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Supplementary methods 

Crop names in the empirical data 

Vegetables – vegetables (not specified), spinach, cauliflower, eggplant, pepper, 

casaba, cucumber, onion, garlic, melon, lettuce, broccoli, endive 

Other crops – amaranth, sunflower, cantaloupe, sugar beet, poppy, oats, 

rapeseed, alfalfa, others/NA (crop not specified), flowers, tomato 

Spatially explicit cropland N inputs 2010-2019 

Harvested areas, yield and production 

We used harvested areas and production for the year 2020 from MapSPAM as 

the basemaps. We scaled the basemaps according to FAOSTAT country totals 

to produce annual average maps for the period 2010-2019. Yields were 

computed as the ratio of production and harvested areas. 

Cropland nitrogen inputs 

We computed gridded cropland nitrogen inputs for the period 2010-2019 at 100 

km2 as the sum of synthetic fertilisers, manure, atmospheric deposition and 

biological fixation. Synthetic fertilisers, manure and deposition were derived 

from 1. Atmospheric deposition was adjusted according to the share of cropland 

in a 100 km2 grid. For symbiotic biological fixation, we employed the 

methodology developed2 for grain legumes, including soybean and groundnut. 

This work synthesized published data to develop crop-specific coefficients 

and/or empirical relationships. These enable the estimation of crop-specific N2 

fixation based on crop production. We separated symbiotic nitrogen fixation 

from grain legumes from non-symbiotic nitrogen fixation from rice and 

sugarcane. We did this by subtracting the total biological nitrogen fixed by rice 

and sugarcane, assuming a non-symbiotic nitrogen fixing rate of 25 kg N ha-1 yr-

1 per FAOSTAT. 

Upscaling with machine learning 

Spatial predictors 

All the spatial predictors used are identified in Table S1. We would like to 

highlight specifically differences that may arise from observed and gridded 

irrigation and nitrogen inputs since these were, by far, the most important 

predictors. Firstly, we were unable to retrieve information from the different 

studies concerning specific irrigation efficiencies, even when irrigation systems 

were reported. This contrasts with the spatially explicit crop irrigation which do 

not account for different irrigation systems. A similar issue occurs with nitrogen 

inputs: whereas in the field observations these concern inputs of irrigated- and 

crop-specific systems, the gridded data focus on total cropland nitrogen inputs 

as no better data exists currently. 
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Machine learning framework 

We hyper-tuned a random forests model using different cross-validation 

strategies given the highly clustered observational dataset. We tested eight 

different sampling strategies. Firstly, we tested a typical 70/30 partition (70% 

training, 30% testing) stratified by site and a random 10-fold cross-validation 

with five repetitions. Secondly, we tested different leave-one-out cross validation 

according to different variables: site, a k-means cluster (based on covariates), 

first level administrative boundaries (GADM) and pedoclimatic clusters based 

on Koppen-Geiger climate zones and USDA soil texture. Lastly, we employed a 

5- and 10-fold nearest neighbour distance matching leave-one-out cross 

validation3.  

Although, in theory, the best performances were achieved by a 70/30 partition 

and the random 10-fold cross validation (Fig. S10), we opted to disregard it 

since it tends to inflate performance metrics in clustered datasets4. More 

importantly, we preferred to maximise predictive domain (i.e., area of 

applicability) to generalise the model as much as possible. This was not 

achieved through both the 70/30 partition and 10-fold cross validation where 

observations from the same study were present in training and testing 

folds/partitions. This not only creates a data bias in the hyper-tuned model but 

also limits the spatial coverage when training the model, inflating performance. 

The former because it did not include all the crops within all the regions, so 

therefore the “high” performance was artificially and not well represented by 

regions nor crops. A similar situation occurred with the latter, which trained and 

validated the predictions using observations from the region, artificially inflating 

the model’s performance. This also greatly reduced the area of applicability of 

the model.  

It is important to note the impact of the different cross-validation strategies in 

our multi-scaled estimates of NIrrig. Therefore, we also compared the predictions 

at different spatial scales (Fig. S13-14). 
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Supplementary results 

Plausibility assessment of the estimated nitrogen input from irrigation 

To evaluate the plausibility of our global NIrrig estimates and to understand their 

sensitivity to key assumptions, we applied two complementary methods. While 

these do not constitute a formal validation—owing to the absence of global 

monitoring data—they provide important constraints on magnitude and internal 

consistency. 

