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Supplementary methods

Crop names in the empirical data

Vegetables — vegetables (not specified), spinach, cauliflower, eggplant, pepper,
casaba, cucumber, onion, garlic, melon, lettuce, broccoli, endive

Other crops — amaranth, sunflower, cantaloupe, sugar beet, poppy, oats,
rapeseed, alfalfa, others/NA (crop not specified), flowers, tomato

Spatially explicit cropland N inputs 2010-2019
Harvested areas, yield and production

We used harvested areas and production for the year 2020 from MapSPAM as
the basemaps. We scaled the basemaps according to FAOSTAT country totals
to produce annual average maps for the period 2010-2019. Yields were
computed as the ratio of production and harvested areas.

Cropland nitrogen inputs

We computed gridded cropland nitrogen inputs for the period 2010-2019 at 100
km? as the sum of synthetic fertilisers, manure, atmospheric deposition and
biological fixation. Synthetic fertilisers, manure and deposition were derived
from 1. Atmospheric deposition was adjusted according to the share of cropland
in a 100 km? grid. For symbiotic biological fixation, we employed the
methodology developed? for grain legumes, including soybean and groundnut.
This work synthesized published data to develop crop-specific coefficients
and/or empirical relationships. These enable the estimation of crop-specific N2
fixation based on crop production. We separated symbiotic nitrogen fixation
from grain legumes from non-symbiotic nitrogen fixation from rice and
sugarcane. We did this by subtracting the total biological nitrogen fixed by rice
and sugarcane, assuming a non-symbiotic nitrogen fixing rate of 25 kg N ha' yr
"per FAOSTAT.

Upscaling with machine learning
Spatial predictors

All the spatial predictors used are identified in Table S1. We would like to
highlight specifically differences that may arise from observed and gridded
irrigation and nitrogen inputs since these were, by far, the most important
predictors. Firstly, we were unable to retrieve information from the different
studies concerning specific irrigation efficiencies, even when irrigation systems
were reported. This contrasts with the spatially explicit crop irrigation which do
not account for different irrigation systems. A similar issue occurs with nitrogen
inputs: whereas in the field observations these concern inputs of irrigated- and
crop-specific systems, the gridded data focus on total cropland nitrogen inputs
as no better data exists currently.



Machine learning framework

We hyper-tuned a random forests model using different cross-validation
strategies given the highly clustered observational dataset. We tested eight
different sampling strategies. Firstly, we tested a typical 70/30 partition (70%
training, 30% testing) stratified by site and a random 10-fold cross-validation
with five repetitions. Secondly, we tested different leave-one-out cross validation
according to different variables: site, a k-means cluster (based on covariates),
first level administrative boundaries (GADM) and pedoclimatic clusters based
on Koppen-Geiger climate zones and USDA soil texture. Lastly, we employed a
5- and 10-fold nearest neighbour distance matching leave-one-out cross
validation3.

Although, in theory, the best performances were achieved by a 70/30 partition
and the random 10-fold cross validation (Fig. S10), we opted to disregard it
since it tends to inflate performance metrics in clustered datasets*. More
importantly, we preferred to maximise predictive domain (i.e., area of
applicability) to generalise the model as much as possible. This was not
achieved through both the 70/30 partition and 10-fold cross validation where
observations from the same study were present in training and testing
folds/partitions. This not only creates a data bias in the hyper-tuned model but
also limits the spatial coverage when training the model, inflating performance.
The former because it did not include all the crops within all the regions, so
therefore the “high” performance was artificially and not well represented by
regions nor crops. A similar situation occurred with the latter, which trained and
validated the predictions using observations from the region, artificially inflating
the model’'s performance. This also greatly reduced the area of applicability of
the model.

It is important to note the impact of the different cross-validation strategies in
our multi-scaled estimates of Nirig. Therefore, we also compared the predictions
at different spatial scales (Fig. S13-14).



Supplementary results

Plausibility assessment of the estimated nitrogen input from irrigation

To evaluate the plausibility of our global Nirig estimates and to understand their
sensitivity to key assumptions, we applied two complementary methods. While
these do not constitute a formal validation—owing to the absence of global
monitoring data—they provide important constraints on magnitude and internal
consistency.

