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A spexvb updates derivation

A.1 Updates for q(bj, sj)

The updates for q(bj , sj) have been given in Carbonetto and Stephens (2012) and Ray
and Szabó (2022). We provide a full derivation here for completeness.
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A.2 Updates for π

The update for π would be
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k=1 E(sk). Exponentiating both sides gives

q(π) ∝ πaπ+M−1 × (1− π)p+bπ−M−1.

Therefore, we have q(π) ∼ Beta (aπ +M,p+ bπ −M).

B Additional Computational Details

In the simulation studies and data analysis, how spexvb obtains initial values, treats
hyperparameters, and sets the convergence criteria are inherited from Ray and Szabó
(2022), so that comparisons best isolate the impact of parameter expansion. This
section provides details on these modeling choices; see Ray and Szabó (2022) for more
information.

To obtain the initial values for spexvb, cross-validated lasso and ridge models
are fitted to the data. From the lasso model with the regularization parameter that
minimizes the mean cross-validated error, denoted by λmin, we obtain the number of
non-zero coefficients, denoted by nzλmin , and ŷ, the predicted outcome. Similarly, from
the lasso model with the largest regularization parameter that has cross-validated error
within one standard error of the minimum, we obtain nzλ1se , the number of non-zero
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coefficients. Next, we calculate nzmin = min(nzλ1se , n− 2), cπ = e1/2 ·max(nzmin, 1),
dπ = p− cπ, and τ−1

ϵ = ||y − ŷ||2/(n− nzmin − 1) following Reid et al. (2016).
The initial variational mean µ(0) is obtained as the coefficients of the ridge model

corresponding to λmin. Finally, the updating order is determined by sorting the abso-
lute values of the entries in µ(0) in descending order and taking the arranged indices.
For ω(0), the jth entry is 1 if the corresponding coefficient has a non-zero value in the
lasso λmin model, and max(nzmin, 1)/p otherwise.

We initialize W as W ←X⊙(µ0⊙ω0). To efficiently update this quantity during
the coordinate descent iterations, we can leverage the fact that only one element of
b and s changes at a time. That is, we subtract the old contribution of the j-th
coordinate: W j ← W − xjµjωj ; update µj and ωj ; and add back its contribution:
W ←W j +xjµjωj . For W

2, which is only required for the update of α, we initialize
it with W 2 ← (X⊙X) · (µ0 ⊙ µ0 ⊙ ω0 ⊙ (1− ω0))+(W ⊙W ) and update it before
Step II.

The convergence criterion is based on the entropy of the posterior probability vector
ω and a predefined tolerance level. The entropy of the vector ω is calculated via

H(ωj) = −ωj log2(ωj) + (1− ωj) log2 (1− ωj)

Our stopping criteria is maxj∥H(ωj,new)−H(ωj,old)∥ ≤ tol for some tol > 0.

C Additional Simulation Results

Here, we include additional plots of the simulation results for other n = 1000 that
were not included in the main article. See Figures 1 - 4.

D Alternative expanded model derivations

In the previous model derivations, we used bj ∼ N{0, (τϵτb)−1} as the prior for the
expanded parameters. This results in the prior for the original parameters being a

function of α, and the need to recalculate τ
(t+1)
b at each iteration.

Alternatively, we could have set b̃j ∼ N{0, (τϵτb)−1} as the prior for the original
parameters, then the prior for the expanded parameters is bj ∼ N{0, (α2τϵτb)

−1}.
Setting all other priors the same yields the expanded model likelihood
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Fig. 1 The range (maximum-minimum) of test set MSE comparing the true Xβ against the esti-

mated Xβ̂ over all τ
1/2
b ∈ (1/20, 1/4, 1, 4, 20). In the boxplots, the centers represent the mean range

of the MSE and the whiskers ±1 standard deviation.

The derivation of Step 1 is the same as the main text. For Step 2, having α in the prior
for b means that portion of the equation cannot be ignored, and we seek to maximize
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Fig. 2 Test set median MSE comparing the true Xβ against the estimated Xβ̂ over all τ
1/2
b ∈

(1/20, 1/4, 1, 4, 20). In the boxplots, the centers represent the mean value and the whiskers the ±1
standard deviation.

where A = W 2 + τa + τbE||b||2, B = y⊤(W + τaµa), and C = p/τϵ. Taking the
derivative with respect to α and setting it to zero gives

α(t+1) =
B +

√
B2 − 4AC

2A
(1)
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Fig. 3 (top) Test set MSE comparing the true Xβ against the estimated Xβ̂, and (bottom) L2 norm

of the β− β̂. In the boxplots, the centers represent the mean value and the whiskers the ±1 standard
deviation.
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Fig. 4 (top) False discovery rate. (bottom) True Positive Rate. In the boxplots, the centers represent
the mean value and the whiskers the ±1 standard deviation.
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as the maximum value. This equation has a similar form to the optimal expanded
parameter for automatic relevance determination (ARD) given in Section 3.2 of
Jaakkola and Qi (2006).

Step 3a would proceed similarly to the main text. Step 3b would not require any
alteration of τb. However, a similar alteration of µa would need to be made to ensure
that the expanded and original models have equal KL divergence.
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