

1 Supplementary Information for: A behavioral intervention to reduce
2 range anxiety and increase electric vehicle uptake

3 Masked for double-blind peer review

4 **Note 1: Validity of the actual compatibility measure**

5 Our approximation of the actual compatibility of BEV battery ranges is based on participants' self-reported past driving.
6 Despite our careful instructions, we cannot exclude that these self-reports did not suffer from memory distortion [1] or
7 under-reporting [2]. However, the following observations support the quality, validity, and usefulness of the measure.

8 On an aggregate level, the compatibility computed in the present research largely mirrors the compatibility computed by
9 studies applying rigorous GPS-tracking to capture individuals' driving behavior [3–8]. Melliger et al. (2018) for example
10 estimate that "85 - 90 % of all national trips [in Finland and Switzerland] could have already been covered with BEVs
11 prevalent in 2016". Similarly, Rafique and Town (2019) estimate based on data from New South Wales (AUS) that a BEV
12 with a moderate battery range of 75 miles/120 km (i.e., 19.2 kWh usable battery capacity) would retain more than 70 % of
13 its battery charge for 92 % of all vehicle trips.

14 Additionally, U.S. *National Household Travel Survey* research comparing self-reported recall and a travel diary methodology
15 suggests that self-reports mainly lead to the under-reporting of incidental trips: unplanned, spontaneous car trips that tend
16 to be of shorter distance [9, 10]. Thus, for the computation of the actual compatibility in the present research, the potential
17 under-reporting of shorter, incidental trips might have resulted in an underestimation of the true compatibility of some
18 individuals and might therefore be considered a conservative measure of compatibility. To prompt participants to recall as
19 many car trips as possible of both short and long distances, we carefully designed the instructions for the self-report (see
20 detailed stimuli at the end of the SI) and regrouped travel distances into distance bins most prevalent in Germany [11] and
21 the U.S. [12] to facilitate responses.

22 Finally, most research based on GPS-tracking has computed compatibility as the *percentage of travel days* covered by
23 a BEV with a given battery range [3, 4, 6, 7], and not as the *percentage of annual car trips* as in the present work.
24 Computing compatibility based on single car trips implicitly contains the assumption that BEVs may be charged at the
25 origin and the destination of a car trip. We acknowledge that this might currently still be a challenge, due to lack of charging
26 infrastructure and long charging times [13], but may soon reflect reality. Moreover, two additional reasons motivated us to
27 compute compatibility based on self-reports of single car trips instead of daily distance travelled. First, we aimed to use
28 a procedure that could be easily reproduced and tested by other scholars or practitioners, thus requiring little input from
29 consumers. Secondly, reconstructing driving distances per day would have been an additional burden on respondents' recall
30 and would have certainly reduced the quality of our data [10]. Finally, the immediacy of providing potential consumers
31 with estimations of compatibility may be a crucial component of the intervention presented here. When presented with
32 the compatibility information in Study 2a and 2b, car owners received immediate feedback about the compatibility of
33 BEVs with their driving needs, which would not have been possible with a GPS-based computation. Judging from our
34 results, respondents considered the compatibility information trustworthy and useful and integrated it in their answers of
35 the willingness to pay task. In additional support of this reasoning, respondents reported relatively high trust in the battery
36 range information across conditions ($M = 4.60$, $SD = 1.34$, on a scale from 1 to 7). If respondents had been suspicious about
37 our approximation of compatibility based on their self-reports, one would have expected significantly lower explicit trust
38 ratings in the compatibility condition.

**39 Note 2: Buying intentions and range requirements predicted by perceived and
40 actual compatibility separately**

41 We analyzed the effect of the compatibility bias, computed as the difference between participants' perceived and actual
42 compatibility, on participants' purchase intentions and range requirements. While this approach is in line with the concept of
43 cognitive biases [14] and recent research applying a similar approach in the domain of energy and food consumption [15, 16],
44 an alternative way of analyzing our data is to introduce perceived and actual compatibility as separate predictors of buying
45 intentions and range requirements. In line with previous research [17], we expected that higher perceived compatibility
46 would predict higher purchase intentions, while higher actual compatibility should not, because consumers seem to be
47 unaware of it. Similarly, we predicted that higher perceived compatibility leads to lower range requirements, while higher
48 actual compatibility should not. The results were in line with these hypotheses (see Supplementary Table 3).

