusters, each defined by its centroid. Essentially, the K-means algorithm iteratively assigns data points to the nearest cluster centroid based on their distance. The cluster centroids are updated by calculating the mean of the data points assigned to each cluster. This process continues until convergence, where the cluster assignments no longer change significantly [17]. 

Table S1. Softwares used in MRI-based abdominal adipose tissue quantification studies
	Reference
	Software

	[18]
	ImageJ

	[9]
	OsiriX, AdipoQuant

	[7,19–23]
	Slice-O-matic

	[7,19–21]
	Tomovision

	[23]
	NIHImage, Analyze, HippoFat, EasyVision

	[14,24–28]
	MATLAB

	[29]
	pMRI

	[7,10,14,25,26,30]
	In-house softwares



Table S2. Slice positions used in MRI-based single-slice abdominal adipose tissue quantification studies
	Reference
	Slice localization

	[18,25]	L3-l4

	[19,20,30,31]	L4-L5

	[9,26]	Umbilicus

	[26]	Head of humerus

	[26]	Head of femur



Table S3. MRI parameters used in various studies
	[bookmark: _Hlk200006647]Ref.
	Pulse sequence
	TR (ms)
	TE (ms)
	FOV (cm)
	Matrix size
	Slice
Thickness (mm)
	Slice interval (mm)

	[19.20]
	Spin-echo T1
	210
	17
	48 
	256x256
	10
	40

	[21]
	Spin-echo T1
	300
	11
	48
	256x256
	10
	40

	[7]
	Spin-echo T1
	600
	16
	24
	256x256
	5
	5

	[32]
	Spin-echo T1
	210
	17
	48x36
	256x256
	10
	50

	[18]
	Fast-spin-echo T1
	230
	4.4
	44
	512x512
	5
	1

	[9]
	T1
	280
	4.76
	Var.
	256x256
	4
	Single slice

	[9]
	T2
	4000
	199
	Var.
	256x256
	4
	Single slice

	[22]
	Spin-echo T1
	400
	7.8
	-
	-
	6.5
	-

	[10]
	Fast-gradient-echo T1
	120
	4.2
	-
	-
	-
	-

	[29]
	Turbo-spin-echo T2
	-
	-
	-
	-
	-
	-

	[30]
	Gradient-echo T1
	76
	2.3 and 4.6
	5.3x5.3
	480x480 reconstruction
	10
	0.5

	[14]	Double-echo 
Gradient-echo T1
	112
	2.4 and 4.8
	5.3x5.3
	216x177 acquisition
512x512
reconstruction
	8
	2

	[26]
	Fast-spin-echo T1
	490
	12
	4.5 to 5.3
	256x178
	10
	10

	[27]
	Fast-spin-echo T1
	490
	 11
	4.8 to 5.6
	256x178.5
	10
	10

	[15]
	Fast-spin-echo T1
	490
	12
	4.5 to 5.3
	256x178
	10
	10



Table S4. Reasons for patient exclusion
	Reason
	Description/Example
	Count

	Extensive abdominal surgery
	colectomy, hemihepatectomy
	4

	Massive intra-abdominal pathology
	giant pancreatic pseudocyst, massive tumor
	4

	Multiple examinations of the same patient
	
	10

	Missing in/opposed phase protocol
	
	24

	Missing data
	informed consent, BMI, adequate L2-section
	34

	Inappropriate age
	under 6 years
	14

	Unsatisfactory image quality
	breathing artefacts, inadequate FOV
	15

	TOTAL
	
	105



S1 Figure 1 - Count of MRI Diagnoses


Table S5. Performance (Dice coefficient – mean ± standard deviation) of all three algorithms across patient groups
	GENDER
	
