

Figure S1: Cu sensitivity of the Δ*R* mutant is not Cu-specific. **A.** Growth profiles at an OD₆₆₀ nm of WT, ΔR , and $\Delta R + R$ strains in control PYE medium and supplemented with 175 μM and 190 μM CuSO₄. **B.** Growth profiles at an OD₆₆₀ nm of WT, ΔR , and $\Delta R + R$ strains in control PYE medium supplemented with 75 μM of ZnSO₄. **C.** Viability assay on PYE plates of WT, ΔR , and $\Delta R + R$ strains, in 50 μM ZnSO₄, 200 μM NiSO₄ and 2 μM CdSO₄ conditions. **D.** Number of Cu atoms per cell exposed to 175 μM CuSO₄ excess for 5 min. All data are represented as the mean ± SD, with at least three biological replicates.

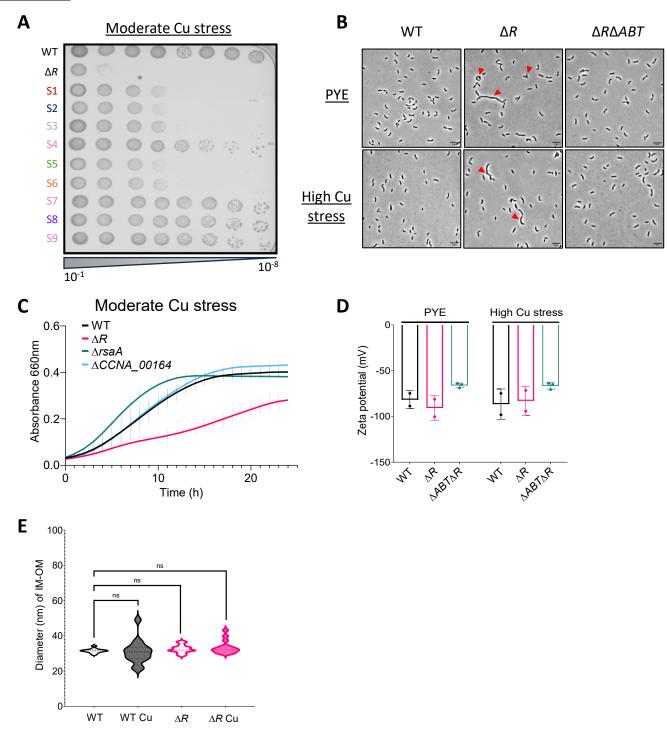
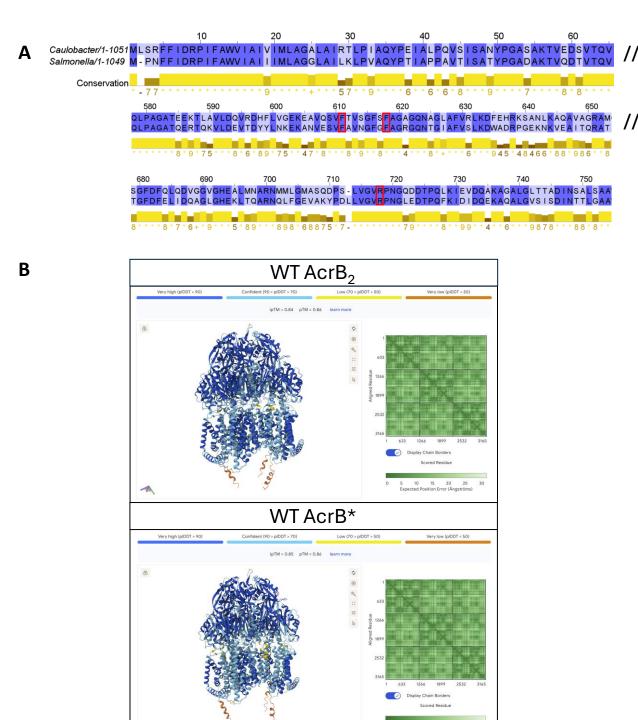
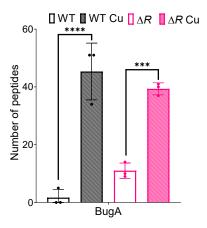
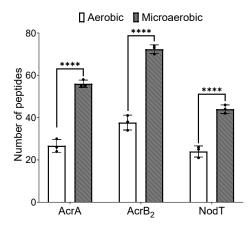




Figure S2: Microscopic and genetic analysis of cell surface alterations and their Impact on Cu sensitivity. A. Suppressors of the ΔR mutant were found on PYE plates supplemented with 120 μM CuSO₄. In total, 9 suppressors were isolated, which to some extent showed improved growth on Cu compared to the ΔR mutant. B. Phase-contrast microscopy images of WT, ΔR , and $\Delta R\Delta ABT$ strains at exponential phase in control condition and exposed for 1 h to 190 μM CuSO₄ (bar = 5 μm). C. Growth profiles at an OD₆₆₀ nm of WT, ΔR , $\Delta rsaA$, and $\Delta CCNA_00164$ strains PYE medium supplemented with 150 μM CuSO₄. All data are represented as the mean ± SD, with at least three biological replicates. D. Zeta potential measurements of WT, ΔR , and $\Delta R\Delta ABT$ cells with or without 190 μM CuSO₄ treatment. Mean ± SD, at least two biological replicates. E. Diameter of the distance between OM-IM space from Cyro-EM images. Distribution of OM-IM diameter space quantified from Cryo-EM microscopy images of WT and ΔR strains at exponential phase in control condition and exposed for 1 h to 190 μM CuSO₄. The solid line indicates the median, broken lines represent the 25th and 75th percentiles, respectively.


Figure S3: Multiple sequence alignment of AcrB_2 and AlphaFold3 prediction. A. Multiple MAFFT alignment of $AcrB_{cv}$ with AcrB homologs from *Salmonella typhimurium*. Identical residues are highlighted in blue, and the three conserved amino acids of interest, F610, F617, and R716, are highlighted in red. **B.** Graphic plot of the prediction of $AcrB_{cv}$ and $AcrB_{cv}^*$ accounting for the pLDDT and PAE (source AlphaFold3).

Α

Figure S4: Protein abundance of BugA. A. Normalized total spectrum count of BugA protein in PYE medium, in combination with a 1 h exposure to 190 μ M CuSO₄. All data are represented as the mean \pm SD, with at least three biological replicates. p values were calculated using ANOVA combined with Tukey's multiple comparison test (****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05).

Α

Figure S5: Metabolism switch upon AcrAB₂**NodT expression. A.** Normalized total spectrum count of AcrAB₂NodT protein in PYE medium, in aerobic and microaerobic conditions. All data are represented as the mean \pm SD, with at least three biological replicates. p values were calculated using ANOVA combined with Sidak's multiple comparison test (****p < 0.0001, ***p < 0.001, *p < 0.05).