49 Note 3: ANOVA results of range anxiety by condition

50 In Study 2b, before contrasting conditions, we conducted an ANOVA to determine the overall effects of battery range,
51 experimental condition, and their interaction on range anxiety. The ANOVA yielded a main effect of battery range,
52 $F(1, 999) = 1579.85, p < .001$, a main effect of experimental condition, $F(2, 999) = 9.81, p < .001$, and an interaction
53 between battery range and experimental condition, $F(2, 999) = 9.13, p < .001$. In the next step, we compared the regression
54 coefficients of the slope relating battery range with range anxiety between conditions, as reported in the main text.

55 Note 4: Computation of TCO and applied assumptions

56 We followed past research [18] in our computation of consumers' total cost of ownership (TCO) of their current car in Stud
57 2a and 2b. TCO was approximated as the sum of participants' annual fuel costs, depreciation costs, repair costs, tax and
58 insurance.

59 We computed annual fuel costs as the product of annual mileage and the current fuel price (2.73\$ per gallon and 1.25€ per
60 liter at the time of data collection). Annual mileage was approximated on the basis of participants' self-reported driving
61 behavior. To do this, we multiplied the self-reported frequencies by the mid-point of the respective distance categories (see
62 Methods in the main text). For the >400 km and the >240 miles category we used the average between the geographical
63 width and height of Germany and the U.S., respectively (i.e., 758 km and 2200 miles). We removed $n = 26$ outliers from
64 the 279 participants in the German sample and $n = 80$ from the 999 participants in the U.S. sample, situated more than 1.5
65 times the interquartile range above the upper quartile. After the exclusion, the average annual mileages of 11095.5 km (SD
66 = 8442.9) and 9791.4 miles (SD = 8545.1) slightly underestimated the population averages in Germany (13,600 km; [19])
67 and the U.S. (11,113 miles; [20]).

68 Depreciation cost were computed on the basis of the original purchase price of a car and its age. Following [18], annual
69 depreciation was determined to be 25% of the original purchase price for cars aged less than 2 years, 15% for cars aged 2
70 years, 10% for cars aged 3 years, 5% for cars aged more than 3 until 10 years, 1% for cars aged more than 10 and less than
71 16 years, and 0% for cars aged 16 years and more. Monthly depreciation costs amounted to 180.6€ (SD = 268.6) in the
72 German sample and 154.7\$ (SD = 188.7) in the U.S. sample.

73 Because our data did not contain any information about the repair and tax and insure costs of participants' cars, we relied on
74 external sources for their approximation. Based on data from the German Automobile Club, we estimated monthly repair
75 costs of 60€ and tax and insurance costs of 100€ for cars with an original purchase price of < 40,000€ and repair costs of
76 120€ and tax and insurance costs of 200€ for cars with an original purchase price of > 40,000€ [21]. This distinction between
77 lower and higher priced cars was made because repair and tax and insurance costs depend more strongly on the vehicle class
78 in Germany (small-medium vs. luxury) than in the U.S.. Based on data from the American Automobile Association, we
79 estimated monthly repair costs at 99\$ and monthly insurance costs at 133\$ [22].

80 Note 5: ANOVA results of condition-TCO interaction on WTP

81 In Study 2b, before contrasting conditions we conducted an ANOVA to determine the overall effect of the interaction of
82 experimental condition and TCO. The ANOVA yielded a main effect of condition, $F(2, 848) = 18.95, p < .001$, no main
83 effect of TCO, $F(1, 848) = 2.58, p = .11$, and the interaction between condition and TCO, $F(2, 848) = 12.18, p < .001$.

84 In the next step, we analyzed the regression coefficients of the slope relating TCO with willingness to pay between
85 conditions, as reported in the main text. Including age, gender, and car trip frequency as covariates did not change
86 the statistical significance of the interaction parameters of compatibility intervention and TCO, neither in the German
87 ($b = 1298.7, t(236.0) = 2.62, p = .01$) nor the U.S. sample ($b = 2112.9, t(847.02) = 4.5, p < .001$).

88 Note 6: Regression results with separate TCO components

89 To learn more about the underlying factors of the interaction of experimental condition and TCO in predicting willingness
90 to pay, we adapted the linear mixed-effects model to include fuel costs (i.e., the product of annual mileage, fuel consumption
91 and fuel price) and depreciation costs (i.e., a combination of car age and price - see Supplementary Note 4 for details) instead
92 of overall TCO in Study 2a and 2b.

93 In Study 2a regression results yielded a steeper slope relating depreciation costs and willingness to pay in the compatibility
94 condition than in the control condition, $t(236.0) = -1.94, p = .053$, as well as a steeper slope relating fuel costs and
95 willingness to pay, $t(236.0) = -2.19, p = .03$.