	Female
	Male
	p-value

	Otsu
	TAT
	0.9079±0.036
	0.9243±0.0274
	0.045

	
	SAT
	0.9644±0.0136
	0.9652±0.0168
	0.630

	
	VAT
	0.759±0.1121
	0.8209±0.0904
	0.019

	K-means
	TAT
	0.9012±0.0407
	0.9210±0.0280
	0.032

	
	SAT
	0.9643±0.0136
	0.9651±0.0169
	0.639

	
	VAT
	0.7584±0.1120
	0.8202±0.0907
	0.019

	Fuzzy C-means
	TAT
	0.9±0.0403
	0.9187±0.0292
	0.034

	
	SAT
	0.9634±0.0139
	0.9641±0.0171
	0.697

	
	VAT
	0.754±0.1116
	0.8145±0.0923
	0.013

	AGE GROUP
	
	Child
	Adult
	p-value

	Otsu
	TAT
	0.9293±0.0289
	0.9088±0.0334
	0.012

	
	SAT
	0.9731±0.0119
	0.961±0.0148
	< 0.01

	
	VAT
	0.7483±0.0942
	0.8032±0.1089
	0.017

	K-means
	TAT
	0.9220±0.0374
	0.9045±0.0356
	0.025

	
	SAT
	0.9730±0.012
	0.9609±0.0148
	< 0.01

	
	VAT
	0.7477±0.0943
	0.8026±0.1088
	0.017

	Fuzzy C-means
	TAT
	0.9209±0.0370
	0.9026±0.0356
	0.022

	
	SAT
	0.9723±0.0123
	0.9599±0.015
	0.02

	
	VAT
	0.7425±0.0945
	0.7977±0.109
	0.017

	WEIGHT CATEGORY
	
	Normal weight
	Overweight
	Obese
	p-value

	Otsu
	TAT
	0.8962±0.0331
	0.9061±0.0294
	0.937±0.0226
	<0.01

	
	SAT
	0.9599±0.0140
	0.9588±0.0144
	0.9728±0.0128
	<0.01

	
	VAT
	0.7358±0.1123
	0.8041±0.097
	0.8149±0.0976
	0.035

	K-means
	TAT
	0.8856±0.038
	0.9029±0.03
	0.9347±0.0229
	<0.01

	
	SAT
	0.9599±0.014
	0.9587±0.0145
	0.9727±0.0128
	<0.01

	
	VAT
	0.7352±0.1123
	0.8036±0.0968
	0.8141±0.0979
	0.037

	Fuzzy C-means
	TAT
	0.8847±0.0376
	0.9004±0.0308
	0.9329±0.0233
	<0.01

	
	SAT
	0.9591±0.0141
	0.9575±0.0146
	0.9719±0.0132
	<0.01

	
	VAT
	0.7314±0.1115
	0.7981±0.0972
	0.8086±0.0996
	0.043

	DIAGNOSIS TYPE
	
	Normal MRI
	Benign
	Malignant
	p-value

	Otsu
	TAT
	0.9314±0.0253
	0.9088±0.0358
	0.9149±0.0238
	0.062

	
	SAT
	0.9692±0.0137
	0.9647±0.0149
	0.9552±0.0155
	0.091

	
	VAT
	0.8016±0.1143
	0.7704±0.1075
	0.8390±0.0712
	0.173

	K-means
	TAT
	0.9269±0.0274
	0.9027±0.04
	.9127±0.0243
	0.077

	
	SAT
	0.9691±0.0137
	0.9646±0.0149
	0.9551±0.0156
	0.090

	
	VAT
	0.8013±0.1143
	0.7696±0.1073
	0.8387±0.0715
	0.160

	Fuzzy C-means
	TAT
	0.9252±0.0273
	0.9011±0.04
	0.9104±0.025
	0.092

	
	SAT
	0.9683±0.0136
	0.9637±0.0152
	0.9541±0.0158
	0.095

	
	VAT
	0.7692±0.1146
	0.7646±0.1074
	0.8343±0.0727
	0.166



Table S6. Cluster analysis targeting VAT segmentation performance
	Variable
	Characteristic
	Cluster 1
	Cluster 2
	Cluster 3
	Cluster 4
	Cluster 5
	p-value

	Count
	-
	7 (10.3%)
	13 (19.1%)
	14 (20.6%)
	19 (27.9%)
	15 (22.1%)
	-

	VAT Dice (Otsu)
	Mean
	0.7028
	0.7096
	0.7710
	0.8105
	0.8752
	<0.01

	
	StdDev
	0.0852
	0.0993
	0.0929
	0.1060
	0.0477
	

	
	Predictor importance
	0.34

	Age category
	Children
	7
(100%)
	0
(0%)
	14
(100%)
	0
(0%)
	0
(0%)
	<0.01

	
	Adults
	0
(0%)
	13
(100%)
	0
(0%)
	19
(100%)
	15
(100%)
	

	
	Predictor importance
	1

	Gender
	Female
	6
(85.7%)
	13
(100%)
	0
(0%)
	19
(100%)
	0
(0%)
	<0.01

	
	Male
	1
(14.3%)
	0
(0%)
	14
(100%)
	0
(0%)
	15
(100%)
	

	
	Predictor importance
	0.94

	Weight status 
	Normal weight
	5
(71.4%)
	13
(100%)
	0
(0%)
	0
(0%)
	4
(26.7%)
	<0.01

	
	Overweight or obese
	2
(28.6%)
	0
(0%)
	14
(100%)
	19
(100%)
	11
(73.3%)
	

	
	Predictor importance
	0.68



Table S7. Regression model for VAT Dice coefficient using Otsu threshold method
	Variable
	Parameter
	Values

	Constant
	B
	0.647

	
	BCa 95%CI
	0.592-0.697

	
	p-value
	<0.01

	Gender
	B
	0.076

	
	BCa 95%CI
	0.027-0.121

	
	p-value
	<0.01

	Age category
	B
	0.093

	
	BCa 95%CI
	0.047-0.138

	
	p-value
	<0.01

	Weight status
Dichotomized
	B
	0.062

	
	BCa 95%CI
	0.012-0.117

	
	p-value
	0.02



Table S8. Regression model for VAT surface accuracy improvement
	Variable
	Parameter
	Values

