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Supplementary Fig. 1 | Schematic of the three possible reaction paths in converting17
Li2S2 to Li2S. a, *Li2S2 - *LiS - *Li2S. b, *Li2S2 - *Li3S2 - *LiS - *Li2S. c, *Li2S2 - *S18
- *Li2S. The yellow and green spheres represent the S and Li atoms, respectively.19
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22
23

Supplementary Fig. 2 | The detailed reaction equation for the formation of three24
possible intermediates (*LiS, *Li3S2, and *S) during the Li2S2 to Li2S reaction’s three25
possible reaction paths.26
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28
29

Supplementary Fig. 3 | The DOS of each transition state of a, *Li2S2 - *LiS - *Li2S,30
b, *Li2S2 - *Li3S2 - *LiS - *Li2S, c, *Li2S2 - *S - *Li2S.31
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34

35
Supplementary Fig. 4 | Schematic of the degeneracy of molecular orbitals in path 1,36
(Li2S2 - LiS - Li2S).37
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39

40
Supplementary Fig. 5 | Schematic of the degeneracy of molecular orbitals in path 241
(Li2S2 - Li3S2 - LiS - Li2S).42
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45

46
Supplementary Fig. 6 | Schematic of the degeneracy of molecular orbitals in path 347
(Li2S2 - S - Li2S).48
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50

51
Supplementary Fig. 7 | The optimized structures of pristine MoS2 and ten MoS252
materials doped with two different atoms.53
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55
56

Supplementary Fig. 8 | The optimized structures of the initial state *Li2S2, three57
intermediates (*LiS, *Li3S2, and *S), and the final state *Li2S on the MoS2 surface.58
Yellow, blue, and green spheres denote S, Mo, and Li atoms, respectively.59
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62

63
Supplementary Fig. 9 | The optimized structures of initial state *Li2S2, three64
intermediates (*LiS, *Li3S2, and *S), and final state *Li2S on the Co,V-MoS2 surface.65
Yellow, blue, slight blue, cyan, and pink spheres denote S, Mo, Li, V, and Co atoms,66
respectively.67
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71
72

Supplementary Fig. 10 | The optimized structures of initial state *Li2S2, three73
intermediates (*LiS, *Li3S2, and *S), and final state *Li2S on the Co,Mn-MoS274
surface. Yellow, blue, slight blue, purple, and pink spheres denote S, Mo, Li, Mn, and75
Co atoms, respectively.76
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80
81

Supplementary Fig. 11 | The optimized structures of initial state *Li2S2, three82
intermediates (*LiS, *Li3S2, and *S), and final state *Li2S on the Co,Ni-MoS2 surface.83
Yellow, blue, slight blue, green, and pink spheres denote S, Mo, Li, Ni, and Co atoms,84
respectively.85
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Supplementary Fig. 12 | Schematic of the Gibbs free energy charge (G) between90
Li2S2, Li2S, and the different intermediates.91
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93
94

Supplementary Fig. 13 | The R2 and MSE from optimal ML models, including the95
LASSO (Least Absolute Shrinkage and Selection Operator) model, the RF (Random96
Forest) model, the XGB (Extreme Gradient Boosting) model, and the RR (Ridge97
Regression) model.98
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102

Supplementary Fig. 14 | The morphology of MoS2. a, SEM image, b, TEM image.103
104
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106

Supplementary Fig. 15 | The morphology of Co,Mn-MoS2, a, TEM image, b,107
HRTEM image. c, HAADF-STEM image, d, the corresponding linear intensity108
profiles, and e, the elemental EDS maps.109
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111

112
Supplementary Fig. 16 | The morphology of Co,V-MoS2, a, TEM image, b, HRTEM113
image. c, HAADF-STEM image, d, the corresponding linear intensity profiles, and e,114
the elemental EDS maps.115
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117
118

Supplementary Fig. 17 | Rietveld refinement XRD patterns for a, MoS2, b,119
Co,V-MoS2, c, Co,Mn-MoS2, and d, Co,Ni-MoS2.120
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123

Supplementary Fig. 18 | a, The atom structure of Co,Ni-MoS2 obtained by DFT. b,124
Co K-edge and c, Ni K-edge EXAFS fitting spectra of the Co,Ni-MoS2. d, The125
corresponding Co K-edge and e, Ni K-edge EXAFS oscillations were extracted from126
the K-edge spectra of this material in k space.127
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129
130

Supplementary Fig. 19 | a, The Co K-edge and b, Mn K-edge XANES spectra of131
Co,Mn-MoS2. c and d, the corresponding fourier-transform k3-weighted EXAFS132
spectra of the samples.133
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135
136

