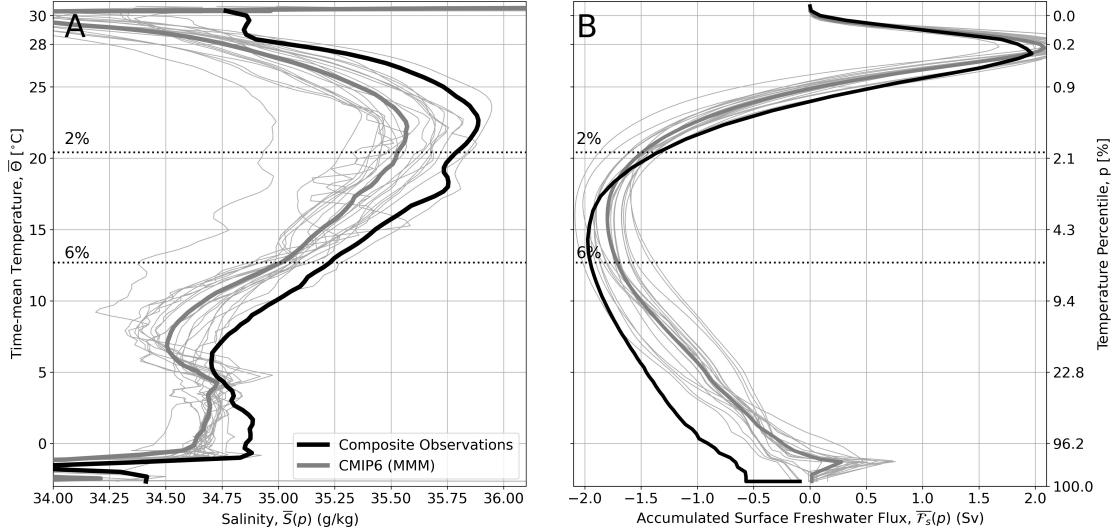


¹ Supplementary Information: “Freshwater transport from warm to
² cold ocean regions amplifying faster than all model estimates”

³ Taimoor Sohail¹, Jan D. Zika¹, Damien B. Irving², and John A. Church³

⁴ ¹School of Mathematics and Statistics, University of New South Wales, Sydney, Australia

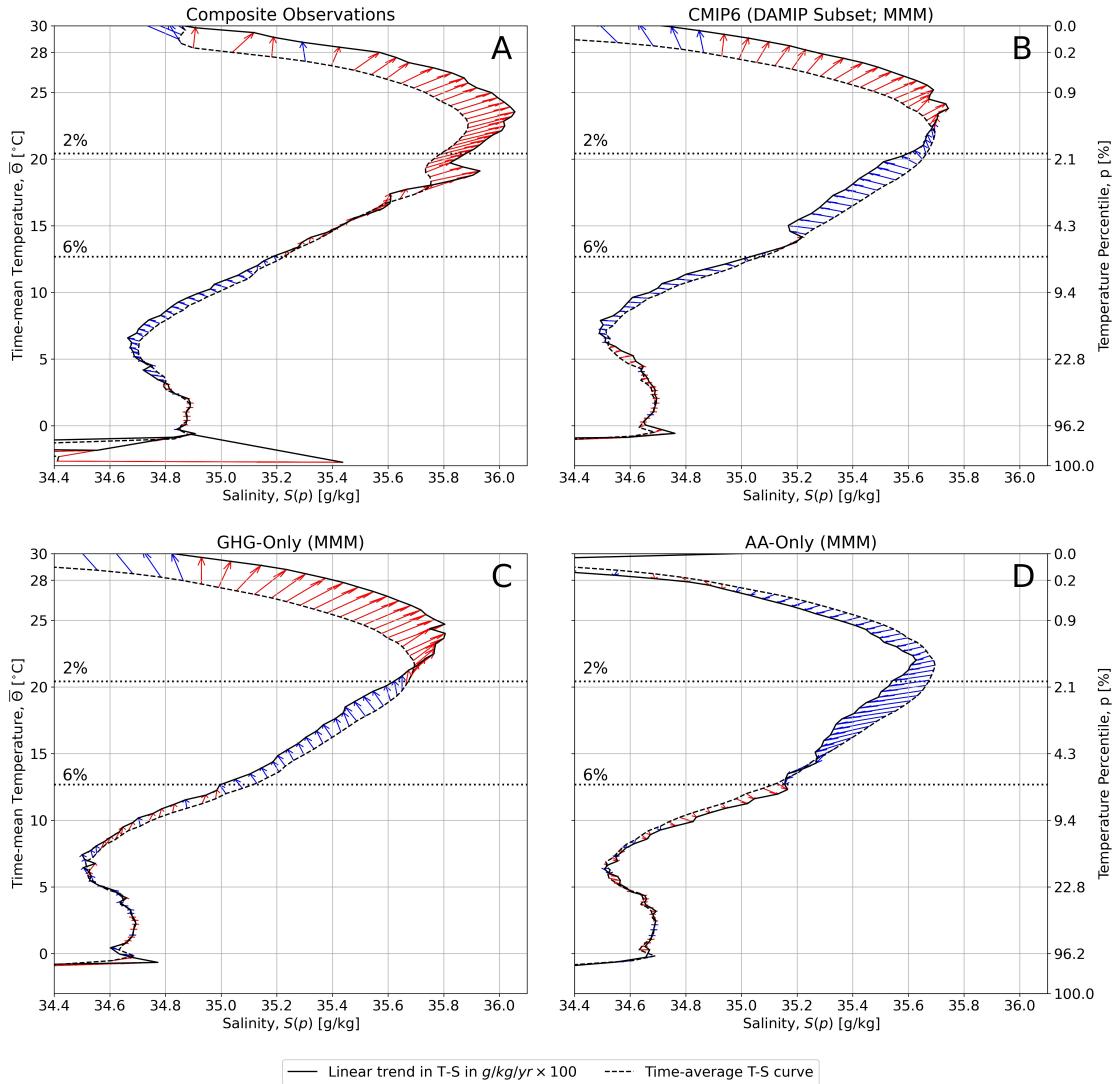
⁵ ²Commonwealth Scientific and Industrial Research Organisation (CSIRO), Hobart,