96 In Study 2b, before contrasting conditions we conducted an ANOVA to determine the overall effect of the interaction of
97 experimental condition and fuel costs and depreciation costs. The ANOVA yielded a significant main effect of condition
98 ($F(2, 848.01) = 19.03, p < .001$), a significant interaction between depreciation costs and condition, ($F(2, 848.01) =$
99 $10.97, p < .001$), and no interaction between fuel costs and condition, ($F(2, 848.01) = 2.26, p = .11$). Inspection of the
100 individual interaction parameters indicated that the slope relating depreciation costs and willingness to pay was steeper
101 in the compatibility condition than in both the control condition, $t(848.0) = -4.51, p < .001$, and the infrastructure
102 condition, $t(848.0) = -3.73, p < .001$. The slope relating fuel costs and willingness to pay was steeper in the compatibility
103 condition than in the infrastructure condition, $t(848.0) = -2.13, p = .034$, but not compared to the control condition,
104 $t(848.0) = -0.97, p = .335$.

105 Taken together, these results suggest that high current fuel and depreciation costs may account for the increased effectiveness
106 of the compatibility intervention for car owners with higher TCO. It seems that consumers are somewhat aware if a BEV
107 would be a financially beneficial investment for them or not. When the benefits are given, car owners seem to respond
108 positively to compatibility information with increased WTP for BEV.

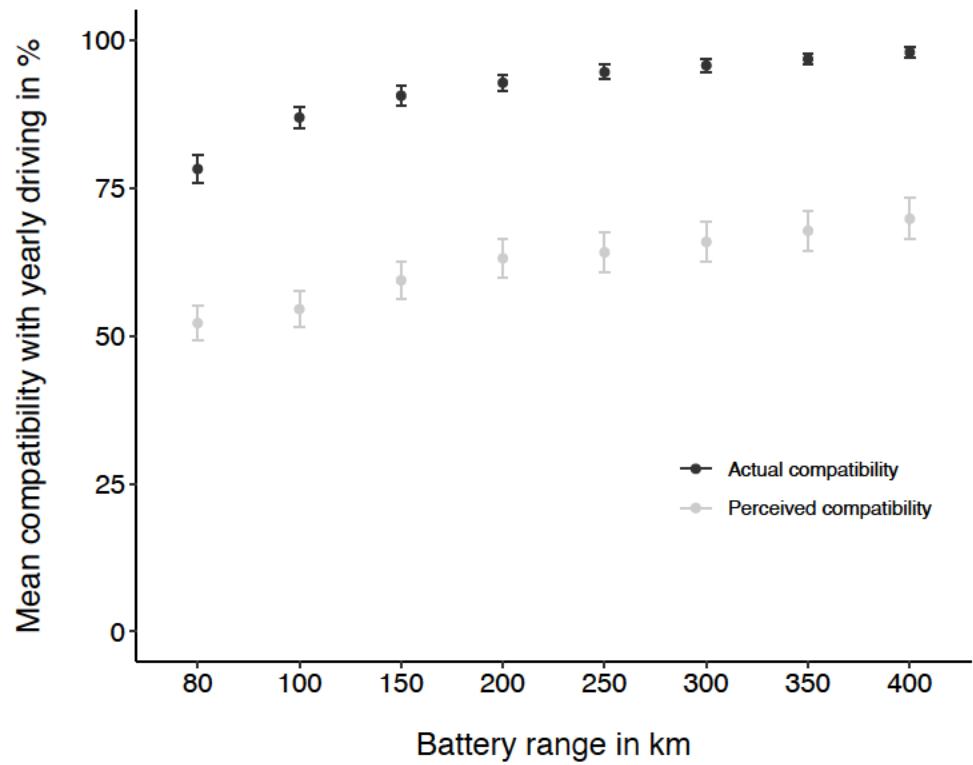


FIGURE 1: Perceived and actual compatibility of BEV with individual mobility needs in a representative car owner sample from Germany (Study 1a, $N = 438$). The size of the underestimation was stable across different battery ranges. Error bars indicate 95% confidence intervals.

FIGURE 2: Main results from Study 2a with German car owners ($N = 279$). Panel A: Mean willingness to pay for a BEV by experimental condition. Providing compatibility information in addition to the battery range of BEV increased car owners' willingness to pay. Panel B: The interaction of the compatibility intervention with the total cost of car owners' current combustion engine car. Compatibility information selectively increased willingness to pay for car owners with higher total cost of ownership while leaving BEV preference of car owners with lower current costs unchanged. Error bars and grey areas indicate 95% confidence intervals.