Supplementary Fig. 20 | a, The Co K-edge and b, Mn K-edge EXAFS fit spectra of137
Co,Mn-MoS2. c, The atomic structure of Co,Mn-MoS2 obtained by DFT. d, The138
corresponding Co K-edge and e, Mn K-edge EXAFS oscillations extracted from the139
K-edge spectra of the composites in k space. f, The corresponding wavelet-transform140
contour plots of the EXAFS signal of the samples.141
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144

145
Supplementary Fig. 21 | a, The Co K-edge and b, V K-edge XANES spectra of146
Co,V-MoS2. c and d, the corresponding fourier-transform k3-weighted EXAFS spectra147
of the samples.148
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151
152

Supplementary Fig. 22 | a, The Co K-edge and b, V K-edge EXAFS fiting spectra of153
Co,V-MoS2. c, The atomic structure of Co,V-MoS2 obtained by DFT. d, The154
corresponding Co K-edge and e, Mn K-edge EXAFS oscillations extracted from155
K-edge spectra of the composites in k space. f, The corresponding wavelet-transform156
contour plots of the EXAFS signal of the samples.157
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160

Supplementary Fig. 23 | The calculated DOS near the Fermi level for a, MoS2, b,161
Co,V-MoS2, c, Co,Mn-MoS2,d, Co,Ni-MoS2.162
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164

165
Supplementary Fig. 24 | Spin density plots of a, pristine MoS2, b, Co,V-MoS2, c,166
Co,Mn-MoS2, and d, Co,Ni-MoS2. Yellow, blue, red, cyan, purple, and green spheres167
denote S, Mo, Co, V, Mn, and Ni atoms, respectively. The light purple isosurfaces168
show the spin-state density.169
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172
173

Supplementary Fig. 25 | a, The calculated DOS near the Fermi level for Co,Ni-MoS2.174
b, Total density of states and projected density of states of individual, c, CoMo and d,175
NiMo sites with e, nearby S, and f, Mo atoms in Co,Ni-MoS2.176
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178
179

Supplementary Fig. 26 | a, The calculated DOS near the Fermi level for180
Co,Mn-MoS2. b, Total density of states and projected density of states of individual, c,181
CoMo and d, MnMo sites with e, nearby S, and f, Mo atoms in Co,Mn-MoS2.182
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184
185

Supplementary Fig. 27 | a, The calculated DOS near the Fermi level for Co,V-MoS2.186
b, Total density of states and projected density of states of individual, c, CoMo and d,187
VMo sites with e, nearby S, and f, Mo atoms in Co,V-MoS2.188
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190
191

Supplementary Fig. 28 | Top view and side view of the optimized adsorption192
structures of Li2S4 on the a, MoS2, b, Co,V-MoS2, c, Co,Mn-MoS2, and d,193
Co,Ni-MoS2 surfaces, and the corresponding adsorption energies. Yellow, blue, slight194
blue, cyan, purple, green, and pink spheres denote S, Mo, Li, V, Mn, Ni, and Co atoms,195
respectively.196
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200
201

Supplementary Fig. 29 | EIS measurements for a, MoS2, b, Co,V-MoS2, and c,202
Co,Mn-MoS2 catalysts at different temperatures.203
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205

206
Supplementary Fig. 30 | Setup used for in-situ Raman spectroscopy analyses of the207
cell configuration.208
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210
211

Supplementary Fig. 31 | CV profiles of a, MoS2, b, Co,V-MoS2, and c,212
Co,Mn-MoS2-based cells were investigated at the different scan rates.213
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215
216

Supplementary Fig. 32 | a, CV profiles of the cells with different catalysts. The217
corresponding Tafel slopes of b, peak A, c, peak B, and d, peak C, from the CV218
profiles.219
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221
222

Supplementary Fig. 33 | a-c, Li-ion diffusion properties of MoS2, Co,V-MoS2,223
Co,Mn-MoS2, and Co,Ni-MoS2-based cell investigated by analyzing the CV peak224
currents for peaks (a) A, (b) B, and (c) C as a function of the square root of the scan225
rates.226
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228
229

Supplementary Fig. 34 | Galvanostatic charge-discharge profiles with cells with the230
different catalysts and the corresponding polarization (EC - ED). EC, charge voltage;231
ED, discharge voltage.232
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240

Supplementary Fig. 35 | Cycling performance of Co,Ni-MoS2-based cells with a241
high sulfur loading of 4.7 mg cm-2 at 0.1 C.242
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245
246