⁶ Australia

⁷ ³Climate Change Research Centre, University of New South Wales, Sydney, Australia

⁸ July 16, 2021

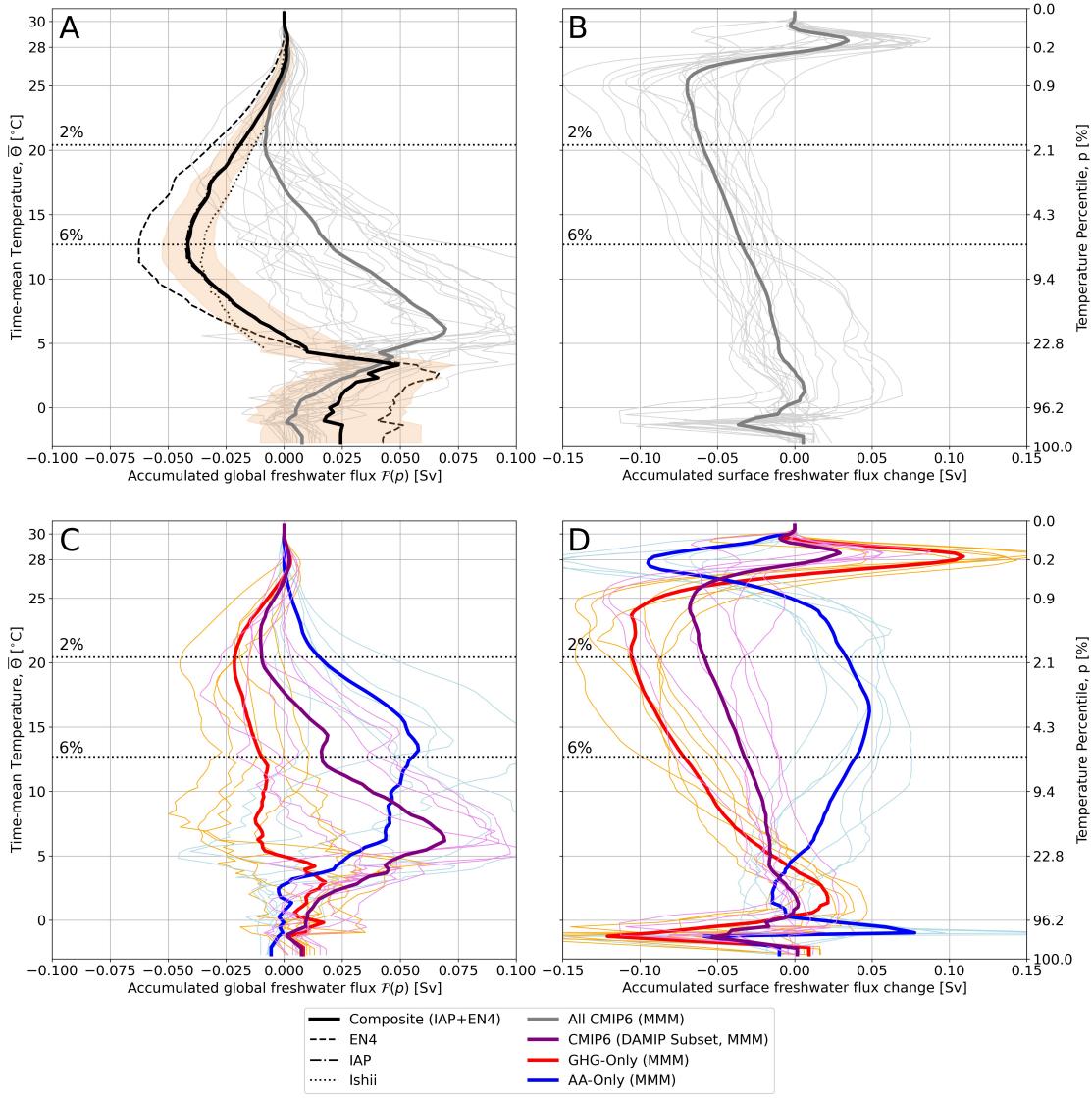
⁹ 1 Time-mean T–S curve and surface freshwater fluxes