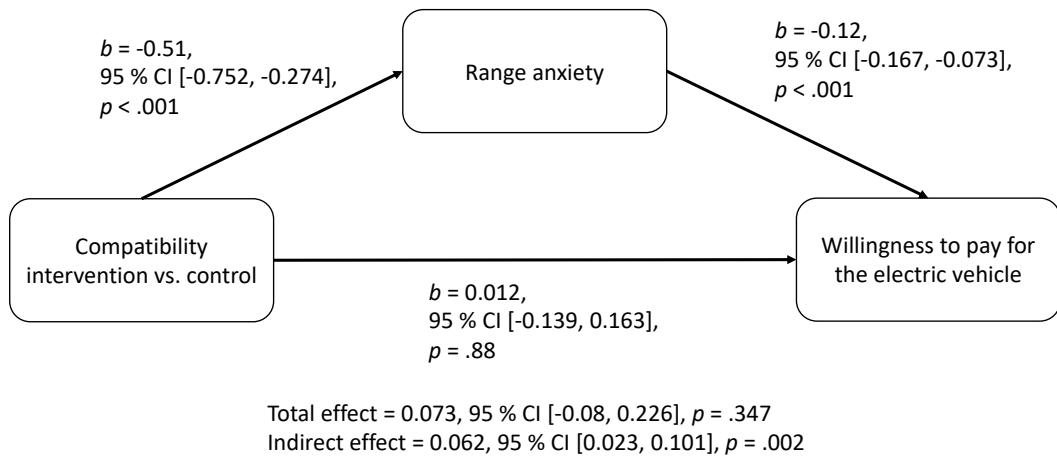


FIGURE 3: Mediation results of the relationship between the compatibility intervention and participants' willingness to pay, including range anxiety as a mediator on trial level. In line with our hypothesis, results supported range anxiety as a mediator. The effect of the compatibility intervention on willingness to pay was completely mediated by its impact on range anxiety, as suggested by the disappearance of the compatibility intervention effect on willingness to pay when accounting for range anxiety ($b = 0.012$, 95%CI[-0.139, 0.163], $p = .88$, 10,000 bootstraps). Coefficients and quasi-bayesian confidence intervals were estimated based on 10,000 bootstrap samples, using the *mediation* package for R [23].

Battery range: 150 miles

With this battery you can cover 91 % of your yearly car trips without charging stop.

What is the **maximum price** that you would be willing to pay for the above electric car?

For your answer, please click on the evaluation scale and locate the miniature car on the desired position.

20,000\$

70,000\$

FIGURE 4: Example of the willingness to pay task in the compatibility condition in Study 2b. The only detail that differed between conditions was, that in the control condition a blank space was presented instead of the compatibility information and in the infrastructure condition the compatibility information was replaced by *With this car you have the right to use reserved parking with charging possibility in inner cities*.

TABLE 1: Study 1a sample characteristics of car owners before and after exclusion compared to German census data

Demographic variable	Level	German car owners* (in %)	Study 1a participants (N = 512; in %)	Study 1a participants after exclusion (N = 438; in %)
Sex	Men	51.7	51.6	51.4
	Women	48.3	48.4	48.6
Age	<29 years	15.2	15.3	15.3
	<39 years	16.2	17.1	17.1
	<49 years	17.3	23.1	17.1
	<59 years	21.4	13.5	23.1
	<69 years	15.3	14.0	13.5
	>70 years	14.6	15.3	14.0
Household income	< 1500€ per month	8.4	8.9	8.9
	< 2500€ per month	25.7	25.6	25.6
	< 3500€ per month	24.5	23.5	23.5
	< 4500€ per month	18.0	17.8	17.8
	> 4500€ per month	23.4	24.2	24.2

* Population statistics extracted from representative consumer research in Germany [24].

Exclusion of participants with unusable data (see Methods) was not significantly predicted by any of the demographic variables, preserving the representative nature of the remaining sample ($b_{gender} = 0.02$, $Z = -0.10$, $p = .93$; $b_{age} = 0.01$, $Z = 1.45$, $p = .146$; $b_{hhincome} = -0.01$, $Z = -0.15$, $p = .88$).