1. Inferred nitrate concentrations

We first calculated the nitrate concentration implied by our Nirig estimates by
dividing the predicted total Nirig by irrigation water volume, yielding an average
concentration of nitrate in irrigation water sources (including both surface- and
groundwater). Across global irrigated areas, this approach resulted in a median
concentration of 41 mg L' (interquartile range: 26-78 mg L"). Almost 1.5% of
grid cells showed values exceeding 750 mg L', primarily in Russia (Fig. S22),
which may reflect artefacts or hotspots not fully captured by monitoring
networks, and we deem these concentrations implausible.

While this approach offers a useful diagnostic, it relies on several simplifying
assumptions. Most notably, it assumes that irrigation water volumes are known
and that a single, blended nitrate concentration characterises each cell,
regardless of source. In reality, nitrate concentrations can vary considerably
between and within surface and groundwater sources, and water mixing is
neither spatially uniform nor necessarily proportional to water volume. These
limitations introduce uncertainty that is not captured in the median estimate, and
they may suppress heterogeneity or dilute extreme values.

Further, comparisons to regional case studies illustrate both strengths and
limitations of the approach. For example, the Guadalquivir basin in Spain is
widely recognized as a nitrate hotspot, particularly in groundwater (>50 mg L-)°.
However, our estimates for irrigation water nitrate concentrations in the region
range between 10 and 25 mg L' across much of the basin. This divergence
likely reflects the fact that only 30-45% of the irrigated area is equipped for
groundwater use®, with the remainder drawing from lower-nitrate surface
waters—highlighting the importance of irrigation source mix, which cannot be
precisely resolved at the grid scale. A similar dynamic may be present in
eastern China, where groundwater accounts for less than half of irrigated
supply®, helping to explain the relatively modest predicted concentrations in an
otherwise intensively managed region’. Conversely, in Denmark—where all
irrigation draws on groundwater—the predicted nitrate concentrations appear to
be overestimated®. However, in the absence of spatially resolved nitrate
concentrations at the irrigation source level, a rigorous quantitative comparison
was not possible.



2. Exploring variability using a factorial design focussed on nitrate
concentrations

To better constrain potential Nirig values under varying assumptions, we
conducted a factorial analysis. For each grid cell, we combined irrigation
volumes® and the estimated proportion of area equipped for groundwater® with a
range of plausible nitrate concentrations. Recognising that nitrate
concentrations in surface water tend to be lower than in groundwater®, we
constrained concentration ranges to 0.1-25 mg L for surface water and 0.1-
100 mg L' for groundwater. We applied uniform concentrations at the grid level
and aggregated resulting Nirig values globally.

This approach does not represent actual spatial variability in nitrate
concentrations, but it provides insight into the bounds of plausible Nirig
estimates under varying input assumptions. Across the factorial design, global
Nirig estimates varied substantially (Fig. S23), with higher values emerging in
scenarios with widespread groundwater use and elevated concentrations.
These results reinforce that assumptions about nitrate concentrations—
particularly in groundwater—exert strong control over national and global Nirig
estimates.

Limitations of current validation approaches

Despite their utility, both approaches are constrained by important structural and
data limitations. Most critically:

(i) No global nitrate monitoring dataset currently exists at sufficient
resolution or consistency to evaluate Nirig predictions at scale. Available
datasets are fragmented, temporally sparse, or reflect only certain water
bodies or monitoring networks.

(i) Grid-scale aggregation of water volumes and land areas masks
heterogeneity in both water sources and nitrate concentrations. To
illustrate this, we replicated a simplified aggregation analysis using data
from a European-scale study®. This study estimated an average irrigation
water use at 53 km? yr', with nitrate concentrations of 16.4 mg L-
(groundwater) and 1.9 mg L-! (surface water). Using our mass-balance
approach, we calculated a corresponding averaged Nirig of 71 Gg N yr,
which is only one-third of the study's bottom-up average of 240 Gg N yr™.
We found a similar situation also in a bottom-up study from Portugal®:
averaged values for irrigation were 2 km3 yr' and 21 and 5 mg L™ for
ground- and surface water, respectively, yielding a Nirig estimate of 4.8
Gg N yr', almost half of the averaged value. These discrepancies reflect
the non-linear effects of spatial aggregation, which tend to reduce the
influence of extreme values and obscure local hotspots.

