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Supplementary Note 1. Pretrain

Instead of randomly initializing the NQS ansatz, we use a pretrain method to provide the transformer wavefunction better initial
parameters before optimizing it with MARCH.

We first train a simple neural network similar to neural network backflow (NNB) [1]. A multilayer perceptron (MLP) with two
hidden layers maps the occupation number 𝐧 ∈ {0, 1}2𝑁 to a orbital matrix𝑀nnb(𝐧) ∈ ℝ2𝑁×𝑁𝑒 , which is restricted to a block-diagonal
matrix,

𝑀nnb(𝐧) =
(

𝑀↑
nnb(𝐧) 0
0 𝑀↓

nnb(𝐧)

)

, (1)

where the 𝑀↑
nnb(𝐧),𝑀

↓
nnb(𝐧) ∈ ℝ𝑁×𝑁𝑒∕2 are the orbitals of spin-up and spin-down electrons, respectively. Based on the occupation

number, 𝑁𝑒 rows of orbital matrix 𝑀nnb(𝐧) are extracted to form a square orbital matrix Φ ∈ ℝ𝑁𝑒×𝑁𝑒 , which is also block-diagonal,

Φ =
(

Φ↑ 0
0 Φ↓

)

. (2)

The amplitude of NNB ansatz is defined by the determinant of a matrix Φ:

𝜓nnb(𝐧) = det[Φ]. (3)

This ansatz is variationally optimized using the VMC method, with the hyperparameters specified in Table 5. Subsequently, the
optimized NNB ansatz is used to generate a labeled dataset, 𝑆pre, of size 𝑁pre:

𝑆pre =
{

𝐧𝑖, 𝑀nnb(𝐧𝑖)
}𝑁pre
𝑖=0 , (4)

where each entry consists of a configuration 𝐧𝑖 and its corresponding orbital matrix 𝑀nnb(𝐧𝑖).
The transformer ansatz is then pretrained in a supervised manner, with the loss function to be the mean square error of the orbital

matrix, i.e.,

pretrain = 1
𝑁pre

𝑁pre
∑

𝑖=1

𝐾
∑

𝑘=1
||𝑀𝑘(𝐧𝑖) −𝑀nnb(𝐧𝑖)||2, (5)

with Adam optimizer. We note that in practice, the pretrain dataset can be generated online. Compared to random initialization, a
pretrained transformer is much more stable and converges significantly faster.

Supplementary Note 2. Pinning Field

To avoid convergence to local minima during optimization, a temporary pinning field is applied. This field takes the form of an
antiferromagnetic (AFM) term added to the Hamiltonian 𝐻̂ on specific columns:

𝐻̂pin = 𝐻̂ + ℎ𝑚
∑

𝑖∈[𝐿𝑥]
ℎ𝑖

∑

𝑗∈[𝐿𝑦]
(−1)𝑗𝑆̂𝑧𝑖𝑗 , (6)

with ℎ𝑚 = 0.2 and ℎ𝑖 ∈ {−1, 0, 1} to probe the possible magnetic order. Initially, a transformer wavefunction 𝜓1 is optimized
under the influence of this pinning field. This pinned field guides the ansatz to fall into a desired pattern. Subsequently, a second
transformer ansatz 𝜓2 is initialized. We then employ a pretraining procedure aimed at maximizing the fidelity ⟨𝜓1|𝜓2⟩

2

⟨𝜓1|𝜓1⟩⟨𝜓2|𝜓2⟩
. This

effectively transfers the desired pattern to𝜓2. The final optimization is then performed on𝜓2 with the pinning field removed, allowing
it to relax and find the true ground state.

With this method, we can stabilize a vertical or horizontal stripe. From Figure 31 we can see that at the same network size, the
vertical stripe is higher in energy than the horizontal stripe, indicating the horizontal stripe indeed is favored on 32 × 8 lattice with
𝑡′ = −0.2 and 𝛿 = 1∕8.
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Supplementary Table 1 | Benchmark energy in pure Hubbard model at half-filling with PBC. NQS achieve comparable results with the
numerically exact AFQMC values [2].

