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1. SCAPS -1D Theory
The widely used SCAPS -1D software solves fundamental equations that govern charge transport, generation, recombination and electric field distribution in a simulated solar cell device [1], [2]. It utilizes Gummel iteration method utilizing Newton-Raphson sub steps in solving coupled partial differential equations, that are solved across all the layers in a solar cell device under certain boundary conditions [1], [2], [3], [4]. A system of coupled differential equations, Poisson’s equation for electron and holes (1), equation of continuity for hole and electron (2), and the carrier transport equations for hole and electron (3), are solved to extract key performance metrics: [5]
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Here,  and  Corresponds to the electric potential and electric field,  is the electric charge.  , , , , ,  are the permittivity of Vacuum, relative permittivity of the material, hole and electron free carrier concentration, Donor and Acceptor Concentration and hole and electron distribution. This equation determines the electrostatic potential across the device setting the condition for charge transport. The continuity equations for electron and holes ensures conservation of charge: [5]
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Where,  and  is the Generation and Recombination rate of electron and hole pair. These two equations determine how charge carriers move and interact within the device. The drift-diffusion model is used to describe the electron and hole currents: [1], [5]
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Both hole and electron current consist of two terms, where the first term is for diffusion containing discussion coefficient  or and the second one is for drift where the mobility of hole and the mobility of electron  plays the key role.  These equations account for carrier transport due to drift in the electric field and diffusion due to concentration gradients. 


2. Highest Occupied Crystal Orbital (HOCO) and the Lowest Unoccupied Crystal Orbital (LUCO) figures:
	[image: A group of balls in a row

AI-generated content may be incorrect.](b)
(a)

	[image: A green and blue spheres

AI-generated content may be incorrect.]

	[image: A yellow and blue spheres

AI-generated content may be incorrect.](c)

	

	[image: A close-up of a molecule

AI-generated content may be incorrect.](d)

	[image: A green and blue spheres

AI-generated content may be incorrect.](e)


	[image: A yellow and blue spheres

AI-generated content may be incorrect.](f)

	






	[image: A close-up of a molecule

AI-generated content may be incorrect.](g)

	[image: A diagram of a cell

AI-generated content may be incorrect.](h)


	[image: A green and blue objects with white squares

AI-generated content may be incorrect.](i)

	[image: A yellow and blue spheres

AI-generated content may be incorrect.](j)




Figure S1: The HOCO (b), (e), (i) and LUCO (c), (f), (j) of pure CsGeCl3, CsGe0.875Mn0.125Cl3, and CsGe0.875Fe0.125Cl3 respectively. (h) is the active orbital of CsGe0.875Fe0.125Cl3 at fermi level.


3. Recombination Coefficient Analysis
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Figure S2: PCE across range of varied Auger Recombination ) and Radiative Recombination Coefficient  with different ETL.

3. Total Work Flow Diagram
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AI-generated content may be incorrect.]Figure S3:  Computational workflow for the extraction of self-consistent parameters for device simulation.
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