¹⁰ Understanding the change in freshwater content in the global ocean requires an understanding of the time-
¹¹ mean climatological state of the ocean, shown in figure S1. The T–S curve in figure S1a shows that,
¹² generally, the tropical and sub-polar oceans are characterised by relatively fresh water, and the sub-tropics
¹³ are characterised by relatively salty water. This clear distinction between climatological regions is driven in
¹⁴ part by surface water fluxes which, on average, dump freshwater into the tropics and sub-polar regions via
¹⁵ precipitation and river runoff and draw freshwater from the sub-tropics via evaporation (figure S1b). In a
¹⁶ ‘wet-gets-wetter-dry-gets-drier’ world, the T–S curve would move to the right in the sub-tropics and to the left
¹⁷ in the tropics and sub-polar oceans, with the T–S extrema moving further apart. While the CMIP6 models
¹⁸ recreate the shape of the T–S curve seen in the observations, the majority are biased fresh compared to the
¹⁹ observations. This difference may be due to the fact that the CMIP6 mean T–S curve is calculated based
²⁰ on a pre-industrial control run (prior to 1850), while the observational mean T–S curve is calculated based
²¹ on an average from 1970 to 2014. The surface freshwater flux (integrated from hot to cold) shows that the
²² CMIP6 ensemble-mean and observations roughly align in warmer temperature-percentiles. However, there is
²³ a relative lack of agreement between observations and CMIP6 models in colder temperature-percentiles. The
²⁴ observational data set does not include the contribution of sea ice (peak in freshening at coldest temperature-
²⁵ percentiles in the CMIP6 models), and thus disagrees with CMIP6 at the coldest percentiles.

26 Figure S1: Global a) T-S curve averaged from 1970 to 2014 in the observations and over the pre-industrial
 27 control period in the CMIP6 models, and b) surface freshwater fluxes \mathcal{F}_s , averaged over the 1979-2011
 28 period in the observations and over the pre-industrial control period in the CMIP6 models. Light grey lines
 29 represent each CMIP6 model member, and thick grey line represents the CMIP6 multi-model mean (MMM).
 30 The right-hand y-axis shows the corresponding accumulated temperature-percentile in observations, and
 31 horizontal dotted lines indicate the warmest 2% and warmest 6% of the ocean by volume.

32 2 T-S Changes

33 As shown in figure 2, we track changes in the ocean's T-S curve in the observations and CMIP6 multi-model
 34 mean to understand changes in salinity over the past fifty years. Here we present changes in the T-S curve
 35 in the DAMIP GHG-only, AA-only and corresponding CMIP6 historical runs, shown in figure S2b, c and
 36 d, respectively. The multi-model mean T-S change in the six CMIP6 historical runs corresponding to the
 37 DAMIP models is similar to the multi-model mean change for all CMIP6 models in figure 2b. The GHG-only
 38 multi-model mean T-S change exhibits a larger magnitude of salinification to the all forcing ensemble-mean
 39 over a similarly narrow band of temperature-percentiles, between the warmest $\sim 0.2\%$ and 2% of the ocean.
 40 AAs, on the other hand, drive an opposite trend in water cycle change, with the sub-tropics getting fresher
 41 and the rest of the ocean salinifying. The freshening signal in the sub-tropics in the AA-only mean is
 42 roughly of equal and opposite magnitude to the salinification signal in the observations, over a similar range
 43 of temperature-percentiles.