Comparison of estimated nitrogen input from irrigation
A limited number of studies has focussed on the regional and national
contribution of Nirrig (Table S2), particularly using data-driven approaches.
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Therefore, we are unable to provide meaningful comparisons with other studies
in most cases. From the 11 studies we found, 5 are nitrogen budgets focussed
on China. All these used fixed nitrogen irrigation rates based on Chinese
literature, both in time and space, which we were unable to verify. This is a
considerable limitation given the spatial and temporal variation of irrigation and
nitrate dynamics, but a reasonable assumption given the scope of the studies.
This, however, raises a typical problem within the scientific community of using
values from other studies without plausible contexts. This is greatly exemplified
by 19, where the authors assessed regional and global nitrogen flows using
information for Burkina Faso''. Assuming global values based on a study
focussed on a single country is not only an invalid assumption, but also the
authors'' derived those values from an even older work.

Some works?912 used data-driven approaches to estimate the nitrogen
contribution of irrigation water. For these studies we can provide a more robust
comparison, even though no validation nor calibration against observations was
provided.

Comparison with & for the year 2010 showed significantly strong correlation
coefficients (r>0.54), except for rice and potatoes (Fig. S6). These showed the
largest differences, on a country basis, against our predictions. For rice, Italy
showed the largest disparity, while for potatoes these occurred in Northern
Europe (e.g., Germany, Denmark, the Netherlands).

Comparison with '3 for the year 2015 also showed a significantly strong
correlation coefficient (Fig. S7) of 0.84. The largest disagreement occurred in
China, where we predict 4.2 Tg N yr' and the reported value was 1.3 Tg N yr™.
We are unable to provide a plausibility check for possible methodological
differences for this difference, as no information about how the authors derived
estimates of Nirig were provided 3.



Supplementary tables

Table S1. Comparison of our estimates with other studies according to
study area (catchment, regions, countries, continents and global), and
overview of the underlying methodologies used.

Study area

Estimate

Our study (2010-2019)

Description

National values

Maize: 3.4 kg N ha! yr'
Rice: 22 kg N ha! yr

Observations (avg + sd)

Maize: 33.9 £ 43.6 kg N ha! yr'
Rice: 12.1 + 14.8 kg N ha! yr
Wheat: 33.8 £ 29.5 kg N ha' yr'

Fixed nitrogen irrigation rates with
unclear nitrate concentrations in

ina 14 irrigati ter. f
for China Wheat: 8.1 kg N ha"' yr- Predicted (avg + o) gation pater, Sourced from a
Maize:68.0 + 53.7 kg N ha! yr
Rice:65.9 + 47.5 kg N ha' yr
Wheat: 69.5 + 57.2 kg N ha! yr!

. . 223 Gg N yr- Fixed nitrogen irrigation rate of 16 kg
Haihe Basin, “ » . . N ha yr' based on other sources
China' for 2010 136 GINyr (90 Gg N yriassuming a fixed g, rice(3 3257 kg N har' yr') and

rate of 16 kg N ha™ yr) upland crops (2.5-28.7 kg N ha™' yr")
China " for “ “ Assumed coefficients from Wang et
2010s 0.82 Tg N yr 41TgNyr al. (2014)

4.1 TgNyr? Fixed nitrogen irrigation rate of 20.7

China 7 for 2010

1.1 Tg N yr' (arable farms)

(1.5 Tg N yr'' assuming a fixed
rate of 20.7 kg N ha' yr)

kg N ha™' yr'! sourced from
elsewhere

Global and
regional flows for
2000 10

World: 3.3 Tg N yr’

Asia: 2.1 Tg N yr

Europe: 0.32 Tg N yr!

Africa: 0.29 Tg N yr!

North America: 0.46 Tg N yr-!
South America: 0.14 Tg N yr-!
Oceania: 0.03 Tg N yr

World: 14 Tg N yr’

Asia: 11.1 Tg N yr

Europe: 0.33 Tg N yr'
Africa: 0.76 Tg N yr

North America: 0.85 Tg N yr-"
South America: 0.72 Tg N yr-"
Oceania: 0.07 Tg N yr!