1. Inferred nitrate concentrations  

We first calculated the nitrate concentration implied by our NIrrig estimates by 

dividing the predicted total NIrrig by irrigation water volume, yielding an average 

concentration of nitrate in irrigation water sources (including both surface- and 

groundwater). Across global irrigated areas, this approach resulted in a median 

concentration of 41 mg L-1 (interquartile range: 26–78 mg L-1). Almost 1.5% of 

grid cells showed values exceeding 750 mg L-1, primarily in Russia (Fig. S22), 

which may reflect artefacts or hotspots not fully captured by monitoring 

networks, and we deem these concentrations implausible.  

While this approach offers a useful diagnostic, it relies on several simplifying 

assumptions. Most notably, it assumes that irrigation water volumes are known 

and that a single, blended nitrate concentration characterises each cell, 

regardless of source. In reality, nitrate concentrations can vary considerably 

between and within surface and groundwater sources, and water mixing is 

neither spatially uniform nor necessarily proportional to water volume. These 

limitations introduce uncertainty that is not captured in the median estimate, and 

they may suppress heterogeneity or dilute extreme values. 

Further, comparisons to regional case studies illustrate both strengths and 

limitations of the approach. For example, the Guadalquivir basin in Spain is 

widely recognized as a nitrate hotspot, particularly in groundwater (>50 mg L-1)5. 

However, our estimates for irrigation water nitrate concentrations in the region 

range between 10 and 25 mg L-1 across much of the basin. This divergence 

likely reflects the fact that only 30–45% of the irrigated area is equipped for 

groundwater use6, with the remainder drawing from lower-nitrate surface 

waters—highlighting the importance of irrigation source mix, which cannot be 

precisely resolved at the grid scale. A similar dynamic may be present in 

eastern China, where groundwater accounts for less than half of irrigated 

supply6, helping to explain the relatively modest predicted concentrations in an 

otherwise intensively managed region7. Conversely, in Denmark—where all 

irrigation draws on groundwater—the predicted nitrate concentrations appear to 

be overestimated5. However, in the absence of spatially resolved nitrate 

concentrations at the irrigation source level, a rigorous quantitative comparison 

was not possible. 
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2. Exploring variability using a factorial design focussed on nitrate 

concentrations 

To better constrain potential NIrrig values under varying assumptions, we 

conducted a factorial analysis. For each grid cell, we combined irrigation 

volumes⁸ and the estimated proportion of area equipped for groundwater⁵ with a 

range of plausible nitrate concentrations. Recognising that nitrate 

concentrations in surface water tend to be lower than in groundwater8, we 

constrained concentration ranges to 0.1–25 mg L-1 for surface water and 0.1–

100 mg L-1 for groundwater. We applied uniform concentrations at the grid level 

and aggregated resulting NIrrig values globally. 

This approach does not represent actual spatial variability in nitrate 

concentrations, but it provides insight into the bounds of plausible NIrrig 

estimates under varying input assumptions. Across the factorial design, global 

NIrrig estimates varied substantially (Fig. S23), with higher values emerging in 

scenarios with widespread groundwater use and elevated concentrations. 

These results reinforce that assumptions about nitrate concentrations—

particularly in groundwater—exert strong control over national and global NIrrig 

estimates. 

Limitations of current validation approaches 

Despite their utility, both approaches are constrained by important structural and 

data limitations. Most critically: 

(i) No global nitrate monitoring dataset currently exists at sufficient 

resolution or consistency to evaluate NIrrig predictions at scale. Available 

datasets are fragmented, temporally sparse, or reflect only certain water 

bodies or monitoring networks. 

(ii) Grid-scale aggregation of water volumes and land areas masks 

heterogeneity in both water sources and nitrate concentrations. To 

illustrate this, we replicated a simplified aggregation analysis using data 

from a European-scale study8. This study estimated an average irrigation 

water use at 53 km³ yr-1, with nitrate concentrations of 16.4 mg L-1 

(groundwater) and 1.9 mg L-1 (surface water). Using our mass-balance 

approach, we calculated a corresponding averaged NIrrig of 71 Gg N yr-1, 

which is only one-third of the study's bottom-up average of 240 Gg N yr-1. 

We found a similar situation also in a bottom-up study from Portugal9: 

averaged values for irrigation were 2 km3 yr-1 and 21 and 5 mg L-1 for 

ground- and surface water, respectively, yielding a NIrrig estimate of 4.8 

Gg N yr-1, almost half of the averaged value. These discrepancies reflect 

the non-linear effects of spatial aggregation, which tend to reduce the 

influence of extreme values and obscure local hotspots. 