33 Figure S2: Linear trend in the global $T-S$ curve, in $g/kg/yr \times 100$, in a) observations, b) the DAMIP all
 34 forcing, c) GHG-only and Aerosol-only multi-model means (MMM). Arrow vectors are coloured by the sign
 35 of the salinity change, red implying salinification and blue implying freshening. The right-hand y-axis shows
 36 the corresponding accumulated temperature-percentile in observations.

48 3 Freshwater Flux Changes

57 While figures 3 and 4 focus on freshwater fluxes and surface freshwater fluxes in the warmest 2% and warmest
58 6% of the ocean, in figure S3 we present freshwater fluxes for all percentiles, integrated from hot (0%) to
59 cold (100%). As these plots are integrated from hot to cold, the sign of the slope of the lines indicates a
60 freshening or salinification. The observations and CMIP6 models freshen in the warmest \sim 0.2% of the ocean,
61 before salinifying in the warmest 6% and 2% of the ocean, respectively (see figure S3a). This salinification
62 has been discussed at length in the main text of the manuscript. In the warmest \sim 22.8% of the ocean,
63 the CMIP6 models experience a strong peak in freshening, which is not replicated in the observations. To
64 explore the extent to which the global freshwater fluxes are modulated by surface freshwater fluxes, we
65 visualise the integrated surface freshwater fluxes in the observations and CMIP6 mean in figure S3b. There
66 is an increase in precipitation over the warmest 0.2% of the ocean, followed by net increase in evaporation
67 (relative to precipitation and river runoff) over a narrow band of temperature-percentiles. The range of
68 temperature-percentiles that experience an intensification of evaporation does not align with the broader
69 range of percentiles over which salinification occurs in the CMIP6 mean. Therefore, there is some component
70 of circulation and mixing changes that impacts the salinification in the global freshwater fluxes in panel S3a.
71 In addition, the surface freshwater fluxes show a net evaporation over the warmest \sim 22.8% of the ocean,
72 despite the global freshening in this volume shown in panel S3a. Therefore, we posit that the peak freshening
73 seen here is a consequence of changes in ocean circulation and mixing, possibly due to changes in high-latitude
74 ocean ventilation.

75 Figure S3c and d show the global and surface freshwater flux changes in the observations, CMIP6 mean, and
76 the DAMIP runs. GHG-forced DAMIP models show a stronger salinification up to the warmest 2% of the
77 ocean compared to the corresponding CMIP6 historical runs (compare red/orange lines with purple/magenta
78 lines in figure S3c). In addition, the strong freshening between the warmest 2% and warmest \sim 22.8% of
79 the ocean in the CMIP6 historical runs is not replicated in a GHG-only simulation, with little freshwater
80 change in these layers. AA-only simulations instead show a strong freshening in the warmest 6% of the
81 ocean (blue/light blue lines in figure S3c). The GHGs and AAs in the climate models interact in a complex
82 manner to yield the CMIP6 historical response - a weak salinification in the warmest 2% of the ocean and
83 strong freshening in the warmest \sim 22.8% of the ocean (purple/magenta lines in figure S3c).

84 The stark difference in global freshwater fluxes in the GHG-only and AA-only runs may be explained, in
85 part, by the surface flux tendencies in figure S3d. The stronger freshening and salinification in the warmest
86 2% ocean in the GHG-only runs may, in part, be attributed to stronger increased net precipitation and
87 evaporation in the surface freshwater fluxes in figure S3d. In addition, the GHG-only runs experience similar
88 net evaporation over the warmest \sim 22.8% of the ocean compared with the all-forcing runs, but do not
89 experience the same peak in freshening as in the corresponding CMIP6 historical runs. We propose that
90 the strong evaporation in the GHG-only runs at warmer percentiles and/or circulation changes may explain
91 the lack of a freshening peak in the GHG-only runs. The AA-only runs show broadly the opposite trend in
92 surface freshwater flux tendencies to the GHG-only and all-forcing runs.