Sum of sedimentation (from
erosion) and irrigation. Fixed
nitrogen irrigation rate of 3.3 x 1073
kg N m™ based on "', which was
based on an irrigation rate of 300
mm yr'and 3.3 mg N L.

Global '8 for the

Fixed irrigation rate of 900-1000 mm

1990 4 (3-5) Tg N yr! 14 Tg N yr’ yr'' and nitrogen concentrations of 1-
S 2mg N kg™
gallfornla 41 Gg N yr 53 Gg N yr- (I;J:rci:\llzadr- how these estimates were

US states and

national for 2015
12

California: 29 Gg N yr-'
US: 154 Gg N yr

California: 53 Gg N yr-'
US: 798 Gg N yr!

Based on reported crop irrigation
usage per state from surface- and
groundwater, with the average
nitrogen concentrations accordingly.

Japan for 2010-
201520

44 Gg N yr!

134 Gg N yr!

Derived using sum of irrigation water
from surface- and groundwater and
the average total nitrogen
concentration in irrigation water
sources.

Regional,
national and
continental flows
in Europe for
20108

Europe: 256 Gg N yr-'

Europe: 336 Gg N yr*

Crop irrigation input estimated using
a water balance model. Nitrate
concentrations based on machine
learning for groundwater and
weighted average for surface waters.

National and
global scales
circa 2015 13

World: 8.9 Tg N yr'

World: 14 Tg N yr*

Unclear how these estimates were
derived.
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Table S2. Spatial predictors used in the machine learning upscaling
procedure. All the final predictors were resampled to a spatial resolution

of 100km2.
Type Variable Source Spatial resolution
Management/ Crop irrigation rates 2010-2019 21 10 km
Human Cropland nitrogen inputs 2010-2019 - 10 km
intervention | Population density 2020 WorldPop 100 m
Gross domestic product per capita 22 10 km
Groundwater table depth 23 30 arcsec
Groundwater recharge 24 Polygon
Groundwater | Nitrate transport velocity 25 10 km
Aquifer permeability o6 Polygon
Aquifer porosity Polygon
Surface water | Distance to water 2 30 arcsec
Global river flow accumulation Hydrobasins 5 arcsec
Plant-available soil water holding capacity 1m 250 m
Plant-available soil water holding capacity 2m ISRIC
Lithology 250 m
Landforms OpenLandMap 250 m
Soil Soil organic carbon (%) 250 m
Aridity index 28 30 arcsec
Historical growing degree days GAEZ 10 km
Maximum temperature of warmest month
Mean Diurnal Range
Mean temperature of coldest quarter
Mean temperature of driest quarter
Mean temperature of warmest quarter
Mean temperature of wettest quarter
Minimum temperature of coldest month
Climate Precipitation of coldest quarter el Sl

11

Precipitation of driest month
Precipitation of driest quarter
Precipitation of warmest quarter
Precipitation of wettest quarter
Precipitation seasonality
Temperature seasonality



Supplementary figures
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Figure S1. Pairwise comparison of (a) nitrogen inputs observations with
and without irrigation.
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Figure S6. Partial dependence plot for all observations for irrigation (a)
(mm yr') and (b) total nitrogen inputs (kg N ha! yr) with Nirig for all
observations. Black lines represent the average response between the
predictors and Nirig. (¢) and (d) concern the partial dependence plots for
irrigation and total nitrogen inputs, respectively, constrained according to
the 95" percentile. Black vertical lines represent observations values for
the predictors.
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Figure S7. Partial dependence plot between irrigation rates and Nirrig for
different crops based on the cross-validated observational dataset. Black
lines represent the overall average, while dashed lines represent the
average for a given crop. Black vertical lines represent observations
values for the predictors.
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Figure S8. Partial dependence plot between total nitrogen inputs and Nirrig
for different crops based on the cross-validated observational dataset.
Black lines represent the overall average, while dashed lines represent the
average for a given crop. Black vertical lines represent observations

values for the predictors.
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Figure S9. Scatterplot of gridded data aggregated at the country scale
between this study and 8 for Europe for the year 2010, and performance
metrics. Black line represents the 1:1 line. P-value was corrected using
the holm method.
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Figure S10. Scatterplot of data at the country scale between this study
and '3 for the year 2015. Black line represents the 1:1 line. R2 was 0.72
with a Pearson correlation coefficient of 0.85 (p = 0).