Comparison of estimated nitrogen input from irrigation 

A limited number of studies has focussed on the regional and national 

contribution of NIrrig (Table S2), particularly using data-driven approaches.  
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Therefore, we are unable to provide meaningful comparisons with other studies 

in most cases. From the 11 studies we found, 5 are nitrogen budgets focussed 

on China. All these used fixed nitrogen irrigation rates based on Chinese 

literature, both in time and space, which we were unable to verify. This is a 

considerable limitation given the spatial and temporal variation of irrigation and 

nitrate dynamics, but a reasonable assumption given the scope of the studies. 

This, however, raises a typical problem within the scientific community of using 

values from other studies without plausible contexts. This is greatly exemplified 

by 10, where the authors assessed regional and global nitrogen flows using 

information for Burkina Faso11. Assuming global values based on a study 

focussed on a single country is not only an invalid assumption, but also the 

authors11 derived those values from an even older work.  

Some works8,9,12 used data-driven approaches to estimate the nitrogen 

contribution of irrigation water. For these studies we can provide a more robust 

comparison, even though no validation nor calibration against observations was 

provided.  

Comparison with 8 for the year 2010 showed significantly strong correlation 

coefficients (r>0.54), except for rice and potatoes (Fig. S6). These showed the 

largest differences, on a country basis, against our predictions. For rice, Italy 

showed the largest disparity, while for potatoes these occurred in Northern 

Europe (e.g., Germany, Denmark, the Netherlands).  

Comparison with 13 for the year 2015 also showed a significantly strong 

correlation coefficient (Fig. S7) of 0.84. The largest disagreement occurred in 

China, where we predict 4.2 Tg N yr-1 and the reported value was 1.3 Tg N yr-1. 

We are unable to provide a plausibility check for possible methodological 

differences for this difference, as no information about how the authors derived 

estimates of NIrrig were provided 13.  
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Supplementary tables 

Table S1. Comparison of our estimates with other studies according to 
study area (catchment, regions, countries, continents and global), and 
overview of the underlying methodologies used. 

Study area Estimate Our study (2010-2019) Description 

National values 
for China 14 

Maize: 3.4 kg N ha-1 yr-1 
Rice: 22 kg N ha-1 yr-1 
Wheat: 8.1 kg N ha-1 yr-1 

Observations (avg ± sd) 
Maize: 33.9 ± 43.6 kg N ha-1 yr-1 
Rice: 12.1 ± 14.8 kg N ha-1 yr-1 
Wheat: 33.8 ± 29.5 kg N ha-1 yr-1 
 
Predicted (avg ± sd) 
Maize:68.0 ± 53.7 kg N ha-1 yr-1 
Rice:65.9 ± 47.5 kg N ha-1 yr-1 
Wheat: 69.5 ± 57.2 kg N ha-1 yr-1 

Fixed nitrogen irrigation rates with 
unclear nitrate concentrations in 
irrigation water. Sourced from a 
Chinese PhD thesis.   

Haihe Basin, 
China15 for 2010 

136 Gg N yr-1  
223 Gg N yr-1 
(90 Gg N yr-1 assuming a fixed 
rate of 16 kg N ha-1 yr-1) 

Fixed nitrogen irrigation rate of 16 kg 
N ha-1 yr-1 based on other sources 
for rice (3.3-25.7 kg N ha-1 yr-1) and 
upland crops (2.5-28.7 kg N ha-1 yr-1) 

China 16 for 
2010s 

0.82 Tg N yr-1 4.1 Tg N yr-1 
Assumed coefficients from Wang et 
al. (2014) 

China 17 for 2010 1.1 Tg N yr-1 (arable farms) 
4.1 Tg N yr-1 
(1.5 Tg N yr-1 assuming a fixed 
rate of 20.7 kg N ha-1 yr-1) 

Fixed nitrogen irrigation rate of 20.7 
kg N ha-1 yr-1 sourced from 
elsewhere 

Global and 
regional flows for 
2000 10 

World: 3.3 Tg N yr-1 
Asia: 2.1 Tg N yr-1 
Europe: 0.32 Tg N yr-1 
Africa: 0.29 Tg N yr-1 
North America: 0.46 Tg N yr-1 
South America: 0.14 Tg N yr-1 
Oceania: 0.03 Tg N yr-1 

World: 14 Tg N yr-1 
Asia: 11.1 Tg N yr-1 
Europe:  0.33 Tg N yr-1 
Africa: 0.76 Tg N yr-1 
North America: 0.85 Tg N yr-1 
South America: 0.72 Tg N yr-1 
Oceania: 0.07 Tg N yr-1 

Sum of sedimentation (from 
erosion) and irrigation. Fixed 
nitrogen irrigation rate of 3.3 × 10−3 
kg N m-3 based on 11, which was 
based on an irrigation rate of 300 
mm yr-1 and 3.3 mg N L-1. 