49 Figure S3: a) The global freshwater accumulation rate, integrated from hot to cold, inferred from the salinity
50 tendency in observations and the CMIP6 models. b) The surface freshwater flux change, integrated from
51 hot to cold, in the CMIP6 models. c) The global freshwater accumulation rate, integrated from hot to cold,
52 inferred from the salinity tendency in the DAMIP models and corresponding CMIP6 historical runs. d) The
53 surface freshwater flux change, integrated from hot to cold, in the DAMIP model and corresponding CMIP6
54 historical runs. Orange shading in a) shows the standard error of the slope of the linear regression over
55 time. The right-hand y-axis shows the corresponding temperature-percentile in the observational dataset.
56 Horizontal dotted lines indicate the warmest 2% and warmest 6% of the ocean.

93 **4 Summary of CMIP6 and DAMIP models**

94 Table [S1](#) summarises the CMIP6 models and ensemble members used in this study. Only the first ensemble
95 member was used from each model.

96 Table [S2](#) summarises the DAMIP models and ensemble members used in this study.

	Model Name	Ensemble Member	Group	Data Citations
1	ACCESS-CM2	r1i1p1f1	Salty	[30]
2	ACCESS-ESM1-5	r1i1p1f1	Salty	[31]
3	CanESM5	r1i1p1f1	Fresh	[32]
4	CanESM5-CanOE	r1i1p2f1	Fresh	[33]
5	CMCC-CM2-SR5	r1i1p1f1	Salty	[34]
6	CNRM-CM6-1	r1i1p1f2	Fresh	[35]
7	CNRM-ESM2-1	r1i1p1f2	Fresh	[36]
8	EC-Earth3	r1i1p1f1	Salty	[37]
9	EC-Earth3-Veg	r1i1p1f1	Fresh	[38]
10	EC-Earth3-Veg-LR	r1i1p1f1	Fresh	[39]
11	FGOALS-f3-L	r1i1p1f1	Fresh	[40]
12	HadGEM3-GC31-LL	r1i1p1f3	Fresh	[41]
13	IPSL-CM6A-LR	r1i1p1f1	Salty	[42]
14	MIROC-ES2L	r1i1p1f2	Salty	[43]
15	MPI-ESM-1-2-HAM	r1i1p1f1	Salty	[44]
16	MPI-ESM1-2-HR	r1i1p1f1	Salty	[45]
17	MPI-ESM1-2-LR	r1i1p1f1	Salty	[46]
18	NorESM2-LM	r1i1p1f1	Fresh	[47]
19	NorESM2-MM	r1i1p1f1	Salty	[48]
20	UKESM1-0-LL	r1i1p1f2	Fresh	[49]

Table S1: Suite of CMIP6 models used in this study.

	Model Name	Ensemble Member	Data Citations
1	ACCESS-CM2	r1i1p1f1	[50]
2	ACCESS-ESM1-5	r1i1p1f1	[51]
3	CanESM5	r1i1p1f1	[52]
4	CNRM-CM6-1	r1i1p1f2	[53]
5	HadGEM3-GC31-LL	r1i1p1f3	[54]
6	IPSL-CM6A-LR	r9i1p1f1	[55]

Table S2: Suite of DAMIP models used in this study.

97 References

98 [30] Martin Dix, Doahua Bi, Peter Dobrohotoff, Russell Fiedler, Ian Harman, Rachel Law, Chloe Mackallah,
99 Simon Marsland, Siobhan O'Farrell, Harun Rashid, Jhan Srbinsky, Arnold Sullivan, Claire Trenham,
100 Peter Vohralik, Ian Watterson, Gareth Williams, Matthew Woodhouse, Roger Bodman, Fabio Boeira
101 Dias, Catia Domingues, Nicholas Hannah, Aidan Heerdegen, Abhishek Savita, Scott Wales, Chris Allen,
102 Kelsey Druken, Ben Evans, Clare Richards, Syazwan Mohamed Ridzwan, Dale Roberts, Jon Smillie,
103 Kate Snow, Marshall Ward, and Rui Yang. CSIRO-ARCCSS ACCESS-CM2 model output prepared for
104 CMIP6 CMIP. *Earth System Grid Federation*, 2019. Version 20191108.