TABLE 2: Study 1b sample characteristics of car owners before and after exclusion compared to U.S. census data

Demographic variable	Level	U.S. car owners* (in %)	Study 1b participants (N = 512; in %)	Study 1b participants after exclusion (N = 421; in %)
Sex	Men	49.4	49.8	51.5
	Women	50.6	50.0	48.2
Age	<29 years	20.4	18.0	18.5
	<39 years	17.4	18.4	19.2
	<49 years	16.4	16.8	16.2
	<59 years	17.6	17.8	17.1
	<69 years	15.4	16.2	15.9
	>70 years	12.9	12.9	13.1
Household income	< 25,000\$ per year	16.7	13.7	12.8
	25,000\$ to 49,999\$ per year	22.6	24.0	23.8
	50,000\$ to 74,999\$ per year	18.5	20.1	21.1
	75,000\$ to 124,999\$ per year	24.4	25.6	25.2
	> 125,000\$ per year	17.8	16.6	17.1
Ethnicity	Non-hispanic White	84.2	82.4	81.0
	Hispanic	6.9	6.6	7.1
	Black or African American	6.7	5.9	6.4
	Asian	3.7	5.5	6.2
	American Indian or Alaskan Native	0.6	1.2	1.4
	Pacific Islander	0.2	0.4	0.5
	Other	1.5	1.2	1.4
	Prefer not to answer	0.4	0.4	0.2

* Population statistics extracted from the U.S. National Household Travel Survey [12]. Exclusion of participants with unusable data (see Methods) was not significantly predicted by any of the demographic variables, preserving the representative nature of the remaining sample ($b_{gender} = -0.34$, $Z = -1.43$, $p = .152$; $b_{age} = 0.002$, $Z = 0.27$, $p = .79$; $b_{hhincome} = -0.08$, $Z = -0.89$, $p = .38$; $b_{ethnWhite} = -1.73$, $Z = -1.38$, $p = .169$; $b_{ethnHisp} = -2.07$, $Z = -1.55$, $p = .120$; $b_{ethnAfrA} = -2.42$, $Z = -1.74$, $p = .082$; $b_{ethnAsian} = -2.68$, $Z = -1.43$, $p = .061$; $b_{ethnAIndian} = -15.8$, $Z = -0.02$, $p = .986$; $b_{ethnNatHaw} = -12.1$, $Z = -0.01$, $p = .994$; $b_{ethnOther} = -1.70$, $Z = -0.02$, $p = .986$).

TABLE 3: Linear regression results of buying intentions and battery range requirements on perceived and actual compatibility instead of their difference (i.e., the compatibility bias), and demographic characteristics in the German (Study 1a) and U.S. sample (Study 1b).

Dependent variable	Study 1a		Study 1b		Study 1a		Study 1b	
	Buying intentions				Required battery range			
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7	Model 8
Intercept	4.16***	3.41***	3.48***	3.25***	360.94***	321.98***	256.61***	259.41***
Perceived compatibility	0.57***	0.44***	0.44***	0.41***	-40.84***	-39.7***	-22.35*	-23.84*
Actual compatibility	0.01	0.07	-0.35***	-0.20	-28.31*	-25.78	-9.84	2.34
Age		-0.56***		-0.60***		34.02**		45.55***
Gender		0.51**		0.17		23.05		-9.78
Income		0.39***		0.28**		21.82		28.12**
Yearly mileage		-0.05		-0.07		37.2**		24.8*
Access to public transport		0.25**		-0.16		-10.19		7.52

Note. The dependent variable "intention to adopt an electric vehicle within the upcoming 10 years" was measured on a scale from 1 "Not at all" to 7 "Absolutely Yes". The dependent variable "Range required of a BEV to present an alternative to your current [combustion engine] car" was measured as numerical input in miles/km. The predictors Perceived compatibility and Actual compatibility were averaged across battery ranges within participants. Continuous predictor variables were Z-standardized. *** $P < .001$, ** $P < .01$, * $P < .05$.

TABLE 4: Global model fits of random and fixed effects structures for the mixed-effects models used to analyse repeated outcomes in Study 2a and 2b.

Modelled outcome	Model	R syntax used	AIC	BIC
WTP in Study 2a	Random intercept	WTP ~ Condition x BatteryRange + (1 SubjectID)	36785.25	36818.71
	Random intercept and slope	WTP ~ Condition x BatteryRange + (BatteryRange SubjectID)	35855.69	35900.3
	Fixed effects with interaction	WTP ~ Condition x BatteryRange + (BatteryRange SubjectID)	35906.36	35950.98
	Fixed effects without interaction*	WTP ~ Condition + BatteryRange + (BatteryRange SubjectID)	35904.4	35943.44
WTP in Study 2b	Random intercept	WTP ~ Condition x BatteryRange + (1 SubjectID)	140752	140806.8
	Random intercept and slope	WTP ~ Condition x BatteryRange + (BatteryRange SubjectID)	135719.5	135788.1
	Fixed effects with interaction	WTP ~ Condition x BatteryRange + (BatteryRange SubjectID)	135796.8	135865.3
	Fixed effects without interaction*	WTP ~ Condition + BatteryRange + (BatteryRange SubjectID)	135803.8	135858.6
Range anxiety in Study 2b	Random intercept	RangeAnxiety ~ Condition x BatteryRange + (1 SubjectID)	21636.43	21691.25
	Random intercept and slope	RangeAnxiety ~ Condition x BatteryRange + (BatteryRange SubjectID)	19566.58	19635.11
	Fixed effects with interaction*	RangeAnxiety ~ Condition x BatteryRange + (BatteryRange SubjectID)	19542.68	19611.2
	Fixed effects without interaction	RangeAnxiety ~ Condition + BatteryRange + (BatteryRange SubjectID)	19556.76	19611.59