Global 18 for the 
1990s  

4 (3-5) Tg N yr-1   14 Tg N yr-1 
Fixed irrigation rate of 900-1000 mm 
yr-1 and nitrogen concentrations of 1-
2 mg N kg-1. 

California  
19 

41 Gg N yr-1  53 Gg N yr-1 
Unclear how these estimates were 
derived. 

US states and 
national for 2015 
12 

California: 29 Gg N yr-1 
US: 154 Gg N yr-1  

California: 53 Gg N yr-1 
US: 798 Gg N yr-1 

Based on reported crop irrigation 
usage per state from surface- and 
groundwater, with the average 
nitrogen concentrations accordingly. 

Japan for 2010-

201520 
 

44 Gg N yr-1 134 Gg N yr-1 

Derived using sum of irrigation water 
from surface- and groundwater and 
the average total nitrogen 
concentration in irrigation water 
sources.  

Regional, 
national and 
continental flows 
in Europe for 
2010 8 

Europe: 256 Gg N yr-1  Europe: 336 Gg N yr-1  

Crop irrigation input estimated using 
a water balance model. Nitrate 
concentrations based on machine 
learning for groundwater and 
weighted average for surface waters. 

National and 
global scales 
circa 2015 13 

World: 8.9 Tg N yr-1 World: 14 Tg N yr-1 
Unclear how these estimates were 
derived.  
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Table S2. Spatial predictors used in the machine learning upscaling 
procedure. All the final predictors were resampled to a spatial resolution 
of 100km2.  

Type Variable Source Spatial resolution 

Management/ 
Human 

intervention 

Crop irrigation rates 2010-2019 21 10 km 

Cropland nitrogen inputs 2010-2019 -  10 km 

Population density 2020 WorldPop 100 m 

 Gross domestic product per capita 22 10 km 

Groundwater 

Groundwater table depth 23  30 arcsec 

Groundwater recharge 24 Polygon 

Nitrate transport velocity 25 10 km 

Aquifer permeability 
26 

Polygon 

Aquifer porosity Polygon 

Surface water Distance to water 27 30 arcsec 

 Global river flow accumulation Hydrobasins 5 arcsec  

Soil 

Plant-available soil water holding capacity 1m 
ISRIC 

250 m 

Plant-available soil water holding capacity 2m  

Lithology  

OpenLandMap 

250 m  

Landforms  250 m  

Soil organic carbon (%) 250 m 

Aridity index 28 30 arcsec 

Historical growing degree days GAEZ 10 km 

Maximum temperature of warmest month 

Worldclim 30 arcsec 

Mean Diurnal Range 

 Mean temperature of coldest quarter 

 Mean temperature of driest quarter 

 Mean temperature of warmest quarter 

 Mean temperature of wettest quarter 

 Minimum temperature of coldest month 

Climate Precipitation of coldest quarter 

 Precipitation of driest month 

 Precipitation of driest quarter 

 Precipitation of warmest quarter 

 Precipitation of wettest quarter 

 Precipitation seasonality 

 Temperature seasonality 
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Supplementary figures 

. 

 