Supplementary Fig. 36 | Rate performance of a Co,Ni-MoS2-based cell with a high247
sulfur loading of 4.5 mg cm-2 at 0.1 C to 1 C.248

249
250
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252
253

254
255

Supplementary Fig. 37 | Corresponding charge-discharge profiles of the 13.2256
Ah-level pouch cells containing the Co,Ni-MoS2 catalyst during the first cycle.257
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259
Supplementary Fig. 38 | Dimensions (length and width) of the pouch cell.260
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263

Supplementary Fig. 39 | a, Cycling performance and b, Coulombic efficiency of a264
MoS2-based pouch cell with a high sulfur loading of 9 g at 400 mA.265
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268
269

Supplementary Fig. 40 | XRD patterns of the catalysts doped with only Co or Ni.270
271

In order to verify the advantage of Co,Ni-MoS2 over MoS2 doped with only Co or Ni,272
a series of experiments was performed. The materials were synthesized using the273
same methods as for Co,Ni-MoS2, and XRD patterns were obtained. All the patterns274
agree with the data for MoS2 (JCPDS card no. 37-1492).275
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277

278
Supplementary Fig. 41 | Cycling performances of cells with the MoS2, Co-MoS2,279
Ni-MoS2, and Co,Ni-MoS2 catalysts at 0.3 C during the 100 cycles.280

281
The electrochemical performance of the batteries using Co or Ni, or Co,Ni-MoS2282
catalysts has been thoroughly assessed. Subsequent cycling tests were conducted to283
evaluate the durability of the batteries. After 100 cycles at 0.3 C, the cells with Co or284
Ni doped MoS₂ retained a higher reversible discharge capacity than that with pure285
MoS2. However, the Co,Ni-MoS2-based cells had a much better performance,286
maintaining a capacity of 1077.5 mAh g-1 after 100 cycles. This clear contrast287
underscores the substantial performance improvements produced by the higher SRR288
catalytic activity.289
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292
293

Supplementary Fig. 42 | Rate performance of MoS2, Co-MoS2, Ni-MoS2, and294
Co,Ni-MoS2 based-cells from 0.2 C to 4 C.295

296
The rate performance of Li-S batteries using the different catalysts was tested at rates297
ranging from 0.2 C to 4 C and then back to 0.5 C. The Co,Ni-MoS2-based cell had298
distinct charge and discharge plateaus, even at a high current rate of 4 C, and had299
outstanding reversible capacities of 1235, 982, and 631 mAh g-1 at 0.2 C, 1 C, and 4 C,300
respectively. In contrast, due to their lower catalytic efficiency, Co-MoS2, Ni-MoS2,301
and pure MoS2-based cells had significantly lower capacities, particularly under302
high-rate conditions. These results are ascribed to differences in catalytic efficiency303
introduced by the incorporation of different metal cation pairs into MoS2.304

305
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Supplementary Table 1 | The parameters considered in this study.306
307

Number Component features
1 Spin moment
2 Adsorption Li2S
3 Adsorption Li2S2
4 Distance between metals
5 M1S min distance
6 M1S max distance
7 M1S avg distance
8 M2S min distance
9 M2S max distance
10 M2S avg distance
11 M1 covalent radius
12 M2 covalent radius
13 M1 atomic mass
14 M2 atomic mass
15 M1 melting point
16 M2 melting point
17 M1 ionization energy
18 M2 ionization energy
19 M1 valence electrons
20 M2 valence electrons
21 P band center
22 D band center
23 M1 D band center
24 M2 D band center
25 Mo D band center
26 M1 electronegativity
27 M2 electronegativity
28 Electronegativity of Mo in the active center
29 Electronegativity of S in the active center

308
309
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Supplementary Table 2 | Metal contents in the MoS2 host determined by ICP-MS310
analysis.311

312
Samples nM:nMo (~at%)

Co,Ni-MoS2 nCo:nMo (4/100), nNi:nMo (4/100)

Co,Mn-MoS2 nCo:nMo (4/100), nMn:nMo (4/100)

Co,Ni-MoS2 nCo:nMo (4/100), nV:nMo (4/100)

313
314
315

Supplementary Table 3 | Structural parameters and atomic positions of MoS2 from316
Rietveld refinement.317

318
Atom Site x y z

Mo 2c 0.33333 0.66667 0.25000

S 4f 0.33333 0.66667 0.62719
319
320
321

Supplementary Table 4 | Structural parameters and atomic positions of Co,V-MoS2322
from Rietveld refinement.323