105 [31] Tilo Ziehn, Matthew Chamberlain, Andrew Lenton, Rachel Law, Roger Bodman, Martin Dix, Yingping
106 Wang, Peter Dobrohotoff, Jhan Srbinsky, Lauren Stevens, Peter Vohralik, Chloe Mackallah, Arnold
107 Sullivan, Siobhan O'Farrell, and Kelsey Druken. CSIRO ACCESS-ESM1.5 model output prepared for
108 CMIP6 CMIP. *Earth System Grid Federation*, 2019. Version 20191214.

109 [32] Neil Cameron Swart, Jason N.S. Cole, Viatcheslav V. Kharin, Mike Lazare, John F. Scinocca, Nathan P.
110 Gillett, James Anstey, Vivek Arora, James R. Christian, Yanjun Jiao, Warren G. Lee, Fouad Majaess,
111 Oleg A. Saenko, Christian Seiler, Clint Seinen, Andrew Shao, Larry Solheim, Knut von Salzen, Duo
112 Yang, Barbara Winter, and Michael Sigmond. CCCma CanESM5 model output prepared for CMIP6
113 CMIP. *Earth System Grid Federation*, 2019. Version 20190429.

114 [33] Neil Cameron Swart, Jason N.S. Cole, Viatcheslav V. Kharin, Mike Lazare, John F. Scinocca, Nathan P.
115 Gillett, James Anstey, Vivek Arora, James R. Christian, Yanjun Jiao, Warren G. Lee, Fouad Majaess,
116 Oleg A. Saenko, Christian Seiler, Clint Seinen, Andrew Shao, Larry Solheim, Knut von Salzen, Duo
117 Yang, Barbara Winter, and Michael Sigmond. CCCma CanESM5-CanOE model output prepared for
118 CMIP6 CMIP. *Earth System Grid Federation*, 2019. Version 20190429.

119 [34] Tomas Lovato and Daniele Peano. CMCC CMCC-CM2-SR5 model output prepared for CMIP6 CMIP.
120 *Earth System Grid Federation*, 2020.

121 [35] Aurore Volodire. CNRM-CERFACS CNRM-CM6-1 model output prepared for CMIP6 CMIP. *Earth
122 System Grid Federation*, 2018. Version 20180917.

123 [36] Roland Seferian. CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 CMIP. *Earth
124 System Grid Federation*, 2018. Version 20181206.

125 [37] EC-Earth. EC-Earth-Consortium EC-Earth3 model output prepared for CMIP6 CMIP. *Earth System
126 Grid Federation*, 2019. Version 20200310.

127 [38] EC-Earth. EC-Earth-Consortium EC-Earth3-Veg model output prepared for CMIP6 CMIP. *Earth
128 System Grid Federation*, 2019. Version 20200225.

129 [39] EC-Earth. EC-Earth-Consortium EC-Earth3-Veg-LR model output prepared for CMIP6 CMIP. *Earth
130 System Grid Federation*, 2020.

131 [40] Yongqiang Yu. CAS FGOALS-f3-L model output prepared for CMIP6 CMIP. *Earth System Grid
132 Federation*, 2018.

133 [41] Jeff Ridley, Matthew Menary, Till Kuhlbrodt, Martin Andrews, and Tim Andrews. MOHC HadGEM3-
134 GC31-LL model output prepared for CMIP6 CMIP. *Earth System Grid Federation*, 2018. Version
135 20190628.

136 [42] Olivier Boucher, Sébastien Denvil, Guillaume Levavasseur, Anne Cozic, Arnaud Caubel, Maire-Alice
137 Foujols, Yann Meurdesoif, Particia Cadule, Marion Devilliers, Josefine Ghattas, Nicolas Lebas, Thibaut
138 Lurton, Lidia Mellul, Ionela Musat, Juliette Mignot, and Frédérique Cheruy. IPSL IPSL-CM6A-LR
139 model output prepared for CMIP6 CMIP. *Earth System Grid Federation*, 2018. Version 20180803.

140 [43] Tomohiro Hajima, Manabu Abe, Osamu Arakawa, Tatsuo Suzuki, Yoshiki Komuro, Tomoo Ogura,
 141 Koji Ogochi, Michio Watanabe, Akitomo Yamamoto, Hiroaki Tatebe, Maki A. Noguchi, Rumi Ohgaito,
 142 Akinori Ito, Dai Yamazaki, Akihiko Ito, Kumiko Takata, Shingo Watanabe, Michio Kawamiya, and
 143 Kaoru Tachiiri. MIROC MIROC-ES2L model output prepared for CMIP6 CMIP. *Earth System Grid
 144 Federation*, 2019.