Figure S1. Pairwise comparison of (a) nitrogen inputs observations with 
and without irrigation.  
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Figure S2. (a) Number of observations for each crop per number of 
countries and studies. (b) Number of observations for each country per 
crop.  
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Figure S3. Comparison of observed total nitrogen inputs with and without 
irrigation for different crops.  
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Figure S4. Spatial variation of the gridded predictions for “other crops for 
the period 2010-2019 
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 Figure S5. Correspondence of NIrrig with total crop irrigated areas (a) and 
NIrrig scaled by reference area at the country scale (i.e., scaled according 
to total crop irrigated areas). In (a) the R2 is 0.94 (p<0.001) while in (b) the 
R2 is around 0 (p=0.91).  
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Figure S6. Partial dependence plot for all observations for irrigation (a) 
(mm yr-1) and (b) total nitrogen inputs (kg N ha-1 yr-1) with NIrrig for all 
observations. Black lines represent the average response between the 
predictors and NIrrig. (c) and (d) concern the partial dependence plots for 
irrigation and total nitrogen inputs, respectively, constrained according to 
the 95th percentile. Black vertical lines represent observations values for 
the predictors.  
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Figure S7. Partial dependence plot between irrigation rates and NIrrig for 
different crops based on the cross-validated observational dataset. Black 
lines represent the overall average, while dashed lines represent the 
average for a given crop. Black vertical lines represent observations 
values for the predictors. 
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Figure S8. Partial dependence plot between total nitrogen inputs and NIrrig 
for different crops based on the cross-validated observational dataset. 
Black lines represent the overall average, while dashed lines represent the 
average for a given crop. Black vertical lines represent observations 
values for the predictors. 
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Figure S9. Scatterplot of gridded data aggregated at the country scale 
between this study and 8 for Europe for the year 2010, and performance 
metrics. Black line represents the 1:1 line. P-value was corrected using 
the holm method.  
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Figure S10. Scatterplot of data at the country scale between this study 
and 13 for the year 2015. Black line represents the 1:1 line. R2 was 0.72 
with a Pearson correlation coefficient of 0.85 (p ≈ 0).   
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Figure S11. Contribution of the nitrogen input via irrigation water 
according to nitrate concentration in irrigation water sources and 
irrigation volume per two different irrigation efficiencies. This is 
calculated as mandated in the Portuguese Nitrate Vulnerable Zones 
(https://www.dgadr.gov.pt/diretiva-nitratos/codigo-boas-praticas-
agricolas): NIrrig = 0.000226 x nitrate x (irrigation x 10) x efficiency. Note 
that for lower irrigation efficiencies NIrrig is lower, but the nitrate losses 
through leaching/runoff will, in principle, be comparatively higher.  
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Figure S12. PRISMA guidelines for the synthesis of the global field 
observations. 
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Figure S13. Performance metrics for each one of the hyper-tuned random 
forests models according to cross-validation sampling strategies. RMSE 
is the root mean square error, R2 is the coefficient of determination and 
MAE is the mean absolute error. Note that these metrics are weighted 
averages according to the number of observations in the folds. The final 
model chosen was with spatial cross validation stratified by site with the 
following random forest models parameters: mtry – 30; splitrule – 
variance; number of trees – 500. 
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Figure S14. Variable importance of the random forest model. 
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Figure S15. Correspondence between the predicted and observed NIrrig for 
the whole observational dataset. Observations where the predictions 
exceed more than 50% are highlighted according to their country.  
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Figure S16. Regional (top) and global (bottom) sum of number of cells 
inside area of applicability per crop and sampling strategy. Black point 
represents the final strategy, a leave-one-out cross validation stratified by 
site.  
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Figure S17. Regional (top) and global (bottom) sum of NIrrig per crop and 
sampling strategy. Black point represents the final strategy, a leave-one-
out cross validation stratified by site. 
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Figure S18. Comparison of MapSPAM 2020 (https://mapspam.info/) with 
CropGRID29 for selected crops. Note that crop maps from CropGRID 
concern total harvested area (rainfed plus irrigated). Dark red areas may 
be “ghost” irrigated areas in MapSPAM since these should overlap with 
total harvested areas from CropGRID.  
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Figure S19. Comparison of MapSPAM 2020 (https://mapspam.info/) with 
20m annual lowland rice area for mainland Southeast Asia for circa 201930. 
Note that the annual 20m lowland rice area concerns total harvested area 
(rainfed plus irrigated) and was aggregated from 20m to 10km by 
summing 20m cells where rice is planted (set to 1).  Dark red areas may be 
“ghost” irrigated areas in MapSPAM since these should overlap with total 
harvested areas.  
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Figure S20. Comparison of MapSPAM 2020 (https://mapspam.info/) with 
20m annual lowland rice area for Africa for 202331. Note that the annual 
20m lowland rice area concerns total harvested area (rainfed plus 
irrigated) and was aggregated from 20m to 10km by summing 20m cells 
where rice is planted (set to 1). Dark red areas may be “ghost” irrigated 
areas in MapSPAM since these should overlap with total harvested areas.  
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Figure S21. Comparison of MapSPAM 2020 (https://mapspam.info/) with 
European Irrigation Maps (EIM2010)32 of different crops circa 2010. Dark 
red areas may be “ghost” irrigated areas in MapSPAM since these are not 
coherent with sub-national agricultural census from EIM2010.  
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Figure S22. Derived averaged nitrate concentration in irrigation water 
sources, calculated as the ratio of the total NIrrig and total volumes of 
irrigation water (top), as well as their distribution (bottom). The horizontal 
lines represent a typical environmental threshold for eutrophication in 
surface waters (2.5 mg L-1) and the EU threshold for nitrate in drinking 
water (50 mg L-1). 
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Figure S23. Factorial design of varying uniform nitrate concentrations in 
ground- and surface waters and their implications in the total global NIrrig 
estimates. Contour lines represent ± 20% of our global estimate of 13.8 Tg 
N yr-1 as a proxy for possible variation.  
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