324
Atom Site x y z
Mo 2c 0.33333 0.66667 0.25000

S 4f 0.33333 0.66667 0.62162

Co 2c 0.33333 0.66667 0.25000

V 2c 0.33333 0.66667 0.25000

325
326
327

Supplementary Table 5 | Structural parameters and atomic positions of Co,Mn-MoS2328
from Rietveld refinement.329

330
Atom Site x y z

Mo 2c 0.33333 0.66667 0.25000

S 4f 0.33333 0.66667 0.62388
Co 2c 0.33333 0.66667 0.25000

Mn 2c 0.33333 0.66667 0.25000

331
332
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Supplementary Table 6 | Structural parameters and atomic positions of Co,Ni-MoS2333
from Rietveld refinement.334

335
Atom Site x y z

Mo 2c 0.33333 0.66667 0.25000

S 4f 0.33333 0.66667 0.62393

Co 2c 0.33333 0.66667 0.25000

Ni 2c 0.33333 0.66667 0.25000

336
337

Supplementary Table 7 | Structural parameters extracted from the M K-edge EXAFS338
fitting.339

340

341
342

Samples Path R (Å) 
2
(10

-3
Å
2
) E0 (eV) R-factor

Co,Ni-MoS2 Co-S 2.22  0.02 4.7 -9.73 0.006
Co,Ni-MoS2 Ni-S 2.23  0.01 8.2 -9.7 0.016
Co,Mn-MoS2 Co-S 2.23  0.05 4.9 -6.63 0.015
Co,Mn-MoS2 Mn-S 2.26  0.03 1.0 -6.24 0.014
Co,V-MoS2 Co-S 2.22  0.01 1.4 -9.9 0.009
Co,V-MoS2 V-S 2.27  0.07 5.6 -9.7 0.018
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Supplementary Table 8 | The value of each parameter of the Ah level Li-S pouch343

cell.344

345

Parameters Value

Length (mm) 72

Width (mm) 113

Number of cathodes 18

Sulfur mass (g) 10.2

E/S ratio (l mg-1) 3.2

Thickness of separator (m) 9

Thickness of lithium anode (m) 100

Total weight of battery (g) 67

Current density (mA) 1000

Capacity (Ah) 13.2

Energy density (Wh kg-1) 435

346
347
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Supplementary Table 9 | Comparison of the electrochemical performances of various348

catalyst-based pouch cells between this work and other reported studies.349

350

Areal S loading,
mg cm-2

E/S ratio,
l mg-1

Total capacity,
Ah

Specific energy
density Wh kg-1

Ref

9 3.2 13.2 435 This
work

6.1 3.0 1.6 300 R[1]

NA NA 1.17 313 R[2]

6 4 1.51 317 R[3]

12 5 2.5 330 R[4]

7.0 3.0 1.5 343 R[5]

6.0 2.3 6.2 351 R[6]

7.3 3.5 (g gs-1) 2 353 R[7]

6.5 3.0 1.8 359 R[8]

10 1.2 NA 366 R[9]

17.3 4 1.82 402 R[10]

10 2.6 10 417 R[11]

351
352
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Supplementary Note 1: Interpretable Multi-View Machine-Learned Framework353

Data Collection354

In this study, data collection was carried out based on first-principles calculations.355

The two atom doping configurations of MoS2 are illustrated in Supplementary Fig. 1.356

Using density functional theory (DFT), we calculated the energy barriers of the357

rate-determining step (ΔG) for the Li2S2-to-Li2S conversion on various dual-doped358

MoS2 surfaces.359

Parameter Selection360

To ensure effective model construction and enable interpretable insights into361

underlying chemical principles, we established three core criteria for feature selection:362

(1) features must be closely related to the catalytic performance of the material to363

ensure clear physical meaning; (2) features should accurately represent the geometric364

structure of the material; and (3) features should be easily obtainable and reproducible,365

facilitating data extension and model transferability.366

Building upon previous research, we further expanded the feature space. Previous367

studies have demonstrated a strong correlation between adsorption energy and368

catalytic activity; thus, the adsorption energies of Li2S2 and Li2S on catalyst surfaces369

were included as key features. According to the Sabatier principle, the electronic370

structure of active catalytic sites plays a pivotal role in determining catalytic behavior.371