Systems 8 × 8 10 × 10 12 × 12
AFQMC -0.5262(5) -0.5254(3) -0.5246(1)

NQS -0.52582 -0.52492 -0.52440

Supplementary Table 2 | Benchmark energy in pure Hubbard model with OBC. NQS achieve new state-of-the-art results by surpassing PEPS.

Systems 16 × 4 16 × 6 8 × 8 16 × 8 16 × 12 16 × 16
DMRG -0.68537 -0.70550 -0.69840 -0.71250
PEPS -0.68304(5) -0.7008(2) -0.69928(3) -0.7122(3) -0.7202(2) -0.7260(2)
NQS -0.68325 -0.70307 -0.69952 -0.71309 -0.72212 -0.72747

Hartree-Fock -0.52499 -0.54269 -0.53874 -0.55335 -0.56250 -0.56716

Supplementary Note 3. Benchmark Results

In addition to the results presented for the pure Hubbard model with OBC in the main text (numbers are listed in Table 2), this section
details extensive benchmark comparisons of our NQS methodology against several leading numerical techniques across a variety of
Hubbard model configurations and system parameters. We also provide an ablation study for our proposed optimizer MARCH against
SPRING.

Supplementary Note 3.1 Comparison with Hidden Fermion Determinantal State

We first benchmark our NQS approach against the Hidden Fermion Determinantal States (HFDS) method, a notable prior NQS
implementation [5]. For the pure Hubbard model on a 16 × 4 lattice with PBC, which represents the largest calculation reported in
their paper, our NQS yields a ground state energy of −0.76298. This value is significantly lower than the HFDS variational energy
of −0.753(2).

Supplementary Note 3.2 Comparison with DMRG

We further compare our NQS method with the DMRG on the 𝑡′ Hubbard model. Specifically, for a cylindrical geometry 16 × 8 with
next-nearest-neighbor hopping 𝑡′ = −0.2, our NQS achieves a variational energy of −0.72791. This is lower than the DMRG energy
of −0.72747, obtained with a large bond dimension of 𝑚 = 40000.

Supplementary Note 3.3 Comparison with PEPS

We also benchmark the computational efficiency of NQS against PEPS on identical hardware. The implementation of PEPS can be
referred to Wu et al. [7]. As detailed in Figure 32, the expressive power of NQS is similar to fermion PEPS with 𝐷 = 10. However,
NQS is significantly better than PEPS in terms of computational efficiency under the same hardware conditions, as shown in Table 3.

Supplementary Note 3.4 Optimizer Ablation Study

To assess the efficacy of our proposed optimizer MARCH, we performed an ablation study comparing its performance against
SPRING [8] and Min-SR [9, 10]. The convergence behavior of both optimizers during the NQS training is presented in Figure 33.
These results clearly demonstrate that MARCH achieves significantly faster and more stable convergence compared to SPRING and
Min-SR for the systems tested.

Supplementary Note 3.5 Accuracy Estimation

To compare the accuracy of different NQS, we benchmark them on relatively simple systems with known exact solutions. Specifically,
we used a 4 × 4 lattice or the half-filled pure Hubbard model, which can be solved exactly using Exact Diagonalization or AFQMC.
The results are presented in Table 4.

Supplementary Table 3 | Computation complexity relative to NQS under the same hardware condition in 8 × 8 lattice. NQS is significantly
more efficient than PEPS.

Methods NQS NQS large PEPS D=8 PEPS D=10
Wall Time 1× 2× 7× 24×
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Supplementary Table 4 | Accuracy on simple systems, where the exact solution is possible.