Note. Appropriateness of the random effects structure was determined based on the Akaike's and Bayesian information criterion (AIC and BIC), estimated using the restricted maximum likelihood method and including all potential fixed effects. The selection of fixed effects was determined based on AIC and BIC, using maximum likelihood estimations [25]. Lower AIC and BIC values indicate better model fit of competing random or fixed effect structures. When AIC and BIC did not point into the same direction, lower BIC values received more weight for the model selection, favoring more parsimonious models in line with the principle of Occam's Razor. Selected models are signaled with an *.

109 **Supplementary Methods**

110 **Study 1 Stimuli**

111 Wordings in English from Study 1B. German versions from Study 1A are available upon request.

112 **Demographics**

113 What is your age?

114 What is your gender? (woman; man; other; prefer not to answer)

115 Please choose one or more ethnicity that you consider yourself to be. (non-Hispanic White; Hispanic; Black or African American; Asian; American Indian or Alaskan Native; Native Hawaiian or Pacific Islander; Other; I prefer not to answer)

116 117 How high is your annual household income before taxes? (less than 25,000\$; 25,000\$ to 49,999\$; 50,000\$ to 74,999\$; 118 75,000\$ to 99,999\$; 100,000\$ to 124,999\$; 125,000\$ and more)

119 Do you own a car? (Yes; No)

120 121 To what extent is your home connected to public transport services that provide alternatives to the use of your car? (1: Very well connected - 7: Not connected at all)

122

123 **Purchase intention and required battery range**

124 To what extent do you consider buying an all-electric vehicle in the upcoming 10 years? (1: Not at all - 7: Absolutely Yes)

125 126 What is the battery range of an all electric vehicle that you would require, to consider it an alternative to your current combustion engine car [in miles]?

127

128 **Perceived compatibility**

129 In the following we would like to ask you to estimate the share of your car trips in 2019 that you could have covered with an 130 all-electric vehicle without recharging.

131 An all-electric vehicle is exclusively powered with the energy from its built-in battery. Car trips means all one-way car trips 132 (i.e. outward and return trip counted separately), completed with you as the driver.

133 134 Please report below the percentage of your total car trips in 2019 that you think you could have covered with the respective 135 electric vehicles and battery ranges:

136 137 All-electric vehicle with a battery range of 50 [60, 90, 120, 150, 180, 210, 240] miles. (0%: non of your trips feasible - 138 100%: all of your trips feasible)

139

141 **Attention check**

142 To show that you are carefully reading the instructions of this survey, please do not select any of the following options and 143 click „Next“ to continue the survey. (Soccer, Holidays, Beach, Dancing, Biking, Mountains)

144 **Driving distances**

145 Please think about the car trips that you completed throughout the year 2019. How often did you complete car trips of the 146 following distances?

147 148 Please take your time and answer this question carefully: Think about short, daily trips, as well as longer trips like for 149 example for vacation.

150

151 Supportive information: A year has 52 weeks with 5 work days each. Official federal holidays are New Year's Day, Martin
152 Luther King Day, Memorial Day, Independence Day, Labor Day, Columbus Day, Veterans Day, Thanksgiving, and Christmas.

153
154 Please note: Count outward and return trips separately - if you drove, for example, 15 miles to your workplace on 260
155 workdays, please indicate the number 520 in the answer field next to "10 to 20 miles". Please indicate "0" if you never
156 traveled a given distance.