Therefore, we incorporated several electronic descriptors, including spin density, the372

d-band center of transition metals, the p-band center of non-transition metals, and the373

charge transfer induced by doping.374

In addition, various fundamental physicochemical properties potentially affecting375
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catalytic performance were considered, such as the first ionization energy of the metal376

atoms and the Pauling electronegativity of active-site elements (including both metals377

and non-metals). To more comprehensively capture the structural characteristics of the378

materials, geometric and electronic structure parameters such as bond lengths, charge379

distributions, and d-band centers corresponding to different doping elements were380

also included.381

We also augmented the feature set with elemental properties sourced from the382

Mendeleev database, incorporating descriptors such as atomic mass, valence electron383

count, and melting point. These physicochemical features were used to construct384

machine learning models targeting the reaction free energy change (ΔG), with the aim385

of uncovering the key factors influencing catalytic performance. Details and386

definitions of the elemental property data can be found at:387

https://mendeleev.readthedocs.io/en/stable/data.html.388

Selection of Machine Learning Methods389

In this study, multiple machine learning algorithms were employed to analyze and390

predict target features, including Random Forest Regressor, Least Absolute Shrinkage391

and Selection Operator (LASSO) regression, Ridge Regression, and eXtreme392

Gradient Boosting (XGBoost) Regressor. By comparing the predictive performance of393

these models, the objective was to identify the most suitable algorithm for the specific394

tasks of this research.395

To increase the robustness of model evaluation, the Leave-One-Out396

Cross-Validation approach was adopted. In each iteration of this method, a single data397
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point was held out as the validation set while the remaining samples were used for398

training. This process was repeated until every sample has served once as the399

validation set. This validation strategy effectively reduces model bias and improves400

generalization performance.401

Hyperparameter Optimization of Regression Models402

To improve the regression models, a hybrid strategy combining automated search403

and manual tuning was employed for hyperparameter optimization. Initially, potential404

optimal hyperparameter combinations were identified using automated techniques405

such as Grid Search. Subsequently, fine-tuning was performed manually based on406

model performance on the validation set, aiming to improve both generalization407

ability and predictive accuracy.408

Specifically, for the Random Forest Regressor, key parameters such as the number409

of data and the maximum data depth were optimized. For the LASSO Regressor, a410

systematic exploration of different regularization strengths (α) was conducted to411

determine the most appropriate level of sparsity. Similarly, for the Ridge Regressor,412

the regularization parameter (α) was optimized through a combination of automated413

and manual tuning to achieve a balanced performance across both training and414

validation datasets. For the XGBoost Regressor, a joint optimization of critical415

parameters such as the number of estimators, maximum depth, and learning rate was416

carried out to maximize predictive accuracy.417

During each round of cross-validation, model performance was quantitatively418

assessed by recording the Mean Squared Error (MSE) and the Coefficient of419
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Determination (R2). These metrics were used to compare and evaluate the420

effectiveness of each regression model.421

422

Yⅈ represents the true values obtained from DFT calculations, while yⅈ ​ denotes the423

predictions made by the machine learning models, and Y is the mean value of the424

DFT data. An ideal model should have an R2 value close to 1 and an MSE value close425

to 0. Ultimately, the hyperparameter combination that performs best on the validation426

set is selected as the final configuration for each model. The performance of the427

different models across various metrics is shown in Supplementary Fig. 13.428

Feature Importance Analysis429

The SHapley Additive exPlanations (SHAP) method, proposed by Lundberg and Lee430

in 2017, is based on the Shapley values from cooperative game theory and is designed431

to provide interpretable explanations for model predictions. In this study, we used432

SHAP to perform a posteriori quantitative assessment of feature importance, aiming433

to estimate the contribution of each input feature to the model’s predictive outcomes.434

For each individual data point, SHAP perturbs the input features and computes their435

marginal contributions to the prediction, resulting in a corresponding “importance436

value.” By aggregating SHAP values across all samples and calculating the mean, we437

can further evaluate the global importance of each feature within the entire dataset.438
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This dual capability enables SHAP to offer both local interpretability (explaining439

individual predictions) and global interpretability (assessing feature impact across the440

entire model), making it a powerful and widely applicable tool. Features with higher441

importance exhibit larger SHAP values, while less influential features tend to have442

smaller or near-zero SHAP values.443

As a model-agnostic interpretation framework, SHAP can be applied to various444

machine learning models, allowing for a transparent visualization and understanding445

of how input features influence the model’s decision-making process. In this work, we446

used SHAP to analyze six key features in our model, thereby identifying the variables447

with the most significant impact on prediction outcomes.448

The SHAP value for a feature was computed using the following formula:449

450

Φi​ denotes the SHAP value of feature i, S is a subset of the full feature set F, XS451

represents the input values corresponding to subset S, and fS is the output function of452

the trained model. By evaluating the change in model output when feature i is added453

to subset S, the marginal contribution of feature i can be quantitatively determined.454

455
456
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