145 [44] David Neubauer, Sylvaine Ferrachat, Colombe Siegenthaler-Le Drian, Jens Stoll, Doris Sylvia Folini,
 146 Ina Tegen, Karl-Hermann Wieners, Thorsten Mauritsen, Irene Stemmler, Stefan Barthel, Isabelle Bey,
 147 Nikos Daskalakis, Bernd Heinold, Harri Kokkola, Daniel Partridge, Sebastian Rast, Hauke Schmidt,
 148 Nick Schutgens, Tanja Stanelle, Philip Stier, Duncan Watson-Parris, and Ulrike Lohmann. HAMMOZ-
 149 Consortium MPI-ESM1.2-HAM model output prepared for CMIP6 CMIP. *Earth System Grid Federation*, 2019. Version 20190627.

150 [45] Johann Jungclaus, Matthias Bittner, Karl-Hermann Wieners, Fabian Wachsmann, Martin Schupfner,
 151 Stephanie Legutke, Marco Giorgetta, Christian Reick, Veronika Gayler, Helmuth Haak, Philipp de
 152 Vrese, Thomas Raddatz, Monika Esch, Thorsten Mauritsen, Jin-Song von Storch, Jörg Behrens, Victor
 153 Brovkin, Martin Claussen, Traute Crueger, Irina Fast, Stephanie Fiedler, Stefan Hagemann, Cathy
 154 Hohenegger, Thomas Jahns, Silvia Kloster, Stefan Kinne, Gitta Lasslop, Luis Kornblueh, Jochem
 155 Marotzke, Daniela Matei, Katharina Meraner, Uwe Mikolajewicz, Kameswarrao Modali, Wolfgang
 156 Müller, Julia Nabel, Dirk Notz, Karsten Peters, Robert Pincus, Holger Pohlmann, Julia Pongratz,
 157 Sebastian Rast, Hauke Schmidt, Reiner Schnur, Uwe Schulzweida, Katharina Six, Bjorn Stevens, Aiko
 158 Voigt, and Erich Roeckner. MPI-M MPIESM1.2-HR model output prepared for CMIP6 CMIP. *Earth
 159 System Grid Federation*, 2019. Version 20190710.

160 [46] Karl-Hermann Wieners, Marco Giorgetta, Johann Jungclaus, Christian Reick, Monika Esch, Matthias
 161 Bittner, Stephanie Legutke, Martin Schupfner, Fabian Wachsmann, Veronika Gayler, Helmuth Haak,
 162 Philipp de Vrese, Thomas Raddatz, Thorsten Mauritsen, Jin-Song von Storch, Jörg Behrens, Victor
 163 Brovkin, Martin Claussen, Traute Crueger, Irina Fast, Stephanie Fiedler, Stefan Hagemann, Cathy
 164 Hohenegger, Thomas Jahns, Silvia Kloster, Stefan Kinne, Gitta Lasslop, Luis Kornblueh, Jochem
 165 Marotzke, Daniela Matei, Katharina Meraner, Uwe Mikolajewicz, Kameswarrao Modali, Wolfgang
 166 Müller, Julia Nabel, Dirk Notz, Karsten Peters, Robert Pincus, Holger Pohlmann, Julia Pongratz,
 167 Sebastian Rast, Hauke Schmidt, Reiner Schnur, Uwe Schulzweida, Katharina Six, Bjorn Stevens, Aiko
 168 Voigt, and Erich Roeckner. MPI-M MPIESM1.2-LR model output prepared for CMIP6 CMIP. *Earth
 169 System Grid Federation*, 2019. Version 20190710.

170 [47] Oyvind Seland, Mats Bentsen, Dirk Jan Leo Olivière, Thomas Toniazzo, Ada Gjermundsen, Lise Seland
 171 Graff, Jens Boldingh Debernard, Alok Kumar Gupta, Yanchun He, Alf Kirkev, Jørg Schwinger, Jerry
 172 Tjiputra, Kjetil Schanke Aas, Ingo Bethke, Yuanchao Fan, Jan Griesfeller, Alf Grini, Chuncheng Guo,
 173 Mehmet Ilicak, Inger Helene Hafsaal Karset, Oskar Andreas Landgren, Johan Liakka, Kine Onsum
 174 Moseid, Aleksi Nummelin, Clemens Spensberger, Hui Tang, Zhongshi Zhang, Christoph Heinze, Trond
 175 Iversen, and Michael Schulz. NCC NorESM2-LM model output prepared for CMIP6 CMIP. *Earth
 176 System Grid Federation*, 2019. Version 20190920.