157
158 Trip distance shorter than 0.5 mile [0.5 mile to < 1 mile, 1 mile to < 2 miles, 2 miles to < 5 miles, 5 miles to < 10 miles, 10
159 miles to < 20 miles, 20 miles to < 30 miles, 30 miles to < 60 miles, 60 miles to < 90 miles, 90 miles to < 120 miles, 120
160 miles to < 150 miles, 150 miles to < 180 miles, 180 miles to < 210 miles, 210 miles to < 240 miles, 240 miles and longer]:
161 (Number of one-way car trips in 2019)

162 **Comment**

163 Do you have any comment with respect to this study? If not, please click on "Next".

164 **Study 2 Stimuli**

165 Wordings in English from Study 2B. German versions from Study 2A are available upon request.

166 **Demographics**

167 What is your age?
168 What is your gender? (woman; man; other; prefer not to answer)
169 What is your mother tongue?
170 Do you own a car? (Yes; No)

171 **Information about current car**

172 How old is your car [in years]?
173 What is the original purchase price of your car, when it was new [in \$]? (the original purchase price might deviate from the
174 price you paid for the car, for example if you purchased it used)
175 How much does your car consume [in miles per gallon]?

176 **Attention check**

177 To show that you are carefully reading the instructions of this survey, please do not select any of the following options and
178 click „Next“ to continue the survey. (Jeep, Ford, Toyota, Chevrolet, Mercedes Benz, Honda)

179 **Driving distances**

180 Same as in Study 1.

181 **Instructions of the willingness to pay task**

182 Please assume that you have decided to replace your car with an electric car. You have already decided which model you
183 would like. However, this model is available with different batteries that allow for different maximal driving ranges of the
184 vehicle.

185
186 The basic model has a driving range of 50 miles with one battery charge and costs 20,000\$. For a price premium you can
187 purchase a larger battery that allows for a longer driving range. In all other aspects, the car configurations are identical.

188
189 Please indicate how much you would be willing to pay for each of the models with improved driving range.

190
191 [Page break]

192

193 Please indicate on the following pages the maximum price that you would be willing to pay for a configuration with a longer
194 driving range. In total, 7 configurations with different driving ranges will be displayed.

195 **[Compatibility condition]** Additionally, you will be presented with the percentage of annual trips that you can make with
196 the respective battery configuration without charging stop. This information is calculated specifically for you, based on your
197 reported car trips throughout a year.

198 **[Infrastructure condition]** Additionally, you will be provided with information on your right to use reserved parking with a
199 charging possibility in inner cities. Reserved parking with a charging possibility is an increasingly common measure applied
200 by local governments to facilitate the use of electric vehicles.

201
202 Here, as an example the display of the basic model for 20,000\$ [with a battery range of 50 miles]:

203 **Willingness to pay task**

204 (see Supplementary Figure 4 for a screenshot of the task)

205
206 Battery range: 60 [90, 120, 150, 180, 210, 240] miles

207 **[Compatibility condition]** With this battery you can cover [...] % of your yearly car trips without charging stop.

208 **[Infrastructure condition]** With this car you have the right to use reserved parking with charging possibility in inner cities.

209 What is the maximum price that you would be willing to pay for the above electric car? (20,000\$ to 70,000\$)

210 **Range anxiety measure**

211 [Repeat stimulus presentation from WTP measure]

212 When driving the above car, to what extent would you be worried to run out of battery before reaching your destination? (1:

213 *Not worried at all - 7: Very much worried*)

214 **Attention check**

215 To show that you are carefully reading the instructions of this survey, please do not select any of the following options and
216 click „Next“ to continue the survey. (*Washington, Texas, New York, California, Philadelphia, Florida*)

217 **Accuracy of battery range information**

218 Do you believe that the information you received on the driving range of electric vehicles is accurate and that it reflects
219 the driving range that you would be able to complete when actually driving? Note: Like information on gas mileage, the
220 battery range of electric vehicles is determined under standardized conditions that can not account for all variations in real
221 life driving. (1: *Not accurate at all - 7: Absolutely accurate*)