Algorithm [3] [1] [4] [5] [6] This work
Lattice 8 × 8 4 × 4 4 × 4 4 × 4 8 × 8 12 × 12

Dopping 0 1∕8 3∕8 1∕8 0 0
Relative Error 0.003 0.01 0.0005 0.001 0.005 0.0002

Accuracy 99.7% 99% 99.95% 99.9% 99.5% 99.98%

Supplementary Note 4. Hyperparameter

Config Value

Optimizer Adam
Optimizer momentum 𝜇, 𝛽= 0.9, 0.999
Batch size 4096
Learning rate at time 𝑡 10−4(1 + 𝑡∕104)−1
Local energy clipping 5.0
MCMC step 2.5𝐿𝑥 × 𝐿𝑦
Hidden dimension 256
Layers 2
Steps 20000

Supplementary Table 5 | List of configs for the NNB training.

Config Value

Optimizer Adam
Batch size 4096
Learning rate 3 × 10−4
MCMC step 30
Steps 5000

Supplementary Table 6 | List of configs for the pretraining phase.

We present general settings of NNB training, pretraining, and MARCH training in Table 5, Table 6, and Table 7, respectively.
We note that for different systems, the hyperparameters might be slightly different. All code and data will be made openly available
upon publication.
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Supplementary Figure 1 | Attention maps for the transformer average over the sample electron configuration for 8 × 8 pure Hubbard model at
half-filling. The maps are organized by network layer (top to bottom: Layer 1 to Layer 4) and attention head (left to right: Head 1 to Head 4).
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Supplementary Figure 2 | Visualization of the attention mechanism, showing how a lattice site attends to another target site for 8×8 pure Hubbard
model at half filling. The maps are organized by network layer (top to bottom: Layer 1 to Layer 4) and attention head (left to right: Head 1 to Head
4).
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Supplementary Figure 3 | Similar as Figure 1 but for 10 × 10 pure Hubbard model at half-filling.
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Supplementary Figure 4 | Similar as Figure 2 but for 10 × 10 pure Hubbard model at half-filling.
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Supplementary Figure 5 | Similar as Figure 1 but for 12 × 12 pure Hubbard model at half-filling.
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Supplementary Figure 6 | Similar as Figure 2 but for 12 × 12 pure Hubbard model at half-filling.