21



Irrigation efficiency of 0.6

250

200

150

100

[4)]
o

N
(3}

-
o

e

Irrigation efficiency of 0.9

250
200

150

Average nitrate concentration (mg L'1)

100

50

25

; |

0 100 200 300 400 500 600 700 800 900
Irrigation volume (mm yr_1)

Nirig (kg N ha'yr ™)

R
10 25 50 100 150 300

Figure S11. Contribution of the nitrogen input via irrigation water
according to nitrate concentration in irrigation water sources and
irrigation volume per two different irrigation efficiencies. This is
calculated as mandated in the Portuguese Nitrate Vulnerable Zones
(https://lwww.dgadr.gov.pt/diretiva-nitratos/codigo-boas-praticas-
agricolas): Nirrig = 0.000226 x nitrate x (irrigation x 10) x efficiency. Note
that for lower irrigation efficiencies Nirrig is lower, but the nitrate losses
through leaching/runoff will, in principle, be comparatively higher.
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Figure S12. PRISMA guidelines for the synthesis of the global field

observations.
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Figure S13. Performance metrics for each one of the hyper-tuned random
forests models according to cross-validation sampling strategies. RMSE
is the root mean square error, R2 is the coefficient of determination and
MAE is the mean absolute error. Note that these metrics are weighted
averages according to the number of observations in the folds. The final
model chosen was with spatial cross validation stratified by site with the
following random forest models parameters: mtry — 30; splitrule —
variance; number of trees — 500.
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Figure S74. Variable importance of the random forest model.
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Figure S15. Correspondence between the predicted and observed Nirrig for
the whole observational dataset. Observations where the predictions
exceed more than 50% are highlighted according to their country.
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Figure S16. Regional (top) and global (bottom) sum of number of cells
inside area of applicability per crop and sampling strategy. Black point
represents the final strategy, a leave-one-out cross validation stratified by
site.
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Figure S17. Regional (top) and global (bottom) sum of Nirig per crop and
sampling strategy. Black point represents the final strategy, a leave-one-
out cross validation stratified by site.
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Figure S18. Comparison of MapSPAM 2020 (https://mapspam.info/) with
CropGRID? for selected crops. Note that crop maps from CropGRID
concern total harvested area (rainfed plus irrigated). Dark red areas may
be “ghost” irrigated areas in MapSPAM since these should overlap with
total harvested areas from CropGRID.
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Figure $19. Comparison of MapSPAM 2020 (https://mapspam.info/) with
20m annual lowland rice area for mainland Southeast Asia for circa 20193°.
Note that the annual 20m lowland rice area concerns total harvested area
(rainfed plus irrigated) and was aggregated from 20m to 10km by
summing 20m cells where rice is planted (set to 1). Dark red areas may be
“ghost” irrigated areas in MapSPAM since these should overlap with total
harvested areas.
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Figure S20. Comparison of MapSPAM 2020 (https://mapspam.info/) with
20m annual lowland rice area for Africa for 202331, Note that the annual
20m lowland rice area concerns total harvested area (rainfed plus
irrigated) and was aggregated from 20m to 10km by summing 20m cells
where rice is planted (set to 1). Dark red areas may be “ghost” irrigated
areas in MapSPAM since these should overlap with total harvested areas.
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Figure S21. Comparison of MapSPAM 2020 (https://mapspam.info/) with
European Irrigation Maps (EIM2010)32 of different crops circa 2010. Dark
red areas may be “ghost” irrigated areas in MapSPAM since these are not
coherent with sub-national agricultural census from EIM2010.
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Figure S22. Derived averaged nitrate concentration in irrigation water
sources, calculated as the ratio of the total Nirrig and total volumes of
irrigation water (top), as well as their distribution (bottom). The horizontal
lines represent a typical environmental threshold for eutrophication in
surface waters (2.5 mg L") and the EU threshold for nitrate in drinking
water (50 mg L).
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Figure S23. Factorial design of varying uniform nitrate concentrations in
ground- and surface waters and their implications in the total global Nirrig
estimates. Contour lines represent * 20% of our global estimate of 13.8 Tg
N yr-! as a proxy for possible variation.
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