177 [48] Mats Bentsen, Dirk Jan Leo Olivière, yvind Seland, Thomas Toniazzo, Ada Gjermundsen, Lise Seland
 178 Graff, Jens Boldingh Debernard, Alok Kumar Gupta, Yanchun He, Alf Kirkev, Jørg Schwinger, Jerry
 179 Tjiputra, Kjetil Schanke Aas, Ingo Bethke, Yuanchao Fan, Jan Griesfeller, Alf Grini, Chuncheng Guo,
 180 Mehmet Ilicak, Inger Helene Hafsaal Karset, Oskar Andreas Landgren, Johan Liakka, Kine Onsum
 181 Moseid, Aleksi Nummelin, Clemens Spensberger, Hui Tang, Zhongshi Zhang, Christoph Heinze, Trond
 182 Iversen, and Michael Schulz. NCC NorESM2-MM model output prepared for CMIP6 CMIP. *Earth
 183 System Grid Federation*, 2019. Version 20191108.

184 [49] Yongming Tang, Steve Rumbold, Rich Ellis, Douglas Kelley, Jane Mulcahy, Alistair Sellar, Jeremy
 185 Walton, and Colin Jones. OHC UKESM1.0-LL model output prepared for CMIP6 CMIP. *Earth
 186 System Grid Federation*, 2019. Version 20190627.

188 [50] Martin Dix, Doahua Bi, Peter Dobrohotoff, Russell Fiedler, Ian Harman, Rachel Law, Chloe Mackallah,
189 Simon Marsland, Siobhan O'Farrell, Harun Rashid, Jhan Srbinsky, Arnold Sullivan, Claire Trenham,
190 Peter Vohralik, Ian Watterson, Gareth Williams, Matthew Woodhouse, Roger Bodman, Fabio Boeira
191 Dias, Catia Domingues, Nicholas Hannah, Aidan Heerdegen, Abhishek Savita, Scott Wales, Chris Allen,
192 Kelsey Druken, Ben Evans, Clare Richards, Syazwan Mohamed Ridzwan, Dale Roberts, Jon Smillie,
193 Kate Snow, Marshall Ward, and Rui Yang. CSIRO-ARCCSS ACCESS-CM2 model output prepared for
194 CMIP6 DAMIP. *Earth System Grid Federation*, 2019. Version 20191112.

195 [51] Tilo Ziehn, Matthew Chamberlain, Andrew Lenton, Rachel Law, Roger Bodman, Martin Dix, Yingping
196 Wang, Peter Dobrohotoff, Jhan Srbinsky, Lauren Stevens, Peter Vohralik, Chloe Mackallah, Arnold
197 Sullivan, Siobhan O'Farrell, and Kelsey Druken. CSIRO ACCESS-ESM1.5 model output prepared for
198 CMIP6 DAMIP. *Earth System Grid Federation*, 2019. Version 20191115.

199 [52] Neil Cameron Swart, Jason N.S. Cole, Viatcheslav V. Kharin, Mike Lazare, John F. Scinocca, Nathan P.
200 Gillett, James Anstey, Vivek Arora, James R. Christian, Yanjun Jiao, Warren G. Lee, Fouad Majaess,
201 Oleg A. Saenko, Christian Seiler, Clint Seinen, Andrew Shao, Larry Solheim, Knut von Salzen, Duo
202 Yang, Barbara Winter, and Michael Sigmond. CCCma CanESM5 model output prepared for CMIP6
203 DAMIP. *Earth System Grid Federation*, 2019. Version 20190429.

204 [53] Aurore Volodire. CNRM-CERFACS CNRM-CM6-1 model output prepared for CMIP6 DAMIP. *Earth*
205 *System Grid Federation*, 2019. Version 20180814.

206 [54] Gareth Jones. MOHC HadGEM3-GC31-LL model output prepared for CMIP6 DAMIP. *Earth System*
207 *Grid Federation*, 2019.

208 [55] Olivier Boucher, Sébastien Denvil, Guillaume Levavasseur, Anne Cozic, Arnaud Caubel, Marie-Alice
209 Foujols, Yann Muerdesoif, and Guillaume Gastineau. IPSL IPSL-CM6A-LR model output prepared for
210 CMIP6 DAMIP. *Earth System Grid Federation*, 2018. Version 20190522.