9



0 20 40 60

Head 1
0

20

40

60

La
ye

r 1

0 20 40 60

Head 2
0

20

40

60
0 20 40 60

Head 3
0

20

40

60
0 20 40 60

Head 4
0

20

40

60

0 20 40 60

0

20

40

60

La
ye

r 2

0 20 40 60

0

20

40

60
0 20 40 60

0

20

40

60
0 20 40 60

0

20

40

60

0 20 40 60

0

20

40

60

La
ye

r 3

0 20 40 60

0

20

40

60
0 20 40 60

0

20

40

60
0 20 40 60

0

20

40

60

0 20 40 60

0

20

40

60

La
ye

r 4

0 20 40 60

0

20

40

60
0 20 40 60

0

20

40

60
0 20 40 60

0

20

40

60 0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
al

iz
ed

 a
tt

en
tio

n 
sc

or
es

Supplementary Figure 7 | Similar as Figure 1 but for 8 × 8 Hubbard model with 𝑡′ = −0.2 at 1∕8 dopping.
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Supplementary Figure 8 | Similar as Figure 2 but for 8 × 8 Hubbard model with 𝑡′ = −0.2 at 1∕8 dopping.
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Supplementary Figure 9 | Similar as Figure 1 but for 12 × 12 Hubbard model with 𝑡′ = −0.2 at 1∕8 dopping.
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Supplementary Figure 10 | Similar as Figure 2 but for 12 × 12 Hubbard model with 𝑡′ = −0.2 at 1∕8 dopping.
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Supplementary Figure 11 | Hole and spin density distributions in the ground state for Hubbard with 𝑈 = 8 and hole doping 𝛿 = 1∕8. The
magnitudes of the spin density are represented by the sizes of the arrows while the direction is denoted by the direction of the arrows. Hole density
is depicted using a color scale. The system is the pure Hubbard model with size 8 × 8 under OBC.
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Supplementary Figure 12 | Similar as Figure 11 but for 16 × 4 pure Hubbard model under OBC.
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Supplementary Figure 13 | Similar as Figure 11 but for 16 × 6 pure Hubbard model under OBC.
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Supplementary Figure 14 | Similar as Figure 11 but for 16 × 8 pure Hubbard model under OBC.
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Supplementary Figure 15 | Similar as Figure 11 but for 16 × 12 pure Hubbard model under OBC.
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Supplementary Figure 16 | Similar as Figure 11 but for 16 × 16 pure Hubbard model under OBC.
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Supplementary Figure 17 | Similar as Figure 11 but for 16 × 8 pure Hubbard model under PBC.
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Supplementary Figure 18 | Similar as Figure 11 but for 16 × 12 pure Hubbard model under PBC.
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Supplementary Figure 19 | Similar as Figure 11 but for 8 × 8 pure Hubbard model under PBC.
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Supplementary Figure 20 | Similar as Figure 11 but for 12 × 12 pure Hubbard model under PBC.
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Supplementary Figure 21 | Similar as Figure 11 but for 8 × 8 Hubbard model with 𝑡′ = −0.2 under PBC.
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Supplementary Figure 22 | Similar as Figure 11 but for 10 × 8 Hubbard model with 𝑡′ = −0.2 under PBC.
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Supplementary Figure 23 | Similar as Figure ?? but for 12 × 8 Hubbard model with 𝑡′ = −0.2 under PBC.
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Supplementary Figure 24 | Similar as Figure 11 but for 18 × 8 Hubbard model with 𝑡′ = −0.2 under PBC.
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Supplementary Figure 25 | Similar as Figure 11 but for 20 × 8 Hubbard model with 𝑡′ = −0.2 under PBC.
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Supplementary Figure 26 | Similar as Figure 11 but for 24 × 8 Hubbard model with 𝑡′ = −0.2 under PBC.
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Supplementary Figure 27 | Similar as Figure 11 but for 12 × 12 Hubbard model with 𝑡′ = −0.2 under PBC.
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Supplementary Figure 28 | Similar as Figure 11 but for 16 × 10 Hubbard model with 𝑡′ = −0.2 under PBC.
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Supplementary Figure 29 | Similar as Figure 11 but for 16 × 10 Hubbard model with 𝑡′ = −0.2 under PBC. We apply a temporary pinning field to
get the vertical stripe.
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Supplementary Figure 30 | Similar as Figure 11 but for 16 × 12 Hubbard model with 𝑡′ = −0.2 under PBC.
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Supplementary Figure 31 | Vertical v.s. Horizontal stripe for the 32 × 8 Hubbard model with 𝑡′ = −0.2 and 𝛿 = 1∕8, using NQS with up to 6
attention heads and determinants.
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Supplementary Figure 32 | NQS v.s. PEPS under the same VMC batchsize. NQS denotes the hidden dimension of 256 and 4 determinants,
NQS large denotes the hidden dimension of 384 and 6 determinants. D denotes the bond dimension in PEPS. The expressive power of NQS is
similar to PEPS with 𝐷 = 10.
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Supplementary Figure 33 | Ablation study of optimizer. The results show that our optimizer converges significantly faster than SPRING and
Min-SR.
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Config Value

Optimizer MARCH
Optimizer momentum 𝜇, 𝛽= 0.95, 0.995
Damping 𝜆 = 0.001
Batch size 4096
Norm constraint at time 𝑡 10−1(1 + max(𝑡 − 8000, 0)∕8000)−1
Local energy clipping 5.0
MCMC step 2.5𝐿𝑥 × 𝐿𝑦
Hidden dimension 256
Layers 4
Number of determinants 4
Steps 100000

Supplementary Table 7 | List of configs for the main training phase.
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