222 **Comment**

223 Do you have any comment with respect to this study? If not, please click on "Next".

224 References

- 225 1. Roes, N. J. & Vohs, K. D. Hindsight Bias. *Perspectives on Psychological Science* **7**, 411–426 (2012).
- 226 2. Gong, L., Morikawa, T., Yamamoto, T. & Sato, H. Deriving Personal Trip Data from GPS Data: A Literature Review
227 on the Existing Methodologies. *Procedia - Social and Behavioral Sciences. The 9th International Conference on Traffic
228 and Transportation Studies (ICTTS 2014)* **138**, 557–565 (2014).
- 229 3. Needell, Z. A., McNerney, J., Chang, M. T. & Trancik, J. E. Potential for Widespread Electrification of Personal Vehicle
230 Travel in the United States. *Nature Energy* **1**, 16112 (2016).
- 231 4. Meinrenken, C. J., Shou, Z. & Di, X. Using GPS-Data to Determine Optimum Electric Vehicle Ranges: A Michigan
232 Case Study. *Transportation Research Part D: Transport and Environment* **78**, 102203 (2020).
- 233 5. Melliger, M. A., van Vliet, O. P. & Liimatainen, H. Anxiety vs Reality – Sufficiency of Battery Electric Vehicle Range
234 in Switzerland and Finland. *Transportation Research Part D: Transport and Environment* **65**, 101–115 (2018).
- 235 6. Shi, X., Pan, J., Wang, H. & Cai, H. Battery Electric Vehicles: What Is the Minimum Range Required? *Energy* **166**,
236 352–358 (2019).
- 237 7. Greaves, S., Backman, H. & Ellison, A. B. An Empirical Assessment of the Feasibility of Battery Electric Vehicles for
238 Day-to-Day Driving. *Transportation Research Part A: Policy and Practice* **66**, 226–237 (2014).
- 239 8. Rafique, S. & Town, G. E. Potential for Electric Vehicle Adoption in Australia. *International Journal of Sustainable
240 Transportation* **13**, 245–254 (2019).
- 241 9. Hu, P. S. & Young, J. R. *Our Nation's Travel: 1995 NPTS Early Results Report: Technical Appendix* (U.S. Department
242 of Transportation and Federal Highway Administration, 1997).
- 243 10. Hu, P. S. & Young, J. R. *Summary of Travel Trends: 1995 National Household Travel Survey* (U.S. Department of
244 Transportation and Federal Highway Administration, 1999).
- 245 11. Nobis, C. & Kuhnlimhof, T. *Mobilität in Deutschland MiD: Ergebnisbericht* (German Federal Ministry of Transport
246 and Digital Infrastructure, 2018).
- 247 12. NHTS. *2017 National Household Travel Survey* (U.S. Department of Transportation: Federal Highway Administration,
248 2017).
- 249 13. Wolbertus, R., Kroesen, M., van den Hoed, R. & Chorus, C. Fully Charged: An Empirical Study into the Factors That
250 Influence Connection Times at EV-Charging Stations. *Energy Policy* **123**, 1–7 (2018).
- 251 14. Kahneman, D., Slovic, P. & Tversky, A. *Judgment Under Uncertainty: Heuristics and Biases* 574 pp. (Cambridge
252 University Press, 1982).
- 253 15. Marghetis, T., Attari, S. Z. & Landy, D. Simple Interventions Can Correct Misperceptions of Home Energy Use. *Nature
254 Energy* **4**, 874–881 (2019).
- 255 16. Camilleri, A. R., Larrick, R., Hossain, S. & Patino-Echeverri, D. Consumers Underestimate the Emissions Associated
256 with Food but Are Aided by Labels. *Nature Climate Change* **9**, 53–58 (2019).
- 257 17. Peters, A. & Dütschke, E. How Do Consumers Perceive Electric Vehicles? A Comparison of German Consumer
258 Groups. *Journal of Environmental Policy & Planning* **16**, 359–377 (2014).
- 259 18. Andor, M. A., Gerster, A., Gillingham, K. T. & Horvath, M. Running a Car Costs Much More than People Think -
260 Stalling the Uptake of Green Travel. *Nature* **580**, 453–455 (2020).
- 261 19. Kraftfahrt-Bundesamt. *Verkehr in Kilometern - Inländerfahrleistung (VK). Entwicklung Der Fahrleistungen Seit 2015*
262 (German Federal Ministry of Transport and Digital Infrastructure, 2020).
- 263 20. McGuckin, N. & Fucci, A. *Summary of Travel Trends: 2017 National Household Travel Survey* (U.S. Department of
264 Transportation and Federal Highway Administration, 2018).
- 265 21. ADAC. *ADAC Autokosten Herbst/Winter 2019/2020 - Kostenübersicht Für Über 1.600 Aktuelle Neuwagen-Modelle*
266 (German Automobile Club, 2019).
- 267 22. AAA. *American Automobile Association Reveals True Cost of Vehicle Ownership* <http://newsne-aaa.iprsoftware.com/news/releases-20170823> (2021).

269 23. Tingley, D., Yamamoto, T., Hirose, K., Keele, L. & Imai, K. Mediation: R Package for Causal Mediation Analysis.
270 *Journal of Statistical Software* **59** (2014).

271 24. VuMa. *Konsumenten Punktgenau Erreichen: VuMA Touchpoints 2020* (ARD, RMS, and ZDF, 2020).

272 25. Fitzmaurice, G. M., Laird, N. M. & Ware, J. H. *Applied Longitudinal Analysis* (John Wiley & Sons, 2004).