	Constant
	B
	7.224

	
	BCa 95%CI
	3.5-11.6

	
	p-value
	<0.01

	VAT surface (Otsu Threshold)
	B
	1.112

	
	BCa 95%CI
	1.063-1.157

	
	p-value
	<0.01

	Obesity
	B
	7.583

	
	BCa 95%CI
	1.978-13.035

	
	p-value
	0.014



Figure S2. Correlation between estimated and manually determined VAT surface 


Figure S3 – Bland-Altman plot for estimated VAT surface

Table S9. Regression model for SAT surface accuracy improvement
	Variable
	Parameter
	Values

	Constant
	B
	0.67

	
	BCa 95%CI
	-2.116-3.179

	
	p-value
	0.622

	SAT surface (Otsu Threshold)
	B
	1.037

	
	BCa 95%CI
	1.020-1.056

	
	p-value
	<0.01

	Age Category
	B
	3.337

	
	BCa 95%CI
	1.134-5.674

	
	p-value
	<0.01



Figure S4. Correlation between estimated and manually determined SAT surface


[bookmark: _Hlk141491655]Figure S5. Bland-Altman plot for estimated SAT surface

Table S10. Adipose tissue proportions across patient groups
	Parameter
	Values
	VAT/TAT %
	p-val.
	VAT/SAT ratio
	p-val.

	Gender
	Female
	34.03±12.06
	0.122
	0.57±0.33
	0.208

	
	Male
	40.01±17.87
	
	0.85±0.64
	

	Age category
	Children
	24.72±8.62
	<0.01
	0.35±0.17
	<0.01

	
	Adults
	42±14.31
	
	0.85±0.53
	

	Weight status
	Normal
	36.99±13.79
	0.026
	0.68±0.45
	0.042

	
	Overweight
	43.59±16.51
	
	0.95±0.65
	

	
	Obese
	31.52±13.46
	
	0.53±0.36
	

	Diagnosis type
	Normal
	33.48±13.8
	0.210
	0.58±0.39
	0.302

	
	Benign
	36.4±15.18
	
	0.69±0.52
	

	
	Malignant
	44.88±16.02
	
	0.96±0.6
	



Table S11. Adipose tissue surfaces across patient groups in adults
	Parameter
	Values
	VAT 
(cm2)
	p-val.
	SAT (cm2)
	p-val.
	TAT
(cm2) 
	p-val.

	Gender
	Female
	102.1±75.9
	<0.01
	171±89.1
	0.465
	273.1±148.2
	0.115

	
	Male
	177.8±59
	
	142.6±49.9
	
	320.4±84
	

	Weight status
	Normal
	74±52.9
	<0.01
	103.5±43.7
	<0.01
	177.5±83.2
	<0.01

	
	Overweight
	137.9±75
	
	147.5±47.8
	
	285.4±86.2
	

	
	Obese
	179.5±73.7
	
	257.1±59.9
	
	436±80.7
	

	Diagnosis type
	Normal
	144.2±43.4
	0.176
	214.6±80.4
	0.049
	358.8±86.1
	0.03

	
	Benign
	113.5±85.3
	
	141.6±71.6
	
	255±136.3
	

	
	Malignant
	153.9±80.8
	
	179±83.8
	
	333±126
	



Table S12. Adipose tissue proportions across patient groups in adults
	Parameter
	Values
	VAT/TAT %
	p-val.
	VAT/SAT ratio
	p-val.

	Gender
	Female
	35.75±11.42
	<0.01
	0.61±0.32
	<0.01

	
	Male
	55.34±10.21
	
	1.35±0.54
	

	Weight status
	Normal
	39.39±13.89
	0.385
	0.75±0.47
	0.444

	
	Overweight
	45.84±15.78
	
	1.02±0.65
	

	
	Obese
	40.40±12.75
	
	0.75±0.4
	

	Diagnosis type
	Normal
	41.63±13.08
	0.829
	0.79±0.42
	0.891

	
	Benign
	41.35±14.59
	
	0.83±0.55
	

	
	Malignant
	44.88±16.02
	
	0.96±0.6
	



Table S13. Correlations between adipose tissue quantifiers and BMI in adults
	Correlation
	Pearson correlation coefficient
	p-value

	TAT surface & BMI
	0.792
	<0.01

	VAT/TAT% & BMI
	-
	0.539

	
	Spearmans Rho
	

	VAT surface & BMI
	0.623
	<0.01

	SAT surface & BMI
	0.782
	<0.01

	VAT/SAT ratio & BMI
	-
	0.480





S1 Figure 6. Visceral adipose tissue-BMI correlation

S1 Figure 7. Somatic adipose tissue-BMI correlation

S1 Figure 8. Total adipose tissue-BMI correlation
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