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Chloroplast structural variants

Structural variants

see Wang & Lanfear 2019, psbA replaced with rbcL
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Figure S1.1 Schematic overview of structural variants, their linearizations and the respective
structural standardization operations performed by the PlastidPipeline. Blue: Long Single Copy
(LSC) region — yellow: Short Single Copy (SSC) region — green: Inverted Repeat (IR) regions —
grey: genes. Orange and dark blue arrows: Possible directions for linearization of the circular
plastome into the format LSC-IR-SSC-IR, e.g. as output by GetOrganelle. Note that all four
linear conformations correspond to naturally occurring plastome structures.
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Figure S1.2 Examples for alternative linear plastome conformations before structural
standardization (Geneious screenshot). Raw output from GetOrganelle with preliminary
GeSeq annotation, filtered for structural features (grey — LSC, SSC, orange — IRA, IRB) and the
two genes (green —rbcL, ndhA) used by default for standardization in the PlastidPipeline.
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Figure S1.3 Examples of automatically standardized, fully annotated plastomes output by the
PlastidPipeline (Geneious screenshot). Structural annotations and standardization genes (incl.
CDS, exons, intron) highlighted.



Additional phylogenetic trees
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Figure S1.4 Additional phylogenetic trees based on all samples (AS alignment with non-Arnica
species as outgroup, based on SNPs, a-e) or all genus Arnica samples (AA alignment with
A. unalaschcensis as outgroup, based on SNPs + 2-state indels, f). A. angustifolia sample
highlighted for comparison. a. PAUP* Parsimony tree with bootstrap support values (10 000
replicates). b. MrBayes tree with posterior probabilities. c. RAXML Maximum Likelihood tree
with bootstrap values (10 000 replicates). d. PhyML Maximum Likelihood tree with Chi2-
based branch support values. e. PAUP* Neighbor-Joining tree with bootstrap support values
(10 000 replicates, support < 50% shown as polytomy). f. PAUP* Neighbor-Joining tree with
bootstrap support values (10 000 replicates, support < 50% shown as polytomy — compare
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with Fig. 2C in the main text inferred from the same data).
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Figure S1.5 Time-calibrated phylogeny assuming a strict (a) or a relaxed (b) molecular clock.
BEAST 2.7.7. analysis of the unpartitioned AA alignment, using the extremes of the four date
suggestions [7.73, 11.92] Ma for the A. montana / A. chamissonis split in Zhang et al. 2024 as
uniform prior range for the secondary calibration of the root of the tree (red age bar). Node

age bars: age range, node age intervals: 95% confidence interval.
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